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Abstract We investigate the coupling of matter to geom-
etry in conformal quadratic Weyl gravity, by assuming a
coupling term of the form Lm R̃2, where Lm is the ordi-
nary matter Lagrangian, and R̃ is the Weyl scalar. The cou-
pling explicitly satisfies the conformal invariance of the the-
ory. By expressing R̃2 with the help of an auxiliary scalar
field and of the Weyl scalar, the gravitational action can be
linearized, leading in the Riemann space to a conformally
invariant f (R, Lm) type theory, with the matter Lagrangian
nonminimally coupled to the Ricci scalar. We obtain the grav-
itational field equations of the theory, as well as the energy–
momentum balance equations. The divergence of the mat-
ter energy–momentum tensor does not vanish, and an extra
force, depending on the Weyl vector, and matter Lagrangian
is generated. The thermodynamic interpretation of the the-
ory is also discussed. The generalized Poisson equation is
derived, and the Newtonian limit of the equations of motion
is considered in detail. The perihelion precession of a planet
in the presence of an extra force is also considered, and con-
straints on the magnitude of the Weyl vector in the Solar Sys-
tem are obtained from the observational data of Mercury. The
cosmological implications of the theory are also considered
for the case of a flat, homogeneous and isotropic Friedmann–
Lemaitre–Robertson–Walker geometry, and it is shown that
the model can give a good description of the observational
data for the Hubble function up to a redshift of the order of
z ≈ 3.
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1 Introduction

The birth of general relativity through the work by Einstein
[1] and Hilbert [2] did have a deep impact not only on physics,
but also on mathematics, leading to several extensions of the
Riemannian geometry. Almost immediately after general rel-
ativity was proposed, Weyl [3] did develop a generalization
of Riemann geometry, with the explicit goal of formulating a
unified theory of gravity and electromagnetism. The starting
point in Weyl’s approach was the observation that in vacuum
Maxwell’s equations are conformally invariant, which led
him to suggest that the gravitational field equations should
have the same symmetry. In Weyl’s geometry the covariant
derivative of the metric tensor is conjectured to be nonzero,
so that ∇λgμν = Qλμν = ωλgμν , where the new geomet-
ric quantity Qλμν is called the nonmetricity, while ωλ is the
Weyl vector field. For a detailed account of Weyl theory and
its possible physical interpretation see [4]. Moreover, in a
Weyl geometric framework the parallel transport does not
keep the length of a vector constant. This feature of the Weyl
geometry led to Einstein’s severe criticism of its initially pro-
posed physical interpretation, based on the claim that since
the behavior of the atomic clocks would depend on their past
history, the existence of sharp spectral lines in the presence
of an electromagnetic field would be impossible.

If one gives up the interpretation of the Weyl vector field as
an electromagnetic type potential, the conformally invariant
Weyl geometry represents an important and beautiful gener-
alization of Riemannian geometry. In the following we con-
sider the Weyl field as having a purely geometric nature. The
physical investigations using Weyl geometry are built on the
fundamental assumption that conformal invariance is a basic
symmetry property of Nature. A local conformal transforma-
tion

ds̃2 = �2(x)ds2 = �2(x)gμνdxμdxν = g̃μνdxμdxν,

does not transform the local coordinates, but changes the
units for the measurements in space-time. The Christoffel
symbols transform under a conformal transformation accord-
ing to [5]

�̃λ
μν = �λ

μν +
[
�,μ

�
δλ
ν + �,ν

�
δλ
μ − gλσ �,σ

�
gμν

]
.

If ω̃μ = ωμ + 2�,μ/�, then �̃λ
μν = �λ

μν , R̃μ
νλσ = Rμ

νλσ ,

R̃μν = Rμν , and F̃μν = Fμν , where Fμν = ∇μων − ∇νωμ.
Hence, one can consider ωμ as a gauge field mediating at
different space-time points the conformal factors [6,7].

Weyl gravity was generalized by Dirac [8,9], who intro-
duced in the theory a real scalar field β of weight w(β) = −1.
The corresponding gravitational Lagrangian is given by

L = −β2R + kDμβDμβ + cβ4 + 1

4
FμνF

μν, (1)

where k = 6 is a constant. The Lagrangian given by Eq. (1)
has the important property of conformal invariance. The cos-
mological implications of the Lagrangian (1) were investi-
gated in [10]. An alternative Weyl-Dirac type Lagrangian
was suggested in [11], and it is given by

L = W λρWλρ − β2R + σβ2wλwλ + 2σβwλβ,λ

+(σ + 6)β,ρβ,λg
ρλ + 2�β4 + Lm, (2)

where Wμν is the Weyl curvature tensor, constructed with the
help of the Weyl vector ωμ, and β is the Dirac scalar field,
respectively. σ and � are constants. An interesting property
of this model is that ordinary matter is created at the begin-
ning of the cosmological evolution, due to the presence of the
Dirac gauge function. Moreover, in the late Universe, Dirac’s
gauge function creates the dark energy that determines the
recent acceleration of the Universe. For other physical gen-
eralizations of Weyl theory see [12–14].

Independently of Weyl geometry, but inspired by it, the
idea of the conformal invariance of the gravitational action
in Riemann geometry has attracted a lot of attention. Gravi-
tational theories based on the action

SWeyl = −1

4

∫
d4x

√−gCμνρσC
μνρσ , (3)

where Cμνρσ is the Weyl tensor, are called conformally
invariant, or Weyl gravity type theories. They have been
investigated in detail in [15–31]. In particular, for a static
spherically symmetric metric of the form ds2 = −B(r)dt2 +
B−1(r)dr2 + r2d�, the theory admits vacuum solutions of
the form B(r) = 1 − 3βγ − β (2 − 3βγ ) /r + γ r + kr2,
where β, γ and k are constants [15]. It was also suggested
that Weyl gravity could explain the flat rotation curves of
galaxies without the need of introducing dark matter [15].

An important application of Weyl geometry to the study
of gravitational interaction is the f (Q) gravity theory, or the
symmetric teleparallel gravity. Initially proposed in [32], in
this theory the nonmetricity Q of a Weyl geometry is the
fundamental geometrical quantity describing all the physi-
cal aspects of gravity. This approach to gravity was extended
in [33], and is known presently as the f (Q) gravity the-
ory, or nonmetric gravity [33]. In the presence of mat-
ter the action of the gravitational field is given by S =∫

( f (Q) + Lm)
√−gd4x . The physical, cosmological and

geometrical properties of the f (Q) theory have been studied
in detail in [34–53].

The role of the conformal structures in cosmology was
emphasized by Penrose [54], who, based on the observa-
tion that at the end of the de Sitter accelerating expansionary
phase, induced by the presence of the positive cosmological
constant �, the spacetime will be space-like, and confor-
mally flat, as it was the initial boundary of the Universe dur-
ing the Big Bang, introduced a cosmological scenario called
conformal cyclic cosmology (CCC). In this model the Uni-
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verse consists of eons, representing a time oriented space-
time, with their conformal compactifications having space-
like null infinities. Different aspects of the Conformal Cyclic
Cosmology were investigated in [55–61]. In particular, in
[56] a Weyl-invariant action that describes both gravity and
the standard model, with Lagrangian

L = 1

12

(
φ2 − 2H†H

)
R (g)

+gμν

(
1

2
∂μφ∂νφ − DμH

†DνH

)

−
[
λ

4

(
H†H − ω2φ2

)2 + λ′

4
φ4
]

+ LSM, (4)

was investigated, where LSM denotes the standard model
Lagrangian, without the kinetic and self interaction terms
of the Higgs doublet H , the scalar field φ is a singlet under
SU(2) ×U (1), which does not couple to the standard model
fields, with the exception of the Higgs field, while ω is a small
parameter, of the order of 10−17, determining the Higgs vac-
uum expectation value, and the Higgs mass.

The importance of the local conformal symmetry was
emphasized by ’t Hooft in [62], where it was argued that it is
an exact symmetry that is spontaneously broken. The break-
ing of the conformal symmetry may lead to a mechanism
unveiling the small-scale structure of the gravitational inter-
action. This symmetry could be as important as the Lorentz
invariance, and could help in the understanding of the Planck
scale physics. A theory of gravity based on the idea that local
conformal symmetry is an exact, but spontaneously broken
symmetry of nature was proposed in [63]. The Lagrangian
of the theory is L = LEM + Lmatter, where

LEM =
√

−ĝ

[
1

16πG

(
ω2 R̂+6ĝμν∂μω∂νω

)
− �

8πG
ω4
]

,

(5)

and

Lmatter = −1

4
FμνF

μν +
√

−ĝ

(
− 1

2
6ĝμνDμφDνφ

−1

2
m2ω←−2φ2 − 1

2
φ2 R̂ − λ

8
φ4
)

+ L ferm, (6)

where the term φ2R2 was included for restoring the con-
formal invariance of Lmatter, and R̂ is the scalar curvature
constructed from gμν . In this model the conformal compo-
nent of the metric field can be treated as a dilaton field, and
a black hole turns into a topologically trivial, regular soliton
without horizons, firewalls, and singularities.

Conformal Weyl gravity, quadratic in the scalar curvature,
and in the Weyl tensor, was investigated, in both metric and
Palatini formulations, in [64–71]. The elementary particle
physics as well as its implications for the very early Universe
evolution were investigated. The quadratic Weyl action has

spontaneous symmetry breaking in a Stueckelberg mecha-
nism, with the result that the Weyl gauge field acquires mass.
Hence, one recovers the Einstein–Hilbert action of standard
general relativity in the presence of a positive cosmologi-
cal constant, together with the Proca action for the massive
Weyl gauge field [64]. A Weyl-invariant Lagrangian without
ghosts of the form

L = √−g
{

− ξ j

2

[1

6
φ2
j R + gμν ∂μφ j ∂νφ j

]

+(1 + ξ j )
1

2
gμν D̃μφ j D̃νφ j − V (φ j )

}
. (7)

was proposed in [65], where a potential V (φ j ) for the
scalars φ j was also added, with V a homogeneous function
V (φ j ) = φ4

k V (φ j/φk), k = fixed. A successful inflation is
possible if one of the scalar fields is identified as the inflaton.
Inflation in Weyl gravity coupled to a scalar field leads to
results similar to those of the Starobinsky model [72], which
is recovered for vanishing non-minimal coupling [66]. In [67]
it was pointed out that Weyl conformal geometry may play
a fundamental role in the early Universe, where the effective
theory at short distances becomes conformal. Weyl confor-
mal geometry has a naturally built-in geometric Stueckelberg
mechanism, which is broken spontaneously to Riemannian
geometry after a particular Weyl gauge transformation (of
gauge fixing). On the other hand, the Stueckelberg mech-
anism rearranges the degrees of freedom, conserving their
number. Quadratic gravity R2 + R2

μν in the Palatini formal-
ism, where the connection and the metric are independent,
was investigated in [68]. The action has a gauged scale sym-
metry, or as Weyl gauge symmetry of the Weyl gauge field.
In the presence of non-minimally coupled Higgs-like fields,
the theory gives successful inflation. A comparative study
of inflation in two theories of quadratic gravity with gauged
scale symmetry, given by the original Weyl quadratic gravity,
and in a theory defined by a similar action but in the Palatini
approach obtained by replacing the Weyl connection by its
Palatini counterpart, was considered in [69]. In the absence
of matter the Palatini Lagrangian has the form

L0 = √−g

{
ξ0

4! R(�̃, g)2 − 1

4α2 R[μν](�̃)2
}
, (8)

where �̃ is the Weyl or Palatini connection, respectively and
ξ0 and α are constants. The Einstein–Proca action of theWeyl
field, the Planck scale, and the metricity condition emerge in
the brokenphase, afterωμ acquiresmass via the Stueckelberg
mechanism. For large Higgs fields inflation is possible. The
cosmological evolution of the Weyl conformal geometry and
its associated Weyl quadratic gravity was considered in [71].
In the spontaneously broken phase of Weyl gravity Einstein
gravity (with a positive cosmological constant) is recovered,
after the Weyl gauge field of scale symmetry becomes mas-
sive by Stueckelberg mechanism, and decouples. The com-
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parison to the �CDM model shows a very good agreement
between these two models for the (dimensionless) Hubble
function h(z) and the deceleration parameter q(z) for red-
shifts z ≤ 3. Hence, the Weyl conformal geometry and its
associated Weyl quadratic gravity may provide an interest-
ing alternative to the �CDM standard model, and to general
relativity.

