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Coupling Movement Primitives: Interaction with the

Environment and Bimanual Tasks
Andrej Gams, Bojan Nemec, Auke J. Ijspeert and Aleš Ude

Abstract—The framework of dynamic movement primitives
contains many favorable properties for the execution of robotic
trajectories, such as indirect dependency on time, response to
perturbations, and the ability to easily modulate the given
trajectories, but the framework in its original form remains
constrained to the kinematic aspect of the movement. In this
paper we bridge the gap to dynamic behavior by extending the
framework with force/torque feedback. We propose and evaluate
a modulation approach that allows interaction with objects and
the environment. Through the proposed coupling of originally
independent robotic trajectories, the approach also enables the
execution of bimanual and tightly coupled cooperative tasks. We
apply an iterative learning control algorithm to learn a coupling
term, which is applied to the original trajectory in a feed-
forward fashion and thus modifies the trajectory in accordance
to the desired positions or external forces. A stability analysis
and results of simulated and real-world experiments using two
KUKA LWR arms for bimanual tasks and interaction with the
environment are presented. By expanding on the framework
of dynamic movement primitives, we keep all the favorable
properties, which is demonstrated with temporal modulation and
in a two-agent obstacle avoidance task.

Index Terms—bimanual operation, cooperative task, interac-
tion with environment, dynamic movement primitives.

I. INTRODUCTION

By moving beyond the structured environment of a manu-

facturing plant, robots are making their way into the everyday

world that people inhabit – offices, hospitals, homes and other

cluttered and uncontrolled environments [1], including the

kitchen [2], [3]. A growing portion of robotics research already

directly or indirectly deals with all aspects related to complex
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human environments [4]. If we envision a robotic assistant

in a human environment, it will probably use its sensors and

existing knowledge to generate trajectories appropriate for the

given tasks, for example by generalization [5]. Despite the

possibility to adapt trajectories as they are being executed [6],

noise, lack of prior knowledge and errors in the perception

of the environment might not make the trajectories accurate

enough for the desired manipulatory actions. The generated

trajectory therefore has to be adapted to the task through

autonomous exploration or learning. In this paper we present

a new approach to modulation and flexible learning of robot

movements, which allow safe interaction with the environment

and bimanual or cooperative multi-agent tasks.

Trajectory generation depends on the type of encoding

approach and different encoding approaches also allow for

different possibilities of modulation, interpolation, and cate-

gorization [7]. One of the approaches is the use of splines

and wavelets [8], [9]. However, splines are nonautonomous

representations with no attractor properties. While effective for

imitation learning, they do not allow easy online modulation

[10]. Rescaling the splines in space and time for generalization

is possible, but it requires to explicitly recompute the spline

nodes. Gaussian Mixture Regression [11] and Gaussian Mix-

ture Models are another option. A mixture model approach was

used in [12], [13] to estimate the entire attractor landscape

of a movement skill from several sample trajectories. To

ensure stability of the dynamical system toward an attractor

point, a constraint optimization problem has to be solved in a

nonconvex optimization landscape. Yet another option is the

use of Hidden Markov Models [14].

We build on dynamic movement primitives (DMPs), first

introduced by Ijspeert et al. [15], which model attractor be-

haviors of autonomous nonlinear dynamical systems with the

help of statistical learning techniques. DMPs provide means

to encode a trajectory as a set of differential equations that

can compactly represent control policies, while their attractor

landscapes can be adapted by only changing a few parameters.

The latter can be exploited in several ways, for example for

reinforcement learning [16]–[20], statistical generalization [5],

[21], or for combining separate trajectories in a dynamic way

[22], [23].

The structure of DMPs enables incorporation of sensory

feedback. Modulations can affect either the transformation

system or the canonical system, or both systems [10]. The use

of sensory feedback was demonstrated in various applications,

e. g., modulations affecting the canonical system were demon-

strated on different periodic tasks [24]. Other examples include

modulating the transformation system for on-line obstacle
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avoidance [10], [25], or for introducing an external limit [7].

An example of modulating both systems is the so-called slow-

down feedback, which is used to stop the execution of the

trajectory [26].

In this paper we propose a new approach to modify trajecto-

ries, i. e., the transformation system of the DMP. We propose

recording the sensory feedback as the robot moves along a

trajectory and then using this feedback to improve the robot’s

performance the next time it moves down the same trajectory.

We do not modify the original trajectory, but learn a coupling

term, which is fed into the original trajectory similarly to an

external limit modulation [7]. The coupling term can either

be the real force coupling between two manipulators/agents,

or it can virtually represent an external force arising from

interaction. The final shape and amplitude of the coupling term

is learned in a few iterations using iterative learning control

(ILC) [27]. The approach is fast and reliable for tasks which

do not vary along the trials. Initial results on the approach

were published in [28].

Several reasons speak for the use of iterative learning in

the proposed approach. On the one hand, its appeal lies in

the similarity to human learning processes, as people may

practice a task many times before being able to find correct

inputs to accomplish it with such a complex system as the

human body [29]. In [27] the concept of ILC is well illustrated

by the example of a basketball player shooting a free throw

from a fixed position, who can improve the ability to score by

practicing the shot repeatedly. During each shot, the basketball

player observes the trajectory of the ball and consciously plans

an alteration in the shooting motion for the next attempt. ILC

can be applied in exactly the same manner to learning of

robotic movements [30], [31].

On the other hand, ILC features several desired properties.

Just as any learning system, ILC incorporates information

rich error signals from previous operations for subsequent

iterations. Furthermore, it only adapts the control input, and

not the controller, does not require extensive training and

is known to converge fast [27]. Because ILC generates its

open-loop control through practice, it is also highly robust to

system uncertainties [27] and can be used to achieve perfect

tracking, even when the model is uncertain or unknown [32].

The novelty of the proposed approach lies in incorporating the

well-defined DMP framework and the iterative learning control

into a single, robust system for modification of trajectories

based on force feedback, thus surpassing the kinematic domain

of the DMPs.

After related work in Section II and the basic review of

DMPs in Section III we present 1) force-based modulation of

the DMPs at both velocity and acceleration levels; 2) coupling

of DMPs for bimanual tasks (Section III); 3) learning the open

coupling terms with iterative learning control (Section IV); 4)

stability analysis and arguments for using both acceleration

and velocity levels as compared to acceleration level only

modulation (Section V). Section VI describes interaction and

bimanual experiments conducted on two KUKA LWR robots

in a bimanual setting, including experiments in cooperation

with humans. Section VII shows that DMP properties, such as

the modulation of the duration, remain intact when coupling

trajectories. Pros and cons of the approach are discussed in

Section VIII and concluding remarks in Section IX.

II. RELATED WORK

Even though controlling rigid robots while in contact with

the environment can be difficult, using a force feedback term

to learn and improve task execution was considered in many

robotic tasks, see for example [33]. The use of force feedback

to change the output velocity of a manipulator was reported by

Hogan [34]. On the other hand, relatively few papers discuss

the use of force feedback in combination with dynamical

systems or specifically DMPs.

