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SUMMARY

Non-overlapping domain decomposition techniques are used both to solve the finite element equations
and to couple them with a boundary element method. A suitable approach dealing with finite element
nodes common to more than two subdomains, the so-called cross-points, endows the method with the
following advantages. It yields a robust and efficient procedure to solve the equations resulting from
the discretization process. Only small size finite element linear systems and a dense linear system
related to a simple boundary integral equation are solved at each iteration and each of them can be
solved in a stable way. We also show how to choose the parameter definining the augmented local
matrices in order to improve the convergence. Several numerical simulations in 2D and 3D validating
the treatment of the cross-points and illustrating the strategy to accelerate the iterative procedure
are presented.

Copyright c© 2000 John Wiley & Sons, Ltd.

1. Introduction

Several methods have been devised in the last couple of years to solve the large size linear
systems arising from the discretization of time harmonic scattering problems (see for example
[1, 2, 3, 4, 5] ). This is primarily because of the oscillatory character of the solution which
accordingly requires resorting to very refined meshes. In addition, the lack of strong coercive
properties of the underlaying equations, as compared for instance to those occurring in
structural mechanics problems, seriously damages the efficiency of the usual solvers. This partly
explains why various domain decomposition techniques have been proposed to deal with such
a class of problems (e.g., [6, 3, 4, 5, 7]). The aim of this paper is to contribute to this circle of
techniques. We devise a new approach for the cross-points, that is, points being shared by more
that two subdomains, reducing the domain decomposition procedure to a simple and efficient
iterative method for solving the nodal equations. We then show that this method adapts easily
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to the coupling of a Boundary Element Method (BEM) with a Finite Element Method (FEM).
In addition, we describe an algorithm called “evanescent modes damping algorithm” [9, 8], in
order to suitably treat the evanescent part of the solution and thus improve the convergence
of the domain decomposition method.

The techniques presented in this paper are described in the framework of the treatment of
the Helmholtz equation using the non-overlapping domain decomposition method originally
introduced by P.-L. Lions [15] for solutions of the Laplace equation. It was subsequently
extended to time harmonic wave propagation problems by B. Després [10, 12]. In this way,
we can illustrate the several advantages it owns. It reduces the large size system solution to
that of several small size ones. It also allows one to construct a coupling of algorithms between
different methods of discretization, such as the finite and the boundary element methods, in
order to solve scattering problems involving non-homogeneous materials. The FEM deals with
the finite part of the domain enclosing any heterogeneousness of the scatterer, independently
from the BEM which efficiently tackles the equations describing the propagation of the wave in
an infinite homogeneous medium. In contrast, the standard coupling methods yield systems of
very large size having a matrix with sparse and dense blocks [14, 13] which are thus generally
hard to solve. The separation of the solution in the finite part from that in the infinite one
makes it possible to use special procedures to deal with the infinite region and again use
non-overlapping domain decomposition in the finite part. A difficulty however appears at the
level of the cross-points which are points common to several interfaces and thus to several
subdomains. To overcome this difficulty, the main idea of the method we propose consists
of keeping the finite elements unknowns and equations related to the cross-points. In other
words, a strong coupling is maintained for the degrees of freedom carried by the cross-points
for both the unknowns and the testing functions. In this way, no nodal value is introduced for
the interface unknowns at these points. Such an idea has been already used in several contexts
[16, 18, 19] but not as it is delt with here. This point is detailed in [20] where a theoretical
study of this method is carried out. In contrast to a strict domain decomposition procedure,
the local problems remain coupled at the cross-points. However, since their number is relatively
small, even when compared to the size of the local problems, a Schur complement procedure
deals with the coupling as a simple post-processing completing each iteration. The stability
and the convergence of this algorithm are proved in [20].

The lack of coerciveness of the Helmholtz equation, already mentioned, has given rise to new
developments on Després’ algorithm with, as an objective, the improvement of the convergence
of the related iterative procedure. Such an improvement is based on the construction of more
adapted transmission conditions on the artificial interfaces [4, 5] than those initially proposed
by Després. In this respect, we have introduced a modification of these conditions to construct
an algorithm, named “the evanescent modes damping algorithm” [9, 36], which, while having
much better convergence properties, consists of a simple modification of the parameter involved
in Després’ initial algorithm. Indeed, numerical simulations demonstrate the weak dependance
of the iteration number with respect to the frequency or to mesh refinement. Even more, we
will see that, for the 3D case, the algorithm seems to own better convergence properties that
for the 2D one. This is in contrast with some direct methods based on multi-frontal Gauss
eliminations (see, for example, [29, 28] for an account on such a method) where the excessive
increase in memory storage in 3D may lead to a complete failure of the solving procedure.

