
New J. Phys. 17 (2015) 035002 doi:10.1088/1367-2630/17/3/035002

PAPER

Coupling functions in networks of oscillators

Tomislav Stankovski, Valentina Ticcinelli, PeterVEMcClintock andAneta Stefanovska*

LancasterUniversity, Department of Physics, Lancaster, UK
* Author towhomany correspondence should be addressed.

E-mail: t.stankovski@lancaster.ac.uk, v.ticcinelli@lancaster.ac.uk, p.v.e.mcclintock@lancaster.ac.uk and a.stefanovska@lancaster.

ac.uk

Keywords: coupling functions, networks of oscillators, dynamical Bayesian inference, physiological networks, neuronal coupling functions

Abstract

Networks of interacting oscillators abound in nature, and one of the prevailing challenges in science is

how to characterize and reconstruct them frommeasured data.We present amethod of

reconstruction based on dynamical Bayesian inference that is capable of detecting the effective phase

connectivity within networks of time-evolving coupled phase oscillators subject to noise. It not only

reconstructs pairwise, but also encompasses couplings of higher degree, including triplets and

quadruplets of interacting oscillators. Thus inference of amultivariate network enables one to

reconstruct the coupling functions that specify possible causal interactions, together with the

functionalmechanisms that underlie them. The characteristic features of themethod are illustrated by

the analysis of a numerically generated example: a network of noisy phase oscillators with time-

dependent coupling parameters. To demonstrate its potential, themethod is also applied to neuronal

coupling functions from single- andmulti-channel electroencephalograph recordings. The cross-

frequency δ, α toα coupling function, and the θ,α, γ to γ triplet are computed, and their coupling

strengths, forms of coupling function, and predominant coupling components, are analysed. The

results demonstrate the applicability of themethod tomultivariate networks of oscillators, quite

generally.

1. Introduction

The networks found in nature [1] range from large-scale climatic interactions [2], throughmedium-scale

synchronously-firing ensembles of neurons in the brain [3], to small-scale coupledmolecular systems [4]. The

nodes of the networks and their links (edges) can be static, or theymay consist of dynamical systems and

processes. There can also be a clustered subnetwork exerting a common influence over the rest of the network.

Themeasured data for such networksmay involve global observables, e.g.meanfields, or individual

measurements of the dynamical nodes and their connections. Themain challenge to be faced is how to

characterize and reconstruct networks based on these kinds of data.

Inwhat follows, wewill focus on networks of oscillatory dynamical systems, awidespread class of networks

that is particularly important for physiological processes like the brain–cardiovascular interactions [5–8].

Numerousmethods exist for the inference of network couplings between oscillators [9–19], and it has also been

shown that different forms of coupling can coexist between interacting systems [20]. From the statistics of the

coupled signals, e.g. correlation and (bi-) coherencemeasures, one canfind the functional connectivity [21] but

suchmethods provide no information about causality or about the formof the coupling functions.We show,

however, that cross-frequency coupling functions and their associated causality can be inferred from real data,

thus yielding the effective connectivity [21]. Our approachwill be based on a coupled-phase-oscillatormodel

[9, 22] and utilizes the recently proposedmethod of dynamical Bayesian inference [23–27]. Building on earlier

work in this area [28–30], wewill extend themethod to encompass the inference of the coupling functions that

prescribe the nature of the links (edges) between the oscillating nodes of a network.

In section 2we develop themethod itself.We start with a physicallymotivated introduction to coupling

functions, describe how the interactions in a network can be decomposed into separate couplings, and outline
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theway inwhichBayesian inference can be used in the analysis to reconstruct both pairwise connections and

connections of higher order, even in the case of noisy, time-variable, dynamics.We also define some quantitative

measures (coupling strength, similarity of form, andmain coupling component) that can be used to characterize

the coupling relations. Examples of the application of themethod are presented in section 3 considering, first,

data from anumerically generated systemwhere all the answers are known in advance. Applications to brain

dynamics data in the formof single-channel andmulti-channel electroencephalograph (EEG) recordings are

then described. Finally, we discuss the results and draw conclusions in section 4.