The extremely precise determinations by the Planck satel-
lite of the temperature fluctuations of the Cosmic Microwave
Background Radiation [73,74], combined with the observa-
tions of the light curves of the distant supernovae [75], have
convincingly shown that the Universe is in a phase of accel-
erating expansion, of a de Sitter type. Additionally, other
important observational results led to the conclusion that in
the total matter composition of the Universe baryonic mat-
ter represents only around 5%, while 95% of matter con-
sists from two mysterious components, called dark matter,
and dark energy, respectively. To explain the cosmological
observational data, the �CDM model was introduced, which
is necessarily based by the inclusion in the Einstein gravita-
tional field equations of the mysterious cosmological con-
stant �, introduced in general relativity in 1917 by Einstein
[76], to build-up a static cosmological model. The �CDM
model gives a very good description of the observational
data, particularly at low redshifts. But its theoretical basis
is problematic, and there are no satisfactory explanations to
the many questions raised by the interpretation and physical
nature of �.

Therefore, it is reasonable to assume that in order to obtain
a description of the Universe that is both physically and math-
ematically acceptable, and realistic in its confrontation with
observations, one must go outside the limits of standard gen-
eral relativity. Hence, the general relativistic Einstein field
equations that give an extremely precise description of the
gravitational physics in the Solar System, must be replaced
by a new theory of gravity. One of the possible extensions
of general relativity is represented by theories that imply
a geometry-matter coupling [77–79]. For extensive reviews
and discussions of theories with geometry-matter coupling
see [80–85]. Such a geometrical-physical approach leads to
gravitational models more complicated than standard gen-
eral relativity, and they represent an interesting possibility
for explaining the accelerating expansion of the Universe,
dark energy, and dark matter, respectively. However, these
types of theories also raise a number of extremely difficult
physical and mathematical questions.

It is the goal of the present paper to investigate an exten-
sion of the conformally invariant Weyl geometric gravity,
as introduced in [64–66], by allowing the possibility of a
conformally invariant coupling between matter and curva-
ture in a Weyl geometric framework. Under the assumption
that the matter Lagrangian is conformally invariant, the sim-
plest possibility of a curvature-matter coupling consists in

the addition to the gravitational action of a term of the form
Lm R̃2, where R̃ is the Weyl scalar constructed from the con-
tractions of the Weyl curvatures. This term is conformally
invariant, and thus the full conformal invariance of the the-
ory is preserved. After introducing the gravitational action in
Weyl geometry, with the help of an auxiliary scalar field,
the action can be linearized in the curvature in Riemann
geometry, where it takes the form of a f (R, Lm) theory,
with the matter Lagrangian coupled with the Ricci scalar. We
obtain the field equations of the theory by varying the action
with respect to the metric tensor. The divergence of the mat-
ter energy-momentum tensor turns out to be generally non-
zero, indicating that the motion of massive particles is non-
geodesic. The evolution equations of the Weyl vector are for-
mulated in analogy with the Maxwell equations of classical
electromagnetism, by introducing the electric and magnetic
Weyl vectors, thus leading to an electromagnetic type system
also containing the matter Lagrangian. The Newtonian limit
of the theory is also considered, and the generalized Poisson
equation is obtained, which allows to consider the correc-
tions of the Newtonian gravitational potential in the vacuum
coming from the Weyl geometry. As a possible astrophysi-
cal test of the theory we investigate the motion of the plan-
ets in the Newtonian approximation by using an approach
based on the use of the Runge–Lenz vector. We interpret the
non-conservation of the matter energy–momentum tensor as
describing particle production due to the geometry-matter
coup[ling, and we obtain the basic thermodynamic parame-
ters (particle number balance, creation pressure, entropy and
temperature) of this process by using the thermodynamics of
irreversible processes in open systems. The matter creation
processes are essentially controlled by the Weyl vector.

In order to consider the cosmological applications of the
theory we have performed a spatial averaging of the Weyl
vector, and of the Weyl electric and magnetic fields. As a
result of averaging the cosmological effects of Weyl geom-
etry can be described in terms of an effective radiation like
fluid, with time dependent only pressure and density satisfy-
ing the radiation equation of state. As a result of the averaging
of the cosmological field equations one obtains a system of
generalized Friedmann equations, describing the evolution
of the Universe in a homogeneous and isotropic Friedmann–
Lemaitre–Robertson–Walker geometry. The system of cos-
mological equations is studied numerically, and its solutions
are fitted with the observational data, thus allowing to obtain
the optimal values of the model parameters.

The present paper is organized as follows. After a brief
review of Weyl geometry, the action of the conformally
invariant f (R, Lm) theory is introduced in Sect. 2. After
linearizing the action, the gravitational field equations as
well as the Weyl field equations are derived. The Newto-
nian limit of the theory, as well as the generalized Pois-
son equation are also obtained. The divergence of the matter
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energy-momentum tensor, the expression of the extra-force,
as well as the equations of motion of massive test parti-
cles are presented in Sect. 3. Solar System constraints on the
model parameters are inferred from the study of the perihe-
lion precession of the planet Mercury, performed via the use
of the Runge–Lenz vector. The thermodynamic interpreta-
tion of the theory is outlined in Sect. 4, where it is pointed
out that the present theory may involve particle creation pro-
cesses whose natural description may be done by using the
formalism of the thermodynamics of irreversible processes
in open systems. The basic thermodynamic parameters (par-
ticle creation rates, creation pressures, entropies and temper-
atures) are obtained in a general form, and in the Newtonian
approximation. The cosmological applications of the theory
are presented in Sect. 5, where the averaging procedure of the
Weyl field is also presented in detail. The averaged general-
ized Friedmann equations are solved numerically, and their
solutions are fitted to the observational data, thus allowing
to obtain the optimal values of the model parameters. We
discuss and conclude our results in Sect. 6.

In this study we use the Landau–Lifshitz [86] sign con-
ventions, and definitions of the geometric quantities.

2 Coupling matter and geometry in conformal Weyl
spacetimes

In the present section we first briefly review the fundamentals
of Weyl geometry to be subsequently used. Then the action of
the theory is presented, and the gravitational field equations
are obtained. The field equations of the Weyl vector, writ-
ten down in a form similar to the electromagnetic Maxwell
equations, and the Newtonian limit of the theory are also
considered.

2.1 Recap of Weyl geometry

The Weyl geometry is defined by classes of equivalence(
gαβ, ωμ

)
of the metric gαβ and of the Weyl vector gauge

field ωμ, related by the Weyl gauge transformations [70],

g̃μν = �ngμν = [g̃μν

]
, ω̃μ = ωμ − 1

α
∂μ ln �,

√−g̃ = �2n√−g, φ̃ = �−n/2φ, (9)

where by n we have denoted the Weyl charge. Also we can
easily obtain

[
R̃μν

]
= 1,

[
�̃

μ
νρ

]
= 1,

[
R̃
]

= 1

�n ,
[
R̃μ

νρσ

]
= 1,

[
Fμν

] = 1,

[Lm ] = 1,
[
Tμν

] = �n,
[
Tμν

] = �−n, [ρ] = 1, [p] = 1,

[T ] = 1,
[
uμ

] = �n/2,
[
uμ
] = �−n/2,

[
jμ
] = �−n/2.

In the above equations, and further, the square brackets
[...] denote the degree of � in the conformal transforma-
tion of the physical and geometrical quantities. Moreover, ρ

denotes the matter energy density, p is the thermodynamic
pressure, Tμν is the ordinary matter energy-momentum ten-
sor, T = −ρ + 3p is the trace of the energy-momentum
tensor, uμ is the four-velocity of the matter, and jμ = ρuμ is
the matter current, respectively. Lm denotes the Lagrangian
density of the ordinary (baryonic) matter, which can be taken
equivalently as Lm = ρ, or Lm = −p.

The Weyl gauge vector field is determined by the Weyl
connection �̃, which can be obtained as a solution of the
equations

∇̃λgμν = −nαωμgμν, (10)

where α is the Weyl gauge coupling, and

∇̃λgμν = ∂λgμν − �̃
ρ
νλgρμ − �̃

ρ
μλgνρ. (11)

The Weyl geometry is non-metric, and Eq. (10) can be
reformulated in an equivalent form as(

∇̃λ + nαωλ

)
gμν = 0. (12)

Similarly to gauge theory in elementary particle physics,
one can construct gauge invariant expressions in which the
partial derivative is replaced by a Weyl covariant derivative,
like, for example, in

∂λ → ∂λ + weight × α × ωλ. (13)

Using the permutation of indices and combining the result-
ing relations, from Eq. (10) we obtain

�̃λ
μν = �λ

μν + α
n

2

(
δλ
μων + δλ

νωμ − ωλgμν

)
, (14)

where

�λ,μν = 1

2

(
∂νgλμ + ∂μgλν − ∂λgμν

)
, (15)

is the Levi-Civita metric connection, and

�̃λ
μν = gλσ �̃λ,μν. (16)

Taking the trace in Eq. (14) gives

�̃μ = �μ + 2nαωμ. (17)

We also introduce the field strength F̃μν of ωμ, defined
according to

F̃μν = ∇̃μων − ∇̃νωμ = ∂μων − ∂νωμ. (18)

We can compute the curvatures in Weyl geometry by using
the Weyl connection as follows,

R̃λ
μνσ = ∂ν�̃

λ
μσ − ∂σ �̃λ

μν + �̃λ
ρν�̃

ρ
μσ − �̃λ

ρσ �̃ρ
μν, (19)

and

R̃μν = R̃λ
μλν, R̃ = gμσ R̃μσ , (20)
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respectively. For the Weyl scalar we obtain

R̃ = R − 3nα∇μωμ − 3

2
(nα)2 ωμωμ. (21)

R̃ transforms covariantly, and
√−gR̃2 is invariant. Another

important quantity, the Weyl tensor is defined as

C̃μνρσ = Cμνρσ − nα

4

(
gμρ F̃νσ + gνσ F̃μρ − gμσ F̃νρ

−gνρ F̃μσ

)
− αn

2
F̃μνgρσ , (22)

where Cμνρσ is the Weyl tensor of Riemannian geometry,
defined in four dimensions as

Cμνρσ = Rμνρσ + 1

2

(
Rμσ gνρ + Rνρgμσ − Rμρgνσ

−Rνσ gμρ

)
+ 1

6
R
(
gμρgνσ − gμσ gνρ

)
. (23)

Hence

C̃2
μνρσ = C2

μνρσ + 3

2
(αn)2 F̃2

μν. (24)

The tensor
√−gC̃2

μνρσ as well as all its components are
invariant with respect to the conformal transformations of the
metric.