This paper is organized as follows. The two first sections are respectively devoted to the
description of a model scattering problem, the standard way to solve it by a coupling of a FEM
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Figure 1. A typical geometry.

with a BEM, and to the description of the non-overlapping domain decomposition method used
in this paper at the level of the boundary-value problem. In a third section, the approach is
described at the discrete level. More particularly, it is shown how the difficulty arising from the
cross-points can be overcome and how the same domain decomposition techniques can be used
to efficiently couple the FEM with the BEM. The fourth section is devoted to the choice of the
transmission parameter (or equivalently the choice of the way to augment the local matrices)
to improve the convergence properties of the method. In a final section, the results of various
numerical experiments in 2D and 3D are given to validate the overall procedure.

2. A model problem in the scattering of time harmonic waves

For the sake of simplicity, we limit ourselves to the consideration of the scattering of a two-
dimensional time-harmonic wave by a possibly imperfectly conducting cylinder represented by
a closed curve Γ of the plane covered by an heterogeneous dielectric occupying the domain Ω
externally bounded by a closed curve Σ. However, as indicated at the end of this study, the
techniques, that are used here, also apply to a 3D acoustic wave in a straightforward way. We
will give below the adaptations, required to deal with this case, as well as the results related
to some numerical experiments carried out in the framework of a parallelized solver code.

The wave propagates in the unbounded domain Ω∞
0 , whose boundary is Σ. We denote by

n (resp. n0) the outward unit normal to the boundary of Ω (resp. Ω∞
0 ) as depicted in figure

1. For the sake of clarity, the electromagnetic field is assumed to be a TE wave, that is, an
Hz-field. Denoting by u and u0 the z-components of the magnetic field related to the total
wave in Ω and Ω∞

0 respectively, we can state the scattering problem as follows



































∇ · (1

ε
∇u) + k2 n2

ε
u = 0 in Ω ⊂ R

2,

∆u0 + k2u0 = 0 in Ω∞
0 ⊂ R2,

ε−1∂nu = 0 on Γ,

lim
|x|→+∞

|x|1/2

(

∇(u0 − uinc) · x

|x| − ik(u0 − uinc)

)

= 0,

(1)
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Figure 2. Structure of matrix corresponding to a direct coupling procedure

where ∆ := ∂2
x1

+ ∂2
x2

is the usual laplacian in two dimensions, k is the wave number, and n
and ε are respectively the index and the relative permittivity of the dielectric medium filling
Ω. Finally, system (1) is supplemented with the following transmission conditions

u0 − u = 0 on Σ, (2)

∂n0
u0 + ε−1∂nu = 0 on Σ. (3)

Under the following hypotheses on n and ε, assumed to be in L∞(Ω),

ℜe(ε) and ℜe(n) ≥ 1, ℑm(ε) and ℑm(n) ≥ 0,

the problem (1)–(3) is well posed [42, 22].
To solve this kind of scattering problem, the usual techniques consist of coupling a (FEM)

to deal with the variable coefficients problem set in Ω with a (BEM) for the problem posed
in Ω∞

0 [14, 13, 8]. More precisely, the main steps of these coupling procedures can be brought
out as follows. First, the auxiliary unknown

p := ∂n0
u0|Σ = −ε−1∂nu|Σ (4)

is considered. Next, the variable coefficients Helmholtz equation in Ω, as well as the Neumann-
like boundary conditions on Γ and Σ are variationally expressed:

aΩ(u, v) +

∫

Σ

pv dΣ = 0, (5)

with

aΩ(u, v) :=

∫

Ω

ε−1
(

∇u · ∇v − k2n2uv
)

dΩ, (6)

and v a test function. In order to use a BEM for solving the problem in Ω∞
0 , we express u0 by

means of an appropriate integral representation

u0(x) = uinc(x) + V p(x) + Nu(x) x ∈ Ω∞
0 (7)
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where respectively V p and Nu are the single- and the double-layer potential respectively
associated with densities p and u|Σ

V p(x) :=

∫

Σ

G(x, y)p(y) dΣy , Nu(x) := −
∫

Σ

∂
n0(y)G(x, y)u(y) dΣy, (8)

and G(x, y) := (i/4)H
(1)
0 (k |x − y|) is the Green kernel yielding the integral representation of

the outgoing solutions to the Helmholtz equation, H
(1)
0 being the first kind Hankel function

of order 0. Taking in (7) the trace of u0 on Σ, thanks to the usual jump relations (see, for
example, [25, 40, 41]), we readily come to the following integral equation on Σ

−(1
2 − N)u(x) + V p(x) = −uinc(x), for x ∈ Σ. (9)

