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Coupling genetic structure analysis 
and ecological‑niche modeling 
in Kersting’s groundnut in West 
Africa
Mariam Coulibaly1,2, Rodrigue Idohou3, Félicien Akohoue1, Andrew Townsend Peterson4, 
Mahamadou Sawadogo2 & Enoch Gbenato Achigan‑Dako1*

Orphan legume crops play an important role in smallholder farmers’ food systems. Though less 
documented, they have the potential to contribute to adequate nutrition in vulnerable communities. 
Unfortunately, data are scarce about the potential of those crops to withstand current and future 
climate variations. Using Macrotyloma geocarpum as an example, we used ecological niche modeling 
to explore the role of ecology on the current and future distributions of genetic populations of 
Kersting’s groundnut. Our findings showed that: (1) the models had good predictive power, indicating 
that M. geocarpum’s distribution was correlated with both climatic and soil layers; (2) identity and 
similarity tests revealed that the two genetic groups have identical and similar environmental niches; 
(3) by integrating the genetic information in niche modeling, niches projections show divergence in 
the response of the species and genetic populations to ongoing climate change. This study highlights 
the importance of incorporating genetic data into Ecological Niche Modeling (ENM) approaches to 
obtain a finer information of species’ future distribution, and explores the implications for agricultural 
adaptation, with a particular focus on identifying priority actions in orphan crops conservation and 
breeding.

Defining how and where plant varieties will adequately respond to environmental variations is a central topic 
in plant science research. This is more preoccupying for orphan crops that are largely grown in marginal areas 
and neglected in the mainstream research  agenda1. Availability of the genetic resources of those crops is still 
a challenge for many genebanks at national, regional, and international levels. This situation jeopardizes the 
sustainable utilization of the plant genetic diversity that can be useful for current and future food systems and 
secured  nutrition2–4. Such genetic resources are important for successful cultivars development and selection of 
economic and agronomic traits and could confer resilience to evolving climate.

In Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet], a multipurpose staple 
orphan crop with high nutritional and economic values for smallholder farmers in West  Africa5–9, the need to 
solve the ecological suitability of the extant genetic resources arose despite the significant achievements made 
recently on the germplasm collection, conservation, and characterization. Kersting’s groundnut plays an impor-
tant role in farming sustainability through its ability to fix atmospheric nitrogen in the soil and enhance soil 
 fertility10. Furthermore, It serves in traditional medicine for local  populations6,7,11. However, the production of 
Kersting’s groundnut is declining rapidly and the genetic resources were rarely collected and safeguarded for 
the future generation. In addition, environmental stresses are among the main causes for declining Kersting’s 
groundnut production from its cultivated  areas5,12. Though Kersting’s groundnut has relatively good adaptation 
to low-input  conditions13,14, increased frequency of drought, intense precipitations, elevated temperatures, and 
increased salt and heavy metals in soils will often be accompanied by increased infestation by pests, and patho-
gens, are expected to limit the plant growth and productivity, and consequently the crop’s yield and  production15.
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Recent studies revealed a low variation within the  species10,16 that limits the extent of its genetic diversity 
and cultivated zones. Kersting’s groundnut counts six landraces set mostly within three agroclimatic zones; 
Northern-Guinean (NG), Northern-Sudanian (NS), and Southern-Sudanian (SS) of Benin, Burkina Faso, Ghana, 
and Togo with the predominance of genetic resources and diversity in the Southern-Sudanian  zone5,12. Overall, 
the area of cultivation and adaptation of landraces differ among agroclimatic regions. The Black landrace was 
largely collected in the Northern-Sudanian environmental conditions and was widely preferred, cultivated, and 
maintained by  farmers12. The White landrace was widely grown in the Northern-Guinean transition zone of 
 Benin5,6 while less cultivated in Burkina  Faso12 and absent in other countries of West-Africa. The production of 
the Brown landrace was specifically limited to the Ghana farming  system12.

Kersting’s groundnut landraces are the direct results of farmer selection, cultivation, and maintenance over 
the centuries. This continual adaptation of the crop to smallholders farming conditions could continue to play 
a role in adapting production to climate change. Also, local adaptation of landraces could vary in their climatic 
response and requirement and therefore, may spread differentially under evolving environmental  conditions17. 
To find an adequate preferendum where the species can thrive, it has become crucial to approximate the potential 
distribution of the crop and its genetic resources.

Unfortunately, with the rapid evolution in climate conditions and the further introduction and adoption of 
new cash crops with high economic importance, local seed systems alone will likely be insufficient to ensure 
the endurance of the crop genetic resources and diversity. In these conditions, applying ecological research is 
required to inform conservation and management decisions to mitigate a species genetic  erosion18, as Kersting’s 
groundnut at National and Regional levels. Ecological niche modeling (ENM) can identify the environmental 
parameters that can impact a species’ distribution and project its potential distribution area onto new environ-
mental surfaces to examine the effect of present or future environmental  change19,20.

Several statistical and mechanistic techniques proved effective in quantifying niches and spatial distribution 
of natural and cultivated  species21–25. The basic modeling framework of species distribution models (SDMs) in 
general has been criticized on a number of gaps, such as ignoring heterogeneity in population and genetic struc-
ture in different parts of a species geographical  range26. However, many species are organized into differentiated 
genetic lineages across their geographical  ranges27,28 and populations differ in their adaptive potential to respond 
to environmental  change29. Studies proved that incorporating molecular data into SDMs represents an important 
step forward for modeling the effects of climate change on species geographical  ranges30–32.

In the case of Kersting’s  groundnut33, much uncertainty remains concerning the ability of the crop to with-
stand the changing climate, suggesting that there is a clear need to comprehensively analyze the response of the 
crop diversity under new environmental conditions of the coming decades.

The present study was undertaken to determine the environmental conditions in which KG will need to be 
cultivated in the coming decades and to utilize this information to prioritize genetic resource conservation and 
breeding efforts. Recent molecular studies involving 281 individuals from Benin and Togo identified two major 
genetic clusters of KG and these two groups were distributed across Southern-Sudanian and Northern-Guinean 
agroclimatic  zones16. Kafoutchoni, et al.34 also assessed the genetic structure of the species through the GBS 
approach with 217 individuals, and Discriminant analysis of principal components (DAPC) and found eight 
genetically distinct groups from five origins. In this context, the following questions are of high interest: do the 
agroclimatic niches of KG vary with climate changes? Would KG genetic groups differ in their ability to respond 
to present and future climatic scenarios?

