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Abstract

Networks of interacting oscillators abound in nature, and one of the prevailing challenges in science is
how to characterize and reconstruct them from measured data. We present a method of
reconstruction based on dynamical Bayesian inference that is capable of detecting the effective phase
connectivity within networks of time-evolving coupled phase oscillators subject to noise. It not only
reconstructs pairwise, but also encompasses couplings of higher degree, including triplets and
quadruplets of interacting oscillators. Thus inference of a multivariate network enables one to
reconstruct the coupling functions that specify possible causal interactions, together with the
functional mechanisms that underlie them. The characteristic features of the method are illustrated by
the analysis of a numerically generated example: a network of noisy phase oscillators with time-
dependent coupling parameters. To demonstrate its potential, the method is also applied to neuronal
coupling functions from single- and multi-channel electroencephalograph recordings. The cross-
frequency 6, a to @ coupling function, and the 6, @, y to y triplet are computed, and their coupling
strengths, forms of coupling function, and predominant coupling components, are analysed. The
results demonstrate the applicability of the method to multivariate networks of oscillators, quite
generally.

1. Introduction

The networks found in nature [ 1] range from large-scale climatic interactions [2], through medium-scale
synchronously-firing ensembles of neurons in the brain [3], to small-scale coupled molecular systems [4]. The
nodes of the networks and their links (edges) can be static, or they may consist of dynamical systems and
processes. There can also be a clustered subnetwork exerting a common influence over the rest of the network.
The measured data for such networks may involve global observables, e.g. mean fields, or individual
measurements of the dynamical nodes and their connections. The main challenge to be faced is how to
characterize and reconstruct networks based on these kinds of data.

In what follows, we will focus on networks of oscillatory dynamical systems, a widespread class of networks
that is particularly important for physiological processes like the brain—cardiovascular interactions [5-8].
Numerous methods exist for the inference of network couplings between oscillators [9—19], and it has also been
shown that different forms of coupling can coexist between interacting systems [20]. From the statistics of the
coupled signals, e.g. correlation and (bi-) coherence measures, one can find the functional connectivity [21] but
such methods provide no information about causality or about the form of the coupling functions. We show,
however, that cross-frequency coupling functions and their associated causality can be inferred from real data,
thus yielding the effective connectivity [21]. Our approach will be based on a coupled-phase-oscillator model
[9, 22] and utilizes the recently proposed method of dynamical Bayesian inference [23—27]. Building on earlier
work in this area [28-30], we will extend the method to encompass the inference of the coupling functions that
prescribe the nature of the links (edges) between the oscillating nodes of a network.

In section 2 we develop the method itself. We start with a physically motivated introduction to coupling
functions, describe how the interactions in a network can be decomposed into separate couplings, and outline
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Figure 1. Schematic illustration of a coupling function. The second oscillator x, is unidirectionally coupled to the first oscillator x;, as
shown with the directed diagram on the left of the figure. (a) Amplitude signal x; (¢) during one cycle T; period. (b) Coupling function
q, (¢, ¢,) in{eh;, ,} space. (c) ¢,-averaged projection of the coupling function g, (¢, ¢, ). (d) Amplitude signal of the second driven
oscillator x; (), during one cycle of the first oscillator.
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the way in which Bayesian inference can be used in the analysis to reconstruct both pairwise connections and
connections of higher order, even in the case of noisy, time-variable, dynamics. We also define some quantitative
measures (coupling strength, similarity of form, and main coupling component) that can be used to characterize
the coupling relations. Examples of the application of the method are presented in section 3 considering, first,
data from a numerically generated system where all the answers are known in advance. Applications to brain
dynamics data in the form of single-channel and multi-channel electroencephalograph (EEG) recordings are
then described. Finally, we discuss the results and draw conclusions in section 4.

2. Methods

2.1. Coupling functions

Before going into details of the method and the analysis, we first focus our attention on the meaning and
interpretation of coupling functions. In doing so, we use an elementary example to present the basic physics
underlying a coupling function. We considered two oscillators that are unidirectionally phase-coupled:

451 = W,

by =1+ a, (b ) = 02 + cos (¢ + 7/2.5). (1)

The goal is to describe the influence of the coupling function g, (¢, ¢,) through which the first oscillator affects

the second one. From the expression for ¢, in equation (1) one can appreciate the fundamental role of the
coupling function: q, (¢h;, ¢,) is added to the frequency w,. Thus changes in the magnitude of g, (¢,, ¢,) will
contribute to the overall change of the frequency of the second oscillator. Hence, depending on the value of

a, (¢, ¢,), the second oscillator will either accelerate or decelerate.