2.Methods

2.1. Coupling functions

Before going into details of themethod and the analysis, we first focus our attention on themeaning and

interpretation of coupling functions. In doing so, we use an elementary example to present the basic physics

underlying a coupling function.We considered two oscillators that are unidirectionally phase-coupled:

ϕ ω

ϕ ω ϕ ϕ ω ϕ π

=

= + = + +( ) ( )q

˙ ,

˙ , cos 2.5 . (1)

1 1

2 2 2 1 2 2 1

The goal is to describe the influence of the coupling function ϕ ϕq ( , )2 1 2 throughwhich thefirst oscillator affects

the second one. From the expression for ϕ̇2 in equation (1) one can appreciate the fundamental role of the

coupling function: ϕ ϕq ( , )2 1 2 is added to the frequencyω2. Thus changes in themagnitude of ϕ ϕq ( , )2 1 2 will

contribute to the overall change of the frequency of the second oscillator.Hence, depending on the value of

ϕ ϕq ( , )2 1 2 , the second oscillatorwill either accelerate or decelerate.

This description of the coupling function is illustrated schematically infigure 1. Because in real situations

onemeasures the amplitude state signals, we explain how the amplitude signals (figures 1(a) and (d)) are

affected depending on the specific phase coupling function (figures 1(b) and (c)). In all plots, time is scaled

relative to the periodT1 of the amplitude signal originating from the first oscillator x t( )1 (e.g. ϕ=x t( ) sin ( )1 1 ).

The particular coupling function ϕ ϕ ϕ π= +q ( , ) cos ( 2.5)2 1 2 1 presented on a π π×2 2 grid (figure 1(b))

resembles a shifted cosinewave, which changes only along theϕ1-axis: this kind of representation is used

extensively in the discussion that follows below. Because all the changes occur along theϕ1-axis, and for easier

comparison, we present infigure 1(c) aϕ2-averaged projection of ϕ ϕq ( , )2 1 2 . Finally, figure 1(d) shows how the

second oscillator x t( )2 is affected by thefirst oscillator in time in relation to the coupling function phase: when

Figure 1. Schematic illustration of a coupling function. The second oscillator x2 is unidirectionally coupled to thefirst oscillator x1, as
shownwith the directed diagramon the left of thefigure. (a) Amplitude signal x t( )1 during one cycleT1 period. (b) Coupling function

ϕ ϕq ( , )2 1 2 in ϕ ϕ{ , }1 2 space. (c)ϕ2-averaged projection of the coupling function ϕ ϕq ( , )2 1 2 . (d) Amplitude signal of the second driven

oscillator x t( )2 , during one cycle of thefirst oscillator.
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the coupling function ϕ ϕq ( , )2 1 2 is increasing, the second oscillator x t( )2 accelerates; similarly, when ϕ ϕq ( , )2 1 2

decreases, x t( )2 decelerates.

Of course, the coupling functions of real systems can bemuchmore complex than the simple example

presented ( ϕ π+cos ( 2.5)1 ), but the basic principle and physical significance of the coupling function are the

same. A similar description can be elaborated for amplitude state coupling functions (e.g.q x x( , )2 1 2 )—with the

difference that the change in coupling function valueswill increase or decrease the amplitude of the driven

oscillator.

Furthermore, the coupling functions determine the possibility of qualitative transitions between the

oscillations, e.g. routes into and out of phase synchronization. This has important implications formany

physiological interactions, including e.g. the phase-transitions of the cardiorespiratory interaction [31, 32]. The

coupling functions decomposition can enable a description of the functional contribution from each subsystem

within a coupling relationship. It is this that has led tomuch recent progress towards the extraction and

reconstruction of coupling functions between interacting oscillatory processes, with applications to

cardiorespiratory interactions [23, 33, 34], chemistry [35–37], and communications [38]. Thus, the coupling

function amounts tomuchmore than just a newway of investigating correlations: it opens up awhole new

perspective on themechanisms underlying the functionality of a network.

2.2. Coupling decomposition

The properties of a network ofN coupled periodic oscillators subject to noise can be investigated by focusing on

its phase dynamics [22, 39, 40]. To do so, a systemofN stochastic differential equationswith time varying

parameters can be built as

ϕ ω ϕ ϕ ϕ ϕ ξ= + … +( )t t q t t˙ ( ) ( ) , , , , , ( ) (2)i i i i j k N i

with i=1,…,N, where the frequency of each oscillator ϕ̇i is defined as the sumof its natural frequencyωi, a

function qi of the phasesϕ … N1, , of the oscillators influencing it, including its self-dynamics, and a stochastic part

represented byξi, which ismodelled asGaussianwhite noise such that ξ ξ τ δ τ〈 〉 = −t t D( ) ( ) ( )r s r s, . In this

configuration it is easy to appreciate how the natural frequencyωi of each oscillator is deterministically

influenced in time by the additive coupling function qi.