This study examines the response of orphan crops to future climates by using genetic information and eco-
logical niche modeling approach (gENMs) using KG as an example. Therefore, we combined KG population 
genomics data with ecological niche modeling: (1) to analyze the relationship between climate factors and spe-
cies populations distribution in agroclimatic zones of Burkina Faso, Benin, Ghana, and Togo, and (2) to predict 
areas that would be suitable for the species and genetic populations under the future scenarios. We hypothesized 
that: (1) the future climates will impact the distribution of KG, and (2) genetically distinct populations of orphan 
crops would respond differently to climate change.

Results
Population structure and admixture. Despite low levels of diversity (He = 0.021 and Ho = 0.0053, 
p.value ≤ 0.001), Kersting’s groundnut populations remained genetically well differentiated. Admixture models 
with a putative number of tested genetic clusters (K) from one to five, showed that the most likely number of 
inferred members was 2 with ΔK = 101.917 (Fig. S1: Evanno output plots; Table S1). The classification of the 361 
accessions into populations based on the model-based structure (Fig. 1) showed that more than 65% of individu-
als belonged to the Pop1 (in blue colour, N = 231).

Table 1 showed the distribution of populations across agroclimatic zones. The majority of Kersting’s ground-
nut individuals were collected in the Southern-Sudanian zone (< 80%); 83.117% and 75.385% of individuals of 
Pop1 and Pop2, respectively collected in this zone. All the accessions collected in the Northern-Sudanian zone 
belonged to the Pop2. In the Northern-Guinean zone, 19.481% of accessions belonged to Pop1 and 14.615% 
were included in Pop2.

The random distribution of landraces (based seed coat colour, Fig. 2) into the genetic populations indicated 
that Pop1 was mostly characterized by the White landrace (97.403% of individuals in Pop1). On the other hand, 
the Pop2 was composed of all the six landraces included in this study with a predominance of Black (43.846%) 
and Brown ones (30%).

The analysis of genetic distance revealed relatively strong genetic differentiation among the two distinct groups 
of KG with a pairwise Fst value of 0.583 (Table 2). The estimated values of gene diversity (Hs) showed an overall 
low genetic divergence between individuals within each population (0.017). Meanwhile, the heterozygosity 
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Figure 1.  Structure diagram showing the delineation of Kersting’s groundnut individuals into two genetic 
populations (K = 2), Pop1 (Blue) and Pop2 (Green). Vertical lines represent individuals within populations and 
those with more than one color share genetic information with other populations. The horizontal line shows the 
distribution of the populations across agroclimatic zones (Northern-Guinean NG, Northern-Sudanian NS, and 
Southern-Sudanian SS).

Table 1.  Number (N) and proportions (Freq) of accessions for each genetic Group per Landrace and 
agroclimatic zone.

Features of populations Pop1 Pop2

Group by N Freq (%) N Freq (%)

Landraces seeds coat color

Black 12 5.195 49 37.692

Brown greyed orange eye 0 0 39 30

Red 2 0.866 17 13.077

White 223 96.537 4 3.077

White black eye 0 0 14 10.769

White greyed orange eye 0 0 1 0.769

Agroecological zones

Northern-Guinean 2 19.48 19 14.615

Northern-Sudanian 0 0 7 5.385

Southern-Sudanian 192 83.117 98 75.385

Totals 237 100 124 100

Figure 2.  Kersting’s groundnut seed coat colors. (a) White mottled with greyed orange eye (b), Black, (c) 
White, (d) Red, (e) White mottled with black eye, (f) Brown mottled with greyed orange eye.
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analysis indicated that the genetic divergence between individuals in Pop2 was relatively greater comparing to 
Pop1.

Occurrences dataset construction. Figure 3 shows Pop1 distributed across two agroclimatic zones, the 
Northern-Guinean and Southern-Sudanian zones whereas the Pop2 and Global Biodiversity Information Facil-
ity (GBIF) points were represented in all agroclimatic zones. At the country level, Pop2 was distributed across 
the four countries while Pop1 was located in Benin and Togo.

Niche overlap and conservatism among M. geocarpum and genetic populations. Niche similar-
ity between KG and Pop1. The quantification of the niches of species (Fig. 4a) and genetic Pop1 (Fig. 4b) in en-
vironmental space indicated that more individuals were loaded in PC2 while low number on PC1. Furthermore, 
the principal Components Analysis (PCA) showed that the first two axes explained 68.82% of the environmental 
(E-space) variation (PC1 = 48.73% and PC2 = 20.09%) between the species and genetic Pop1. The diference be-
tween the E-space of the two groups is illustrated by Fig. 4c. Climate variables correlated with the two principal 
components were mean annual rainfall (bio12), rainfall driest month (bio14), bulk density in kg/cubic-meter 
for 10 cm depth (blt_d2) and soil texture fraction clay at 10 cm depth (clyppt_d2) (Fig. 4d: PC1 in horizontal 
axis and PC2 in vertical axis). The values of the Potential Niche Truncation Index (PNTI) were very low for the 
species (0.09, Fig. S2a) and Pop1 (0.03, Fig. S2b). These values are below the suggested range of values showing 
either moderate risk (0.15–0.3) or high risks (0.3) for wich the observed niches do not represent the fundamen-
tal  niches35. In addition, We found a non-signifcant niche equivalency test statistic (D = 0.311, p = 0.990), and 
significant background test statistic (p = 0.009, Fig. S2c–e).

Niche similarity between KG and Pop2. The quantified niches in environmental spaces of the species and Pop2 
showed that the individuals of the species and Pop2 were mostly loaded on the PC1 (Fig. 5a,b). The diference 
between the E-space of the two groups is illustrated by Fig. 5c. The PCA analysis revealed that 66.55% of the 
variance (PC1 = 48.79% and PC2 = 17.76%) in environmental data input can be represented in a two dimensional 
E-space (Fig. 5d). Climate variables correlated with the first two axis included the max temperature warmest 
month (bio5), rainfall driest month (bio14), and bulk density in kg/cubic-meter for 10 cm depth (blt_d2). For 
the species and genetic Pop2, the PNTI value was low and showed no niche truncation (Fig. S3a,b). Our results 
showed a non-signifcant niche equivalency test statistic (D = 0.342, p = 0.871) indicating identical environmental 
niches of M. geocarpum and Pop2 (Fig. S3c,d). We obtained a signifcant background test statistic (p = 0.014) 
(Fig. S3e), which indicates that the species and genetic Pop2 niches were similar.