This description of the coupling function is illustrated schematically in figure 1. Because in real situations
one measures the amplitude state signals, we explain how the amplitude signals (figures 1(a) and (d)) are
affected depending on the specific phase coupling function (figures 1(b) and (c)). In all plots, time is scaled
relative to the period T of the amplitude signal originating from the first oscillator x; (¢) (e.g. x; (£) = sin (¢,)).
The particular coupling functiong, (¢, ¢,) = cos (¢, + 7 /2.5) presented ona2z X 2z grid (figure 1(b))
resembles a shifted cosine wave, which changes only along the ¢, -axis: this kind of representation is used
extensively in the discussion that follows below. Because all the changes occur along the ¢, -axis, and for easier
comparison, we present in figure 1(c) a ¢h,-averaged projection of g, (¢, ¢,). Finally, figure 1(d) shows how the
second oscillator x; (¢) is affected by the first oscillator in time in relation to the coupling function phase: when
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Figure 2. Schemes and forms of coupling components: (a) self-coupling; (b) direct from one; (¢) common from two; (d) direct from
two; (e) common from three; and (f) direct from three. Note that the labels on the horizontal axes of graphs indicate the sources of
coupling, while the vertical axis label indicates the target oscillator in each case.

the coupling function g, (¢;, ¢,) is increasing, the second oscillator x; (t) accelerates; similarly, when g, (¢, ¢,)
decreases, x, (t) decelerates.

Of course, the coupling functions of real systems can be much more complex than the simple example
presented (cos (¢, + 7/2.5)), but the basic principle and physical significance of the coupling function are the
same. A similar description can be elaborated for amplitude state coupling functions (e.g. g, (x;, x,))—with the
difference that the change in coupling function values will increase or decrease the amplitude of the driven
oscillator.

Furthermore, the coupling functions determine the possibility of qualitative transitions between the
oscillations, e.g. routes into and out of phase synchronization. This has important implications for many
physiological interactions, including e.g. the phase-transitions of the cardiorespiratory interaction [31, 32]. The
coupling functions decomposition can enable a description of the functional contribution from each subsystem
within a coupling relationship. It is this that has led to much recent progress towards the extraction and
reconstruction of coupling functions between interacting oscillatory processes, with applications to
cardiorespiratory interactions [23, 33, 34], chemistry [35-37], and communications [38]. Thus, the coupling
function amounts to much more than just a new way of investigating correlations: it opens up a whole new
perspective on the mechanisms underlying the functionality of a network.

2.2. Coupling decomposition

The properties of a network of N coupled periodic oscillators subject to noise can be investigated by focusing on
its phase dynamics [22, 39, 40]. To do so, a system of N stochastic differential equations with time varying
parameters can be built as

$:(0) = () + a4, (¢ Bjp bio s by 1) + & (D) 2)

withi= L,...,N, where the frequency of each oscillator ¢, is defined as the sum of its natural frequency w;, a
function g; of the phases ¢, of the oscillators influencing it, including its self-dynamics, and a stochastic part
represented by &;, which is modelled as Gaussian white noise such that (¢, (t)& (7)) = 6 (t — 1) D, 5. In this
configuration it is easy to appreciate how the natural frequency w; of each oscillator is deterministically
influenced in time by the additive coupling function g;.

In the case of such an N-network model, the direct coupling from one oscillator to another, discussed in
figure 1, is just one of the several possible combinations of couplings. In equation (3) the deterministic part g; of
equation (2) is decomposed into the sum of the partial contributions of different orders of coupling [33, 41], i.e.
q; represents the coupling from one oscillator, q,” the coupling from two oscillators, and so on

b (1) = wi (1) + Zqi/((bi) t) + Zqiﬂ((bi: bjs t)
i ij

+ 207 (00 by b t) + o+ &), )

ijk

figure 2 shows the first three orders of coupling and, where possible, the associated form of the coupling
function. There are several points to be noted —

o Thesimplest coupling possibility occurs when the coupling comes from a single oscillator:
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— Letus call the case in which the source and driven oscillator of the coupling are the same self-coupling
(figure 2(a)). The self-coupling g, (¢, ) has no physical relevance [42], and has the same morphology as that
presented in figure 1, but the sinusoidal wave propagates along the ¢, dimension as no other phase is
involved.