In the case of such anN-networkmodel, the direct coupling fromone oscillator to another, discussed in

figure 1, is just one of the several possible combinations of couplings. In equation (3) the deterministic part qi of

equation (2) is decomposed into the sumof the partial contributions of different orders of coupling [33, 41], i.e.

′q
i
represents the coupling fromone oscillator, ″q

i
the coupling from two oscillators, and so on

∑ ∑

∑

ϕ ω ϕ ϕ ϕ

ϕ ϕ ϕ ξ

= + ′ + ″

+ + … +‴

( )

( )

( )t t q t q t

q t t

˙ ( ) ( ) , , ,

, , , ( ). (3)

i i

i
i i

ij
i i j

ijk
i i j k i

figure 2 shows thefirst three orders of coupling and, where possible, the associated formof the coupling

function. There are several points to be noted –

• The simplest coupling possibility occurs when the coupling comes from a single oscillator:

Figure 2. Schemes and forms of coupling components: (a) self-coupling; (b) direct fromone; (c) common from two; (d) direct from
two; (e) common from three; and (f) direct from three. Note that the labels on the horizontal axes of graphs indicate the sources of
coupling, while the vertical axis label indicates the target oscillator in each case.
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– Let us call the case inwhich the source and driven oscillator of the coupling are the same self-coupling

(figure 2(a)). The self-coupling ϕq ( )A A has no physical relevance [42], and has the samemorphology as that

presented infigure 1, but the sinusoidal wave propagates along theϕA dimension as no other phase is

involved.

– If the driven oscillator is different from the source, we refer to the coupling as direct (figure 2(b)): this is

exactly the case discussed infigure 1, and ϕq ( )B A consists of awave propagating alongϕA whileϕB remains

constant [33, 41].

• When the coupling comes from two oscillators, the formof the coupling shows awave running in the

diagonal direction (figures 2(c) and (d) at the bottom), generated from the presence of a sinusoidal function

in both the dimension plotted.One can distinguish the cases when the driven oscillator is included among the

sources, or not:

– Wecall the case ϕ ϕq ( , )B A B inwhich the driven oscillator is involved in the coupling source common from two

(figure 2(c)).

– The case ϕ ϕq ( , )C A B that does not include the driven oscillator in the coupling dynamics is referred to as a

direct from two coupling (figure 2(d)).

• Even if higher orders of coupling cannot be plotted because they havemore than two dimension in their

domain, the nomenclature for classification can intuitively be extended, so that we call ϕ ϕ ϕq ( , , )C A B C

common from three (figure 2(e)), and ϕ ϕ ϕq ( , , )D A B C direct from three (figure 2 (f)), and so on.

• At all levels of coupling, the description common is applied if and only if the driven oscillator has a self-

coupling.

• As notation inwhat follows, a single-source coupling fromϕ1 toϕX will be indicated byϕ ϕ→ X1 . For the

overall coupling fromϕ ϕ…, , N1 toϕX , the notationwill beϕ ϕ ϕ ϕ… →, , , N X1 2 ; and to indicate the

coupling components originating from a specific subset of sources among the overall coupling, the notation

ϕ1+ϕ2 +…+ϕ ϕ→N X will be used.

The deterministic periodic part of the differential equation (2) can be decomposed by Fourier

approximation for each oscillator into a sumof base functionsΦ ϕ ϕ ϕ= + + … +ı k k kexp [ ( )]k N N1 1 2 2 [28–

30],modulated by the set of time-varying parameters ck
i( )

∑ Φϕ ϕ ϕ ϕ ξ= … +
=−

( )t tc˙ ( ) , , , ( ). (4)i

k K

K

k
i

k n i
( )

1 2

Decomposing the sum in equation (4) in the sameway as in equation (3), in order to isolate the different orders

of the network coupling, one obtains:

∑ ∑

∑

Φ Φ

Φ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ξ

= + ′ + ″

+ ‴ + … +

=− =−

=−

( ) ( )

( )

t

t

c c c

c

˙ ( ) ,

, , ( ), (5)

i
i

k K

K

k
i l

k l

k K

K

k
i l m

k l m

k K

K

k
i l m n

k l m n i

0
( ) ( : ) ( : , )