Niche similarity between Pop1 and Pop2. The quantification of the two genetic populations niches showed 
that the indiciduals were mainly loaded on PC1 axis (Fig. 6a,b) with Fig. 6c showing the diference between the 
E-space of the two groups. Moreover, when examining the results of PCA analysis, we found that the first two 
axes explained 67.79% of the (PC1 = 52.14% and PC2 = 15.65%) in environmental variations between the two 
genetic populations (Fig. 6d). The PCA correlation circle showed that max temperature warmest month (bio5), 
soil texture fraction clay at 10 cm depth (clyppt_d2), bulk density in kg/cubic-meter for 10 cm depth (blt_d2), 
and Soil texture fraction silt in percent for 10 cm depth (Sltppt_d2) were the environmental variables correlated 
with the two principal components. The PNTI value (< 0.15) indicated that the niches occupied by the two 
genetic populations represent the fundamental niches of these groups (Fig. S4a,b).We obtained a non-signif-
cant niche equivalency test statistic (D = 0.213, p = 0.792), and significant background test statistic (p = 0.015, 
Fig. S4c–e). These results indicates identical and similar environmental niches of the genetic populations.

Ecological niche modeling. Climatic variables analogy. Figure 7 shows the importance of the six se-
lected environmental variables in terms of their contribution to each model. When examining the important 
variables associated with the occurrences data, the three most important variables for prediction models of M. 
geocarpum (Fig. 7a) and Pop2 (Fig. 7c) were the mean annual rainfall (bio12), rainfall driest month (bio14), and 
bulk density in kg/cubic-meter for 10 cm depth (blt_d2). On the other hand, for Pop1 (Fig. 7b), soil texture frac-
tion clay at 10 cm depth (clyppt_d2), soil texture fraction silt in percent for 10 cm depth (Sltppt_d2), and rainfall 
driest month (bio14) had the greatest contributions to the model. In contrast, clyppt_d2 and Sltppt_d2 were far 
less important for model 1 and model 3.

Table 2.  Analysis of molecular variance (AMOVA), and genetic variation within and among populations. DF 
degree of freedom, SS sum of squares, MS expected mean squares, % percentage of the variance, He expected 
heterozygosity, Ho observed heterozygosity. P-value: significance tests after 1000 permutations.

Source of variation Df SS MS Variation (%) Pairwise Fst He Ho Hs P-value

Within pop 3 248.276 82.756 4.958 0.021 0.0053 0.017 < 0.001

Between pop 1 2879.945 2879.945 47.895 0.583 < 0.001

Pop1 0.005 0.004 < 0.001

Pop2 0.029 0.029 < 0.001
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Models’ outputs and performance evaluation. The results in Table 3 showed that the environmental predictive 
models displayed high predictive power for the three models. We found that the ENM for KG location points 
without genetic information was significant, with pROC scores of 1.294 ± 0.144 (t-test, p < 0.001). The Pop1 
and Pop2 models had the highest pROC scores of 1.755 ± 0.115 and 1.525 ± 0.110, respectively. These popula-
tions exhibited the best models performance with the lowest AICc scores (Pop1 = 571.670, and Pop2 = 696.185, 
Table 3). Additionally, these best-supported models had mean omission rates of 0.039 (Pop1) and 0.085 (Pop2) 
for the 10th percentile training presence. The AUC values were also high for the three niche models: M. geo-
carpum had a mean test AUC of 0.916 ± 0.027, the pop1, 0.979 ± 0.009, and Pop2, 0.926 ± 0.023, indicating that 
occurrences points were strongly differentiated from background locations, so model distributions were not 
random.

Impact of climate change on Kersting’s groundnut and genetic populations. Based on the 10 percentile training 
thresholds (Table 3), the defined calibration areas (Fig. 8) revealed large areas with suitable conditions for the 
cultivation of KG and genetic populations in the present day (Table S2), except for Pop1. The ENMs predicted 
broader suitable areas for KG (21.578%) and Pop2 (23.696%), while suitable climatic conditions for Pop1 were 
restricted to a much smaller area (2.423%).

The Maxent model for the species predicted a large area of suitable conditions across the three agroclimatic 
zones, Southern Sudanian (SS), Northern Sudanian (NS), and Northern-Guinean (NG) (Fig. 8a1). The SS and 
NG zones were the areas forecasted to have high suitable climatic conditions for species production. For the 
Pop1, the areas predicted to have high likely cultivability conditions were concentrated in the NG zone of Benin, 
but very less and sparsely distributed in the SS zone (Fig. 8b1). The Pop2 was projected across the three studied 
agroclimatic zones of the four countries (Fig. 8c1).

Analyses based on projecting the final models into the future (2055) scenarios revealed varied patterns in KG 
and genetic populations cultivable areas (Fig. 8, Figs. S5, S6, and S7). Under the two future climatic scenarios 
RCP4.5 and RCP8.5, an increase in the species cultivable areas for about 91.137% and 16.567%, respectively 
were observed due to the decrease of the non-suitable areas (Fig. 8a2,a3, and Fig. S5). The expansion of this area 
was observed mainly in the NG zone further Southern of Benin, and Togo.. On the other hand, the NG zone 
of Southern and Central Benin and Togo, and the SS and NS zones of the four countries became climatically 
unsuitable to crop production.

Important increases were observed in the potential cultivable areas of the Pop1 under future climatic scenarios 
(> 500% under RCP 4.5 and ≈ 50% under RCP 8.5) (Fig. 8b2,b3, and Fig. S6). This trend was observed across the 

Figure 3.  Map showing the distribution of Kersting’s groundnut across agroecological zones of Burkina Faso, 
Benin, Ghana, and Togo: species collections points (circles) and the locations points downloaded from GBIF 
(triangles) used in the ecological niche modeling. Genetic groups are depicted by the blue (Pop1) and green 
(Pop2) colours. Software used: ArcGIS v. 10.7.1.
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three agroclimatic zones of the four countries under scenario RCP 4.5. However, under the scenario RCP 8.5, the 
cultivable areas decreased in the Northern and Southern Guinean zones of Ghana. There was also a slight decrease 
in the suitable areas of production in some areas of the Northern-Guinean and Southern-Sudanian zones Benin, 
Burkina Faso, and Togo. The Pop2 showed to be the more vulnerable to future scenarios as the suitable areas sig-
nificantly decreased (65.758% under RCP4.5 and 76.941% under RCP8.5), while the unsuitable ranges increased 
(Fig. 8c2,c3, and Fig. S7). Meanwhile, this genetic group is projected to gain in very small suitable areas in the 
Northern Guinean zone further in the South of Benin, Togo, and Ghana under the severe scenario of RCP 8.5.