— Ifthedriven oscillator is different from the source, we refer to the coupling as direct (figure 2(b)): this is
exactly the case discussed in figure 1, and g, (¢, ) consists of a wave propagating along ¢, while ¢ remains
constant [33,41].

e When the coupling comes from two oscillators, the form of the coupling shows a wave running in the
diagonal direction (figures 2(c) and (d) at the bottom), generated from the presence of a sinusoidal function
in both the dimension plotted. One can distinguish the cases when the driven oscillator is included among the
sources, or not:

— Wecallthe case gy (¢4, ¢5) in which the driven oscillator is involved in the coupling source common from two
(figure 2(c)).

— Thecaseq. (¢, ¢p) that does notinclude the driven oscillator in the coupling dynamics is referred to asa
direct from two coupling (figure 2(d)).

e Evenifhigher orders of coupling cannot be plotted because they have more than two dimension in their
domain, the nomenclature for classification can intuitively be extended, so that we call dc (P a> Pps Pc)
common from three (figure 2(e)), and g, (¢4, ¢p> @) direct from three (figure 2 (f)), and so on.

o Atalllevels of coupling, the description common is applied if and only if the driven oscillator has a self-
coupling.

e Asnotation in what follows, a single-source coupling from ¢, to ¢ will be indicated by ¢, = ¢y For the
overall coupling from¢,, ..., ¢y to @y, thenotationwillbe ¢p;, ¢,, ..., ¢y — ¢y; and to indicate the
coupling components originating from a specific subset of sources among the overall coupling, the notation
D+, + ...+ Py — Py willbe used.

The deterministic periodic part of the differential equation (2) can be decomposed by Fourier
approximation for each oscillator into a sum of base functions @ = exp [1(ki¢p, + ko, + ... + knpyy ) 1[28—

30], modulated by the set of time-varying parameters c|/’
K
$i(6) = X (s s oor ) + ED). (4)
k=K

Decomposing the sum in equation (4) in the same way as in equation (3), in order to isolate the different orders
of the network coupling, one obtains:

K K
b=+ Y o)+ X oo b,)
k=K k=-K
K .
+ Y Dy by ) + o+ E (D, (5)
k=—-K
wherek # 0 andthe sumsover/, m, n = 1, ..., N withl # m # nareimplicit. In this configuration, the vector

of coefficients ¢ for each oscillator splits into different functional sections: ¢ represents the natural frequency
; (one element), ¢'¥ contains the coefficients of all the combinations of couplings from one oscillator
(2 x K x N elements),c"” contains the coefficients of all the combinations of couplings from two oscillators

(22 x K2 x ( I;]) elements), ¢”” contains the coefficients of all the combinations of couplings from three

oscillators (2° x K3 x ( N) elements), and so on. Therefore, the overall number v of elements for the ¢ matrix

3
characterizing the A-order coupled network is given by
A
- p iy (N
y—NxE)z x K X(ﬂ)' (6)
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2.3. Dynamical Bayesian inference
The network model of N coupled phase oscillators, equation (5), is to be inferred by a dynamical Bayesian
approach[23,27]. The model’s Fourier components act as base functions for the inference. The aim is to
compute the set of parameters M = {c}”, D).} which completely describes the couplings (c”) and noise ( D)
characterizing the network, starting from the phase dynamics extracted from the time-series X = {x; = x(#;)}
(fy = Ih),withI=1,...,L.

Bayes’ theorem allows one to obtain the posterior density p,, (M |X) of the unknown matrix of parameters
M from X, given a prior density p,, ;. (M) (based on observations and representing previous knowledge of the
unknown parameters), by building a likelihood function & (X | M):

£ (X |M)Ppyior (M)
S (@ IM)p, o (M)dM

Px (M |X) =

If the sampling frequency is high enough, i.e. the sampling step / is small enough relative to the dynamics, the
phase dynamics described by equation (2) can be well-approximated from the time series X’ using the Euler
midpoint discretization ¢}, = (¢;; + ¢; 1)) / 2and ¢l 1= (bip — bi1) / h.