( : , , )

where ≠k 0 and the sums over = …l m n N, , 1, , with ≠ ≠l m n are implicit. In this configuration, the vector

of coefficients c
i( ) for each oscillator splits into different functional sections: c i

0
( ) represents the natural frequency

ωi (one element), ′c
i( ) contains the coefficients of all the combinations of couplings fromone oscillator

( × ×K N2 elements), ″c
i( ) contains the coefficients of all the combinations of couplings from two oscillators

( × × ( )K N2
2

2 2 elements), ‴c
i( ) contains the coefficients of all the combinations of couplings from three

oscillators ( × × ( )K
N

2
3

3 3 elements), and so on. Therefore, the overall number ν of elements for the c matrix

characterizing theΛ-order coupled network is given by

∑ν
λ

= × × ×
λ

Λ

λ λ

=
( )N K

N
2 . (6)

0
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2.3.Dynamical Bayesian inference

The networkmodel ofN coupled phase oscillators, equation (5), is to be inferred by a dynamical Bayesian

approach[23, 27]. Themodel’s Fourier components act as base functions for the inference. The aim is to

compute the set of parameters = c D{ , }k
i

r s
( )

, which completely describes the couplings (ck
i( ) ) and noise (Dr s, )

characterizing the network, starting from the phase dynamics extracted from the time-series = ≡ tx x{ ( )}l l

( =t lhl ), with l=1,…,L.

Bayes’ theorem allows one to obtain the posterior density  


∣p ( )of the unknownmatrix of parameters

 from , given a prior density p ( )prior (based on observations and representing previous knowledge of the

unknownparameters), by building a likelihood function  ℓ ∣( ):

 
  

   
 ∫

ℓ

ℓ
=p

p

p d
( )

( ) ( )

( ) ( )
.

prior

prior

If the sampling frequency is high enough, i.e. the sampling step h is small enough relative to the dynamics, the

phase dynamics described by equation (2) can bewell-approximated from the time series using the Euler

midpoint discretizationϕ ϕ ϕ= + +( ) 2i l i l i l,
*

, , 1 andϕ ϕ ϕ= −+ h˙ ( )i l i l i l, , 1 , .

Because the noise is treated aswhite andGaussian, i.e. statistically independent, the likelihood at each time is

considered as a product over l of the probability of observingϕ +i l, 1. The likelihood function is computed

through the stochastic integral of the noise termover time, as ∫ξ ξ≡ =+
t t t h H z( ) ( ) d ,i l

t

t
i i

l

l 1
whereH is the

Cholesky decomposition of the noisematrixD, andzi is a vector of normally distributed randomvariables. The

joint probability density of the phase dynamics process in respect of ϕ ϕ−+t t[ ( ) ( )]i l i l1 is calculated using the

joint probability density of zi by imposing ϕ ξ= ξ
ϕ

+P t J P[ ( )] det( ) ( )i l 1 , where ξ
ϕJ is the Jacobian term of the

transformation of variables that can be calculated from the base functionsΦi k, .

From this, theminus log-likelihood function  ℓ= − ∣S ln ( ) can be expressed as

∑
Φ

ϕ

ϕ Φ ϕ ϕ Φ ϕ

ϕ
= +

∂

∂

+ − −

=

−

−

( )

( ) ( )( )

S
L h

D c

c D c

2
ln

2

˙ ˙ , (7)

l

L

k

k l

l k k l

T

l k k l

0

1
·,

·,
* 1

·,
*

⎛

⎝

⎜
⎜

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎞

⎠
⎟

where summation over the repeated indices k is implicit, and the dot index inϕ· is substitutedwith the relevant

index.

Assuming that the prior probability of parameters is amultivariate normal distribution, and taking into

account the quadratic formof the log-likelihood (7), the posterior probability will also be amultivariate normal

distribution.With this particular distribution for the parameters c, withmean c̄, and covariancematrix

Σ Ξ≡ −
prior prior

1 , the stationary point of S is calculated recursively [27] using the equations

ϕ Φ ϕ ϕ Φ ϕ

Ξ Φ ϕ ϕ
Φ

ϕ

Ξ Ξ Φ ϕ Φ ϕ

Ξ

ϕ

= − −

= + −
∂

∂

= +

=

−

−

−

( ) ( )( ) ( )

( )
( )

( ) ( )

( ) ( )

( ) ( )

( )

h

L

h
h

h

D c c

r c D

D

c r

˙ ˙ ,

˙
2

,

,

, (8)

l k k l

T

l k k l

w
kw

w k l l

k l

kw
kw

k l w l

k
kw

w

·,
*

·,
*

prior ·,
* 1

·,

prior ·,
* 1

·,
*

1

where the summations over l= 1,…,L, and over the repeated indices k andw, is implicit.