Modifying periodic DMPs was previously demonstrated for

a task of wiping a flat or curved surface [35]. Contrary to

the proposed approach, complete trajectory waveforms were

modified within a few periods of the task using regression

methods. Formally, the approach in [35] did not rely on mod-

ulation but on learning of new trajectories, as the trajectories

for the whole period of motion were constantly re-learned. The

approach was expanded on by Ernesti et al. [36] to include

transient motions.

Learning interaction force skills in presence of compliant

external dynamics from human demonstrations using dynami-

cal systems was shown in [37]. The authors used an interaction

force encoded in terms of a parameterized time-invariant

differential equation based upon the parallel force/position

control law. Similarly to our proposed approach, it modulates

the velocity term of its dynamical system. Applicability was

shown only in virtual settings [37].

Pastor et al. [4], [38] have demonstrated an approach of

modifying DMPS, which, similarly to the proposed method,

relies on data from an execution of a discrete task to modify

the trajectory in the next, perturbed execution. They imple-

mented a low-level position and force control system that

integrates with DMPs at the acceleration level, allowing for re-

active and compliant behaviors. The key idea in their approach

is that a successful demonstration provides a reference force

for the following, possibly perturbed executions. A controller

is used to ensure the same force profile. The approach was

applied for grasping of a lamp [4] and a battery operated drill,

combined with sequencing to achieve complete tasks [38].

DMPs were modulated for tightly coupled dual-agent tasks

by Kulvicius et. al [39]. In their approach, the authors used vir-

tual forces to couple DMPs at acceleration levels and applied

Hebbian type learning to minimize the virtual force during the

execution. Vision and touch sensors were used to determine

the distance and virtual force between the two agents. An

approach for bimanual operation based on dynamical systems

and also applicable to DMPs was discussed by Calinon et al.

[40]. The approach expresses the nonlinear force modulating

the movement in the original DMP formulation as additional

sets of virtual springs, adding local corrective terms that can

swiftly react to perturbations during reproduction.

III. MODULATING DYNAMIC MOVEMENT PRIMITIVES

A. Dynamic Movement Primitives

DMPs have been thoroughly discussed in the literature [10],

[15], [26]. Here we provide only basic information, which is
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based on the formulation provided in [5], [26]. For a single

degree of freedom (DOF) denoted by y, in our case one of

the external task-space coordinates, a DMP is defined by the

following system of nonlinear differential equations

τ ż = αz(βz(g − y)− z) + f(x), (1)

τ ẏ = z. (2)

f(x) is defined as a linear combination of nonlinear radial

basis functions

f(x) =

∑N

i=1 wiΨi(x)
∑N

i=1 Ψi(x)
x, (3)

Ψi(x) = exp
(

−hi (x− ci)
2
)

, (4)

where ci are the centers of radial basis functions distributed

along the trajectory and hi > 0 their widths. Provided that

parameters αz, βz, τ > 0 and αz = 4βz , the linear part of

the system (1) – (2) is critically damped and has a unique

attractor point at y = g, z = 0. A phase variable x is used in

(1), (3) and (4). It is utilized to avoid direct dependency of f
on time. Its dynamics is defined by

τ ẋ = −αxx, (5)

with initial value x(0) = 1. αx is a positive constant.

The weight vector w, composed of weights wi, defines the

shape of the encoded trajectory. [15] and [5] describe the

learning of the weight vector. Multiple DOFs are realized by

maintaining separate sets of (1) – (4), while a single canonical

system given by (5) is used to synchronize them.

B. Modulation for Interaction with environment

DMPs can be modulated online to take dynamic events from

the environment into account. Those online modulations are

among the most important properties offered by the dynamical

systems approach [10]. An example of spatial modulation is

including an obstacle avoidance term in (1) [10], [25]

τ ż = αz(βz(g − y)− z) + f(x) + Cm, (6)

where Cm is the modulation term. In this paper we call this

kind of modulation as a modulation at the acceleration level.

Another spatial modulation includes a simple repulsive force

to avoid moving beyond a given position in the task space [7].

Such a repulsive force can be specified by modifying (2) into

τ ẏ = z + h(y), (7)

while leaving (1) in the original form. In this paper we call

this kind of modulation as modulation at the velocity level. A

simple repulsive force to avoid hitting yL can be defined as

[7]

h(y) = −
1

γ(yL − y)3
, (8)

where yL is the known limit. Modification of a DMP that

encodes a straight trajectory from 1.3 m to 0.9 m in 5 seconds,

using (7) and (8) and γ = 105, yL = 0.9 m, results in the

response as shown in red (dashed) in Fig. 1.

The external limit may be static, as shown in Fig. 1, or

moving, determined for example by vision. In both cases,
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z
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]

DMP Ext.Lim Limit

Fig. 1. Response in presence of an external limit according to (7) and (8),
depicted in red (dashed), with the limit set at yL = 0.9 m (black dash-dot).
Original DMP trajectory in solid blue.

defining the external limit as in (7) and (8) can prevent the

robot from getting into contact with objects in its environment

because the repulsive force of the limit acts before actual

contact takes place. We therefore propose a modification of the

external limit approach, not by changing (7), but by defining

a different repulsive force. Instead of using (8), we propose

using the measured force F , which arises from the interaction

with the environment

τ ẏ = z + cF (t), (9)

where c is a scaling constant. F (t) can either be the real

measured force of contact or a virtual force. The virtual force

can be defined as (for one DOF)

F (t) = kd(t), (10)

where k is the object (or environment) stiffness and d is the

depth of penetration into the object.

A slight overshoot of forces upon environment contact

appears when using the proposed velocity level modulation.

To minimize this overshoot of forces (the error), we add a

derivative of the measured force at the acceleration level.

Similarly to PD controllers, this additional coupling introduces

damping. The equation of a DMP with coupling at both the

velocity and acceleration levels becomes

τ ż = αz(βz(g − y)− z) + f(x) + c2Ċ, (11)

τ ẏ = z + C, (12)

C = cF (t), (13)

with c2 a scaling constant. Fig. 2 shows the difference of

using velocity modulation, both velocity and acceleration

with c2 = 30, determined empirically, and only acceleration

level modulation. When using velocity modulation only or

acceleration modulation only, the force overshoots at time

t = 5 s. This overshoot results in oscillations in the direction

of the force. We show in Section V that adding the coupling

term to both velocity and acceleration level is better than

only to the acceleration level, because the latter results in

significantly larger oscillations in the direction of the force.

Such performance would impose restrictions on the use of

the proposed iterative learning algorithm and would not allow

effective learning.