Joining equation (5) with (9), we obtain the formulation











aΩ(u, v) +

∫

Σ

pv dΣ = 0,

2

∫

Σ

V p q dΣ +

∫

Σ

(2N − 1)uq dΣ = −2

∫

Σ

uincq dΣ,
(10)

where q is a test function. An appropriate FEM discretization for u and v and a BEM one
for p and q classically brings back the solution of (10) to that of a linear system. This linear
system is composed of three parts: a sparse matrix generated by the FEM, a dense one related
to the BEM and a last part, partly sparse and partly dense, which couples the FEM with the
BEM (see figure 2). For large size problems, as those concerning a relatively high frequency
or those requiring a full waves three-dimensional modeling, the main difficulty comes from
the high cost in computing time and memory storage which are then necessary to solve the
linear system. In particular, the parallelization strategies are not well adapted to the above
matrix structure [35]. In addition, without the use of a special combined integral equation, the
formulation (10) can be corrupted by some spurious modes [35]. The non-overlapping domain
decomposition method makes it possible to avoid all of these difficulties at once.

3. Non-overlapping continuous domain decomposition method.

We uncouple the exterior problem in Ω∞
0 from the interior one in Ω using a non-overlapping

domain decomposition method. We are specifically interested in the method, introduced by P.-
L. Lions [15] in the context of the Laplace equation and adapted to wave propagation problems
by B. Després [6], which consists of combining the continuity conditions (2)-(3) in the following
form

ε−1∂nu + Su = −∂n0
u0 + Su0 on Σ, (11)

∂n0
u0 + Su0 = −ε−1∂nu + Su on Σ, (12)

where S is an appropriate invertible operator. The equivalent writing of the transmission
conditions (11)-(12) makes it possible to solve problem (1) through the following iterative
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Figure 3. Partition of the initial domain.

process










∆u
(n+1)
0 + k2u

(n+1)
0 = 0 in Ω∞

0 ,

lim
|x|→+∞

|x|1/2

(

∇(u
(n+1)
0 − uinc) · x

|x| − ik(u
(n+1)
0 − uinc)

)

= 0,
(13a)

∂n0
u

(n+1)
0 + Su

(n+1)
0 = g

(n)
0 on Σ, (13b)







∇ · (1

ε
∇u(n+1)) + k2 n2

ε
u(n+1) = 0 in Ω1,

ε−1∂nu(n+1) = 0 on Γ,
(14a)

ε−1∂nu(n+1) + Su(n+1) = g(n) on Σ, (14b)

where
g
(n)
0 = −ε−1∂nu(n) + Su(n), g(n) = −∂n0

u
(n)
0 + Su

(n)
0 , (15)

g
(n+1)
0 = −ε−1∂nu

(n+1)
1 + Su

(n+1)
1 = −g(n) + 2Su

(n+1)
1 ,

g(n+1) = −∂n0
u

(n+1)
0 + Su

(n+1)
0 = −g

(n)
0 + 2Su

(n+1)
0 ,

can be considered as the information which has to be exchanged through the interface Σ
between the domains Ω and Ω∞

0 .
The domain decomposition algorithm (13)-(14) makes it possible to deal separately with the

solution in the domain Ω and the solution in the domain Ω∞
0 . This allows the use of the most

adapted solution procedure for each of the boundary-value problems. For instance, the solution
in Ω∞

0 can be done through a boundary element method coupled with an efficient dense linear
system solver or a fast procedure like the FMM (e.g., [1]). For nonhomogeneous dielectrics, the
solution in Ω can be obtained only through a finite element method. The domain decomposition
method hence appears as an efficient procedure to couple the two solution processes. This is
mainly the algorithm presented in [35]. In this work, we will see that the non-overlapping
domain domain decomposition method also applies for the FEM problem in Ω so that only
small size FEM linear systems need to be solved at each iteration.

The first step of the non-overlapping domain decomposition method consists of splitting Ω
into several subdomains Ωi, i = 1, . . . , N , such that
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• Ω =
⋃N

i=1 Ωi (i = 1, . . . , N),
• Ωi ∩ Ωj = ∅, if i 6= j, (i, j = 1, . . . , N),
• ∂Ωi ∩∂Ωj = Σij = Σji (i, j = 1, . . . , N) is the artificial interface (figure 3) separating Ωi

from Ωj as long as its interior Σij is not empty.