Because the noise is treated as white and Gaussian, i.e. statistically independent, the likelihood at each time is
considered as a product over [ of the probability of observing ¢, ;. The likelihood function is computed

through the stochastic integral of the noise term over time, as &; (¢;) = /t fiel &(r)dt = JhH z;, where His the
1

Cholesky decomposition of the noise matrix D, andz; is a vector of normally distributed random variables. The

joint probability density of the phase dynamics process in respect of (¢, (f141) — ¢; (#;) ]is calculated using the

joint probability density of z;by imposing P [¢; (t141) ] = det( ]g’ )P (&), where ]g’ is the Jacobian term of the
transformation of variables that can be calculated from the base functions @; ;.
From this, the minus log-likelihood function S = —In # (X | M) can be expressed as

L h e a¢k(¢.,z)
§=ZIn D]+ ZO: T
+ [ - c0u(93)] (D7) - (03 ]) %

where summation over the repeated indices k is implicit, and the dot index in ¢) is substituted with the relevant
index.

Assuming that the prior probability of parameters M is a multivariate normal distribution, and taking into
account the quadratic form of the log-likelihood (7), the posterior probability will also be a multivariate normal
distribution. With this particular distribution for the parameters ¢, with mean ¢, and covariance matrix
Zorior = Ep_rilor, the stationary point of Sis calculated recursively [27] using the equations

D= %(¢l - ck¢k<¢.3))T (d’l - dejk((b.jl)),

. 0D ( .
fy = (Zprior), v + W) (D7) — g%
S = (S, + 90 (3)(07) (05,
L= (E_l)kwrw, (8)

where the summations over [=1,...,L, and over the repeated indices k andw, is implicit.

The posterior multivariate probability N (c|&, £) is computed by applying equation (8): it explicitly
defines the probability density of each parameter set of the model (4). The statistical confidence of the
parameters can be obtained from the covariance matrix =~

This inference technique is applied to the information provided by a stream of sequential blocks coming
from the time-series. The current distribution (8) is computed, based on the evaluation of the previous block of
data, i.e. informative priors are used. At each iteration information is propagated between the data windows, and
the current prior depends on the previous posterior; because the first initial prior cannot contain any
information, itis set to a flat normal distribution with o, = 0 and &,ior = 0.

To handle networks characterized by time-variable interacting dynamics, explicit information propagation
is used between consecutive blocks of data [23]: the covariance matrix of the next prior is computed by
convolution of the current posterior with the current diffusion matrix X . This measure describes how much

the parameters can change: Zé;ri(l)r = Zéost + kg
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2.4. Quantitative measures
One can utilize the inferred ¢ to quantify certain characteristics of the coupling relations. They can be used either
as quantitative measures, or to compare different coupling mechanisms.

2.4.1. Coupling strength

The coupling strength quantifies the coupling amplitude. It is defined as the Euclidean norm of the inferred
parameters corresponding to the Fourier components of the coupling to the oscillator ¢, from the combination
of oscillators o

N ll = > (cf). (9)

k

For each oscillator, the strength of each coupling from one oscillator is indexed into the ¢’ part of the ¢¥ vector,
and itis composed of 2 X K elements; the strength of each coupling from two oscillators is indexed into the ¢” (
part of the vector, and it is composed of 22 X K? elements; the strength of each coupling from three oscillators is
indexed into the c” part of the vector, and is composed by 2° x K? elements, and so on.

i)

2.4.2. Similarity of form

By calculating the correlation of two coupling functions, one can calculate the similarity of their forms,
irrespective of their amplitudes [34]. In this way one can quantify the form of the coupling function—which is
their unique characteristic. The similarity index is defined as

(a4,)
Pi\dp» ;) = 7= — (10)
(00:) = 3 141

where( X ) denotes averaging over the 2z X 27 phase grid, and g, are the standard deviations §; = g, — (q;)-
The correlation p can quantify the similarity between two inferred coupling functions, or quantify how much
one inferred coupling function is similar in functional form to some predefined characteristic coupling function.

2.4.3. Main coupling component

The concept of correlation has been extended to extract information about the predominant functional source
of the coupling. The correlation with analytically predefined waves gp, can give a measure of the prevalence of a
particular wave-propagating component within a coupling function. To take account of the possibility of the
main wave being phase-shifted into a coupling function lying within the interval 0 — 2z, we compute the
correlation between the coupling function and a series of M waves phase-shifted by an incrementm2z/M. To
detect the similarity to narrower or broader waves, we repeat the procedure for waves with natural frequencies of
n X . The maximum of these correlation values is chosen for each directional comparison:

<qi qp (nw + m27r/M)>

f)i(qi, qp) = max,, (11)

"0 N gp (ne + m2a/M)|| |

For the coupling from two oscillators (e.g. Figure 2(b)) we phase-shift bi-variate waves and check both the
diagonals.