The MOP results indicated that the calibration environments were dissimilar from the extrapolative condi-
tions in the two future scenarios of 2055 (Fig. 9). Figure 9 showed that the Sahel zone in Burkina Faso and the 
Northern-Sudanian climatic conditions of eastern Burkina Faso, and further North of Benin are unlikely to be 
suitable for the species cultivation in real life.

Figure 4.  Niches of the two compared groups (M. geocarpum and genetic Pop1) in two dimensional E-space. 
Graphs (a) and (b) represent the niches of the species and Pop1, respectively along the first two axes of the 
PCA. The occurrences are represented by kernel density isopleths, red colour indicates high density and blue 
colour indicates low density. Solid and dotted contour lines illustrate 100% and 50% of the available background 
(environmental space). (c) is the diference in the E-space of the two groups, and Niche E-space Correlation 
Index (NECI). NECI determines if one should correct the occurrence densities of each group by the prevalence 
of their environments in their range for equivalency and background tests. For high NECI (> 0.5) groups 
occupied niches are recommended to be corrected by the frequency of E-space in accessible environments to 
reduce the chances of committing type 1 errors, and (d) is the correlation circle based on the two principal 
components of the environmental input data. bio5 max temperature warmest month, bio12 mean annual 
rainfall, bio14 rainfall driest month, blt_d2 bulk density in kg/cubic-meter for 10 cm depth, clyppt_d2 soil 
texture fraction clay at 10 cm depth, Sltppt_d2 soil texture fraction silt in percent for 10 cm depth.
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Discussions
By incorporating genetic information in ENM, this study provided evidence that the two genetically distinct 
groups in Kersting’s groundnut respond differently to climate changes though distributed in similar environ-
mental niches, and suggested implications for sustainable management and breeding perspectives under current 
and future climate variations.

Current potential distribution ranges of Kersting’s groundnut and genetic groups. We used 
two approaches to model KG potential environmental niches across agroclimatic zones of four West African 

Figure 5.  Niches of the two compared groups (M. geocarpum and genetic Pop2) in two dimensional E-space. 
Graphs (a) and (b) represent the niches of species and Pop2, respectively along the first two axes of the PCA. 
The occurrences are represented by kernel density isopleths, red colour indicates high density and blue colour 
indicates low density. Solid and dotted contour lines illustrate 100% and 50% of the available background 
(environmental space). (c): is the diference in the E-space of the two groups, and Niche E-space Correlation 
Index (NECI). NECI determines if one should correct the occurrence densities of each group by the prevalence 
of their environments in their range for equivalency and background tests. For high NECI (> 0.5) groups 
occupied niches are recommended to be corrected by the frequency of E-space in accessible environments to 
reduce the chances of committing type 1 errors, and (d) is the correlation circle based on the two principal 
components of the environmental input data. bio5 max temperature warmest month, bio12 mean annual 
rainfall, bio14 rainfall driest month, blt_d2 bulk density in kg/cubic-meter for 10 cm depth, clyppt_d2 soil 
texture fraction clay at 10 cm depth, Sltppt_d2 soil texture fraction silt in percent for 10 cm depth.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5590  | https://doi.org/10.1038/s41598-022-09153-5

www.nature.com/scientificreports/

countries: a traditional species ENM using species-wide cultivated range, and intraspecific models based on 
genetic information. We found that decomposing a species into intraspecific genetic groups increases our under-
standing of the potential distribution of KG, which is consistent with results from previous studies incorporating 
genetic information into  ENM30,31,36,37.

Environmental variables contribution. Our approach allowed to identify six environmental variables 
correlated with the potential distribution ranges of the species and populations. The max temperature warmest 
month (bio5), mean annual rainfall (bio12), and rainfall driest month (bio14) were the climatic variables mostly 
involved in fitting the three models. The ecological weight that precipitations may have in KG’s distribution is 
also supported by a recent ethnobotanical study where farmers identified drought and high moisture during the 
reproductive stage as the main factors hindering species  production5,12. Tamini also showed that the different 

Figure 6.  Niches of the two genetic populations in two dimensional E-space. Graphs (a) and (b) represent the 
niches of Pop1 and Pop2, respectively along the first two axes of the PCA. The occurrences are represented by 
kernel density isopleths, red colour indicates high density and blue colour indicates low density. Solid and dotted 
contour lines illustrate 100% and 50% of the available background (environmental space). (c): is the diference 
in the E-space of the two populations, and Niche E-space Correlation Index (NECI). NECI determines if one 
should correct the occurrence densities of each population by the prevalence of their environments in their 
range for equivalency and background tests. For high NECI (> 0.5) genetic populations occupied niches are 
recommended to be corrected by the frequency of E-space in accessible environments to reduce the chances 
of committing type 1 errors, and (d) is the correlation circle based on the two principal components of the 
environmental input data. bio5 max temperature warmest month, bio12 mean annual rainfall, bio14 rainfall 
driest month, blt_d2 bulk density in kg/cubic-meter for 10 cm depth, clyppt_d2 soil texture fraction clay at 
10 cm depth, Sltppt_d2 soil texture fraction silt in percent for 10 cm depth.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5590  | https://doi.org/10.1038/s41598-022-09153-5

www.nature.com/scientificreports/

sowing dates and seasons with varied temperatures influenced KG growing cycle by delaying or accelerating the 
flowering time. To cope with these weather issues, farmers managed their cropping calendar by advancing (in 
June) or delaying (in August) the date of planting KG. The change in temperature and moisture levels are not 
only determined by climatic parameters but may also lead to a change in the absorption rate of water, fertiliz-
ers, and other minerals in soils, which determine yield  output38,39. Therefore, the consideration of both climate 
and soil type was essential to better predict KG and genetic groups’ distribution. The physical properties of soil 
such as bulk density of soil in kg / cubic-meter for 10 cm depth (blt_2), soil texture fraction clay at 10 cm depth 
(clyppt_d2), and soil texture fraction silt in percent for 10 cm depth (Sltppt_d2) also play a relevant role in KG 
and populations distribution. Kouelo et al.40 reported that the soil texture and preparation (type of tillage) influ-
enced the crop productivity in Benin. Although applying ENM to intraspecific genetic groups allowed the detec-
tion of environmental variables, a multidisciplinary approach involving agronomists and biologists would allow 
a clear understanding of the weight that each of these components may have on crop growth and development.