Then, applying the Lions-Després algorithm and coupling with the exterior problem (13),
the solution of the initial problem (1) is reduced to an iterative procedure, where each iteration
is performed by solving the local problems







∇ · (1

ε
∇u

(n+1)
i ) + k2 n2

ε
u

(n+1)
i = 0 in Ωi,

ε−1
i ∂ni

u
(n+1)
i = 0 on Γi,

(16a)

ε−1
i ∂ni

u
(n+1)
i + Su

(n+1)
i = g

(n)
ij on Σij , (16b)

the following problem posed in an unbounded domain










∆u
(n+1)
0 + k2u

(n+1)
0 = 0 in Ω∞

0 ,

lim
|x|→+∞

|x|1/2

(

∇(u
(n+1)
0 − uinc) · x

|x| − ik(u
(n+1)
0 − uinc)

)

= 0,
(17a)

∂n0
u

(n+1)
0 + Su

(n+1)
0 = g

(n)
0 on Σ, (17b)

and form the quantities to be transmitted through the interfaces

g
(n+1)
ij = −ε−1

j ∂nj
u

(n+1)
j + Su

(n+1)
j = −g

(n)
ij + 2Su

(n+1)
j on Σij , (18)

where ui = u|Ωi
, ni (resp. nj) the outward unit normal of the boundary of Ωi (resp. Ωj),

i = 1, . . . , N , j = 0, . . . , N , ε0 = 1, Γi = ∂Ωi ∩ Γ, Σi0 = Σ ∩ ∂Ωi and g
(n+1)
0 being defined in

some special way from the g
(n+1)
i0 . Note that the boundary condition on Γi does not take place

if the interior of ∂Ωi ∩ Γ is the empty set. It is also worth mentioning that a same symbol S
is used to denote operators acting on functions defined on different sets. These operators are
actually parameters characterizing the domain decomposition method and play a crucial role
in its convergence properties. By fixing the form of S, we can hence easily describe the actual
domain decomposition method that is considered.

A general partition of the domain Ω generates cross-points, that are points belonging to
more that two subdomains (see figure 3). The use of nodal finite element method then requires
an adequate treatment for these points. Such an issue has been addressed at the theoretical
level in [20]. The next section is devoted to the description of the adaptation of this method as
it is proposed here. Mainly, we explain below our approach for dealing with cross-points that
are located on the interface Σ and hence are supporting nodal values related to the BEM (13).

4. Non-overlapping nodal domain decomposition method.

4.1. Nodal finite element method.

Difficulties appear with the treatment of the degrees of freedom carried by the cross-points
during the iterative process [4, 8]. Two of the authors [20] have theoretically studied the
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approach, which consists of preserving the finite element equation at the level of these
points, i.e., maintaining a strong continuity requirement at the nodes shared by at least three
subdomains. This way to proceed results in an iterative solving algorithm, which, although
different, presents a slight difference only with a classical domain decomposition method. The
main advantage of this algorithm is that its stability and convergence can be established
theoretically (see [20] for the details). We now give the various steps of this method.

Let T h and Xh be respectively a nondegenerate triangular mesh of Ω and its associated
P1-continuous finite element space. The discrete version of problem (14a–14b) is defined as
follows

{

uh ∈ Xh, ∀vh ∈ Xh,
a(uh, vh) = Lvh,

(19)

where

a(uh, vh) :=

∫

Ω

1

ε
(∇uh · ∇vh − k2n2uhvh) dΩ +

∫

Σ

Suhvh dΣ,

Lvh :=

∫

Σ

gvh dΣ.

Let us now assume that T h is compatible with the domain decomposition in the sense that
it induces a mesh T h

i on each subdomain, and introduce Xh
i as the P1-continuous functions

approximation space of H1(Ωi). Any function vh
i ∈ Xh

i can be decomposed as follows

vh
i = vh

iI +
∑

j∈Λi

vh
ij + vh

c ,

with

• all the nodal values of vh
iI are zero on the closure Σij (j ∈ Λi) of any artificial interface

separating Ωi from another subdomain Ωj (Λi denotes the set of numbers j of subdomains
Ωj sharing a common interface with Ωi),

• all the nodal values of vh
ij are zero unless those located at the interior of the the artificial

interface Σij (hence excluding cross-points),
• all the nodal values of vh

c are zero except for the nodes corresponding to a cross-point,
defined here as a point on the closure of an artificial interface Σij but not lying in
its interior Σij . (In this way, points which are at the junction of Σij and the interface
Σ separating Ω from Ω0 or the boundary Γ of Ω are also counted as cross-points. In
this respect, points located at the junction of the artificial interfaces and Γ are unduly
counted as cross-points. We have however observed that this way to proceed, which, at a
first sight, may appear as a convenient manner to make simpler the description and the
implementation of the algorithm, improves the convergence properties of the method.)