3. Examples of applications

3.1. Numerical example

In order to illustrate and validate the inference procedure, we now apply the method to a numerically simulated
system. The test network presented in this section is composed of five phase oscillators, coupled as illustrated in
figure 3(a). The first oscillator X; oscillates without being influenced by any other, and with a time-varying
natural frequency (dashed circle), X, is driven by the direct from two coupling X; + X5 — X, (light green link),
X; is driven by the direct from three coupling X; + X4 + X5 — Xj; (dark green link), X, is driven by the common
from three coupling X; + X, + X, — X, (light blue link), andXj is driven by the common from two coupling

X3 + X5 — X5 (dark blue link). The system of stochastic differential equations associated with the network is:

6



I0P Publishing

NewJ. Phys. 17 (2015) 035002 T Stankovski et al

101

c C,
213 ©31,45%:124%35 Ca2 Caa S
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Figure 3. (a) The network scheme simulated. (b) Coupling strength of the inferred parameters for existing (i.e. real) connections (on
the left, bars colored as in (a)) and non-existing connections (on the right, purple bars) compared with surrogates (grey bars). (c) The
inferred time-varying parameters (dashed lines) compared with their real values (solid lines), colored as in (a) and (b). Note the
differing ordinate scales on the left and right sides of (b).

$ = (t) + &(1),

hy= w1 + Can () X sin (hy + ) + E2(0),

By =03 + cxas(t) X sin (y + ¢y + ¢5) + & (1),
ba= w4 + canna(t) X sin (¢ + by + ) + E4(0),

455 = s + ¢5.35(f) X sin <¢3 + ¢5) + & (1), (12)

where & represents addictive white Gaussian noise, the length of the time-series is 2000 s and the sampling step is
setas h=0.01 (see [43] for details of the computation schemes). All the coupling coefficients c;., and the natural
frequency w; are built as time-varying and are defined by:

w; = 4.8 X sin (27 X 0.0002 X t),
€2:1,3(f) =1 + sin (27 x 0.0002 X t),
€3:1,45(1) =1.8 — 0.001 X t,
C4:124(t) = 0.5 + 0.001 X t,
c5:35() =1.2 + 1.2 X cos (2 X 0.0001 X ¢). (13)

The other frequencies are set to be constant, i.e. w, = 11.5,w; = 21.5,w, = 28, s = 42. The time window for
the dynamical Bayesian inference is set equal to 50 s, which has been chosen as a compromise between the need
to include in each window enough information about the dynamics of the system (i.e. each 50 s window includes
5000 samples) and the resolution needed to follow the time variability of the parameters (i.e. 40 windows
of50s).

In order to validate the results, a set of 100 surrogates of the original network was generated by shifting each
phase time-series ¢, by a random increment. This technique allows us to destroy any phase-to-phase correlation
within the system, while still preserving the statistical properties of the time-series [44].

Figure 3(b), on the left, shows the coupling strength of the links effectively present in the net (green and blue
bars), compared with the corresponding average coupling strengths plus two standard deviations (+2SD)
computed from the set of surrogates (overlapped grey bars): it can be seen that the surrogates only attain values
that are significantly lower, showing that the coupling links are correctly identified among the possible
combinations checked. Figure 3(b), on the right, shows—on a different scale—the coupling strength inferred
for some links that do not exist in the net (purple bars), plotted against the corresponding average +2SD
strengths detected from the set of surrogates (overlapped grey bars): it can be seen that, in this case, the
surrogates reach significantly higher values than the calculated couplings, implying that a coupling is (correctly)
inferred to be below the significance level in cases when it is actually absent.

Figure 3(c) presents a time-plot of the actual time-varying parameters (thin solid lines), as compared with
their values inferred from the time-series (dashed lines). It can be seen that the method is not only able to detect
the average value of a coupling (as indicated by the bars in figure 3(b)), but is also able to follow the time
evolution of the parameters.
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5

Figure 4. Coupling functions inferred from a single-channel EEG recording. (a) The §, @ — @ coupling function, and (b) that for
0, a—y.