Properly selected scaling factors c and c2 ensure rapid and

compliant behavior of the robot. Even so, the force F and

therefore the modification of the trajectory only appears after
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Fig. 2. Simulation results that show the difference of adding a coupling
term at the velocity level (blue solid), also including the derivative of the
force at the acceleration level (red dashed), or acceleration level only (black
dash-dot). The red trajectory does not overshoot, while the blue and black
do. Acceleration only modulation produces a more oscillatory response. As
discussed in Section V, higher coupling gains are required for acceleration
only modulation to achieve the same steady-state value; in this case 36 times.
The trajectory was encoded to start at 1.4 m and end at 0.7 m in 5 s, while
an object was encountered at 1 m.

the contact with the environment. We therefore propose to em-

ploy an ILC learning algorithm, which takes a few repetitions

of the same task to learn the waveform and amplitude of what

we call the coupling term. Using the coupling term, we can

minimize the error for a desired force of contact and thus also

mitigate the need for tuning the scaling factor. The learning

algorithm is explained in detail in Section IV.

C. Cooperative DMPs

The force of contact with the environment can as well be

the force of contact with another robot, and therefore used

for bimanual or two-agent tasks. Here it is important to note

that a robot with a centralized controller and accurate control

for both arms (or for two agents) does not need such modifi-

cations. Well studied approaches for bimanual control exist,

for example [41], [42]. However, given two independently

controlled robots, possibly with conflicting trajectories, an

approach for motion synchronization is needed. Examples of

such are cooperation of two stand-alone robots/agents working

together when carrying a large object. In our experiments we

used two independently controlled robot arms for bimanual

tasks.

Let us assume two separate trajectories given by two DMPs,

executed by two robot arms. To keep the desired force between

two agents, we introduce a coupling term. For one DOF (for

clarity), this coupling term is defined as

F1,2 = Fd − (F1 − F2), (14)

where Fd is the desired coupling force and Fi is the force mea-

sured at the end-effector of the i-th agent. In simulation or if

the desired distance between the two end-effectors is specified

instead of the force, we introduce a virtual spring between the

end-effectors of the arms that alters both trajectories. In this

case the coupling term becomes

F1,2 = k(dd − da), (15)

where dd is the desired distance between the end-effectors

and da is the actual difference, while k is the virtual spring

constant. Measured force can be used instead of a virtual

spring. The force that acts on DMP1 is opposite to the force

acting on DMP2

F2,1 = −F1,2 = −k(dd − da). (16)

We introduce these forces, again scaled by c, into each DMP.

Equations (17) – (22) define what we label cooperative DMPs:

τ ż1 = αz(βz(g1 − y1)− z1) + f1(x) + c2Ċ1,2, (17)

τ ẏ1 = z1 + C1,2, (18)

C1,2 = c F1,2 · lf1, (19)

τ ż2 = αz(βz(g2 − y2)− z2) + f2(x) + c2Ċ2,1, (20)

τ ẏ2 = z2 + C2,1, (21)

C2,1 = cF2,1 · lf2. (22)

The variable lf defines the relation leader-follower. If lf1 =
lf2, then both robots will adapt their trajectories to follow

average trajectories at the defined distance dd between them

(within tolerance and after learning, discussed in the next

section). On the other hand, if lf1 = 0 and lf2 = 1, only

DMP2 will change the trajectory to match the trajectory of

DMP1, again at the distance dd and again only after learning.

Vice-versa applies as well. Leader-follower relation can be

determined by a higher level planner, which is beyond the

scope of this paper. It depends on the needs and circumstances

of a specific task.

IV. LEARNING USING PREVIOUS SENSORY INFORMATION

To ensure the desired force of contact with the environment,

or the desired displacement between two robots, we need to

learn the terms C1,2 and C2,1 in such a way that Fd = F ,

where F is either the real force or defined as in (10) or

(15). In the following we propose an ILC algorithm to learn

C1,2 and C2,1. See a thorough review by Bristow et al.

[27] for details on ILC. The proposed algorithm avoids the

necessity to accurately model the dynamics of the robot and

the environment.

In a tightly coupled bimanual task both arms are physically

connected through an object and we can assume C1,2 =
−C2,1. Thus we need to learn only one of the two terms. In

the following we denote this term by C. Upon the execution

of the given task for the first time, the sensors register the

resulting force. If the task was to be executed again without

any difference, the sensory readings would not change, except

for the noise. Therefore we propose that the second time

the task is executed, the sensor measurements from the first

attempt are fed into the trajectory generation in a feed-forward

manner. The learning update for the coupling terms is then

defined as suggested by the ILC theory [27]

Ci = c ei + Fc,i, (23)

Fc,i = Q(Fc,i−1 + L c ėi−1) (24)

ei = Fd − Fi, (25)

where index i denotes the i-th epoch, c is the force gain, ei is

the coupling force error calculated from the difference of the

desired coupling force Fd and the measured coupling force

Fi = F1,i − F2,i, Fc,i is the learned coupling force term,
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and Q and L are positive scalars. The coupling term given

by (23) is known as current iteration learning control, since

it incorporates instantaneous feedback in the first term and

learning update in the second term. The tunable parameters

are Q, L and c. In all our experiments we use Q = 0.99,

L = 1 and c = 0.5. In the learning and subsequent execution

of the learned movement we use the coupling term Ci instead

of C for interaction with the environment. Similarly we use

Ci instead of cF1,2 in (19) and −Ci instead of cF2,1 in (22).

Note that if the desired force Fd = 0, (23) takes the form

Ci = −cF + Fc,i, which matches (9) in the first iteration

(i = 0), when the learned coupling force is Fc = 0.

While the force depends on the execution of the trajectory

and thus time, there is no need to encode the learned coupling

force Fc as a vector of time-stamps and values. Just like

f(x), we represent Fc as a linear combination of radial basis

functions along phase x

Fc(x) =

∑M

j=1 ajΨj(x)
∑M

j=1 Ψj(x)
x, (26)

To calculate the weight parameters after the i-th epoch we use

f =





Fc,i(x0)
. . .

Fc,i(xT )



 , a =





a0
. . .
aM



 , (27)

where xj = x(tj) and tj denotes the j-th time sample. Writing

X =











Ψ1(x0)
∑

M

j=1
Ψj(x0)

x0 . . . ΨM (x1)
∑

M

j=1
Ψj(x0)

x0

. . . . . . . . .
Ψ1(xT )

∑

M

j=1
Ψj(xT )

xT . . . ΨM (xT )
∑

M

j=1
Ψj(xT )

xT











, (28)

we need to solve the following set of linear equations:

Xa = f . (29)

The parameters a are calculated in a least-squares sense.

Several advantages speak in favor of encoding the coupling

term in this manner. For example, the nonlinear encoding acts

as a filter [7] and thus cancels out the sensor noise. The main

advantage is that such coupling term depends on the same

canonical system as the trajectories.

Note that separate canonical systems and therefore phases

can be used for the predefined motion of the robot, given by

y, and the coupling force Fc. At the end of the predefined

motion, the phase x reaches practically 0 and only the linear

part of the DMP remains active. In order for Fc not to go to

0 at the same time, a separate phase variable has to be kept

while learning and later applying Fc. Since we are dealing

with discrete, finite motions, eventually both run out.