In some way, vh
iI and vh

c can be, and are, identified to a function in Xh while the functions
vh

ij make it possible to relax the continuity requirement at the interfaces. We will denote by

Xh
c the subspace of Xh spanned by the vh

c .
To introduce the domain decomposition method, we consider the “broken” space Xh

B spanned
by the functions vh that can be written in an unique manner as

vh =

N
∑

i=1



vh
iI +

∑

j∈Λi

vh
ij



+ vh
c .
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The finite element space Xh appears as the subspace of Xh
B consisting of those of the functions

vh ∈ Xh
B that are continuous at the nodal points on Σij . This continuity is expressed by a

matching condition which is at the heart of the domain decomposition method. Let us notice
also that the forms aΩ and L can be written as follows

aΩ(uh, vh) =

N
∑

i=1

ai(u
h
i , vh

i ), Lvh =

N
∑

i=1

Liv
h
i ,

where

uh
i := uh|Ωi

,

ai(u
h
i , vh

i ) :=

∫

Ωi

1

εi
(∇uh

i · ∇vh
i − k2n2

i u
h
i vh

i ) dΩi +

∫

Σij

Suh
i vh

i dΣij ,

Liv
h
i :=

∫

Σij

gijv
h
i dΣij , Σij = Σ ∩ ∂Ωi.

Then, we show [20] that the problem (19) is equivalent to the system

ai

(

uh
iI +

∑

j∈Λi
uh

ij + uh
c , vh

iI

)

= Liv
h
iI , ∀vh

iI ∈ Xh
i , i = 1, . . . , N,



















ai

(

uh
iI +

∑

ℓ∈Λi
uh

iℓ + uh
c , vh

ij

)

+ aj

(

uh
jI +

∑

ℓ∈Λj
uh

jℓ + uh
c , vh

ji

)

= Liv
h
ij + Ljv

h
ji

ch
ij

(

Suh
ij, v

h
ij

)

= ch
ji

(

Suh
ji, v

h
ji

)

for all vh
ij ∈ Xh

i and vh
ji ∈ Xh

j , vh
ij = vh

ji on Σij , ∀ Σij ,
∑N

i=1 ai

(

uh
iI +

∑

ℓ∈Λi
uh

iℓ + uh
c , vh

c

)

=
∑N

i=1 Liv
h
c , ∀vh

c ∈ Xh
c ,

where ch
ij = ch

ji is a suitable bilinear form expressing the matching condition on the traces of

uh
ij and uh

ji on Σij variationally. It is simply taken as the usual L2 scalar product on Σij in the
numerical experiments which are carried out below. The matching conditions on the normal
derivatives are variationally expressed by means of those on the test functions vh

ij . Finally,
we relax the conditions on the artificial interfaces starting from the domain decomposition
method of Lions-Després [15, 6], and obtain the final system







































ai

(

uh
iI +

∑

ℓ∈Λi
uh

iℓ + uh
c , vh

iI

)

= Liv
h
iI , ∀vh

iI ∈ Xh
i ,

ai

(

uh
iI +

∑

ℓ∈Λi
uh

iℓ + uh
c , vh

ij

)

+ ch
ij

(

Suh
ij , v

h
ij

)

=

Liv
h
ij + ch

ij

(

gij , v
h
ij

)

, ∀vh
ij ∈ Xh

i , j ∈ Λi,















i = 1, . . . , N,

∑N
i=1ai

(

uh
iI +

∑

ℓ∈Λi
uh

iℓ + uh
c , vh

c

)

=
∑N

i=1Liv
h
c ∀vh

c ∈ Xh
c ,

gij = −gji + 2Suh
ji|Σij

.

(20)

At each iteration, gij can be assumed as the boundary data on the artificial interfaces and are
transmitted from one to another subdomain.
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The variational system (20) can be written in matrix form



















A11 A1c

A22 A2c

. . .
...

ANN ANc

Ac1 Ac2 . . . AcN Acc





































u1

u2

...
uN

uc



















=



















g1

g2

...
gN

gc



















, (21)

where Aii, Aic, Aci, i = 1, . . . , N , are matrices related to the discretization on Ωi and gi the
right hand side of each problem. The index “c” represents the small size coupling at the level
of the cross-points. As shown below, a Schur complement procedure makes it possible to deal
with the coupling as a simple postprocessing completing each iteration.