For C2
μνρσ we find

C2
μνρσ = Rμνρσ R

μνρσ − 2RμνR
μν + 1

3
R2. (25)

In the following for the Weyl charge n we will adopt the
value n = 1 only.

2.2 Conformal coupling of matter and curvature in Weyl
geometry

By using the basic scalars of the Weyl geometry(
R̃, F̃2

μν, C̃
2
μνρσ

)
, the following action was proposed in [70]

to describe the properties of the gravitational field,

S0 =
∫ [

1

4!
1

ξ2 R̃
2 − 1

4
F̃2

μν − 1

η2 C̃
2
μνρσ

]√−gd4x, (26)

where two coupling parameters ξ and η have also been intro-
duced. To obtain a realistic approach of the gravitational phe-
nomena the effect of the matter must also be considered in the
action (26) via a conformally invariant Lagrangian density
L̃m .

In the present study we consider the simplest possibil-
ity for the construction of a conformally invariant matter
Lagrangian, namely, by assuming that L̃m = Lm R̃2/4!γ 2,
where Lm is the ordinary matter Lagrangian density, with the
property [Lm] = 1, and γ is a coupling constant. Hence in

the presence of matter the conformally invariant action for
gravity in Weyl geometry takes the form

S =
∫ [

1

4!ξ2 R̃
2 − 1

4
F̃2

μν − 1

η2 C̃
2
μνρσ + 1

4!γ 2 Lm R̃2
]√−gd4x

=
∫ [

1

4!ξ2

(
1 + ξ2

γ 2 Lm

)
R̃2 − 1

4
F̃2

μν − 1

η2 C̃
2
μνρσ

]√−gd4x .

(27)

At this moment we introduce an auxiliary scalar field φ0,
according to the definition [70],

R̃2 ≡ −2φ2
0 R̃ − φ4

0 . (28)

We then substitute R̃2 → −2φ2
0 R̃ − φ4

0 in Eq. (27). The
variation of the action (27) with respect to φ0 leads to the
equation

φ0

(
R̃ + φ2

0

)
= 0, (29)

which fixes φ2
0 as

φ2
0 = −R̃, (30)

and hence through this identification we recover the original
form of the Lagrangian as defined in the initial Weyl geom-
etry. On the other hand, gravity theories containing higher
derivative terms of the form Rn , are equivalent to standard
general relativistic theories with one extra scalar degree of
freedom φ0. These new scalar degree of freedom also appear
generally in in f (R) theories of gravity due to the redefinition
of the variables of the model. Considering a general gravi-
tational action of the form S = (

1/2κ2
) ∫

f (R)
√−gd4x ,

one can introduce a scalar field φ together with an associ-
ated potential V (φ) according to the transformations φ ≡
fR(R), and V (φ) ≡ R(φ) fR(R) − f (R(φ)), respectively,
which allows to reformulate the gravitational action as S =(
1/2κ2

) ∫
[φR − V (φ)]

√−gd4x . Hence, at the level of
action, R2 → φR−V (φ), and thus, after performing explic-
itly the calculations we obtain the relation (28).

Hence, the R2 type gravitational models have the remark-
able property of allowing their linearization in the Ricci scalar
via the introduction of the scalar degree of freedom.

By substituting Eq. (28) into the action (27), with the use
of Eq. (21), we obtain

S = −
∫ {

1

2ξ2

(
1 + ξ2

γ 2 Lm

)[
φ2

0

6
R − α

2
φ2

0∇μωμ

−α2

4
φ2

0ωμωμ + φ4
0

12

]
+ 1

4
F̃2

μν + 1

η2 C̃
2
μνρσ

}√−gd4x .

(31)

We perform now a conformal transformation of the metric
with the conformal factor � = φ2

0/
〈
φ2

0

〉
, where

〈
φ2

0

〉
is the

(constant) vacuum expectation value of the field φ0 [70].
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Hence the determinant of the metric tensor transforms as√−g =
(〈

φ2
0

〉2
/φ4

0

)√−ĝ, R̃ = (
φ2

0/
〈
φ2

0

〉)
R̂, and ωμ =

ω̂μ + (2/α) ∂μφ0/φ0, respectively. Moreover, we impose the
gauge condition ∇μω̂μ = 0.

For the sake of simplicity in the following we will not
write explicitly the hats on the conformally rescaled geomet-
rical quantities. Hence, the action of the gravitational theory
generated from Weyl geometry in the presence of geometry-
matter couplings takes the form

S = −
∫ {(

1 + ξ2

γ 2 Lm

)[
1

2
M2

p R − 3α2

4
M2

pωμωμ

+ 3

2
ξ2M4

p

]
+ 1

4δ2 F̃2
μν + 1

η2C
2
μνρσ

}√−gd4x, (32)

where we have denoted M2
p = 〈

φ2
0

〉
/6ξ2 and 1/δ2 =

1 + 6α2/η2. All physical and geometrical quantities in the
above action are defined in the Riemann space, but in order
to emphasize the geometric origin of F̃μν , we will continue
to denote it by a tilde. Furthermore, we rescale the matter
Lagrangian by introducing a new effective matter variable
Lm , defined as

Lm = 1 + ξ2

γ 2 Lm . (33)

Hence, we finally obtain the action of the conformally invari-
ant f (R, Lm) theory as

S = −
∫ {

Lm

[
1

2
M2

p R − 3α2

4
M2

pωμωμ

+ 3

2
ξ2M4

p

]
+ 1

4δ2 F̃2
μν + 1

η2C
2
μνρσ

}√−gd4x, (34)

2.3 Gravitational field equations

By varying the gravitational action (34) with respect to the
Weyl vector ωμ, it follows that ωμ satisfies the generalized
system of Maxwell-Proca type equations,

∇μ F̃
μν + 3

2
M2

pα
2δ2
(

1 + ξ2

γ 2 Lm

)
ων = 0, (35)

or, equivalently,

∇μ F̃
μν + 3

2
M2

pα
2δ2Lmων = 0. (36)

Due to its antisymmetry, the Weyl field strength F̃μν sat-
isfies automatically, in Riemann geometry, the equations

∇σ F̃μν + ∇μ F̃νσ + ∇ν F̃σμ = 0. (37)

We consider now the variation of the action (34) with
respect to the metric tensor gμν . The variation of the
term−√−gF̃2

μν/4δ2 = −√−gF̃μν F̃μν/4δ2 = −√−g

F̃μν F̃λσ gμλgνσ /4δ2 gives the electromagnetic type energy-
momentum tensor associated to the Weyl field,

T̃ (ω)
μν = 1

2δ2

(
−F̃μλ F̃

λ
ν + 1

4
F̃λσ F̃

λσ gμν

)
. (38)

The variation of the term

SC2 = − 1

η2

∫
C2

μνρσ

√−gd4x, (39)

gives,

δ

δgμν
SC2 = − 4

η2

∫
Bμνδg

μν√−gd4x, (40)

where Bμν , the Bach tensor, is given by

Bμν = ∇λ∇σC
σ λ

μ ν + 1

2
C λ σ

μ ν Rλσ . (41)

We consider now the variation of the first term in the action
(34). For the sake of simplicity we denote

K = 1

2
M2

p

(
R − 3α2

2
ωμωνg

μν + 3ξ2M2
p

)
. (42)

Therefore we immediately obtain

δ

δgμν

[√−gLmK
] = δ

δgμν

(√−gLm
)
K

+√−gLm
δ

δgμν
K . (43)

For the first term in the above equation we find

δ

δgμν

(√−gLm
)
K = ∂

∂gμν

(√−gLm
)
K δgμν

= 1

2
TμνK

√−gδgμν, (44)

where we have introduced the effective energy-momentum
tensor Tμν , defined as

Tμν = − 2√−g

∂
(√−gLm

)
∂gμν

. (45)

The effective energy-momentum tensor Tμν is related to
the ordinary energy-momentum tensor Tμν , defined accord-
ing to

Tμν = − 2√−g

∂
(√−gLm

)
∂gμν

, (46)

by the relation

Tμν = gμν + ξ2

γ 2 Tμν. (47)

To obtain the above result we have used the identity δ
√−g =

− (1/2)
√−ggμνδgμν [86]. If the matter Lagrangian does
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not depend on the derivatives of the metric tensor, the effec-
tive energy-momentum tensor is given by

Tμν = Lmgμν − 2
∂Lm

∂gμν
. (48)

The variation of the Ricci scalar can be obtained as [87]

δR = δ
(
gμνRμν

) = Rμνδg
μν

+ gμν
(
∇λδ�

λ
μν − ∇νδ�

λ
μλ

)
, (49)

where ∇λ is the covariant derivative with respect to the Rie-
mannian Levi–Civita connection �, associated to the metric
g. Since the variation of the Christoffel symbols is given by

δ�λ
μν = 1

2
gλα

(∇μδgνα + ∇νδgαμ − ∇αδgμν

)
, (50)

we finally obtain for the variation of the Ricci scalar the
expression

δR = Rμνδg
μν + (gμν∇α∇α − ∇μ∇ν

)
δgμν. (51)

Hence, for the variation of the second term in Eq. (43) we
find

√−gLm
δ

δgμν
K = √−gLm

×
[

1

2
M2

p Rμνδg
μν + 1

2
M2

pgμν∇μ∇μδgμν

−1

2
M2

p∇μ∇νδg
μν − 3α2

4
M2

pωμωνδg
μν

]
. (52)

After partially integrating the second and the third terms
in Eq. (52), and discarding the total derivatives, we obtain

√−gLm
δ

δgμν
K = 1

2
M2

p

[
Lm Rμν

+ (gμν∇α∇α − ∇μ∇ν

)
Lm − 3α2

2
Lmωμων

]√−gδgμν.