V. STABILITY

A. Stability of coupled DMPs

Even though single DMPs are stable [10], the stability of

coupled DMPs, given by (17) – (22), cannot be guaranteed

without further analysis. Cooperative two robot/agent DMPs

change the system from single-input-single-output (SISO) into

a multiple-input-single-output (MISO) system, since their out-

puts are subtracted. Fig. 3 shows the resulting MISO system

c 

DMP 1 

DMP 2 

Arm 1 

Arm 2 

k 

Memory Memory 

Q 

L 

ILC 

Fd 

y2 p2 

p1 

- - 

F 

y1 

- 

C 

e Fc 

g1 

g1 environment 

Fig. 3. MISO structure of the cooperative DMP system. Note that the
coupling comes from the force F , which is (in simulation) defined as the
scaled distance between the robots/agents, i. e., Fd = kdd. The shaded region
marks the ILC.

structure. The coupling comes from the force, which depends

on the positions of the two robots as given in (15), where

the actual distance is da = p1 − p2, with p1 and p2 being

the positions of the two arms. In our theoretical analysis we

assume that the robot tracks the desired trajectory perfectly,

i. e., p1 = y1, p2 = y2, thus da = y1 − y2. For the

given, stable DMP parameters, the gain c of the coupling

term determines the behavior of the MISO system. Using the

virtual spring formulation (15), we can derive the state-space

system (30) – (31) from (17) – (22) with the applied feedback

C1,2 = −C2,1 = k(dd − da), lf,1 = lf,2 = 1, (see Appendix)

ẋ(t) = Ax(t) +Bu(t) (30)

y(t) = Cx(t). (31)

The system matrices for the controllable canonical form are

given by

A =

[

−
αzτ+2ck(c2+τ)

τ2 1

−
αzβzτ+2ck

τ2 0

]

, (32)

B =

[

2k(c2+τ)
τ2

2ck(c2+τ)
τ2 0

2kαz

τ2

2ckαz

τ2

k
τ2

]

, (33)

C =
[

1 0
]

. (34)

The input vector u and the scalar output y in (32) are given

as u = [Fc, Fd, αzβz(g1 − g2) + f1(x)− f2(x)]
T and y = F ,

respectively (see Fig. 3). The state vector is defined as

x =

[

F

Ḟ −
αzτ+2ck(c2+τ)

τ2 F

]

. (35)

Since the nonlinear parts f1(x) and f2(x) in (17) and (20)

are bounded and tend to zero as the phase tends to zero, it

is sufficient to prove the stability and attractor properties of

the linear part of system (17) – (22). We assume environment

stiffness as defined by (10).

The eigenvalues of A determine the stability and conver-

gence of the linear part of differential equation system (30).
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Fig. 4. Root locus plot of the coupled DMP structure with modulation at
acceleration level (right) and both the velocity & acceleration levels (left). We
varied the gain ck from 0 to 10000 while the gain c2 was fixed at 1. The
system has two poles denoted with red (dashed) and green. The full circles
denote roots at ck = 0 and the empty circles at ck = 10000.

These eigenvalues are given as

λ1,2 =
1

2

(

−
αzτ + 2ck(c2 + τ)

τ2
± (36)

√

(

αzτ + 2ck(c2 + τ)

τ2

)2

− 4
αzβzτ + 2ck

τ2



 .

Since all parameters αz, βz, c, k, c2, τ are positive, the eigen-

values λ1,2 are negative for all cases in which both eigenvalues

are real numbers. It can also happen that the eigenvalues are

complex numbers, but in such cases the real part of both

eigenvalues is again negative. This means that system (30)

converges to a unique attractor point for all positive parameter

values. We obtain complex eigenvalues only for some rather

unlikely values, e. g., for very large values of τ .

We compared the performance of the proposed velocity-

acceleration scheme with a scheme that uses only acceleration

feedback in (11), but no feedback in (12). Root-locus in Fig.

4 shows that both schemes remain stable with increasing

gain ck, but also clearly shows the main difference between

them. The imaginary part of conjugate-complex eigenvalues

increases only in the case when acceleration level modulation

is used, whereas it remains close to zero when modulating both

velocity and acceleration levels. The results clearly support

the proposed velocity & acceleration level scheme, where the

response is always damped, whereas the convergence is slower

for modulation at acceleration level only.

B. Stability and convergence of the learning algorithm

Besides the stability and convergence to the attractor point

of the coupled DMP structure, we also need to prove the

stability and convergence of the proposed learning algorithm,

as defined by (23) – (25). In the following we rely on the

stability analysis provided by the ILC framework. A general

form of ILC is defined as [27]

Fc,i+1(j) = Q(Fc,i(j) + Lei+1(j + 1)) (37)

where Fc,i(j) is the control input of the i-th epoch, ei(j) =
Fd−Fi(j), Q is the filtering of the last control input, L is the

learning parameter and j denotes the time sample. Equation

(24) is exactly the same as (37) with the exception that this is

a discrete time implementation, where the error derivative was

replaced by the sample shift j + 1. The aim of the stability

analysis is to find the range of parameters of the learning

parameter L where the ILC remains stable. For that, state space

matrices given by (30) and (31) have to be in a discrete time

form [43]. Note that from the ILC perspective, the input is the

learned coupling force Fc. Therefore, a suitable discrete time

representation of our system is

x(j + 1)= Âx(j)+B̂1Fc(j)+B̂2Fd+B̂3Φ(j) (38)

y(j)= Ĉx(j), (39)

where input matrices B̂1, B̂2, B̂3 are formed from the first,

second and the third column of the input matrix B, respec-

tively (see (33)). Hat symbol (̂.) denotes the discrete time

counterpart of the continuous time system matrices. Input

signal Φ(j) is defined as αzβz(g1−g2)+f1(x(j))−f2(x(j)).
A commonly accepted framework to examine the stability of

a discrete time plant controlled with ILC in time-domain is

a lifted or supervector representation of the system dynamics

[27], [44]. The supervector representation of the discrete time

system results in T + 1 dimensional input and output vectors

and (T + 1)× (T + 1) system matrix
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,

where the contribution of initial condition F (0) and inputs

Fd,Φ(x(t)) is treated as an exogenous signal r and T is

the number of time samples. Note that inputs Φ(x(t)) are

bounded because the nonlinear part of DMP (f1(x) and f2(x))
is given as linear combination of radial basis functions, which

are bounded. The system matrix in (40), which we denote by

P, is a lower triangular Toeplitz matrix, where the coefficients

are Markov parameters [27]. With the supervector notation of
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the ILC matrices Q and L and by inserting (40) into (37), we

obtain

Fc,i+1(j) = Q(I− LP)Fc,i(j) +QL(Fd − r), (41)

where i denotes the iteration index of the learning controller,

I is a diagonal matrix of dimension (T + 1) × (T + 1) and

Fd = [Fd, . . . , Fd]
T. The ILC system is asymptotically stable

if and only if [27]

ρ(Q(I− LP)) < 1, (42)

where ρ denotes the maximum absolute value of the matrix

eigenvalue. If the ILC system is asymptotically stable, the

asymptotic error when T tends to infinity is

e∞ = [I−P[I−Q(I− LP)]−1QL](Fd − r). (43)

For Q = I, the error ei(j) will converge to 0. Applying

ILC controller with Q = 0.99I and L = LI to the coupled

DMP system shows that the stability can be guaranteed for the

learning controller gains within the range L = [0, 2.09], where

T ≤ 500 and the gain ck was set to 100. Given these settings

and L = 1, g1−g2 = 5, f1(x)−f2(x) = 0, Fd = 0, the force

F will converge to the desired force Fd with maximal error

norm 0.062813N .