The posteriormultivariate probability Ξ∣c c( ¯, ) is computed by applying equation (8): it explicitly

defines the probability density of each parameter set of themodel (4). The statistical confidence of the

parameters can be obtained from the covariancematrixΞ−1.

This inference technique is applied to the information provided by a streamof sequential blocks coming

from the time-series. The current distribution (8) is computed, based on the evaluation of the previous block of

data, i.e. informative priors are used. At each iteration information is propagated between the data windows, and

the current prior depends on the previous posterior; because the first initial prior cannot contain any

information, it is set to aflat normal distributionwithΞ = 0prior and =c̄ 0prior .

To handle networks characterized by time-variable interacting dynamics, explicit information propagation

is used between consecutive blocks of data [23]: the covariancematrix of the next prior is computed by

convolution of the current posterior with the current diffusionmatrixΣ l
diff . Thismeasure describes howmuch

the parameters can change:Σ Σ Σ= ++l l l
prior

1
post diff .
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2.4.Quantitativemeasures

One can utilize the inferred c to quantify certain characteristics of the coupling relations. They can be used either

as quantitativemeasures, or to compare different couplingmechanisms.

2.4.1. Coupling strength

The coupling strength quantifies the coupling amplitude. It is defined as the Euclidean normof the inferred

parameters corresponding to the Fourier components of the coupling to the oscillatorϕi from the combination

of oscillators σ:

∑∥ ∥ =σ
σ( )q c . (9)i

k

k
i

:
( : ) 2

For each oscillator, the strength of each coupling fromone oscillator is indexed into the ′c part of the c
i( ) vector,

and it is composed of × K2 elements; the strength of each coupling from twooscillators is indexed into the ″c
i( )

part of the vector, and it is composed of × K22 2 elements; the strength of each coupling from three oscillators is

indexed into the ‴c
i( ) part of the vector, and is composed by × K23 3 elements, and so on.

2.4.2. Similarity of form

By calculating the correlation of two coupling functions, one can calculate the similarity of their forms,

irrespective of their amplitudes [34]. In this way one can quantify the formof the coupling function—which is

their unique characteristic. The similarity index is defined as

ρ =
∥ ∥ ∥ ∥( )q q

q q

q q
,

˜ ˜

˜ ˜
, (10)i i j

i j

i j

where〈 × 〉denotes averaging over the π π×2 2 phase grid, and q̃i are the standard deviations = − 〈 〉q q qĩ i i .

The correlation ρ can quantify the similarity between two inferred coupling functions, or quantify howmuch

one inferred coupling function is similar in functional form to some predefined characteristic coupling function.

2.4.3.Main coupling component

The concept of correlation has been extended to extract information about the predominant functional source

of the coupling. The correlationwith analytically predefinedwavesqp, can give ameasure of the prevalence of a

particular wave-propagating component within a coupling function. To take account of the possibility of the

mainwave being phase-shifted into a coupling function lyingwithin the interval π−0 2 , we compute the

correlation between the coupling function and a series ofMwaves phase-shifted by an increment πm M2 . To

detect the similarity to narrower or broader waves, we repeat the procedure forwaveswith natural frequencies of

ω×n . Themaximumof these correlation values is chosen for each directional comparison:

ρ
ω π

ω π
=

+

∥ ∥ ∥ + ∥( )q qp
q qp n m M

q qp n m M
ˆ , max

˜ ˜ ( 2 )

˜ ˜ ( 2 )
. (11)i i n m

i

i

,

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

For the coupling from two oscillators (e.g. Figure 2(b)) we phase-shift bi-variate waves and check both the

diagonals.