Niche equivalency and similarity. We found identical and similar environmental niches for the species 
and the two genetic populations, suggesting no variation in their environmental niches and adaptation to cli-
mate conditions. Our results did not support the view that a given species could be considered as an assemblage 
of genetic units differing in their spatial  distribution31,36. Populations of KG are both cultivated in the North-
ern-Guinean and the Southern-Sudanian zones of Benin, characterized by bimodal (rainfall ≤ 1500 mm) and 
unimodal (rainfall ≤ 1100 mm) growing seasons, respectively. Although Pop 2 is grown also in the Northern-
Sudanian zone, where rainfalls are relatively low (rainfall ≤ 900 mm), very few number of occurences (7) from 
this region were used in the model. Therefore, they may not show variations in their environmental niches and 
adaptation to different climate conditions, as previously reported by Wellenreuther, et al.41 who analyzed the 
ecological causes of the ranges limits and the coexistence of two congeneric damselflies (Calopteryx splendens 
and C. virgo).

In contrast, Maxent’s outputs revealed that climatic niches of the two genetic populations of M. geocarpum 
are relatively different in the distribution areas. The species and genetic populations occupied the distribution 
ranges but do not respond similarly to the environmental conditions. Indeed, KG individuals displayed difference 
in their performance when evaluated under the same environmental  conditions42–44.

Predicting evolutionary change based on genetic variation. Our results, found evidence of vari-
ability in the species response to future environmental conditions, confirming the assumption that changes in 
climate will influence the environmental niches of KG species and populatons. This corroborates many other 
studies which showed the impact of future climatic conditions on crops production, such as cereals, legumes, 
 vegetables22–24,45,46.

Figure 7.  Environmental contribution for the species (a) and genetic Pop1 (b) and Pop2 (c). bio5 max 
temperature warmest month, bio12 mean annual rainfall, bio14 rainfall driest month, blt_d2 bulk density in kg/
cubic-meter for 10 cm depth, clyppt_d2 soil texture fraction clay at 10 cm depth, Sltppt_d2 soil texture fraction 
silt in percent for 10 cm depth.

Table 3.  Maxent results showing the parameters measuring the three models’ performance and the partial 
receiver operating characteristic curve (pROC) for each model. Occ number of occurrences, pROC partial 
receiver operating characteristic curve, AUC  area under the receiver operating characteristic curve, AICc 
corrected Akaike Information Criterion, TPLT 10 percentile Training Plogistic Threshold.

Species/population Occ pROC AUC Omission rate AICc TPLT

M. geocarpum 53 1.294 ± 0.144 0.916 ± 0.027 0.093 1362.357 0.313

Pop1 24 1.755 ± 0.115 0.979 ± 0.009 0.039 571.67 0.350

Pop2 26 1.525 ± 0.110 0.926 ± 0.023 0.085 696.185 0.386
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Figure 8.  Binary and continuous maps showing the spatial distribution of M. geocarpum (a1–a3) and genetic 
Pop1 (b1–b3) and Pop2 (c1–c3) in present and the future days. Each model was set to thresholds with the 
10 percentile training presence values to produce continuous and binary raster maps for current and future 
scenarios in ArcGIS v. 10.7.1.
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We also combined genetic information to ENM to test the hypothesis that genetic divergent groups would 
respond differently to environmental change. The projection under future climatic scenarios RCP4.5 and RCP8.5 
indicate that the response of Kersting’s groundnut and genetic groups varied significantly across agroclimatic 
zones. Our results confirmed the idea that different genetic clusters potentially showed adaptive variation to 
different abiotic conditions within the geographical range of the species. Globally, although Central Benin and 
Northern Togo are presumed to be a centre of origin for the crop, we observed a loss in suitable areas for the 
species production. The same trend was observed in other countries were the crop has been grown for thousand 
of years. Similarly, Ikeda et al.31 tested and demonstrated the hypothesis that species locally adapted to current 
environments are likely to become maladapted in the future. The same trends were reported on other cereals such 
as maize, wheat, sorghum, and barley which tend to decrease their area of suitability in their centres of  origin47. 
Out of the 361 individuals included in this study, 101 belong to the genetic Pop2, and counts all the landraces 
grown—diversity based on seed coat  color5,12. According to the conclusion of Vigouroux, et al.48 who described 
the evolution and adaptation of pearl millet in West Africa, such diversity was supposed to confert adaptation to 
climate variation. The southern and Northern-Sudanian benefit of the lowest precipitations and are hence, the 
most prone to drought, widely reported as one of the main factors hindering KG  production49. In the context of 
an inevitable agricultural reduction in these agroclimatic zones, the earlier the mitigation actions are taken, the 
more successful will be the collection and conservation efforts of KG’s resources.

On the other hand, future environmental conditions remain, even become more favorable to the Pop1 culti-
vation (with an increase in suitable areas of 588.812% compared to the present day). However, under the severe 
environmental conditions (RCP8.5), the cultivable area of this genetic Pop1 is predicted to decline from RCP4.5 
(− 89,802.711  km2) in the Northern and Southern-Guinean zones of Ghana, Benin and Togo. With regards to 
these results, significant headway can be made by creating more favorable policy environments. Two strategies 
proposed by Ramirez-Cabral, Kumar and  Taylor23 can be used to mitigate loss in KG resources and diversity: 
first, the use of all the resources of Pop2 in regions where the stress of climate conditions become unsuitable for 
the species production. An example of this is the Southern-Sudanian zone of Central Benin, where the use of 
KG is more important than other regions. The second option was to address future loss of suitability by shifting 
Pop2’s current cultivation areas to new regions, such as the Northern-Guinean zone of Southern Benin, Ghana 
and Togo where future climatic conditions are projected to become more cultivable for KG.