In the ILC stability analysis we assumed that given equal

control signals, the plant always returns the same outputs,

which can not be always guaranteed in the case of changing

environmental dynamics. A key question is therefore whether

or not the proposed scheme remains asymptotically stable to

plant perturbations. In [27] and [44] it was shown that the

ILC is inherently stable to the plant dynamics variation. If we

want to further increase the robustness to plant perturbations,

the most direct way is to decrease the Q filter gain. On the

other hand, decreasing Q increases steady state learning error.

As a consequence, the selection of Q is a tradeoff between

performance and robustness. Robustness was experimentally

evaluated and the results are presented in the next Section.

VI. EVALUATION

A. Experimental Setup

We performed several simulated and real world experiments.

The real world experiments were performed on two KUKA

LWR arms with 7 DOFs each. Both arms are shown in Fig.

16. Trajectory calculation was performed on a client computer

using Matlab/Simulink. The desired task space coordinates

were sent to a server computer at 200 Hz via UDP. The server

computer, running an xPC Target application at 2 kHz sent

these commands to the KUKA controller, utilizing KUKA Fast

Research Interface (FRI). It also sent the measured actual robot

positions and forces back to the client PC.

B. Contact with the Environment

Contact with the environment is crucial for many robotic

tasks. It needs to be safe for both the robot and the envi-

ronment, which consequently means that the forces should be

kept low. We applied the proposed algorithm to produce a

desired force of contact F = 15 N upon impact with a table

(see Fig. 6). The movement was repeated 10 times. Fig. 5

shows the results of the real-world experiment. The top plot

shows the trajectories of all epochs. The original trajectory

was defined to start at 1.0 m and end at 0.6 m in 5 s. The

table was at just under 0.67 m. The trajectory in the 1-st epoch

is in green and the trajectory after learning in red. While the

position trajectories practically overlap, the initial and final

force trajectories are considerably different. Note that here it

is crucial that the DMP was modulated with the measured

force already in the first epoch, otherwise the resulting forces

would be far greater and could damage the robot. The bottom

plot shows the forces, with the force of the first epoch in green

and the final force after 10 epochs in red. The reference force

is set to appear after the impact is detected. Note that this is

later anticipated by the ILC and the trajectory is altered before

the actual contact.

C. Bimanual Tasks

We applied the proposed approach to couple two trajectories

in simulation. For the left robot, the original trajectory was

equal to px,L = 0.75 m, py,L = 0.4 + 0.2 sin(tπ/2) m, and

pz,L = (0.7 + 0.12t) m. For the right robot, the trajectory

was defined as px,R = 0.75 m, py,R = 0.4 m, and pz,R =
(0.7+0.14t) m. The desired distance between the robots was

set to dd = 0.8 m and the virtual coupling spring constant to

20 N/m. The top plot in Fig. 7 shows the distance between the

robots along the trajectories for each of the 10 learning epochs.

It is evident that the error is considerably reduced after very

few epochs; epochs 1 and 2 are marked. The final distance

along the trajectory between the robots, marked with red, has

a maximal error of less than 0.003 m, appearing at the very

start of the motion.

The bottom plot shows the Root-Mean-Square (RMS) error

of the distance for the cases of ideal trajectories (no noise)

and for the case when noise of distance estimation was added

to show the robustness. The noise was added on the position

4 4.5 5 5.5 6 6.5 7 7.5 8
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t [s]
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Fig. 5. Real world results of adaptation to environment. Top plot: trajectories
of motion, with the trajectory of the 1-st epoch in green (dashed) and the final,
10-th epoch in red (dash-dot). Bottom plot: measured forces with the force
of the 1-st epoch in green (dashed) and the last, 10-th in red (dash-dot). The
black dashed line shows the desired force, set to appear after the impact is
detected,
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Fig. 6. Image sequence showing the collision of the robot with the table.
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Fig. 7. Simulated results of cooperative DMPs. The top plot shows the
distance between the robots, where the green (dashed) line marks the distance
during the trajectory of uncoupled robots, the red (dash-dot) line the distance
after 10 epochs and the blue lines the distance in each epoch; epochs 1 and 2
are marked with numbers. The bottom plot shows the RMS error after each
epoch for trajectories with and without noise.

of the arms, with the maximal noise amplitude at 0.01 m. We

can see that the approach is hardly affected by the noise.

We performed a similar experiment on the real robots, which

we tightly coupled by both of them rigidly holding a stick.

The motions were the same as for the virtual experiment with

the difference in the pz direction, defined the same for both

robots at pz,L = pz,R = (0.7 + 0.07t) m. The duration of

motion was set to 10 s. A full sinusoidal wave was performed

by the left robot with py,L = 0.4 + 0.2 sin(tπ/5) m. The

task was to modify the trajectories so that the force along

the stick on the robots will be minimal. 7 learning epochs

were conducted. Fig. 8 shows the results. The top plot shows

the trajectories in a py − pz plot. The green dashed lines

show the original uncoupled trajectories and the red dash-dot

lines the final trajectories. The bottom plot shows the resulting

measured force. Both robots adapted, i.e., lf1 = lf2 = 1. The

force scaling factor was set empirically.

The two image sequences shown in Fig. 9 compare the

execution of independent and cooperative DMPs, where co-

operative DMPs were learned in 7 epochs. The top row shows

the execution of the original, independent trajectories, where

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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Fig. 8. Real world experimental results for cooperative DMPs. Note that
the py,L and py,R trajectories are for presentation purposes depicted at
±0.2 m, although the trajectories were performed at ±0.4 m. The top py−pz
plot shows the trajectories, with the green dashed lines showing the original
trajectories and the red dash-dot lines showing the final trajectories. The
bottom plot shows the resulting force, the final in red dash-dot.

we can see that the distance between the robot end effectors is

changing, which can be observed from the length of the stick

on the right side of the right robot. The bottom row shows

the execution of cooperative trajectories, where the distance

between the robots is kept constant. Fig. 8 shows the resulting

forces along the stick.