3. Examples of applications

3.1. Numerical example

In order to illustrate and validate the inference procedure, we now apply themethod to a numerically simulated

system. The test network presented in this section is composed offive phase oscillators, coupled as illustrated in

figure 3(a). Thefirst oscillatorX1 oscillates without being influenced by any other, andwith a time-varying

natural frequency (dashed circle),X2 is driven by the direct from two coupling + →X X X1 3 2 (light green link),

X3 is driven by the direct from three coupling + + →X X X X1 4 5 3 (dark green link),X4 is driven by the common

from three coupling + + →X X X X1 2 4 4 (light blue link), andX5 is driven by the common from two coupling

+ →X X X3 5 5 (dark blue link). The systemof stochastic differential equations associatedwith the network is:

6
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ϕ ω ξ

ϕ ω ϕ ϕ ξ

ϕ ω ϕ ϕ ϕ ξ

ϕ ω ϕ ϕ ϕ ξ

ϕ ω ϕ ϕ ξ

= +

= + × + +

= + × + + +

= + × + + +

= + × + +

( )
( )
( )

( )

t t

c t t

c t t

c t t

c t t

˙ ( ) ( ),

˙ ( ) sin ( ),

˙ ( ) sin ( ),

˙ ( ) sin ( ),

˙ ( ) sin ( ), (12)

1 1 1

2 2 2:1,3 1 3 2

3 3 3:1,4,5 1 4 5 3

4 4 4:1,2,4 1 2 4 4

5 5 5:3,5 3 5 5

whereξi represents addictive white Gaussian noise, the length of the time-series is 2000 s and the sampling step is

set as h=0.01 (see [43] for details of the computation schemes). All the coupling coefficients σci: and the natural

frequencyω1 are built as time-varying and are defined by:

ω π

π

π

= × × ×
= + × ×

= − ×

= + ×

= + × × ×

t

c t t

c t t

c t t

c t t

4.8 sin (2 0.0002 ),

( ) 1 sin (2 0.0002 ),

( ) 1.8 0.001 ,

( ) 0.5 0.001 ,

( ) 1.2 1.2 cos (2 0.0001 ). (13)

1

2:1,3

3:1,4,5

4:1,2,4

5:3,5

The other frequencies are set to be constant, i.e.ω = 11.52 ,ω = 21.53 ,ω = 284 ,ω = 425 . The timewindow for

the dynamical Bayesian inference is set equal to 50 s, which has been chosen as a compromise between the need

to include in eachwindow enough information about the dynamics of the system (i.e. each 50 swindow includes

5000 samples) and the resolution needed to follow the time variability of the parameters (i.e. 40windows

of 50 s).

In order to validate the results, a set of 100 surrogates of the original networkwas generated by shifting each

phase time-seriesϕi by a random increment. This technique allows us to destroy any phase-to-phase correlation

within the system,while still preserving the statistical properties of the time-series [44].

Figure 3(b), on the left, shows the coupling strength of the links effectively present in the net (green and blue

bars), comparedwith the corresponding average coupling strengths plus two standard deviations (+2SD)

computed from the set of surrogates (overlapped grey bars): it can be seen that the surrogates only attain values

that are significantly lower, showing that the coupling links are correctly identified among the possible

combinations checked. Figure 3(b), on the right, shows—on a different scale—the coupling strength inferred

for some links that do not exist in the net (purple bars), plotted against the corresponding average +2SD

strengths detected from the set of surrogates (overlapped grey bars): it can be seen that, in this case, the

surrogates reach significantly higher values than the calculated couplings, implying that a coupling is (correctly)

inferred to be below the significance level in cases when it is actually absent.

Figure 3(c) presents a time-plot of the actual time-varying parameters (thin solid lines), as comparedwith

their values inferred from the time-series (dashed lines). It can be seen that themethod is not only able to detect

the average value of a coupling (as indicated by the bars infigure 3(b)), but is also able to follow the time

evolution of the parameters.

Figure 3. (a) The network scheme simulated. (b)Coupling strength of the inferred parameters for existing (i.e. real) connections (on
the left, bars colored as in (a)) and non-existing connections (on the right, purple bars) comparedwith surrogates (grey bars). (c) The
inferred time-varying parameters (dashed lines) comparedwith their real values (solid lines), colored as in (a) and (b).Note the
differing ordinate scales on the left and right sides of (b).
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3.2. Application to brain dynamics

The ability of themethod presented to infer time-varying and noisy dynamicsmakes it particularly suitable for

application to EEG time series.We demonstrate this through an extension of the recently-introduced neuronal

cross-frequency coupling functions [41]. In order to test themethod on real data, two examples with quite

different features have been analysed. First we analyzed a single frontal-probe recording from a subject under

general anæsthesia. The second set of data was a 19-channel EEG recording from a young subject with autistic

spectrumdisorder (ASD), which allowed us to apply themethods to a distinctively different case. In performing

the analysis, we concentrate in each case on the physicalmechanisms linking the coupled systems; the

physiological and clinical implications go beyond the scope of the present paper.