The underlying principle governing the solution of system (21) is to express each of the ui

as
ui = (Aii)

−1 (gi − Aicuc) . (22)

This permits the derivation of the following system
(

Acc −
N
∑

i=1

Aci(Aii)
−1Aic

)

uc = gc −
N
∑

i=1

Aci(Aii)
−1gi. (23)

System (23) is small since it involves only cross-points. For effective computations, we proceed
as follows

• Initialization step

– perform a LU factorization on each matrix Aii (i = 1, . . . , N) ,
– do a forward backward sweep to compute (Aii)

−1Aic (i = 1, . . . , N) ,

– form and carry out a LU factorization of
(

Acc −
∑N

i=1 Aci(Aii)
−1Aic

)

.

• For each iteration

– do a forward backward sweep to compute (Aii)
−1gi (i = 1, . . . , N)

– form the right-hand side gc −
∑N

i=1 Aci(Aii)
−1gi and do a forward backward sweep

to compute uc

– obtain ui (i = 1, . . . , N) from (22) by means of basic linear algebra computations.

Besides the initialization step which requires the LU factorization of small size sparse
matrices only followed by some forward backward sweeps which can be regarded as some
iteration steps, the main computation cost concerns the solution of two sparse linear systems
(Aii)

−1gi, ui = (Aii)
−1 (gi − Aicuc) and a dense one (Eq. (23)) at each iteration. If one discard

the solution of the dense system related to cross-points, it is almost the same procedure in
comparison with a pure domain decomposition method unless two sparse local problems are
solved instead of one at each iteration. This of course results in an overcost relatively to a
standard DDM but with the two additional advantages. The cross-points are safely taken into
account, and, as noticed by an anonymous referee, such a treatment for these points can be
seen as a coarse problem improving the convergence of the overall iterative process.
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Figure 4. Cross point treatment by the coupling method

The cross-points are related to the nodes located on the boundaries ∂Σij of Σij . Therefore,
linear system (23) corresponds to a 0D-problem in 2D and to a 1D-problem in 3D. As a
result, the CPU time for solving this system is negligible in 2D. Below, when considering some
numerical experiments for the 3D case, we explain how it is dealt with in the framework of a
parallel implementation of the solving procedure and give the overcost per iteration resulting
from the treatment of the cross-points relatively to a standard DDM.

If one replace the exterior problem in Ω∞
0 by an absorbing boundary condition given by a

local operator as for instance a Bayliss-Turkel radiation condition (see, for instance, [33, 30]),
the solution procedure with the treatment of the cross-points is exactly the method we just
described with a suitable adaptation for the bilinear form aΩ. In the context of the coupling
algorithm with a BEM, as it is proposed in this paper, the approach related to the cross-points
is restricted to the FEM used to solve the problem set in Ω. More precisely, the general strategy
consists in partly relaxing the strong continuity requirement at a cross-point located on Σ by
maintaining it at the level of the FEM only and expressing it by means of an interface unknown
to satisfy the matching conditions linking the FEM and the BEM (see figure 4). Thus, only
two uncoupled systems, a finite element one in the form (21) and a second one relative to a
pure BEM, have to be solved at each iteration. These systems exchange only one value at each
node at the end of each iteration.

The above technique can also be used in the case where the problem in Ω∞
0 is dealt with an

absorbing boundary condition expressed in terms of a non local operator on Σ (see for instance
[27, 31]). Also, the solution of the BEM can be performed using an adapted non-overlapping
domain decomposition method (see [32]) so that each iteration is carried out by mainly doing
one iteration for the FEM and another one for the BEM. In this way, only small size systems
have to be solved at each iteration.

4.2. The boundary integral equation.

The equation (18) shows that performing an iteration is reduced to computing the solution for
each problem on the artificial interfaces only. The boundary element method is particularly
adapted to evaluating this quantity without having to solve the boundary-value problem (17)
in all of Ω∞

0 . Here, we adopt the approach developed in [23, 34] for solving boundary-value
problems related to an impedance boundary. Consider the problem















∆u0 + k2u0 = 0, in Ω∞
0 ,

∂nu0 + Su0 = g0, on Σ,

lim
|x|→+∞

|x|1/2

(

∇(u0 − uinc) · x

|x| − ik(u0 − uinc)

)

= 0,

(24)

where, to shorten the notation, we have set n := n0.
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12 Y. BOUBENDIR, A. BENDALI, M B. FARES

The integral representation of u0 is written in the following form

u0(x) = uinc(x) +

∫

Σ

G0(x, y)p(x) dΣ(y) −
∫

Σ

∂ny
G0(x, y)λ(x) dΣ(y) x ∈ Ω∞

0 ,

in terms of a single- and a double-layer potential respectively created by the unknown densities
p and λ relatively to the kernel

G0(x, y) :=
i

4
H

(1)
0 (k|x − y|), H

(1)
0 := J0 + iY0,

expressed by means of Bessel J0 and Neumann fonctions Y0 of order 0. After solving the
following variational problem involving a supplemental unknown ℓ