Conservation implications. Successful management of an endangered species often depends on the accu-
rate identification of current and future cultivable areas. Thus, we combined genetic diversity and ecological 
niche modeling to understand the evolutionary dynamics in Kersting’s groundnut species across its cultivated 
regions. Although the predictive models showed that future climatic conditions will be more favorable to KG 
production, the Sudanian and some areas of Northern-Guinean zones were identified as climatically unsuit-
able for the species. Notwithstanding the above results, this approach may provide a valuable tool for genetic 
resources managers for implementing collection and conservation strategies of this orphan legume, as sustained 
by Sohn et al.50 in their study on the endemic bird in South America. In particular, our suggestion is to focus on 
the Pop2 with particularly high conservation value. This genetic group is represents the genetic diversity includ-

Figure 8.  (continued)
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ing all the coloured Landraces grown by farmers, which is unvaluable resources for the plant genetic improve-
ment. These resources are still managed by farmers through an informal seed system. However, the local seed 
system alone will likely be insufficient to adapt the crop production to changing climate. In doing so, the formal 
seeds management efforts can improve the decision-making process that would greatly help in the collection and 
conservation of the genetic Pop1 at higher risk of extinction but also the Pop1 predicted to thrive with climate 
change. In general, African crop genetic resources conservation is unfortunately poorly supported by National 
Governments, and material from the regions is not fully represented in the important international genebanks 
which afford the baseline for sustained public breeding  efforts45. In many areas where KG is produced, its pro-
duction is declining gradually and consequently followed by the lost in genetic resources. Hence, many of these 
regions would stand to benefit from the genetic resources of other areas of cultivation, if these resources can be 
effectively managed and shared. Perhaps more importantly, the international cooperation on genetic resources 
conservation and use, between countries where KG is produced, will be crucial in adapting the crop to the immi-
nent threats of climate change.

Implications of ENM results for selection for adaptation. Undertaking any global initiatives to over-
come food insecurity challenges requires an assessment of staple crop productivity, quality, and environmen-
tally suitable areas under climate  change23. KG is a staple food crop and a source of proteins and nutrients for 
smallholder farmers in West Africa. In this research, we expected to identify the intraspecific genetic group that 
would be resilient under future climate scenarios, and which areas are concerned by changes in KG diversity. 
The model projections indicate that a shift in Kersting’s groundnut productive areas is slightly and likely with 
a loss of cultivability of the Pop2 cultivation areas and an increase for Pop1. Although KG is predicted to gain 
in a suitable area in future environmental changes, its cultivation is, however, decreasing year to year from its 
cultivated  areas5,51. Therefore, it will be crucial to adapt M. geocarpum species to the increasingly challenging 
environmental conditions through the development of new resilient cultivars that meet farmers’ needs. The 
Pop2 comprises all Landraces (diversity, mainly the coloured landraces) of the species and has been reported 
having the best phenotypic  performance42. The individuals in this genetic population can serve as a potential 
source for diversity on which breeding efforts could be based to confer best performance for plant growth and 
yield to Pop1, mainly composed of the white landrace mostly preferred, grown, and sold by farmers in  Benin5,6. 
Similarly, the genetic Pop1 can serve as potential parents to confer resilience to changing climates and increase 
sustainabilityof genetic Pop2. In addition, advancements in molecular plant breeding would be an importance of 
paramount to increase the genetic gains and make more accurate the breeding process. In the particular case of 
KG, currently, available partial GBS  data16,34 would allow the analyses of intraspecific genetic clusters based on 
gene network variation for various important phenotypic traits (e.g.: grain yield, yield-related traits, flowering 
time). This novel approach would provide possibilities to assess the extent to which key functional genes and 
genetic variation may be threatened under future ecological  conditions52. Plant breeders have widely and suc-
cessfully implemented genome-wide breeding approach for the development of climate-resilient  varieties53–55, 
through marker-assisted selection and genomic selection. Another approach is to increase variability within 
the species, particularly in Pop1, clustering mostly white seed coloured individuals, through mutation meth-
ods (using physical or chemical mutagens) combined with molecular markers (Targeted Induced Local Lesions 
in Genomes (TILLING)). Such techniques have been successfully used in breeding of many legume crops to 
enhance diversity and to develop mutant  cultivars2,56,57.

Figure 9.  Output of the mobility-oriented parity analysis of KG from ‘ntbox’; 0 (Red) represents strict 
extrapolation areas meaning complete dissimilarity between calibration environments and extrapolation regions 
in the future; 1 (Blue) area similar to areas where the models have been calibrated. Software used: ArcGIS v. 
10.7.1.
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Conclusion and perspectives
This study assessed the potential impacts of climate variations on environments suitability for Kersting’s ground-
nut cultivation, and consequently its distribution around four West-African countries. The use of Maxent’ mod-
els and genetic information allowed a preliminary understanding of the stress factors influencing the climate 
suitability of the species and genetic populations under two future scenarios (2055, RCP4.5 and RCP8.5). The 
overall trend shown by our results indicates an increase in climate suitability for the species cultivation in the 
Northern-Guinean zone of Southern Benin and Togo. However, an important decrease was predicted in other 
agroclimatic areas, while genetic Pop1 production areas increase. Our findings illustrate also that projected 
areas of environments cultivability for M. geocarpum and the two populations are on different climate change 
trajectories. The projected distribution maps presented in this paper have been hence, analysed and used to 
identify strategic measures to manage the impacts of reduced climate cultivability while taking advantage of the 
opportunities in areas of improved suitability for Kersting’s groundnut cultivation in the future. Our findings 
could be downscaled to a country level to assist national policymakers in developing strategic control initiatives 
to prevent the scarcity of this legume.

Although this study represents the first insight into examining the potential of Kersting’s groundnut as a 
resilient crop under climate change, several limitations are to be noted to develop the right tools to reduce model 
uncertainty and make better predictions in future research. First, the global distribution of the species and its 
wild relatives is still incompletely documented online: collecting more and finer occurrence data, especially in 
regions where its production was previously reported would greatly help in refining or confirming our results. 
Second, our models identified rainfall, temperature, and soil variables that contributed significantly to their fits. 
However, socioeconomic factors such as the local market value of the species and cultural preferences must also 
be considered in the predictions. Combining also measures of key phenotypic traits and botic stress factors (pests 
ans diseases associated with KG production) in the modeling process would contribute to improving predictions 
of the impact of climate change on this legume crop. Third, the non-availability of whole genome-wide data in 
the case of Kersting’s groundnut limited access to phylogenetic information and identification of key functional 
genes for various important phenotypic traits. That may provide means to assess the response of key functional 
genes under evolutionary climate change.

Nevertheless, using our approach, we identified species, genetic populations, and cultivable areas for further 
germplasm collecting to enhance available germplasm and better direct Kersting’s groundnut breeding priori-
ties in the future.