In another experiment, we coupled two independently con-

trolled KUKA LWR robots, and combined the task with

adaptation to external, human interference, which is not fully

repeatable due to the human in the loop. The task demanded

that the robots – together with the human – place a lid on a

wooden box, the robots holding one side, the human another

side. The fit of the lid was very tight. The initial trajectories

were learned by demonstration. Then, the box was moved

12 cm in −px (backward) and 7 cm in py (robot’s right)

direction from the demonstrated position and our proposed

approach was used to correct for the misplacement of the box

in 8 epochs. px and py directions were corrected, while pz (up-

down) was not. The task was to minimize the force the robots

exert to each-other and towards the human, i.e., Fd,x,y = 0 for

both robots. Fig. 10 shows the resulting forces and positions

of both robots.

We can see from the force plots in Fig. 10, that the person

had to push on the lid in the first three epochs (see Fy plots).

We can also see in the left Fz plot, that the lid did not fit

in the box in the first 4 epochs. Once it did, the forces were

reduced to desired values at 0N. Negative Fz is the force the

human is exerting on the lid, while positive values indicate

simply the weight of the lid. Fig. 11 shows the position of the

lid after the demonstration and after the first 5 epochs. The

experiment is also depicted in the accompanying video.

D. Effect of changes in epochs

In a real-world scenario with two independent agents per-

forming a cooperative task, a systematic error of the sys-

tem could influence the repeatability of the execution during
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Fig. 9. The execution of a task as performed by two independent DMPs (top row) and the execution with cooperative DMPS after learning (bottom row)

0 2 4 6
−5

0

5

10

15
Left

F
x
[N

]

0 2 4 6
−5

0

5

10

15
Right

0 2 4 6
−5

0

5

10

F
y
[N

]

0 2 4 6
−5

0

5

10

0 2 4 6
−20

0

20

F
z
[N

]

t [s]
0 2 4 6

−20

0

20

t [s]

1 2 3 4 5 6 7 8

0 2 4 6

0.8

0.85

p
x
[m

]

Left

0 2 4 6

0.8

0.85

Right

0 2 4 6

0.2

0.3

0.4

p
y
[m

]

0 2 4 6

−0.2

−0.1

0 2 4 6
0.9

1

1.1

t [s]

p
z
[m

]

0 2 4 6
0.9

1

1.1

t [s]

Fig. 10. Results of adaptation of force in both robots in the left figure and of position in the right figure. The legend denotes the colors of separate epochs
for all 12 plots. The 1-st is marked with green dashed and the last with red dash-dot line.

Fig. 11. The position of the box, lid, and the robots in the demonstration in the leftmost picture. Positions after each epoch, with epoch number increasing
towards the right. Only 5 epochs are shown because the pictures of the final position after epoch 5 are practically identical.

epochs. Examples of such could be the slipping of the wheels

of wheeled robots cooperatively moving an object, faulty

sensors, miscalibration ... In the experiment two robots are

coupled to maintain a common distance of 0.4 m. The original

trajectory of the right robot is a straight vertical line, and of

the left robot a sinusoidal line. The left robot is the leader

and does not adapt trajectories. It also drifts in the first

five epochs (i = 1, ..., 5), which we simulate with yL(t) =
0.4 + sin(tπ/2)0.2 + (i− 1)0.005t+ (i− 1) sin(tπ/2)0.002.

After the fifth epoch, the drifting stops. We also simulate noise.

Figure 12 shows the trajectories of both robots, with original

trajectories in dashed green and final trajectories in dashed

red. Adaptation through all epochs can be clearly seen. The

final trajectories practically maintain the desired distance at

all times as can be seen in the RMS error results in Fig. 13.

Figure 13 also depicts RMS errors for using only a feedback

controller for coupling while the leader robot drifts, i.e., in

the first five epochs. The results clearly show the advantage

of using ILC even if the trajectories are smoothly changing

from trial to trial.

E. Obstacle Avoidance in Bimanual Tasks

When one of the arms in a bimanual task encounters an

obstacle, both arms have to adapt. Similar experiments but

with acceleration level coupling and hebbian-type learning of

a filter gain were discussed in [39]. If the arms are coupled

using our proposed approach, the feedback term will move the

arm that does not encounter an obstacle, but considerable force

will appear between the tightly coupled arms. If the obstacle

is repeatable over epochs, the proposed ILC approach can be

used to minimize the force. In our experiments we applied

the same online obstacle avoidance algorithm as presented in

[10], [25]. We used it to control the left robot arm.

The cooperative DMPs were set in a leader-follower re-

lation, the left robot being the leader (lf,L = 0). From

the start both robots had identical 20 s vertical trajectories
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Fig. 12. Simulated results for cooperative DMPs. The leader robot does not
adapt its trajectories. It also drifts in the first 5 epochs. The follower robot,
which starts from a straight trajectory, adapts in every epoch and converges
to the final trajectory after the drift of the leader robot stops. RMS error for
the follower robot trajectories is shown in Fig. 13.
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Fig. 13. RMS error for simulated trajectories from Fig 12. Despite the drift,
the RMS error is being clearly reduced. RMS error is far bigger if only a
feedback controller (no ILC) is used.

(yL,R = ±0.4 m), but the left robot encountered an obstacle

at px = 0.7 m, py = 0.45 m, pz = 1 m and therefore

had to apply obstacle avoidance. Our proposed algorithm was

utilized to minimize the forces between the robots, rigidly

connected with a stick. Fig. 14 shows the results of learning

to minimize the forces between the robots in 7 epochs. The

top plot shows the py −pz trajectory plot. The trajectories are

for presentation purposes again depicted at yL,R ± 0.2 m, but

they were executed at yL,R = ±0.4 m. The dashed green lines

show the original trajectories. The black lines connecting the

robots show the connecting stick every 5 s. The bottom plot

shows the resulting forces between the robots, in py direction

(blue), and the resulting torques around the global z (vertical)

axis.

Fig. 15 shows the results of a similar real world experiment,

where additionally the right robot encounters an obstacle at

px = 0.75 m, py = −0.4 m, pz = 0.9 m. The obstacle is set so

that the robot must avoid it in the −x direction. The resulting

movement leads to a rotation of the stick between the robots,

namely around the world z axis. The rotation of the object

was a direct result of cooperation and no higher level planners

were applied. The results indicate the ability of the algorithm

to provide trajectories that can guide wide objects through

narrow passages, e. g., a long board through a door, without

any higher-level planning. Note that the coupling between the

robots was in all task space degrees of freedom. In the top 3-D

plot we can also notice the initial oscillations. These are the

result of both obstacle avoidance and cooperative terms acting

on the trajectory of the right robot. The oscillations disappear

by the final, 7-th epoch, marked with red. The bottom plot

shows the resulting forces in the py direction and the resulting

torque around the world z axis. Fig. 16 shows the two robots

avoiding 2 obstacles. Note that in a simulated scenario, the

robots could get stuck in a local minimum, where both the

obstacle avoidance and the coupling terms would provide the

same, excluding modulation values. In a real world scenario

that is unlikely, even more so due to the fact that the coupling

acts on both the velocity and acceleration.