{

a({λ, p}, {λ′, p′}) + b(ℓ, {λ′, p′}) =
∫

Σ fλ′dΣ, ∀{λ′, p′},
b(ℓ′, {λ, p}) = 0, ∀ℓ′,

(25)

one obtains
u0|Σ = ℓ + λ/2, (26)

where the bilinear and linear forms are defined by

V p(x) :=

∫

Σ

G0(x, y)p(y) dΣ(y), Nλ(x) := −
∫

Σ

∂ny
G0(x, y)λ(y) dΣ(y),

Dλ(x) := −∂sV (∂sλ)(x) − k2V (λ τ )(x) · τx,

a({λ, p}, {λ′, p′}) :=

∫

Σ

{Dλλ′ − Nλp′ − Npλ′ − V pp′} dΣ,

b(ℓ, {λ′, p′}) :=

∫

Σ

ℓ (p′ + Sλ′) dΣ,

f := g0 − (∂nuinc + Suinc),

where τ represents the unit tangent to Σ obtained by rotating n by π/2 counterclockwise and
s the curvilinear abscissa in the same orientation. The operator S is assumed to be symmetric
relatively to the scalar product of L2(Σ).

Meshing Σ in a polygonal curve, still denoted by Σ, with vertices on the exact curve and
approximating every unknown and test function by a continuous function linear on each
segment, we are lead to solve the following linear system





D −NT SM
−N −V M
SM M 0









λ
p
ℓ



 =





Mf
0
0



 (27)

Now λ, p, ℓ and f are the collum-wise vectors formed by the nodal values of the respective
functions at the vertices, D, N , V , Z and M are the matrices representing the bilinear forms
respectively associated by the scalar product of L2(Σ) to operators D, N , V , S and the identity
relatively to the nodal values. For example, masse matrix M is defined through the following
relation

∫

Σ

ℓp′dΣ =
[

p′1 · · · p′N
]

M







ℓ1

...
ℓN
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where ℓ1,. . . ,ℓN and and p′1,. . . ,p
′
N are the respective nodal values of ℓ and p′.

The technique used computes the matrix M according to a lumping process in order to
obtain a diagonal mass matrix. The unknowns p and ℓ can be directly eliminated out of the
previous system (27) resulting in a single equation for λ

λ =
(

D + (SN)
T

+ SN − S2S
)−1

Mf. (28)

The solution consists then of computing

ℓ = M−1(N − SV )λ (29)

to obtain u0|Σ from (26).

5. Convergence of the DDM

It is well-established that the convergence properties of the DDM highly depend on an adequate
choice for the operator S [4, 5, 8] . In Després’s original algorithm [6], S is the simple scalar
operator

S := −ik. (30)

Although, the convergence of the iterative procedure can be theoretically established, the
effective convergence of the algorithm is very slow and difficult to reach in certain exemples.
Indeed, most of the eigenvalues of the iteration operator are located around 1 [8]. Roughly
speaking, this part of the spectrum represents the evanescent modes and, even they do not
prevent the convergence of the algorithm, these modes are responsible for its slowing down at a
level that it becomes completely ineffective. To overcome this drawback, Després has proposed
to use a relaxation technique which slightly improves the convergence. Collino, Ghanemi and
Joly [4] have carefully studied the reason why the algorithm slows down through variational
techniques. They showed that using the following operator

S := −ikΛ, (31)

where Λ is non local and invertible, yields a fixed point problem related to a contraction
mapping. However, the construction and the evaluation of operator Λ is costly and, more
disappointing, the convergence at the discrete level is not significantly improved in comparison
with the relaxed Després algorithm [8]. In fact, as shown in [5, 36, 8], the convergence is
effectively improved when the evanescent part is well treated. In [37], we proposed to write S
in the form

S := −ik(1 + iX ), (32)

where X > 0. This algorithm is called “Evanescent modes damping algorithm” (briefly EMDA)
and was analyzed in [36, 8] in the particular case of the circular geometry and for a partition
of the initial domain into two subdomains respectively bounded (interior) and unbounded
(exterior). From these studies, we have observed the incompatibility between the evanescent
part and propagating one when introducing the parameter X (or, more generally, when X is
a self-adjoint positive operator). The evanescent modes (infinitely many) are damped but the
propagating ones (finite number) are amplified. For the components of the iteration operator
related to the exterior subdomain, this amplification is slight and we were able to prove that all
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14 Y. BOUBENDIR, A. BENDALI, M B. FARES

the coefficients describing this component are less than 1 in modulus for all X > 0. However,
for the components coming from the interior subdomain, the amplification is significant in the
meaning that some coefficients can be greater than 1 in modulus. This is the reason why the
proof was established for 0 < X ≤ Xmax (for details, see [36, 8]). For the effective convergence,
we observed that the optimal results are obtained where X = 1/2. Another technique which
improves the convergence is based on the optimization of the rate of convergence [5, 17]. This
optimization is performed for the canonical case where the domain is all of the plane and is
decomposed in two half-planes. The idea consists of writing the operator S as