(53)

Therefore, by taking into account all the previously par-
tial results, we obtain the gravitational field equations in
the conformally symmetric Weyl geometric type model with
geometry-matter coupling in the form

M2
p

[
Lm Rμν + (gμν∇α∇α − ∇μ∇ν

)
Lm − 3α2

2
Lmωμων

]

− 1

2
M2

pTμν

(
R − 3α2

2
ωαωβg

αβ + 3ξ2M2
p

)

+ 8

η2 Bμν − 2T̃ (ω)
μν = 0. (54)

It is interesting to note that Tμν can also be interpreted as
an effective metric tensor, depending on the thermodynamic

properties of the matter. For the trace of the effective energy-
momentum tensor we obtain T = 4+(ξ2/γ 2

)
T , where T =

Tμ
μ is the trace of the ordinary matter energy-momentum

tensor.
In the following we assume that the matter content of the

Universe is represented by a perfect fluid that can be char-
acterized by two thermodynamic quantities only, the energy
density ρ, and the thermodynamic pressure p, respectively.
Hence Tμν is given by [86]

Tμν =
(
ρc2 + p

)
uμuν − pgμν, (55)

where uμ is the four-velocity of the fluid, satisfying the nor-
malization condition uμuμ = 1. Since in four dimensions

the Bach tensor is trace free, and T̃ (ω)μ
μ = 0, by taking the

trace of the field equations (54) we obtain the scalar relation

(
Lm R + 3∇α∇αLm − 3α2

2
Lmω2

)

−1

2
T
(
R − 3α2

2
ω2 + 3ξ2M2

p

)
= 0, (56)

where we have denoted ω2 = ωμωμ. Equivalently, the trace
equation can be written as

(
Lm − 1

2
T
)
R + 3∇α∇αLm − 3α2

2

(
Lm − 1

2
T
)

ω2

−3ξ2M2
p

2
T = 0. (57)

By eliminating the term ∇α∇αLm between the field equa-
tion (54) and the trace equation (56) we obtain an alternative
form of the field equation, given by

1

2
M2

p

[
Lm

(
Rμν − 1

3
gμν R

)
− 3α2

2
Lm

(
ωμων − 1

3
gμνω2

)]

− 1

4
M2

p

(
Tμν − 1

3
gμνT

)(
R − 3α2

2
ω2 + 3ξ2M2

p

)

− 1

2
M2

p∇μ∇νLm + 4

η2 Bμν − T̃ (ω)
μν = 0. (58)

The field equations can be written by introducing the Ein-
stein tensor as

Rμν − 1

2
gμνR + 8

η2M2
pLm

Bμν + 1

Lm
�̂μνLm

+1

2

(
gμν − Tμν

Lm

)
R = −3

2

1

Lm

(
α2

2
ω2 − ξ2M2

p

)
Tμν

+3α2

2
ωμων + 2

M2
p

1

Lm
T̃ (ω)

μν , (59)

where we have denoted �̂μν = gμν∇α∇α − ∇μ∇ν .
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2.4 The Weyl vector field equations

In the conformally invariant version of the f (R, Lm) theory,
the Weyl vector satisfies the two field equations (36) and
(37), respectively. In the following we will reformulate these
equations in a form similar to the standard Maxwell equations
of the electromagnetic theory. Since F̃μν = gαμgβν F̃αβ =
gαμgβν

(∇αωβ − ∇βωα

) = ∇μων − ∇νωμ, we obtain

∇μ F̃
μν = ∇μ∇μων − ∇μ∇νωμ

= ∇μ∇μων + Rν
βωβ − ∇ν

(∇μωμ
)
, (60)

where we have used the definition of the Riemann tensor
[86],
(∇μ∇ν − ∇ν∇μ

)
Aα = −Aβ Rα

βμν, (61)

and of its contraction,
(∇μ∇ν − ∇ν∇μ

)
Aμ = −Aβ Rβν. (62)

Hence it follows that the Weyl vector satisfies the gener-
alized wave equation

�ων + Rν
βωβ − ∇ν

(∇μωμ
)+ 3

2
M2

pα
2δ2Lmων = 0. (63)

With the use of the gauge condition for ωμ, ∇μωμ = 0,
we obtain

�ων + Rν
βωβ + 3

2
M2

pα
2δ2Lmων = 0. (64)

We introduce now the definitions

F̃0k = ∂tωk − ∂kω0 = Ẽk, k = 1, 2, 3, (65)

and

F̃ jk = ∂ jωk − ∂kω j = −B̃ jk = −εi jk B̃
i , j, k = 1, 2, 3, (66)

where εi jk is the three-dimensional Levi-Civita symbol. Then
Eq. (37) gives the analogue Faraday and Gauss laws for the
Weyl field,

∂t B̃
i + εi jk∂ j Ek = 0, ∂ j B̃

j = 0. (67)

By introducing the electric and magnetic type Weyl vec-

tors 
̃E =
(
Ẽ1, Ẽ2, Ẽ3

)
and 
̃B =

(
B̃1, B̃2, B̃3

)
, Eq. (67) can

be reformulated as

∂ 
̃B
∂t

+ ∇ × 
̃E = 0,∇ · 
̃B = 0. (68)

In the case of a diagonal metric the inhomogeneous equa-
tion of the Weyl field, Eq. (36), can be reformulated in terms
of the electric and magnetic fields as

∂k

(
−g j j g00√−gẼ j

)
+ 3

2
M2

pα
2δ2Lmω0√−g = 0, (69)

and

εi jk∂ j

(
gii g j j√−gB̃k

)
+ 3

2
M2

pα
2δ2Lmωk√−g = 0, (70)

respectively.

2.5 The Newtonian limit, and the generalized Poisson
equation

In the following we will assume that the coupling constant η

can take large enough values, and therefore we will neglect
the Bach tensor in the gravitational field equations. Then
Eqs. (54) can be written in the form

Rμ
ν = − 1

Lm

(
δμ
ν ∇α∇α − ∇μ∇ν

)
Lm

+ 1

2Lm
T μ

ν

(
R − 3α2

2
ω2 + 3ξ2M2

p

)

+3α2

2
ωμων + 2

M2
pLm

T̃ (ω)μ
ν . (71)

We consider now the weak field and low velocity limit of
Eq. (71). In our approach we follow [86]. Since the motion
is slow, 
v2 << 1, we can neglect all spacelike components
in uμ, and thus we retain only the time component, so that
u0 = u0 = 1, and ui = 0, i = 1, 2, 3. We further assume that
matter is pressureless, p � ρ, and thus the matter energy-
momentum tensor Tμ

ν = ρuνuμ has only one non-zero com-
ponent, T 0

0 = ρ. In the Newtonian limit, only the g00 met-
ric tensor component, given by g00 = 1 + 2ϕ, g00 ≈ 1,
where ϕ is the Newtonian gravitational potential, differs from
the Minkowskian values of the metric gik = gik = −1,
i, k = 1, 2, 3 [86].

In the weak field/small velocity limit we obtain R0
0 ≈

R ≈ �ϕ [86]. In this limit we can also neglect in the
field equations all derivatives with respect to the time. More-
over, ∇α∇αLm = (1/

√−g
)
∂α

(√−ggαβ∂βLm
) ≈ −�Lm ,

where in the Newtonian limit
√−g ≈ 1, and Lm does not

depend on time. Moreover, in the following we assume that
Lm = ρ,Lm = 1+(ξ2/γ 2

)
ρ, and that the time-like compo-

nent of the Weyl vector field is dominant, so that ω2 ≈ ω0ω0.
As for the effective energy-momentum tensor of matter, in
the Newtonian limit its τ00 component is given by

τ00 ≈ τ 0
0 = 1 + 2φ + ξ2

γ 2 ρ. (72)

We also assume that the components of the Weyl vector
have a very small variation in space, at least on the scale
of the Solar System, and in the vicinity of the Sun [88,89].
Hence, it follows that the electric Ẽk = −∂kω0 and magnetic
−εi jk B̃i = ∂ jωk − ∂kω j Weyl vectors have negligibly small
values in the Solar neighborhood, Ẽk ≈ 0, and B̃k ≈ 0.
Hence, we also neglect the 00 component of the Weyl field
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energy-momentum tensor, by taking T̃ (ω)0
0 ∝

(

̃E2 + 
̃B2

)
≈

0.
Hence, under these approximations, from Eq. (71) we

obtain(
1 + ξ2

γ 2 ρ

)
�ϕ = 3ξ2

γ 2

(
α2

2
ω2 + ξ2M2

p

)
ρ

+6

(
ξ2M2

p − α2

2
ω2
)

ϕ + 2ξ2

γ 2 �ρ

+3

(
α2

2
ω2 + ξ2M2

p

)
. (73)

2.5.1 Corrections to the Newtonian potential

In the limit of the weak geometry-matter coupling the cou-
pling constant γ takes very large values, and thus, in the low
density, and vacuum, limit, the generalized Poisson equa-
tion, determining the Newtonian potential in the linear repre-
sentation of the conformal Weyl geometry with nonminimal
matter-geometry is given by

�ϕ = 6

(
ξ2M2

p − α2

2
ω2
)

ϕ + 3

(
α2

2
ω2 + ξ2M2

p

)
. (74)

In the limit of the vanishing Weyl vector, and of the
effective cosmological constant ξ2M2

p, we recover the stan-
dard vacuum Poisson equation for the Newtonian potential
�ϕ = 0, with the spherically symmetric solution given by
ϕ(r) = −C/r , where C is an integration constant. In the
following we neglect the term proportional to the potential
in the generalized Poisson equation, that is, we assume that
the condition

φ <<
α2ω2/2 + ξ2M2

p

2
(
ξ2M2

p − αω2/2
) . (75)

By considering for the gravitational potential its Newtonian
expression φ(r) = |GM/r |, the above constraint can be
reformulated as

r >> rg

∣∣∣∣∣
ξ2M2

p − αω2/2

α2ω2/2 + ξ2M2
p

∣∣∣∣∣ , (76)

where rg = 2GM ≈ 3×105 cm, is the gravitational radius
of the Sun. Assuming αω2/2 >> ξ2M2

p, the validity of the
approximation is restricted to the range r >> rg , corre-
sponding to the standard Newtonian regime.

Hence, in spherical symmetry Eq. (74) becomes

1

r2

d

dr

(
r2 dϕ(r)

dr

)
= 3α2

2
ω2(r) + 3ξ2M2

p, (77)

and it has the general solution

ϕ(r) = −C

r
+3α2

2

∫ r
dς

1

ς2

∫ ς

θ2ω2 (θ) dθ+ ξ2M2
p

2
r2. (78)

If in some finite region of the space-time ω2 can be approx-
imated by a constant, then the gravitational potential is given
by

ϕ(r) = −C

r
+ 1

2

(
α2ω2

2
+ ξ2M2

p

)
r2. (79)

Hence, the presence of the Weyl vector induces important
corrections into the gravitational potential, and these mod-
ifications could lead to some observational or experimental
tests for the confirmation of the presence of Weyl geometry
in the Universe.

3 Energy–momentum balance, equations of motion and
solar system tests

We consider now the covariant divergence of the field equa-
tions (54). The divergence of the Bach tensor vanishes iden-
tically, ∇μB

μ
ν = 0. For the divergence of the energy-

momentum tensor of the Weyl field we obtain

∇μT̃
(ω)μ
ν = 1

δ2

×
(

1

2
F̃λσ ∇ν F̃λσ − F̃μλ∇μ F̃νλ − F̃νλ∇μ F̃

μλ

)
. (80)

With the use of Eqs. (36) and (37), we obtain immediately

∇μT̃
(ω)μ
ν = 3

2
α2δ2M2

pLmων. (81)

We proceed now to the calculation of the divergence of
the matter energy–momentum tensor. In order to do so, we
will use the geometric identity [90]

(∇ν� − �∇ν)Lm = −Rμν∇μLm, (82)

where � = ∇α∇α . By taking now the divergence of the field
equation (54), we obtain

∇μT μ
ν = (Lmδμ

ν − T μ
ν

)∇μ ln

(
R − 3α2

2
ω2 + 3ξ2M2

p

)

− 6α2ωνω
μ∇μLm

2R − 3α2ω2 + 6ξ2M2
p

:= Qν. (83)

Hence, in conformal f (R, Lm) type theory with geometry-
matter coupling generally the matter energy-momentum ten-
sor is not conserved, and the degree of non-conservation is
described by the vector Qν . If under some special conditions
Qν = 0, the theory becomes a conservative one.