VII. MODULATING THE DURATION OF COUPLED

TRAJECTORIES

The introduction of the coupling term does not affect other

DMP modulation properties, as was already demonstrated with

obstacle avoidance. In the following we show how we can

modulate the duration of coupled DMPs.

The property of not being directly dependent on time but

on the phase x of the movement, allows the modulation of a

DMP trajectory duration by changing a single parameter, i. e.,

parameter τ . Coupled DMPs preserve this property if a simple

scaling factor is added to (11) or (17) and (20), respectively.

For example, if τnew = 2τ and the rest of the DMP parame-

ters remain unchanged, the new DMP trajectory will take twice

as long to execute. Other than duration, given correct initial

conditions (position and velocity), the trajectory will remain

unchanged. The coupling term Fc, which couples the trajectory

to the environment or another robot, also depends on the phase

x, see (26). Let us assume that the same τ governs the duration

of both the trajectory and the coupling term Fc. By changing

the duration of the coupled trajectory with τnew = 2τ , the

behavior of the robot will remain the same even though Fc

was learned for τ , with the only change in (11), where the

term c2Ċ must be changed to τnew
τ

c2Ċ.

Fig. 17 shows the results of modulating τ for the case

of interaction with the environment. A DMP trajectory was
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Fig. 14. Real world results of obstacle avoidance with the right robot
following the left one. The top plot shows the py − pz trajectories, the
original trajectories depicted with green dashed lines. The bottom plot shows
the resulting forces and the resulting torques (scaled 20 times for presentation
purposes).



IEEE T-RO 11

0.65
0.7

0.75
0.8 −0.4 −0.2 0 0.2 0.4

0.8

1

1.2

1.4

1.6

py [m]px [m]

p
z
[m

]

0 5 10 15 20

−20

0

20

40

60

t [s]

F
[N

]

epoch F
y

20τ
z

Fig. 15. Real world results of double obstacle avoidance of cooperative DMP
trajectories. The left robot is the leader, which encounters an obstacle, but the
follower also encounters an obstacle. The top plot shows the trajectories,
the final, 7-th plot marked in red dash-dot line. Dashed green lines show the
original trajectories. The bottom plot shows the resulting force in py direction
and the resulting torque (scaled 20 times for presentation purposes) around
the world z-axis. Dashed lines show the forces and torques in the final epoch.

encoded to reach from pz = 1.4 m to pz = 0.7 m, and

the coupling term Fc(x) learned to stop at the obstacle at

pz = 1 m, but not press on it (Fd = 0). The top plot shows

the trajectory for τ = 6 in red, and the temporally modulated

trajectory for τnew = 2τ = 12, in dashed blue. The bottom plot

shows the same trajectories, but the modulated (dashed blue)

trajectory is plotted against t/2, i.e., the time axis is squeezed.

The trajectories match perfectly. The same initial position and

velocity conditions were applied for both trajectories. Fig. 18

shows the force results for the same scenario, also showing a

perfect matching.

Fig. 16. Simultaneous avoidance of two obstacles. The leader robot arm
(left) encounters an obstacle to its left side (orange ball). Before that, the
follower robot encounters an obstacle in front of itself (pink foam).
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Fig. 17. Simulation results obtained by modulating the duration of an
environment-coupled DMP. The original trajectory and the trajectory with the
changed duration are in the top plot. Both trajectories, where the modulated
trajectory time scale is changed with the same ratio as the duration, are
presented in the bottom plot.
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Fig. 18. Simulation force results obtained by modulating the duration of
an environment-coupled DMP. The measured force during the execution of
the original trajectory and the force measured along the trajectory with the
changed duration are in the top plot. Both forces, where the modulated
trajectory time scale is changed with the same ratio as the duration, are
presented in the bottom plot.

VIII. DISCUSSION

In this paper we have shown that the proposed approach

can effectively be utilized to achieve the desired force con-

tact behavior for both interaction with the environment and

cooperative/bimanual tasks. Because it generates an internal

environment model, i. e., learns the predictive coupling term to

achieve the desired behavior, it can prevent hard contacts with

the environment, which can arise during pure feedback control.

The robot learns to anticipate when a contact will occur, and

prepares appropriately. The sensory feedback is always present

in the system and assures that the robot gradually adapts to a

different configuration, should the need arise. In the following

we discuss some issues of the proposed method and compare it

to similar approaches in the literature. We also briefly discuss

non-stationary conditions.

The current-iteration iterative learning control algorithm

requires two important tunable parameters, namely Q and

L. The force gain parameter c determines the responsiveness

of the system in the first iteration when the coupling term

Fc equals 0. Parameters were tuned using heuristic approach

[45], where the choice of Q is a tradeoff between the stability

region and steady-state error. L is calculated according to (42).

As stated in the literature [27], a combination of ILC and

feedback controller can also be applied to reject noise and

nonrepeating disturbances. We showed in Figs. 7, 12 and 13,

that the approach is beneficial in the presence of both noise

and systematic errors.
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Considering that our approach can modify any trajectory,

to achieve the desired behavior, the approach is in its essence

general. While it is true that it requires a few repetitions of

the task to learn the behavior, the same can be claimed for any

learning scenario. Since many objects in a human home, such

as furniture, are stationary, the learning process needs to take

place only once for a specific task. The feedback controller and

continuous learning over the epochs can account for changes

in the environment. When considering the algorithm for non-

stationary conditions, for example when operating in contact

with a human or when dealing with moving objects, the

proposed algorithm is also applicable as we have shown in

our experiments.

Contrary to our approach, which changes the reference

trajectory to achieve the desired interaction dynamics, Cheah

& Wang [46] showed how to apply ILC to learn the target

impedance model. To improve stability of interaction, Yang et

al. [47] moved beyond standard ILC and proposed a learning

controller for interaction tasks by adapting feedforward force

and impedance. The advantage of changing reference trajecto-

ries – like in our work – is that we can anticipate contacts

before they arise. We have shown in our experiments that

the proposed approach can cope with gradual changes in the

environment.

With respect to similar algorithms in the literature, the al-

gorithm in [38] uses a similar setting. A trajectory is executed

once and the measured signals are used as referential signals

for the controller. This is also the fundamental difference to

our approach, as the first execution gives the reference, while

in our case the reference can be anything, applied to any

trajectory. While the papers [38] and [4] show impressive dis-

turbance rejection results, true generalization remains subject

to the first, successful and referential execution.