Materials and methods
Genotyping and genetic clustering. For the present work, a total of 361 accessions of KG collected from 
Benin, Burkina Faso, Ghana and Togo were used. The DNA of each sample was extracted from young leaves of 
each accession, using the protocol of the Integrated genotyping service and support (IGSS) at the Biosciences 
Eastern and Central Africa (BecA: http:// hub. afric abios cienc es. org/ activ ities/ servi ces) located in Nairobi, Kenya. 
The quality of the DNA was confirmed by electrophoresis in 0.8% agarose, and the quantification was carried 
out using UVP BioDoc-It2 Imaging System. All of the samples were diluted to 50 ng/µl for the DArT genotyping 
platform. Genotyping was performed using the DArT-Seq™ platform at Diversity Arrays  Technology58. The qual-
ity analysis of the genotypic data was performed using Illumina HiSeq  250059. The SilicoDArt calling algorithms 
(DArTsoft14) were used to score DArTseq markers into a binary format (presence = 1 and absence = 0) for each 
sample genomic representation. A total of 2844 SNP markers were obtained and processed in TASSEL  v560, 
for quality check. SNPs were filtered with TASSEL v5 for further analysis using the proportion of missing data 
< 20%. A total of 2323 SNPs were retained and the Nipals model in kdcompute (https:// kdcom pute. igss- africa. 
org) was used for data imputation.

The program Structure 2.3.461 was used to assign individuals to different genetic clusters based on the admix-
ture model. The population structure was performed based on the Bayesian clustering approach using the fol-
lowing settings: correlated allelic frequencies, burn-in period of 20,000 and 20,000 Markov Chain Monte Carlo 
(MCMC) interactions; and grouping (K) ranging from 1 to 5 in 10 independent runs. The results generated were 
used as input into the POPHELPER version 2.3.1, an R  package62, to determine the most likely genetic clusters 
based on the Evanno  method63 and to generate the delta K (ΔK) graph and bar graph. The most likely number 
of K clusters was determined by its higher ΔK value. After these searches, we found a likely number of K = 2.

The molecular variation (AMOVA) was determined using the R package  adegenet64 to test for statistically 
significant differences between the two genetic groups. The pairwise Fst comparisons between the two groups 
were calculated with 9999 permutations using package ‘hierfstat’ v 0.5–10 in R environment. General patterns 
of genetic diversity were also evaluated by calculating observed (Ho) versus expected (He) heterozygosity and 
gene diversity (Hs) within each population. Based on the genetic analyses, we classified the two clusters as 
distinct genetic populations (Pop1 and Pop2) encompassed within three agroclimatic zones of Burkina Faso, 
Benin, Ghana, and Togo (northern-Sudanian, southern-Sudanian, and northern-Guinean). We then used these 
genetically defined populations and their GPS points available, to define populations’ location points.

Occurrence data. The occurrence data for M. geocarpum was obtained from the Global Biodiversity Infor-
mation Facility (GBIF, www. gbif. org), an online available database, and the crop self-collected material of the 
Laboratory of Genetics, Biotechnology, and Seeds Science (GBioS). As the different data sources and a large 
dataset (> 500 occurrence records) would likely carry elevated geographical or environmental space  biases65,66, 
the number of records were decreased in Wallace package, an online workspace based on R  interface67 using 
four complementary approaches: (1) we first removed occurrences collected before 1986 to match with envi-
ronmental layers and soil properties; (2) considerable ambiguity may exist in GBIF data over the identity of the 

http://hub.africabiosciences.org/activities/services
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species due to synonymous names (M. geocarpum var. geocarpum, M. geocarpum var. Tisserantii; Kerstingiella 
geocarpa, Kerstingiella tisserantii). To avoid any confusion arising from this taxonomic ambiguity, we searched 
through the online databases using the following keywords: Macrotyloma geocarpum, Kerstingiella geocarpa, var. 
geocarpa, or var. geocarpum; orphan legumes. We then harmonized the GBIF database and discarded the reports 
on var. tisserantii and Kerstingiella tisserantii; (3) we used spatially filtering occurrences located ≤ 10 km from 
other occurrences using the  spThin68, an R package; finally, (4) we manually checked isolated locations points 
in Africa (in ArcGIS ver. 10.7.1) and removed occurrences in areas where M. geocarpum is not generally grown.

The defined genetic clusters data with their geographic coordinates were also filtered separately to ensure the 
real distribution of each population within agroclimatic zones. After data cleaning steps, the final occurrence 
datasets contained: for the species, a dataset of 53 occurences (which include 17 points retained from GBIF), used 
for modeling without genetic information. And two data files that comprised 24 locations points for Pop1, and 26 
occurences for Pop2, used in subsequent analyses integrating genetic information (see Supplemental Table S3).

Environmental variables. We used bioclimatic layers combined with soil properties to project current 
and future niches for the species and each genetic group. A total of 15 bioclimatic variables were downloaded 
from Africlim online regional climate models (RCMs) data portal (https:// webfi les. york. ac. uk/ KITE/ AfriC 
lim/)69. Current and future variables averaged between the periods 1986–2015 (2000) and 2041–2060 (2055) 
were downloaded at a 30 arc-s (~ 1 km) spatial resolution. For future climatic conditions, predictions from the 
Ensemble  model69 were used. This model simulates changes based on a set of scenarios. The projections were 
run under Representative Concentration Pathway (RCP), RCP 4.5, and RCP 8.5 for the 2055 time  horizon70. 
In all RCPs, the climatic conditions are extreme in RCP 8.5 scenarios compared to RCP 4.5. RCP 4.5 projects 
temperatures to rise above industrial levels by at least 1.5 °C in West Africa, with atmospheric  CO2 reaching 
500 ppm while in RCP 8.5 projections, temperatures are predicted to rise by 2.8 °C and atmospheric  CO2 to be 
over 550  ppm71. These climate projections were statistically downscaled to match the bioclimatic variables using 
the delta  method72.

Data related to soil characteristics were available in the World Soil Information (ISRIC) databases (Soil-
property-maps-of-Africa-at-250-m-resolution) at 250 m  resolution73. These spatial predictions of soil proper-
ties were generated based on two predictive approaches such as random forests and linear  regression73. Soil 
characteristics included 30 variables related to the soil’s physical, chemical, and nutritional properties. Soil data 
were then converted to 30 arcseconds using ArcGIS software v 10.7.1 to match with bioclimate layers. Finally, 
using shapefile boundaries of four West African countries (Benin, Burkina Faso, Ghana, and Togo) we cropped 
all variables to encompass the broad geographic regions that define Kersting’s groundnut global distribution.