3.2.1. Preprocessing

To treat the system as a network of coupled phase oscillators the cognitive bands, i.e. the δ (0.8–4 Hz), θ

(4–7.5 Hz),α (7.5–14 Hz), β (14–22 Hz) and γ (22–80 Hz) intervals, were filtered out from the signals by

application offinite-impulsive-response andButterworthfilters. The phase was then extracted from each

filtered time series using theHilbert transform [45]. During this preprocessing procedure, particular caremust

be taken tominimise overlap between thefiltered spectra [46]: overlaps of consecutive frequency intervals

would result in overestimation of the corresponding phase-to-phase coupling.

3.2.2. Coupling relations of interest

First, wewill analyse and discuss the δ,α α→ coupling function. It has been found that the δ-waves, which typify

deep sleep in adults [47] and still appear in thewaking EEGof young subjects [48], can influence α-activity,

which is related to the processing of information[47, 49].

Secondly, wewill study couplings in the γ-interval, which is associatedwith attention,memory and sensory

processing [50]. Theθ γ→ andα γ→ couplings have been already investigated pairwise, separately: the former

couplingwas related tomemory tasks, while the latter was being found to be predominant during attention-

related activities [11, 14, 51].Wewill also apply our network approach to elucidate the dynamics of the

θ α γ γ→, , triplet coupling.

3.2.3. Application to a single-channel EEG

Figure 4(a) shows theδ α α→, coupling functions from the subject with a single EEG channel recording. In

calculating the coupling function, all the partial contributions involved inδ α α→, were considered, namely the

α α→ self-coupling, the direct couplingδ α→ , and the common couplingδ α α+ → . The shape of the function

is similar to the formpresented infigure 2(b), implying that the coupling is dominated by the direct component.

In particular, the predominance of tridimensional waves propagating along theϕδ dimension, togetherwith the

almost constant level along theϕα-axis, reveals that it is the δ that leads the α oscillations.Moreover, the position

of the ridge and the hollow in the coupling function implies that the δ oscillations are accelerating the αwhen

their phase is between π and π2 , and decelerating themwhen they are between 0 and π (seefigure 1 for details).

Figure 4(b) shows the coupling that θ and α exerts on γ oscillations. In this case, the partial contributions

included in the form are the direct couplingsθ γ→ andα γ→ , and the direct coupling from the joint pair

α θ γ+ → . The shape of the coupling function indicates that the predominant role is played by the direct

influence of θ over the γ oscillations.

Figure 4.Coupling functions inferred from a single-channel EEG recording. (a) The δ α α→, coupling function, and (b) that for
θ α γ→, .
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3.2.4. Application tomulti-channel EEG

Themethodwas also applied to a set ofmultichannel EEGmeasurements. The recordings were derived from19

probes distributed over the head of the subject according to the standard 10–20 configuration [52] illustrated in

figure 5(a). The two channels defined by the 10–20 protocol as references, positioned on the earlobes, are not

included in this analysis.

The coupling strengthwas calculated forδ α α→, andθ α γ γ→, , . Unlike the formof the coupling function,

the coupling strength representation does not take into account all the arguments of the coupling components.

Hence the partial components can either be separately visualized or summed together. Figure 5(b) shows the

strength of the δ α α→, coupling, which includes the self-couplingα α→ , the direct coupling δ α→ , and the

common coupling δ α α+ → . It is evident that the coupling strength is not equally distributed among the

probes.Higher δ α α→, coupling is evident on the left hemisphere, with the frontal regions having highest

coupling values.

Figure 5(c) shows the strength of theθ α γ γ→, , coupling, which includes the self-coupling γ γ→ , the direct

couplingα γ→ andθ γ→ , the common couplingα γ γ+ → andθ γ γ+ → , the direct couplingα θ γ+ → and

finally the common couplingθ α γ γ+ + → . Theθ α γ γ→, , triplet coupling strength ismostly distributed

among the outer probes.

Figure 6(a) shows how the formof the δ α α→, coupling functions varies in relation to their spatial locations

on the head. It can be seen in this figure that the tridimensional waves propagatemostly in the δ dimension. This

tendency can be better observed infigure 6(b), which shows the averaged coupling function. Its form again

depends predominantly on the direct δ oscillation, but it is now similar to two periods of a sine-wave, with two

minima and twomaxima along theϕδ-axis. This reveals that, within one δ cycle, there are two epochs of

acceleration and deceleration of the α oscillations.