In the approach by Pastor et al. [38], the output of the

controller is fed into the acceleration level of the DMP to

generate an improved movement. Notably, the measured force

is equivalent to acceleration and therefore it makes sense to

couple the DMP at the acceleration level. However, we have

shown that using only the acceleration level of the DMP

for coupling results in greater oscillations in the direction

of the coupling force. As we can see from the root-locus

plot of the coupled system (see Fig. 4), coupling at the

velocity level results in better damping of the system. In

view of the proposed ILC algorithm, this has an effect on

the stability of learning. If only a feedback controller at the

velocity level is used, a certain error is expected to appear

in case of changed conditions every time, even if the error

is repeatable in consecutive motions. This is demonstrated

in the obstacle avoidance task, as shown in Fig. 14. Since

the original trajectories are perfectly parallel, the first epoch,

while Fc = 0, can be considered the same as the approach by

Pastor et. al [4], but with coupling at both the velocity and

acceleration levels. If no learning were present, the measured

force between the robots would remain the same throughout

the epochs. Reducing the force in consecutive executions is

the real advantage of the proposed algorithm.

Kulvicius et al. [39] proposed to couple DMPs at the

acceleration level. In this paper we demonstrated that it is

beneficial to couple DMPs at velocity and acceleration level.

Their approach uses a modified DMP representation, which

is explicitly dependent on time. In our work we keep DMPs

phase dependent, which allowed us to implement velocity

scaling (Section VII). Most importantly, instead of learning

a predictive term (26), [39] applies Hebbian type learning to

determine a filter gain, which uses coupling force error as the

input. Such a formulation cannot learn to anticipate coupling

forces across learning epochs. Using the well-defined ILC

framework from control theory, we were also able to prove

the convergence and stability of the proposed scheme without

any linearization assumptions.

IX. CONCLUSION

In this paper we presented a new approach for learning

coupling terms for interactive and cooperative DMPs. Intro-

ducing force feedback into the well defined framework of the

DMPs is one of the key advantages of the proposed approach.

It enables learning of coupling terms that establish desired

contact forces with the environment and the adaptation of

trajectories for cooperative task execution, essentially bridging

the gap from the purely kinematic domain of the DMPs to

dynamic behavior.

We have shown that both the coupling and the learning algo-

rithms are stable; that it is important that the coupling terms are

added at the appropriate level, i. e., velocity and acceleration;

that it is robust to noise and systematic errors; and that it can be

applied to use real force feedback. The latter was demonstrated

in a number of simulation and real-world experiments, where

the approach was applied to actual interaction and bimanual

cooperation tasks, including cooperation with a human. The

low number of learning epochs also makes on-line learning of

the coupled/interactive trajectories a viable possibility.

APPENDIX

In the following we will derive state space representation

for the coupled DMP system. By writing (17) and (18) and

(20) and (21) as second order equations we get

ÿ1 +
αz

τ
ẏ1 +

αzβz

τ2
y1 =

c2 + τ

τ2
Ċ1,2 +

αz

τ2
C1,2 +

αzβz

τ2
g1

+
f1(x)

τ2
, (44)

ÿ2 +
αz

τ
ẏ2 +

αzβz

τ2
y2 =

c2 + τ

τ2
Ċ2,1 +

αz

τ2
C2,1 +

αzβz

τ2
g2

+
f2(x)

τ2
. (45)

Applying Laplace transform [43] to both differential equations

yields

(s2 + a1s+ a2)Y1 = (b1s+ b2)C1,2 + b3X1, (46)

(s2 + a1s+ a2)Y2 = (b1s+ b2)C2,1 + b3X2, (47)

where signals are now Laplace transform of the continuous

time signals assuming zero initial conditions1 (Y = L(y), C =

1We achieve this by subtracting the initial values from the corresponding
signals.
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L(C),F = L(F ),Xi = L(αzβzgi + fi(x))) and parameters

a1, a2, b1, b2, b3 are

a1 =
αz

τ
, a2 =

αzβz

τ2
,

b1 =
c2 + τ

τ2
, b2 =

αz

τ2
, b3 =

1

τ2
.

Lets rewrite both outputs in transfer function notation

Y1 = H1C1,2 +H2X1, (48)

Y2 = H1C2,1 +H2X3, (49)

where H1 = (b1s+ b2)/(s
2 + a1s+ a2) and H2 = b3/(s

2 +
a1s+a2). Subtracting (49) from (48) and multiplying the result

by k we obtain

F = k(Y1−Y2) = k(H1(C1,2−C2,1)+H2(X1−X2)). (50)

Now we can apply feedback. First we subtract (19) and (22),

assume lf1 = lf2 = 1, and use (23) and (25) to get the relation

C1,2 − C2,1 = 2(Fc + cF1,2) = 2Fc + 2c(Fd −F), (51)

and insert result into (50)

F = 2kH1Fc + 2ckH1(Fd −F) + kH2(X1 −X2) (52)

Solving for F yields

F =
2kH1

1 + 2ckH1
Fc +

2ckH1

1 + 2ckH1
Fd (53)

+
kH2

1 + 2ckH1
(X1 −X2).

The output force is therefore the sum of three transfer func-

tions multiplied with inputs Fc,Fd and X1−X2. By inserting

the definitions of H1 and H2 back into (54) we obtain

F =
2k(b1s+ b2)

s2 + (a1 + 2ckb1)s+ (a2 + 2ckb2)
Fc

+
2ck(b1s+ b2)

s2 + (a1 + 2ckb1)s+ (a2 + 2ckb2)
Fd (54)

+
k

s2 + (a1 + 2ckb1)s+ (a2 + 2ckb2)
(X1 −X2).

Finally, we substitute a1, a2, b1, b2, b3 and rewrite the transfer

function (54) in a controllable canonical state space form and

introduce initial conditions

A =

[

−
αzτ+2ck(c2+τ)

τ2 1

−
αzβzτ+2ck

τ2 0

]

,

(55)

B =

[

2k(c2+τ)
τ2

2ck(c2+τ)
τ2 0

2kαz

τ2

2ckαz

τ2

k
τ2

]

, (56)

C =
[

1 0
]

, (57)

x(0) =

[

F (0)

Ḟ (0)− αzτ+2ck(c2+τ)
τ2 F (0)

]

, (58)

F (0) = k(y1(0)− y2(0)). (59)
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E. Burdet, “Human-like adaptation of force and impedance in stable and
unstable interactions,” IEEE Transactions on Robotics, vol. 27, no. 5,
pp. 918–930, 2011.

Andrej Gams received his diploma degree in elec-
trical engineering in 2004 and his Ph.D. degree in
robotics from the University of Ljubljana, Slovenia,
in 2009.

He is currently a Research Fellow at the Depart-
ment of Automatics, Biocybernetics, and Robotics
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tute, Ljubljana, Slovenia. He is also associated with
the ATR Computational Neuroscience Laboratories,
Kyoto, Japan. His research interests include au-

tonomous robot learning, imitation learning, humanoid robot vision, percep-
tion of human activity, humanoid cognition, and humanoid robotics in general.

Dr. Ude is a recipient of the Science and Technology Agency fellowship for
postdoctoral studies in ERATO Kawato Dynamic Brain Project, Kyoto, Japan.
He has also received several fellowships from the Japan Trust International
Research Cooperation Programme. He was a general chair of Humanoids 2011
conference. In recent years he has been a member of program committees of
all major robotics conferences including ICRA, IROS, and RSS.