We discarded highly correlated variables (≥ 0.8) by Pearson´s rank correlation coefficients analysis using the 
R library ‘ntbox’74(see correlation matrix in Suplementary Table S4). A total of 18 variables were retained as less 
correlated. We then conducted a few preliminary model runs without genetic information (with species occur-
rences) in Maxent v. 3.4.475 to reduce the number of variables to be included in the prediction  models75. For each 
run, we removed variables with the lowest contribution. Six bioclimatic variables including Max Temperature 
warmest month (bio5), Mean annual rainfall (bio12), Rainfall driest month (bio14), Bulk density in kg/cubic-
meter for 10 cm depth (blt_d2), soil texture fraction clay at 10 cm depth (clyppt_d2), = Soil texture fraction silt 
in percent for 10 cm depth (Sltppt_d2) were chosen based on their noncollinearity and contribution to the pre-
diction models and were used in the final models of the species, and with genetic information (Pop1 and Pop2).

Ecological predictive models’ development and evaluation. To calibrate our models, we employed 
the maximum entropy  method75,76 implemented in Maxent ver. 3.4.475. The algorithm has been extensively 
tested and  benchmarked77,78. Many studies have reported Maxent as one of the highest performing presence-
background  algorithms21,79. As the selection of sample points can influence model performance in  Maxent80, we 
restricted the selection of background points using the regularization of 10,000 background  points21. Models 
were trained with data from the present and projected in the future. Three Maxent models were generated with 
different occurrence datasets:

• model 1: all accessions location points together without genetic information were used in projecting the 
entire distribution of KG, distributed in four West African countries (Burkina Faso, Benin, Ghana, and 
Togo) where the distribution range of the species is characterized by three agroclimatic zones including the 
Northern-Sudanian, Southern-Sudanian, and Northern-Guinean.

• model 2 and model 3: were developed using occurrences of Pop1 and Pop2, respectively the genetically 
defined populations. Pop1 location points are covered by the agroclimatic zones of Southern-Sudanian, and 
Northern-Guinean of Southern and central Benin, and Northern Togo. On the other hand, the occupation 
range of Pop2 extends over the four countries and the three agroclimatic zones.

We used a Bootsrap method, by defining 75% of the data for model training and 25% for model testing for 
10  iterations76. We Kept the Auto Features box checked Linear, quadratic, product, hinge, and threshold func-
tions of predictor variables were employed, and variable importance was assessed using a jackknife  analysis79. 
For easy interpretation of the results of niche models, we specified the Maxent’ output format to a logistic form.

The three models performance was tested based on the partial receiver operator characteristics (pROC) and 
the corrected Akaike information criterion (AICc) approaches. We used the outputs from Maxent to perform 
pROC in R package ‘ENMGadgets’ v 0.1.0.181, by specifying 500 iterations with the omission threshold set at five 
percent. The statistical significance of pROC values was examined using t-test statistic. The AICc was estimated 
based on the number of parameters and likelihoods of continuous raw outputs, using R library ENMEval v 
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2.082, following the method described by Warren and  Seifert83. The lower is the value of AICc, more accurate is 
the predictive  model84. Models omission rates calculated with the 10th percentile training presence threshold, 
and the area under the receiver operating characteristic curve (AUC), were also used as secondary criteria for 
testing performance of each  model66,85. A model is considered as having a good fit when its AUC is closed to 
one (AUC ≥ 0.75)21. The final models were projected onto future climatic scenarios (RCP4.5. and RCP8.5) of 
the horizon 2055, using Maxent software with ten bootstrap iterations. Each model was set to thresholds with 
the 10 percentile training presence values to produce continuous and binary raster maps for current and future 
scenarios in ArcGIS v. 10.7.1.

Two different levels were, therefore, defined: unsuitable and suitable. Finally, we quantified in  km2 the surface 
occupied by each condition (suitable and unsuitable) using the continuous raw outputs from maxent in ArcGIS 
v. 10.7.1. We estimated the range size change under scenarios RCP 4.5 and RCP 8.5 of the period 2055 for the 
species and two genetic populations, following the model used by Hu et al.86:

where, FA corresponds to the future suitable areas (in  km2) under a given future scenario; CA is the suitable areas 
in current conditions. Negative, null, and positive values represent range lost, stable, and gained, respectively. Fur-
thermore, to visualize the potential changes of suitable areas for Kersting’s groundnut production, we compared 
current and future distribution ranges of the crop and genetic populations using package “tmap” version 3.3-187 in 
R. Finally, to determine the zones where each model transfers would require extrapolation under future climatic 
conditions, we used the mobility-oriented parity (MOP) metric. The MOP analysis was performed with the R 
library ‘ntbox’ by setting for environmental distances to the nearest 10% of the reference region and 500 runs.

Niche differentiation. To understand whether differences between species and genetic populations emerge 
from true niche divergences, we performed Schoener’s niche equivalency (identity) and similarity test (D), and 
Warren’s niche background test (I) using the R package ‘humboldt’35. Niche equivalency test is used to test out 
the null hypothesis that two species have identical environmental niches. The niche equivalency test examines 
the observed niche similarities between the predicting models of two species. The niche background test evalu-
ates the power to detect differences between two ENMs. Compared to the existing tests, these methods improve 
the accuracy of niche similarity quantifications and corresponding statistical  tests35. The Schoener’s D statistic is 
used to determine how similar the occupied niches of two species are based on the original input occurrences. 
The observed values of D in both the niche identity test and the background similarity test were compared 
to the mean values of the randomized runs using t-test88. Hence, the environmental niches were considered 
significantly different if the observed values of niche overlap were less than 95% or 99% (alpha = 0.05 and 0.01, 
respectively) of the overlap values derived from the pseudoreplicates.

We visualized and analyzed E-space as two axes of a Principal Component Analysis (PCA) of input environ-
mental variables throughout the entire study areas of the species and genetic populations. Broennimann et al.89 
used a kernel density  function90 to create a continuous E-space surface in a grid of 100 × 100 cells, estimating 
the occupied E-space of the focal species or its environment, respectively, using PC values from either the input 
occurrence localities or study region data.

Furthermore, The species fundamental niche from observed niche was analyzed with the packge ‘humboldt’35. 
The fundamental niche was characterised by truncating species occupied E-space by the available E-space in its 
environment. The larger the truncated proportion, the greater the risk that the occupied niche does not accurately 
reflect fundamental niche of the species. Hence, the Potential Niche Truncation Index (PNTI) was estimated to 
measure the amount of the observed E-space truncated by the available E-space. When the values of PNTI are 
ranged between 0.15 and 0.3, there is a moderate truncation risk while values > 0.3 explained a high risk of niche 
truncation due to limited available E-space35.

Data availability
The molecular data underlying this article (DarTSeq data) will be submitted to NCBI.
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