By computation of the correlation as described by equation (11), a numerical value can be obtained to

quantify the visual evidence about the similarity of the coupling components. Figure 7 shows the values of the

Figure 5. (a) EEGprobes distributed according to the 10–20 EEGprotocol. (b) Coupling strength forδ α α→, . (c) Coupling strength
for theθ α γ γ→, , triplet.

Figure 6. (a) Spatial distribution of the δ α, coupling functions over the head, based on the different probe locations. (b) Average
coupling function along all the probes for theδ α, coupling relation.
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correlation ρ between each inferred formof the δ α α→, coupling function and themain coupling component

i.e. the series of sinusoidal waves propagating along the α direction (figure 7(a)), theα δ+ direction

(figure 7(b)), and the δ direction (figure 7(c)). The color intensity confirms that the direct coupling from δ

(figure 7(b)) plays the dominant role in this coupling relation.

4.Discussion and conclusions

Themethod presented allows one to study a network of coupled oscillators in greater depth than has been

possible hitherto. Up to now, the concept of coupling had been limitedmainly to the statistical properties of the

time series in approaches that detected the existence of connections, and in some cases [9, 10, 16–18]were also

able to quantify coupling strengths. The present technique, on the other hand, allows one to discover the

underlyingmechanismof coupling aswell, detecting the functional features of the interactions, i.e. fromhow

many, andwhich, oscillators they are generated. The formof the coupling functions represents a newdimension

in the characterization of a coupling. The underlying phasemechanism is also revealed, as the formof the

coupling function determines how the intensity of the coupling depends on the relative phases of the two

oscillators.

Themethod itself is based on the dynamical Bayesian framework [23–27], which infers well the time-

evolving deterministic dynamics and separates out the noise perturbations. Thismakes themethod especially

suitable for inference of interactions among (oscillatory) biomedical systems that possess these characteristics.

Themethod exploits a phase dynamicsmodel and reveals the underlying causal relationships, which places it

within the effective coupling class ofmethods [21]. It ismainly applicable to small-scale networks consisting of a

few oscillators. Large numbers of oscillators will increase considerably the dimension and number of coefficients

and base functions (equation (6)), therebymaking the computations difficult in practice. In the case of networks

consisting of a relatively large number of interacting oscillators, a compromise to obtain a reasonable number of

coefficients can be set by adjustment of parameters such as the required order for the Fourier approximation (K

in equation (6)) or the required complexity for the network interactions (Λ in equation (6)), and additional

computing power (e.g. high performance clusters)might then be needed.

The network approach investigates all of the possible interactions simultaneously, correctly associating each

couplingwith the specific functional link that generated it. Figure 8 shows a comparison between the averaged

δ α α→, coupling function computed (a) with the pairwise approach and (b)with the network approach.

Clearly, the higher part of the function is computed consistently by the twomethods, but the details at lower

values appear to be slightly different. This demonstrates an important advantage of our network-basedmethod

over the pairwise-based approaches. That is, the approach proposed here and in [28, 41, 53] can distinguish the

network-specific coupling contributions, i.e. triplets, quadruplets and higher-than-pairwise couplings in

general, that are intrinsically present in themultivariatemultidimensional interactions.

The feasibility of themethodwas demonstrated on a numerical example where the correct answers were

known in advance. Themethod passed this test convincingly, andwas shown toworkwith considerable

precision. The specific application to brain dynamics is particularly promising, because of the intrinsic

oscillatory nature of cognitive waves, and their underlying couplings. The ability of themethod to decompose

noise [23, 27]makes it especially suitable for this kind of signal. The quantitative indices inferred allow one to

detect differences in coupling among cognitive waves in different states, or having different functional

structures, for example in pathological states. Inclusion of lower frequency oscillations in the network, e.g. those

Figure 7. Similarity of formof the coupling functionwith: (a) self-couplingα α→ ; (b) common couplingδ α α+ → ; and (c) direct
coupling δ α→ .
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corresponding to cardiac and respiratory activity [54], could bring additional insight into the interactions

between different physiological networks. Thewide prevalence of networks of noisy oscillatorsmakes the

method applicable to a broad area of science and technology.
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