By taking into account Eq. (48), the divergence of the mat-
ter energy-momentum tensor can be written in the equivalent
form

∇μT μ
ν = 2gμα ∂Lm

∂gαν
∇μ ln

(
R − 3α2

2
ω2 + 3ξ2M2

p

)
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− 6α2ωνω
μ∇μLm

2R − 3α2ω2 + 6ξ2M2
p
. (84)

3.1 Energy and momentum balance equations

To obtain the energy balance equation in conformal f (R, Lm)

gravity we multiply both sides of Eq. (83) by uμ. For the left
hand side we obtain

uμ∇νT
μν = uμ∇ν (ρ + p) uμuν + uμ (ρ + p)

×∇ν(u
μuν) − uμ∇μ p

= uν∇ν(ρ + p) + (ρ + p)

×(uμu
ν∇νu

μ + uμu
μ∇νu

ν) − ṗ

= ρ̇ + (ρ + p)∇νu
ν, (85)

where we have used the definition ρ̇ = uμ∇μρ = dρ/ds, and
the relations uμuμ = 1, and uμuν∇νuμ = 0, respectively.
Hence we have obtained the energy balance equation for the
conformally invariant f (R, Lm) theory as

ρ̇ + (ρ + p)∇μu
μ = γ 2

ξ2 uμQ
μ. (86)

In the following we denote ∇μuμ = 3H . Hence the
energy-balance equation takes the form

ρ̇ + 3(ρ + p)H = γ 2

ξ2 uμQ
μ. (87)

We introduce now the projection operator hν
λ, defined

according to

hν
λ ≡ δν

λ − uνuλ, (88)

with the basic properties

uνh
ν
λ = 0, hν

λ∇μuν = ∇μuλ, (89)

and

hνλ∇ν = (gνλ − uνuλ
)∇ν = ∇λ − uλuν∇ν, (90)

respectively. After multiplying Eq. (83) with hν
λ, we obtain

the momentum balance equation of the theory, representing
the (non-geodesic) equation of motion of massive test parti-
cles, as

uν∇νu
λ = d2xλ

ds2 + �λ
μνu

μuν = hνλ

ρ + p

[
γ 2

ξ2 Qν − ∇ν p

]

:= f λ, (91)

where f λ can be interpreted as the extra force acting on mas-
sive test particles moving in the Weyl geometry. The extra
force satisfies the condition of being perpendicular to the
four-velocity, f λuλ = 0. Equation (91) indicates that in the
presence of the conformally invariant geometry-matter cou-
pling the motion is non-geodesic, and the dynamical motion
of particles become more complicated than in standard gen-
eral relativity.

3.2 Variational principle for the momentum balance
equation, and the Newtonian limit

The equation of motion of massive test particle in conformal
Weyl gravity with geometry-matter coupling, Eq. (91), can
be also derived with the use of the variational principle

δSp = δ

∫
L pds = δ

∫ √
�
√
gμνuμuνds = 0, (92)

where Sp and L p = √
�
√
gμνuμuν are the action and the

Lagrangian density for test particles, respectively, with
√

�

a yet unknown quantity that must be obtained through com-
parison with the equation of motion (91).

To prove this result we begin with the Euler–Lagrange
equations that give the trajectories of the action (92),

d

ds

(
∂L p

∂uλ

)
− ∂L p

∂xλ
= 0. (93)

We obtain successively

∂L p

∂uλ
= √

�uλ (94)

and

∂L p

∂xλ
= 1

2

√
�gμν,λu

μuν + 1

2

�,λ√
�

, (95)

respectively. Then after a simple calculation we find the equa-
tions of motion of the test particles as given by

d2xλ

ds2 + �λ
μνu

μuν + (uλuν − gλν
)∇ν ln

√
� = 0. (96)

By comparing Eq. (96) with the equation of motion
Eq. (91), it turns out that the explicit form of

√
� can be

obtained as a solution of the equation,

∇ν ln
√

� = 1

ρ + p

[
γ 2

ξ2 Qν − ∇ν p

]
. (97)

When Qν → 0, we recover the geodesic equation of the
standard general relativistic motion. If we adopt for Lm the
expression Lm = ρ, then

δLm = δρ = 1

2
(ρ + p) hμνδg

μν, (98)

and

∂Lm

∂gμν
= ξ2

2γ 2 (ρ + p) hμν, (99)

respectively, and the energy–momentum balance Eq. (84)
takes the form

∇μT μ
ν = ξ2

γ 2 (ρ + p) hμ
ν ∇μ ln

(
R − 3α2

2
ω2 + 3ξ2M2

p

)

− 6α2ωνω
μ∇μLm

2R − 3α2ω2 + 6ξ2M2
p
. (100)
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In the static spherically symmetric limit, and in the case
of a pressureless fluid, we obtain

γ 2

ξ2 Qν ≈ ρhμ
ν ∇μ ln

(
R − 3α2

2
ω2 + 3ξ2M2

p

)
. (101)

Under the assumption of small velocities and weak gravita-
tional fields, the only surviving component of the projection
operator is h1

1 = 1, and thus from Eq. (97) we obtain the
function

√
� as given by

√
� ≈ R − 3α2

2
ω2 + 3ξ2M2

p. (102)

3.2.1 The Newtonian limit of the equation of motion

The variational principle given by Eq. (92) can also be used
to investigate the Newtonian limit of the equations of motion
of the test particles in the conformally invariant Weyl grav-
ity with geometry-matter coupling. In the limit of the weak
gravitational fields and low particle velocities, the space-time
metric can be approximated as

ds ≈
√

1 + 2φ − 
v2dt ≈
(

1 + ϕ − 
v2

2

)
dt, (103)

where ϕ is the Newtonian potential, and 
v is the usual tridi-
mensional velocity of the fluid.

Taking into account the first order of approximation, the
equations of motion of the particle in a weak gravitational
field can be derived as


a = d
v
dt

= −∇ϕ = 
aN + 
aE , (104)

where 
a is the total acceleration of the system and 
aN =
−∇ (C/r) = C/r2 is the Newtonian gravitational accel-
eration, while 
aE is the extra-acceleration induced by the
presence of Weyl geometric effects. By taking into account
Eq. (79) we obtain for the extra-acceleration induced due the
coupling between matter and curvature in Weyl gravity the
expression

|
aE | ≈
(

α2

2
ω2 + ξ2M2

p

)
r. (105)

It is interesting to note that the extra-acceleration induced
by the conformal gravity model of Weyl geometry has the
opposite sign with respect to the Newtonian acceleration,
that is, it has a repulsive effect.

3.3 Solar system tests of conformal f (R, Lm) gravity

To obtain an estimate of the effects of the extra-force in con-
formal f (R, Lm) gravity, induced by the coupling between
geometry and matter, we investigate the orbital parameters
of the motion of the planets around a central massive object

(the Sun). The motion of massive test particles in a gravita-
tional field can be studied in a simple way with the help of
the Runge–Lenz vector, defined as [91,92]


A = 
v × 
L − α0
er , (106)

where 
v is the velocity of the planet of massm with respect to
the Sun, μ = mM/ (m + M) is the reduced mass, α0 =
GmM, 
p = μ
v is the relative momentum, 
r = r 
er is the
two-body position vector, and


L = 
r × 
p = μr2θ̇ 
k, (107)

is the angular momentum of the planet, respectively. In the
following M denotes the Solar mass.

Alternatively the Runge–Lenz vector can be represented
as,


A =
( 
L2

μr
− α0

)

er − ṙ L
eθ . (108)

The derivative of 
A with respect to the polar angle θ can be
obtained as [91,92],

d 
A
dθ

= r2
[

dV (r)

dr
− α0

r2

]

eθ , (109)

where V (r) is the potential of the central force.
In the case of an elliptical orbit of eccentricity e, period

T , and major semi-axis a, the equation of the trajectory of
the test particle is given in the Newtonian approximation by
[93](

L2

μα0

)
r−1 = 1 + e cos θ. (110)

Since at the perihelion ṙ = 0 and θ = 0, for the magnitude

of the Runge–Lenz vector we obtain 
A = eα0
i , and
∣∣∣ 
A∣∣∣2 =

e2α2
0, respectively.

We model the gravitational field in the Solar System by
a potential term consisting of two components, the Post-
Newtonian potential,

VPN(r) = −α0

r
− 3

α2
0

mr2 , (111)

and the extra contribution arising from the conformal cou-
pling between geometry and matter. Hence we obtain first

d 
A
dθ

= r2

[
6

α2
0

mr3 + m
aE (r)

]

eθ , (112)

where we have assumed that μ ≈ m, an approximation that
works very well within the range of the Solar System. For a
variation of θ of 2π , the change in the direction �φ̃ of the
perihelion of a planet is given by

�φ̃
k =

A × d 
A

dθ


A2
, (113)
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and it is found in a general form as

�φ̃ = 1

α0e

∫ 2π

0

∣∣∣∣∣ 
A × d 
A
dθ

∣∣∣∣∣ dθ. (114)

Explicitly, the perihelion precession is obtained as,

�φ̃ = 24π3
( a
T

)2 1

1 − e2 + L

8π3me

(
1 − e2

)3/2

(a/T )3

×
∫ 2π

0

aE
[
L2 (1 + e cos θ)−1 /mα0

]
(1 + e cos θ)2 cos θdθ,

(115)

where we have used the relationα0/L = 2π (a/T ) /
√

1 − e2

[93]. The first term of the above relation gives the expression
of the standard general relativistic precession of the perihe-
lion of the planets, The second term represents the contri-
bution to the perihelion precession of the planets due to the
presence of the extra-force generated by the Weyl geometric
effects.

We consider now the application of Eq. (115) to the simple
the case in which the Weyl type geometric acceleration can
be considered (approximately) as a constant, 
aE ≈ constant,
an approximation that could be valid for small regions of
the space-time. By assuming that 
aE is a constant, from of
Eq. (115) we obtain for the perihelion precession of a planet
the expression

�φ̃ = 6πGM
a
(
1 − e2

) + 2πa2
√

1 − e2

GM
aE , (116)

where Kepler’s third law, T 2 = 4π2a3/GM was also used.
We apply now Eq. (116) to the case of the planet Mer-

cury, for which a = 57.91 × 1011 cm, and e = 0.205615,
respectively. For the mass of the Sun we adopt the value
M = 1.989 × 1033 g. With the use of these numerical
values from the first term in Eq. (116) we obtain the stan-
dard general relativistic value for the precession angle of

Mercury,
(
�φ̃
)

GR
= 42.962 arcsec per century. On the

other hand the observed value of the planet’s precession is(
�φ̃
)

obs
= 43.11 ± 0.21 arcsec per century [94,95].