3.2. Application to brain dynamics

The ability of the method presented to infer time-varying and noisy dynamics makes it particularly suitable for
application to EEG time series. We demonstrate this through an extension of the recently-introduced neuronal
cross-frequency coupling functions [41]. In order to test the method on real data, two examples with quite
different features have been analysed. First we analyzed a single frontal-probe recording from a subject under
general anzsthesia. The second set of data was a 19-channel EEG recording from a young subject with autistic
spectrum disorder (ASD), which allowed us to apply the methods to a distinctively different case. In performing
the analysis, we concentrate in each case on the physical mechanisms linking the coupled systems; the
physiological and clinical implications go beyond the scope of the present paper.

3.2.1. Preprocessing

To treat the system as a network of coupled phase oscillators the cognitive bands, i.e. the § (0.8—4 Hz), 8
(4-7.5Hz), a (7.5-14 Hz), f (14-22 Hz) and y (22—-80 Hz) intervals, were filtered out from the signals by
application of finite-impulsive-response and Butterworth filters. The phase was then extracted from each
filtered time series using the Hilbert transform [45]. During this preprocessing procedure, particular care must
be taken to minimise overlap between the filtered spectra [46]: overlaps of consecutive frequency intervals
would result in overestimation of the corresponding phase-to-phase coupling.

3.2.2. Coupling relations of interest

First, we will analyse and discuss the §, @ = a coupling function. It has been found that the §-waves, which typify
deep sleep in adults [47] and still appear in the waking EEG of young subjects [48], can influence a-activity,
which is related to the processing of information[47, 49].

Secondly, we will study couplings in the y-interval, which is associated with attention, memory and sensory
processing [50]. The @ — y and a@ — y couplings have been already investigated pairwise, separately: the former
coupling was related to memory tasks, while the latter was being found to be predominant during attention-
related activities [11, 14, 51]. We will also apply our network approach to elucidate the dynamics of the
0, a, y— y triplet coupling.

3.2.3. Application to a single-channel EEG
Figure 4(a) shows the §, @ — a coupling functions from the subject with a single EEG channel recording. In
calculating the coupling function, all the partial contributions involved in §, a — a were considered, namely the
a — a self-coupling, the direct coupling § » a, and the common couplingé + a — a. The shape of the function
is similar to the form presented in figure 2(b), implying that the coupling is dominated by the direct component.
In particular, the predominance of tridimensional waves propagating along the ¢; dimension, together with the
almost constant level along the ¢),-axis, reveals that it is the d that leads the & oscillations. Moreover, the position
of the ridge and the hollow in the coupling function implies that the § oscillations are accelerating the « when
their phase is between 7 and 2z, and decelerating them when they are between 0 and z (see figure 1 for details).
Figure 4(b) shows the coupling that @ and « exerts on y oscillations. In this case, the partial contributions
included in the form are the direct couplings @ — y and @ — y, and the direct coupling from the joint pair
a + 6 — y. The shape of the coupling function indicates that the predominant role is played by the direct
influence of 8 over the y oscillations.
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Figure 5. (a) EEG probes distributed according to the 10-20 EEG protocol. (b) Coupling strength for 6, « = a. (c) Coupling strength
forthed, a, y — y triplet.

0
¢62ﬂ

Figure 6. (a) Spatial distribution of the , a coupling functions over the head, based on the different probe locations. (b) Average
coupling function along all the probes for the §, @ coupling relation.

3.2.4. Application to multi-channel EEG

The method was also applied to a set of multichannel EEG measurements. The recordings were derived from 19
probes distributed over the head of the subject according to the standard 10-20 configuration [52] illustrated in
figure 5(a). The two channels defined by the 10—20 protocol as references, positioned on the earlobes, are not
included in this analysis.

The coupling strength was calculated for §, a - a and 6, a, y — y. Unlike the form of the coupling function,
the coupling strength representation does not take into account all the arguments of the coupling components.
Hence the partial components can either be separately visualized or summed together. Figure 5(b) shows the
strength of the 5, @ — a coupling, which includes the self-couplinga = a, the direct coupling § — @, and the
common coupling § + @ — a. Itis evident that the coupling strength is not equally distributed among the
probes. Higher §, @ — a coupling is evident on the left hemisphere, with the frontal regions having highest
coupling values.

Figure 5(c) shows the strength of the 8, @, y — y coupling, which includes the self-coupling y — y, the direct
couplinga — y and @ — y, the common couplinga + y — y and 8 + y — y, the direct couplinga + 8 — y and
finally the common coupling® + a + y — y.The6, a, y — y triplet coupling strength is mostly distributed
among the outer probes.