Hence, the difference
(
�φ̃
)
E

=
(
�φ̃
)

obs
−
(
�φ̃
)

GR
=

0.17 arcsec per century can be interpreted as coming from
other physical effects. Therefore, the observational con-
straints imply that the value of the constant extra-acceleration
aE must satisfy the condition aE ≤ 1.28 × 10−9 cm/s2. This
value of aE , obtained from the Solar System observations
under the assumption of its constancy, is somewhat smaller
than the value of the extra-acceleration a0 ≈ 10−8 cm/s2,
necessary to explain the ”dark matter” properties. By using
the expression of the Weyl type extra-acceleration as given
by Eq. (105), we obtain the following constraint on the Weyl

gravity parameters (α, ξ, ω),(α

2
ω2 + ξ2M2

p

)∣∣∣
Mercury

≤ 2.455 × 10−43 cm−2. (117)

It is interesting to note that the term ξ2M2
p, corresponding

to the cosmological constant, gives in the above relation a
contribution of the order of 10−56 cm−2, and thus, to fully
explain the Mercury perihelion precession, one cannot rule
out the possibility of the presence of some extra gravitational
effects acting at both the Solar System and galactic levels.
Of course, the assumption of a constant extra-force may not
be correct on larger astronomical scales, and thus a full con-
frontation of Weyl geometric gravity with observations may
require a more complicated approach.

4 Thermodynamic interpretation of the conformal
f (R, Lm) gravity theories

For the sake of completeness we briefly discuss a pos-
sible thermodynamic interpretation of the Weyl geometry
inspired conformal quadratic f (R, Lm) gravity theory. The
non-conservation of the matter energy-momentum tensor in
the Weyl geometric background strongly suggests that, due
to the specific conformal matter-curvature coupling in the
present version of the f (R, Lm) theory, particle generation
processes may take place on a microscopic scale, both locally,
as well as during the cosmological evolution. It is interest-
ing to note that this effect is also present in quantum field
theories in curved space-times, as discussed extensively in
[96–100]. In quantum field theory particle creation from the
gravitational field is a consequence of the time variation of
the field. In particular, the finite regularized average value
of the energy-momentum tensor of a quantum scalar field
in anisotropic cosmology, including both particle creation
and vacuum polarization, was obtained in [98,99]. However,
in conformal f (R, Lm) gravity this phenomenon is gen-
eral, and not restricted to time variability. Hence, conformal
f (R, Lm) theory, which naturally contain matter creation,
could lead to an effective semiclassical equivalent descrip-
tion of quantum field theoretical processes in gravitational
fields. In the following in the discussion of particle creation
we use the approach introduced in [101].

4.1 Thermodynamic quantities in the presence of particle
creation

The presence of particles creation in a classical physical the-
ory is a direct consequence of the fact that the covariant diver-
gences of the basic thermodynamic and physical quantities,
including the energy-momentum tensor, the particle, energy
and entropy fluxes, respectively, do not vanish. In this case,
the balance equilibrium equations must be reformulated in
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order to explicitly include particle creation processes in the
basic evolution equations [102–104]. The balance equation
for the particle flux Nμ ≡ nuμ, where n is the particle num-
ber density, becomes in the presence of particle creation from
the gravitational field,

∇μN
μ = ṅ + 3Hn = n�, (118)

where � is the particle creation rate. If the condition � � H
is satisfied, matter creation can be neglected in any physical
model. We also introduce the entropy flux vector Sμ, defined
as Sμ ≡ s̃uμ = nσuμ, where by s̃ we denote the entropy
density, while σ represents the entropy per particle. In the
presence of particle creation weIf obtain the divergence of
the entropy flux as

∇μS
μ = nσ̇ + nσ� ≥ 0. (119)

If � = 0, the entropy is conserved, and the thermodynamic
process is adiabatic. For a particular thermodynamic model
in which σ can be taken as constant, we find

∇μS
μ = nσ� = s̃� ≥ 0. (120)

The above relation indicates that if the entropy per particle is
a constant, the variation of the entropy is exclusively deter-
mined by the gravitational matter production effects. By tak-
ing into account that s̃ > 0, from Eq. (120) it follows that the
particle production rate � must satisfy the condition � ≥ 0.
Hence, particles can be generated from gravitational fields,
but the opposite process is forbidden. In the presence of mat-
ter production from gravity the energy-momentum tensor of
a fluid must be also adjusted to make it consistent with the
second law of thermodynamics. This can be done by adding
to the equilibrium component Tμν

eq a new term �Tμν , so that
[105]

T (tot)μν = Tμν
eq + �Tμν, (121)

where �Tμν denotes the adjustment due to particle pro-
duction. In an isotropic and homogeneous geometry, �Tμν

should be representable via a single scalar quantity. Hence,
generally we can write [105]

�T 0
0 = 0, �T j

i = −Pcδ
j
i , i, j = 1, 2, 3, (122)

where Pc denotes the creation pressure, a dynamical quantity
that describes phenomenologically the effects of the gravi-
tational matter production on a macroscopic thermodynamic
system. In a fully covariant representation we have [105]

�Tμν = −Pch
μν = −Pc

(
gμν − uμuν

)
, (123)

a relation from which we immediately obtain uμ∇ν�T (tot)μν

= 3HPc. Hence, in the presence of matter production, the
total energy balance equation uμ∇νT (tot)μν = 0, which fol-
lows from Eq. (121), immediately gives

ρ̇ + 3H (ρ + P + Pc) = 0. (124)

The thermodynamic quantities must also satisfy the Gibbs
law, which can be formulated as [103]

nT̃ d

(
s̃

n

)
= nT̃ dσ = dρ − ρ + p

n
dn, (125)

where T̃ is the thermodynamic temperature of the system.

4.1.1 Conformal f (R, Lm) gravity and irreversible
thermodynamics

With the use of some simple algebraic transformations the
energy balance equation (87) of the conformally invariant
f (R, Lm) theory can be rewritten as

ρ̇ + 3H (ρ + P + Pc) = 0, (126)

where the creation pressure Pc is defined as

Pc = − γ 2

3ξ2H
uμQ

μ. (127)

Then the generalized energy balance Eq. (126) can be
obtained by taking the divergence of the total energy momen-
tum tensor Tμν of the conformal f (R, Lm) gravity, defined
as

Tμν = (ρ + P + Pc) u
μuν − (P + Pc) g

μν. (128)

By assuming that particle creation is an adiabatic process,
with σ̇ = 0, the Gibbs law gives

ρ̇ = (ρ + p)
ṅ

n
= (ρ + P) (� − 3H) . (129)

With the use of the energy balance equation we obtain
immediately the relation between the matter production rate
and the creation pressure as

� = −3HPc
ρ + p

= γ 2

ξ2

uμQμ

ρ + p
. (130)

Hence in the conformal f (R, Lm) gravity theory for the
particle creation rate we find the general expression

� = − 6α2ωμuμων∇νLm

(ρ + p)(2R − 3α2ω2 + 6ξ2M2
p)

. (131)

In obtaining the above expression, we have used the relation
uμhμν = 0, and

Lmδμ
ν − T μ

ν = (ρ + p)hμ
ν , (132)

which is true for a perfect fluid with Lagrangian Lm = ρ.
The condition � ≥ 0 imposes an important constraint on the
physical parameters of the theory. By assuming for the matter
content of the theory pressureless dust, with p = 0, we obtain
the following general cosmological constraint that must be
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satisfied for all times in the linear/scalar representation of the
conformal f (R, Lm) theory,

uμQμ

ρ + p
≥ 0. (133)

The divergence of the entropy flux vector can be obtained
in terms of the creation pressure as

∇μS
μ = −3nσHPc

ρ + p
= γ 2

ξ2

nσ

ρ + p
uμQ

μ. (134)

4.1.2 The temperature evolution

We consider now the evolution of the temperature in an open
thermodynamic system with matter production. To consis-
tently describe the time evolution of the relativistic fluid,
we introduce the two parametric equations of state for the
matter density and pressure, which generally are given by
ρ = ρ(n, T̃ ) and p = p(n, T̃ ), respectively. Then we imme-
diately find

ρ̇ =
(

∂ρ

∂n

)
T̃
ṅ +

(
∂ρ

∂ T̃

)
n

˙̃T . (135)

With the use of the energy and particle balance equations
we obtain

− 3H (ρ + p + Pc) =
(

∂ρ

∂n

)
T̃
n (� − 3H)

+
(

∂ρ

∂ T̃

)
n

˙̃T . (136)

With the use of the thermodynamic identity [105]

T̃

(
∂p

∂ T̃

)
n

= ρ + p − n

(
∂ρ

∂n

)
T̃

, (137)

Equation (136) gives for the temperature evolution of a rel-
ativistic fluid in the presence of particle creation the relation

˙̃T
T̃

=
(

∂p

∂ρ

)
n

ṅ

n
= c2

s
ṅ

n
= c2

s (� − 3H)

= −3Hc2
s

(
1 + Pc

ρ + p

)

= 3Hc2
s

[
γ 2

ξ2

uμQμ

3H(ρ + p)
− 1

]
, (138)

where c2
s = (∂p/∂ρ)n is the speed of sound in the newly

created matter. If (∂p/∂ρ)n = c2
s = constant, for the

temperature-particle number relation we obtain the simple
expression T̃ ∼ nc

2
s .

4.1.3 The case w = −1

In the thermodynamical approach developed in the previ-
ous Sections we have assumed that particles are created in
the form of ordinary baryonic matter, and therefore w =

p/ρ ≥ 0. Nevertheless, the open systems irreversible ther-
modynamic interpretation of the linear/scalar quadratic con-
formal f (R, Lm) gravity can be also extended to the case
w < 0. Next, we will investigate this problem, and we will
show that our thermodynamical results, in the sense of reg-
ularity and well-definiteness, are also valid even in the case
of w = −1, that is, for matter satisfying the equation of state
ρ + p = 0 [106].

We consider again the temperature evolution equation,

˙̃T
T̃

=
(

∂p

∂ρ

)
n

ṅ

n
, (139)

and we will show that it is still valid even if w = p/ρ =
−1. To establish this result, we begin with the perfect-fluid
energy-momentum balance equation

ρ̇ + 3(ρ + p)H = γ 2

ξ2 uμQ
μ. (140)

When w = −1, Eq. (140) becomes

ρ̇ = γ 2

ξ2 uμQ
μ ≡ −3HPc. (141)

By assuming adiabatic particle production, with σ̇ = 0, the
Gibbs law gives

ρ̇ = (ρ + P)
ṅ

n
= 0. (142)

From the above two equations, we immediately obtain

ρ̇ = Pc = 0. (143)

Since ρ = ρ
(
n, T̃

)
, we have

ρ̇ =
(

∂ρ

∂n

)
T̃
ṅ +

(
∂ρ

∂ T̃

)
n

˙̃T = 0. (144)

By taking into account the thermodynamic identity (137) for
ρ + p = 0, we obtain

T̃

(
∂P

∂ T̃

)
n

= −n

(
∂ρ

∂n

)
T̃

. (145)

Hence it immediately follows that Eq. (139) with (∂p/∂ρ)n
is valid even for w = −1, and generally for any negative val-
ues of w. For w = −1, from Eq. (139) it follows that nT̃ is
a constant, or T̃ ∼ 1/n. This relation indicates if the density
of the ”dark energy” particles is extremely low, their thermo-
dynamic temperature is very high. If the dark energy parti-
cle number density is high, their temperature is very low. If
n → ∞, the temperature of the system made of dark energy
particles tends to zero.
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5 Cosmological applications

In order to investigate the cosmological implications of the
linear/scalar quadratic conformally invariant f (R, Lm) the-
ory, we consider that the Universe is isotropic and homo-
geneous, and that its geometry can be described by the
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric,

ds2 = dt2 − a2(t)δi jdx
i dx j = a2(η)

(
dη2 − δi jdx

idx j
)

,(146)

where a(t) is the dimensionless scale factor, and η is the
conformal time, defined as dt = adη, or η = ∫

dt/a(t).
Moreover, we also introduce the Hubble function, defined
as H = ȧ/a = (

1/a2
)
(da/dη), where a dot denotes the

derivative with respect to the cosmological time t . For the
baryonic matter content of the Universe, we assume that it is
represented by a perfect fluid, with matter Lagrangian Lm =
ρ, and energy-momentum tensor with components given in
the comoving frame by

Tμ
ν = diag(ρ,−p,−p,−p), (147)

where ρ is the energy density of the cosmological matter,
and p is the pressure. In the following, we will consider the
late time behavior of the model, and consequently we will
assume that the Universe is filled by dust with equation of
state of the form p = 0.

5.1 Cosmological equations of the Weyl vector

In a cosmological geometry described by the flat Friedmann–
Lemaitre–Robertson–Walker metric, the Weyl vector field
equations take the form

∂

∂xσ
F̃μν + ∂

∂xν
F̃σμ + ∂

∂xμ
F̃νσ = 0, (148)

1√−g

∂

∂xμ

(√−gF̃μν
)

+ 3

2
M2

pα
2δ2Lmων√−g = 0,

(149)

where

F̃μν = a2 (η)

⎛
⎜⎜⎝

0 Ẽ1 Ẽ2 Ẽ3

−Ẽ1 0 −B̃3 B̃2

−Ẽ2 B̃3 0 −B̃1

−Ẽ3 −B̃2 B̃1 0

⎞
⎟⎟⎠ (150)

with the vector fields
(
Ẽi , B̃i

)
defined in the ordinary

Minkowski geometry. We represent the Weyl vector as ωμ =(
a2ω0, a2 
ω). Hence we obtain the equations describing the

cosmological evolution of the Weyl field as

− 1

a2

∂

∂η
(a2 
̃B) + ∇ × 
̃E = 0, (151)

∇ · 
̃B = 0, (152)

∇ × 
̃B + 1

a2

∂

∂η
a2 
̃E + 3

2
M2

pα
2δ2a2Lm 
ω = 0, (153)

∇ · 
̃E − 3

2
M2

pα
2δ2a2Lmω0 = 0. (154)

5.2 The energy–momentum tensor of the Weyl field

Since the FLRW geometry is isotropic, Weyl vector fields
can exist in such Universe only if one assumes that they have
a random distribution, and an averaging procedure is per-
formed. Thus, we suppose that the Weyl electric and mag-
netic fields satisfy the following conditions [107–109],
〈
Ẽi

〉
= 0,

〈
B̃i
〉
= 0,

〈
Ẽi B̃ j

〉
= 0, (155)

〈
Ẽi Ẽ j

〉
= 1

3

〈

̃E2
〉
δi j ,

〈
B̃i B̃ j

〉
= 1

3

〈

̃B2
〉
δi j , (156)

where 〈X〉, representing the spatial average of a quantity X
on a given volume and at a fixed time, is defined as

〈X〉 = 1

V0
lim

V→V0

∫ √−gXd3xi . (157)

Hence, the 00 component of the energy-momentum tensor

of the Weyl field, T̃ (ω)
00 = (a2/4δ2

) ( 
̃E2 + 
̃B2
)

becomes

〈
T̃ (ω)

00

〉
= a2

4δ2

(〈

̃E2
〉
+
〈

̃B2
〉)

, (158)

while the diagonal components, given by

T̃ (ω)
ik = − a2

2δ2

[
Ẽi Ẽk + B̃i B̃k − (1/2)

(

̃E2 + 
̃B2

)
δik

]
,

(159)

are obtained as
〈
T̃ (ω)
ik

〉
= 1

3

〈
T̃ (w)

00

〉
δik . (160)

Hence we have obtained the important result that the con-
tribution of the Weyl vector to the cosmological dynamics
can be modelled via a Weyl fluid, with effective energy den-
sity ρω and effective pressure pω, and energy-momentum
tensor given by

T (ω)
μν = (ρω + pω) uμuν − pωgμν, (161)

where

ρω = pω

3
, ρω = 1

4δ2

(〈

̃E2
〉
+
〈

̃B2
〉)

. (162)

Now, let us consider the covariant divergence of the vector
field equation (36). Noting the antisymmetric nature of the
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tensor F̃μν , one obtains

ων∇ν(Lm) = 0, (163)

where we have used the gauge condition ∇μωμ = 0. The
matter Lagrangian of a perfect fluid is Lm = ρ, which
depends only on η in FRW universe. As a result, the above
relation implies that on top of the FRW space-time, one has

ω0 = 0. (164)

In terms of the Weyl vector field ωμ, the averaged cosmo-
logical electric and magnetic fields can be obtained as


̃B = ∇ × 
ω, (165)


̃E = 1

a2

∂

∂η
(a2 
ω). (166)

By assuming that the the fields 
ω, 
̃B and 
̃E are weak and
very slowly in space, and also α � 1, one can see that the
magnetic field vanishes, and from (153) we obtain for the
time variation of the Weyl electric field the relation


̃E = 
̃E0

a2 . (167)

where 
̃E0 is an integration constant. Now, by taking the space
average, we obtain

ρω = 1

4δ2

ρ0

a4 , (168)

where ρ0 = 〈 
̃E0
2〉 is a constant.

From Eqs. (166) and (167) we immediately obtain

a2 
ω = 
E0η + 
E1, (169)

where 
E1 is an integration vector. Since ωμ = a2 (ω0, 
ω),
we obtain

〈
ωiω j

〉 = a4 〈ωiω j
〉 = 1

3
a4
〈

ω2
〉
δi j

= 1

3

〈( 
E0η + 
E1

)
·
( 
E0η + 
E1

)〉
δi j

= 1

3

[〈 
E2
0

〉
η2 + 2

〈 
E0 · 
E1

〉
η +

〈 
E2
1

〉]
δi j

≡ X (η)δi j . (170)

5.3 The generalized Friedmann equations

In order to obtain the cosmological field equations for the
FLRW metric (the generalized Friedmann equations), one
should take an average of the metric field equations (54), by
following the procedure outlined in Eq. (157). As a result we
obtain

(4H2 − 2M2
pξ

2a2 − 3α2X)(ξ2ρ + γ 2)

+ 4ξ2H ρ̇ − 2γ 2ρ0

3M2
pδ

2a2 = 0, (171)

and

(ξ2ρ − 2γ 2)Ḣ + (2ξ2ρ − γ 2)

(
H2 − 3

4
α2X

)

− ξ2H ρ̇ − ξ2ρ̈ + 3

2
M2

pγ
2ξ2a2 − γ 2ρ0

6M2
pδ

2a2 = 0, (172)

respectively. In obtaining the above equations, we have used
the relation (170), which can be reformulated equivalently
as a differential equation, with the function X obtained as a
solution of the second order ordinary differential equation,

Ẍ − 2

3
ρ0 = 0. (173)

We now define a set of dimensionless quantities

H0η = τ, H = H0h, ρ̄ = ξ

3M2
pH

2
0

ρ,

ξ̄ = ξ2H2
0 M

2
p

γ 2 , ρ̄0 = α2δ̄2

H4
0

ρ0, δ̄ = H0√
6Mpαδ

,

γ̄ = ξ2M2
p

2H2
0

, X̄ = α2

4H4
0

X, (174)

where H0 is the current value of the Hubble parameter. The
field Eqs. (171), (172) and (173) are then simplified as

(h2 − γ̄ a2 − 3X̄)(1 + 3ρ̄) + 3h ˙̄ρ − ρ̄0

a2 = 0, (175)

(2 − 3ρ̄)ḣ + (1 − 6ρ̄)(h2 − 3X̄) + 3(h + 1) ˙̄ρ

+ ρ̄0 − 3a4γ̄

a2 = 0, (176)

¨̄X − ρ̄0

6δ̄2
= 0. (177)

5.4 Comparison with the observational data

In order to compare the model with observational data, we
transform the above equations into the redshift coordinates
defined as 1 + z = 1/a, giving d/dt = −(1 + z)h(z)d/dz.
Noting that the dimensionless Hubble parameter h(z) has
the property h(z = 0) = 1, one can obtain the following
constraint on the model parameters

X̄(z = 0) = 1 − γ̄ − ρ̄0 + 3�m0(1 − γ̄ )

3(1 + 3�m0)

We estimate the values of the model parameters H0, γ̄

and ρ̄0 and ˙̄X (z = 0) ≡ ˙̄X0 by using the observational data
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Table 1 Best fit values of the linear model parameters H0, γ̄ , ρ̄0 and
˙̄X0 together with their 1σ and 2σ confidence intervals

Parameter Best fit value 1σ interval 2σ interval

H0 67.47 67.47 ± 1.41 67.47 ± 2.76

γ̄ 0.012 0.012 ± 0.05 0.012 ± 0.10

ρ̄0 0.026 0.026 ± 0.002 0.026 ± 0.005
˙̄X0 −0.199 −0.199 ± 0.011 −0.199 ± 0.022

on the Hubble parameter in the redshift range 0 < z < 2,
as presented in [110]. We fix the value of the current value
of the matter density �m0 to be equal to its �CDM value
�m0 = 0.305.

Also, since the constant δ̄ appears only in the evolution Eq.
(173) of the function X̄ as a modulator of the constant ρ̄0, we
assume a fixed value δ̄ = 0.1 in the following calculations.

We use the likelihood analysis of the model based on the
data on H0. The likelihood function in the case of n indepen-
dent data points can be defined as

L = L0e
−χ2/2, (178)

where L0 is the normalization constant, and χ2 is defined as

χ2 =
∑
i

(
Oi − Ti

σi

)2

, (179)

where i indicates the number of data, Oi are the observational
values, Ti are the theoretical values and σi are the observa-
tional errors associated with the i th data. In the present model
we have

L = L0 exp

[
−1

2

∑
i

(
Oi − H0Ti

σi

)2
]

, (180)

By maximizing the likelihood function, one can find the
best fit values of the parameters. In Table 1, we have summa-
rized the result of the Maximum likelihood analysis together
with their 1σ and 2σ confidence interval.

The deceleration parameter and the matter density are
given by

q = (1 + z)
h′

h
, �m = ρ̄m

h2(1 + z)2 , (181)

where the prime denotes the derivative with respect to the
redshift. We have plotted the evolution of the Hubble param-
eter, of the deceleration parameter, and of the matter density
as a function of redshift in Figs. 1 and 2. One can see that
the model could satisfy the observational data for the Hub-
ble function very well, and it can reproduces almost exactly
the predictions of �CDM model for h(z) up to a redshift of

z ≈ 3. At a qualitative level the behavior of the deceleration
parameter of the �CDM model is also recovered from the
model. However, there are major differences in the behaviors
of the matter densities, and of the matter density parameter,
which show significant quantitative and qualitative differ-
ences as compared to �CDM. One possible explanation for
the difference is that in the present model matter is not sim-
ply represented by ρ, but it has an effective meaning, with
the contributions from the Weyl field and geometry-curvature
coupling also giving some contributions to the ”matter” con-
tent of the Universe.