Figure 6(a) shows how the form of the §, @ — a coupling functions varies in relation to their spatial locations
on the head. It can be seen in this figure that the tridimensional waves propagate mostly in the § dimension. This
tendency can be better observed in figure 6(b), which shows the averaged coupling function. Its form again
depends predominantly on the direct § oscillation, but it is now similar to two periods of a sine-wave, with two
minima and two maxima along the ¢;-axis. This reveals that, within one & cycle, there are two epochs of
acceleration and deceleration of the @ oscillations.

By computation of the correlation as described by equation (11), a numerical value can be obtained to
quantify the visual evidence about the similarity of the coupling components. Figure 7 shows the values of the
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Figure 7. Similarity of form of the coupling function with: (a) self-coupling@ — @; (b) common couplingd + a — a; and (c) direct
couplingd — a.

correlation p between each inferred form of the §, @ — a coupling function and the main coupling component
i.e. the series of sinusoidal waves propagating along the a direction (figure 7(a)), thea + & direction

(figure 7(b)), and the 6 direction (figure 7(c)). The color intensity confirms that the direct coupling from &
(figure 7(b)) plays the dominant role in this coupling relation.

4. Discussion and conclusions

The method presented allows one to study a network of coupled oscillators in greater depth than has been
possible hitherto. Up to now, the concept of coupling had been limited mainly to the statistical properties of the
time series in approaches that detected the existence of connections, and in some cases [9, 10, 16—18] were also
able to quantify coupling strengths. The present technique, on the other hand, allows one to discover the
underlying mechanism of coupling as well, detecting the functional features of the interactions, i.e. from how
many, and which, oscillators they are generated. The form of the coupling functions represents a new dimension
in the characterization of a coupling. The underlying phase mechanism is also revealed, as the form of the
coupling function determines how the intensity of the coupling depends on the relative phases of the two
oscillators.

The method itselfis based on the dynamical Bayesian framework [23-27], which infers well the time-
evolving deterministic dynamics and separates out the noise perturbations. This makes the method especially
suitable for inference of interactions among (oscillatory) biomedical systems that possess these characteristics.
The method exploits a phase dynamics model and reveals the underlying causal relationships, which places it
within the effective coupling class of methods [21]. It is mainly applicable to small-scale networks consisting of a
few oscillators. Large numbers of oscillators will increase considerably the dimension and number of coefficients
and base functions (equation (6)), thereby making the computations difficult in practice. In the case of networks
consisting of a relatively large number of interacting oscillators, a compromise to obtain a reasonable number of
coefficients can be set by adjustment of parameters such as the required order for the Fourier approximation (K
in equation (6)) or the required complexity for the network interactions (A in equation (6)), and additional
computing power (e.g. high performance clusters) might then be needed.

The network approach investigates all of the possible interactions simultaneously, correctly associating each
coupling with the specific functional link that generated it. Figure 8 shows a comparison between the averaged
8, a — a coupling function computed (a) with the pairwise approach and (b) with the network approach.
Clearly, the higher part of the function is computed consistently by the two methods, but the details at lower
values appear to be slightly different. This demonstrates an important advantage of our network-based method
over the pairwise-based approaches. That is, the approach proposed here and in [28, 41, 53] can distinguish the
network-specific coupling contributions, i.e. triplets, quadruplets and higher-than-pairwise couplings in
general, that are intrinsically present in the multivariate multidimensional interactions.

The feasibility of the method was demonstrated on a numerical example where the correct answers were
known in advance. The method passed this test convincingly, and was shown to work with considerable
precision. The specific application to brain dynamics is particularly promising, because of the intrinsic
oscillatory nature of cognitive waves, and their underlying couplings. The ability of the method to decompose
noise [23, 27] makes it especially suitable for this kind of signal. The quantitative indices inferred allow one to
detect differences in coupling among cognitive waves in different states, or having different functional
structures, for example in pathological states. Inclusion of lower frequency oscillations in the network, e.g. those
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Figure 8. The averaged 6, @ — a coupling function inferred (a) with pairwise and (b) with network dynamical Bayesian inference,
from multi-channel EEG recordings.

corresponding to cardiac and respiratory activity [54], could bring additional insight into the interactions
between different physiological networks. The wide prevalence of networks of noisy oscillators makes the
method applicable to a broad area of science and technology.
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