6 Discussions and final remarks

In formulating the first geometric theory of gravity Einstein
extensively used the already known results of metric Rie-
mannian geometry, in which the variation of the angles in the
initial and final state of a vector rotated on a closed path is
given by the curvature tensor. From a purely geometric point
of view several extensions of Riemannian geometry can be
considered, which lead to the introduction of new geomet-
rical objects. One of these new objects is the torsion [111],
giving the non-closure of a parallelogram formed when two
vectors are transported along each other. Finally, Weyl [3]
considered geometries in which the variation of the length
of a vector during parallel transport gives rise to the non-
metricity of the space-time. From a physical point of view
the main goal of Weyl’s approach was the geometric uni-
fication of gravity and electromagnetism. Einstein strongly
criticized Weyl’s physical theory, and this criticism led to
the abandonment of the unified field theory approach pro-
posed by Weyl. However, in 1929 Weyl [112,113] showed
that electrodynamics is invariant under the gauge transfor-
mations of the gauge field, and of the wave function of the
charged field. Hence gauge theory, fundamental for particle
physics, was born from Weyl’s geometry. Another funda-
mental idea initially discussed by Weyl is the concept of
conformal invariance. This is a highly attractive idea, simi-
lar to the gauge principle in elementary particle physics that
enriched so much contemporary physics. Global units trans-
formations are analogous to global gauge transformations
or global internal-symmetry transformations. The extension
of units transformations to the local level, and the require-
ment of conformal invariance of physical laws is similar to
the promotion of gauge and internal invariances to the local
level by the introduction of gauge fields. Maxwell’s equa-
tions, the massless Dirac equation, the massless scalar field
equations, the electromagnetic, weak, and strong interactions
between elementary particle fields are all conformally invari-
ant. Therefore, microscopic physics is conformally invariant
in its entirety. However, Einstein’s gravity is not.
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Fig. 1 The evolution of the Hubble function (1 + z)h (left panel), and
of the deceleration parameter q (right panel) as a function of redshift
for the best fit values (long-dashed line), for γ̄ = 0.1 and best fit val-

ues for ρ̄0 and ˙̄X0 (dotted line), for ρ̄0 = 0.021 and best fit values for

γ̄ and ˙̄X0 (dashed line) and for ˙̄X0 = −0.22, ρ̄0 = 0.021 and best
fit value for γ̄ (dot-dashed line) respectively. The solid red line corre-
sponds to the �CDM model. The error bars indicate the observational
values [110]

Fig. 2 The evolution of the matter density ρ̄m (left panel) and of the
matter density parameter �m (right panel) as a function of redshift for
the best fit values (long-dashed line), for γ̄ = 0.1 and best fit values for

ρ̄0 and ˙̄X0 (dotted line), for ρ̄0 = 0.021 and best fit values for γ̄ and
˙̄X0 (dashed line) and for ˙̄X0 = −0.22, ρ̄0 = 0.021 and best fit value

for γ̄ (dot-dashed line) respectively. The solid red line corresponds to
the �CDM model

Hence, we do have another fundamental difference between
the (geometric) world of particle physic/s, and the (geomet-
ric) world of the gravitational interaction. Since abandoning
the conformal invariance of elementary particle physics is at
least problematic, a possible bridge between quantum field
theory and gravity can be constructed by imposing the princi-
ple of conformal invariance in Einstein gravity. This approach
inevitably leads to the necessity of the extensive use of Weyl
geometry to model gravitational phenomena.

In the present paper we have considered one of the sim-
plest conformally invariant Weyl geometric models, initially
introduced and studied from an elementary particle physics
perspective in [64–66], by including a new feature in the
gravitational action, namely, the ordinary matter content. We
have assumed a matter Lagrangian Lm given in terms of the

basic thermodynamic parameters of matter, the energy, den-
sity, or the pressure, respectively. However, in order to build
a conformally invariant gravitational theory in presence of
matter a coupling between matter and curvature is neces-
sary. To maintain the conformal invariance in Weyl geom-
etry of the gravitational theory we have adopted the sim-
plest possible matter-geometry coupling, expressed by a term
of the form Lm R̃2. Hence the present theory is quadratic
in the Weyl scalar R̃. The mathematical formalism can be
significantly simplified by using the linear/scalar represen-
tation of quadratic Weyl gravity [64–66], which allows to
formulate the theory in Riemann geometry as a particular
version of the already considered f (R, Lm) type theories
[79,82], in which the gravitational action is represented as
an arbitrary function of the (Riemannian) Ricci scalar, and of
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the matter Lagrangian. The theory introduced in the present
paper imposes a specific restriction on the theory, namely,
the requirement of conformal invariance.

After introducing the action of the theory in Weyl geome-
try, its representation as a linear/scalar model in Riemannian
geometry was obtained. The field equations of the theory
have been derived, and their various consequences have been
discussed. In particular, it turns out that the divergence of the
matter energy-momentum tensor does not generally vanish.
Hence, this interesting property of the f (R, Lm) gravity the-
ories does also appear in their conformally invariant versions.
We have briefly considered a thermodynamical interpretation
of this effect, in terms of the irreversible particle creation by
the gravitational field. Such an interpretation also imposes
some strong constraints on the non-conservation vector Qν .
We have also considered the Newtonian limit of the theory,
and obtained the generalized Poisson equation Eq. (73). In the
linear approximation, as compared to the standard Poisson
equation, two new terms does appear in the vacuum equa-
tion. The first one is proportional to the Newtonian potential
itself, while the second is a new (free) term containing the
Weyl vector, and the (effective) cosmological constant.

We have investigated the effects of the free term

3
(
αω2/2 + ξ2M2

p

)
at the Solar System level, under the

simplifying assumption ω2 = constant by considering
the problem of the perihelion precession of Mercury. By
attributing the (very small) differences between the pre-
dictions of general relativity and observations to the pres-
ence of Weyl geometric effects a Solar System constraint
on the product α2ω2/2 can be obtained. Another set of con-
straints on the same quantities was obtained in [71] from
a cosmological approach, giving α2ω2

3(0) ≈ 0.22H2
0 and

ξ2 (dω3/dz)2 |z=0 ≈ 1.24H2
0 , where H0 is the present value

of the Hubble function.
It is interesting to note that keeping the term propor-

tional to the potential in the generalized Poisson equa-
tion drastically modifies the potential. By denoting σ =
6
(
ξ2M2

p − α2ω2/2
)

, andχ = 3
(
αω2/2 + ξ2M2

p

)
, respec-

tively, in spherical symmetry Eq. (74) can be written as

1

r

d2

dr2 (rϕ) − σϕ − χ = 0. (182)

This form of the Poisson equation is valid values of r that do
not satisfy the constraint (76), that is, for values of the radial
coordinate closer to the event horizon of the compact object.
By assuming that the Weyl vector is constant, the general
solution of the generalized Poisson equation is given by

ϕ(r) = −χ

σ
+ C1

e
√

σr

r
+ C2

e−√
σr

r
, (183)

where C1 and C2 are arbitrary constants of integration. If
the condition σ > 0, or, equivalently, ξ2M2

p > α2ω2/2,

is satisfied, we obtain a Yukawa type gravitational potential

ϕ(r) = C2
e−√

σr

r , induced by the presence of the Weyl geo-
metric effects. However, since ξ2M2

p can be interpreted as
a cosmological constant, the effects of the exponential cor-
rection to the gravitational potential are negligibly small, at
least at the level of the Solar System.

As we have already mentioned, and discussed in detail,
in the conformally invariant f (R, Lm) theory, the ordinary
matter energy-momentum tensor Tμν is not conserved, and
generally ∇μTμν �= 0. Conservative models in which the
matter energy-momentum tensor is conserved, ∇μTμν = 0,
can be obtained by imposing the condition Qν = 0, which
would give a strong constraint on the Weyl vector ωμ, which
could be obtained in terms of the Ricci scalar and of the
thermodynamical properties of the ordinary matter. On the
other hand, the possible non-conservation of Tμν has deep
physical and astrophysical implications. One of its important
consequences is the non-geodesic nature of the motion of free
particles in a gravitational field, with the dynamical evolution
taking place in the presence of an extra-force induced by the
conformally invariant matter-curvature coupling.

In the Newtonian limit, the total acceleration 
a of an object
moving in a gravitational field can be written as 
a = 
aN +
aE ,
where 
aN is the usual Newtonian gravitational acceleration,
given by 
aN = −GM
r/r3, where M is the mass creating
the field, and 
aE is the extra-acceleration. The acceleration
equation immediately gives 
aE · 
aN = (
a2 − 
a2

N − 
a2
E

)
/2,

and 
aN = (
a2 − 
a2
N − 
a2

E

) [
a/ (2
aE · 
a)
]+ 
C × 
aE , respec-

tively, where the arbitrary vector 
C can be taken as zero
without any loss of generality. Finally, we can express the
total acceleration as 
a = ãE 
aN , where we have denoted
1/ãE = (1/2) (|
a| / |
aE |) (1 − 
a2

N/
a2 − 
a2
E/
a2

)
.

Hence, it turns out that the total gravitational acceleration
of a massive object moving in the field created by a mass M is
directly proportional to its Newtonian acceleration. Interest-
ingly enough, a relation of this type, called the radial accel-
eration relation (RAR), was found from the observations of
the rotation curves of hydrogen clouds moving around the
galactic center [114–117]. The radial acceleration relation
is an observational/empirical relation pointing towards the
possible existence of a relationship between the centripetal
acceleration aobs(r) = V 2

rot(r)/r due to the presence of dark
matter in galaxies, and the acceleration abar(r) = V 2

bar/r of
the baryonic matter. The RAR empirical relation is given by

aobs = f

(
abar

a+

)
abar, (184)

where f (x) is a fitting function to be determined from obser-
vations, and a+ is a constant representing an acceleration
scale. In the conformally invariant f (R, Lm) the function
f (abar/a+) corresponds to ãE , and thus may open some
new possibilities for the observational test of the theory.
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An important testing field of the conformally invariant
f (R, Lm) is cosmology. The presence of the Weyl vector
induces an anisotropy in the cosmological expansion, and
in order to maintain the isotropic and homogeneous nature
of the Universe, an averaging procedure for the Weyl field
is necessary. After taking spatial averaging it turns out that
the energy-momentum tensor associated to the Weyl vector
takes the form of a radiation fluid, satisfying an effective
equation of state of the form p = ρ/3. A similar averag-
ing procedure applied to the components of the Weyl vector
leads to the system of generalized Friedmann Eqs. (171) and
(172). The condition for the accelerated expansion has also
been obtained. Depending on the numerical values of the
model parameters, we obtain a large variety of cosmologi-
cal models. We have also performed a detailed comparison
with the observational data, as well as with the predictions of
the �CDM model. For specific values of the model param-
eters we find a good description of the observational data
for h(z), and a good concordance with the �CDM model at
both low (z < 1) and higher (z ≈ 3) redshifts. The concor-
dance is not so good for the deceleration parameter, and the
matter density. However, the present investigations indicate
that conformally invariant f (R, Lm) gravitational models,
theoretically consistent with the basic principles of the ele-
mentary particle physics, could lead to a novel understanding
of the intricate dynamical properties of the Universe.
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