S := δ + γ∂2
s , (33)

where (δ, γ) ∈ C × C and ∂s the tangential derivative operator. The geometry then permits
the use of Fourier techniques to compute the rate of convergence explicitly. The results are
then empirically transposed to arbitrary geometries to determine values of δ and γ, aimed to
be optimal, for damping both the propagating and the evanescent modes. The principle of this
approach is interesting since a rigorous determination of an operator yielding an optimal rate
of convergence seems to be out of reach in this context. However several issues seem to be
not satisfactorily handled. It is not clear how the parameters derived in the case of the half
plane remains optimal for the other geometries in particular for non-homogeneous obstacles.
A more worrying case concerns the situation where the unbounded subdomain has a bounded
complement. This geometry is typical for scattering problems. As shown in [36, 8], the iteration
operator behaves then in a quite different way since for this situation a mode relative to the
unbounded domain is neither completely propagative nor completely evanescent. A numerical
example is given below to compare this approach with the EMDA.

6. Numerical results

6.1. Validation of the algorithm

Some numerical results, validating the above method, are first presented. We start by
testing the behavior of the iterative method with respect to the number of subdomains, the
wavenumber, etc... More precisely, consider an annular domain with a constant refractive index
n2 = ε = 1 with radii R1 = 1 and R0 = R1 +2π/k where k = π. The mesh size corresponds to
12 points per wavelength and the damping coefficient (EMDA algorithm) is fixed to X = 0.5
(32).The interface problem is solved using a GMRES solver [24]. The iterations are stopped
when the initial residual has decreased by a factor of 10−6. Table I shows that the number
of iterations is increasing nearly linearly with the number of subdomains at a rate between
2 an 3. Note that the number of subdomains represented in table I includes Ω∞

0 . Figure 5
compares the solution obtained by the DDM with the approach based on a direct BEM-FEM
coupling. The regular behavior at cross-points of the solution delivered by the DDM clearly
demonstrates the advantage of the proposed way to handle them.

Let us now consider a partition of the initial domain into 7 subdomains including Ω∞
0 .

Our aim now is to bring out the effect of the number of points per wavelength on the
number of iterations. As indicated in table II, passing from for 12 to 16 points by wavelength
requires 5 additional iterations. The number of iterations continues to moderately grow with
the number of points by wavelength until it is about 28 or 30. This indicates that, despite
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Subdomains 3 5 7 9 11 13 15 17
Iteration number 32 38 41 45 47 51 54 57

Table I. Number of iterations with respect to the subdomains one.

0 50 100 150
0

0.2

0.4

0.6

0.8

Direct
DDM

Figure 5. Comparison of the DDM solution with the direct one.

the conclusions that are drawn in some theoretical studies [4, 20], the number of iterations
is bounded independently of the mesh in practical computations. A possible explanation of
this apparent contradiction can be provided by the fact that practical meshes are unable to
represent highly oscillating evanescent modes.

pts/wavelenght 12 16 20 24 28 30
Iteration number 41 46 49 53 56 57

Table II. Number of iterations with respect to the mesh size.

In table III, we now address the dependance of the number of iterations on the frequency, or
equivalently here on the wavenumber. For the present experiment, we have kept the previous
case and used 12 points per wavelength. Note that the frequency is directly related in this
problem to the geometry which can be fixed through the following relation k(R0 − R1) = 3k.
Surprisingly enough, a conclusion, similarly to the number of points by wavelength, the number
of iterations seems to be practically bounded relatively to the frequency.

wavenumber 3.14 4 6 8 10 12
Iteration number 32 44 46 48 51 51

Table III. Number of iterations with respect to the wavenumber.
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Figure 6. Decomposition of the initial domain into 6 subdomains.

6.2. Absorbing boundary condition

In this subsection, we compare the application of the DDM to the BEM-FEM coupling (16)-
(17) with its use as a solving procedure for a plain FEM modelling with an absorbing condition
set on a terminating artificial boundary. Two radiations conditions are considered: the crudest
radiation condition, directly derived from the classical Sommerfeld radiation condition, and
the second order Bayliss-Turkel absorbing boundary condition [33]

∂nu − iku = 0, (34)

∂nu − iku +
1

2R
u − 1

8R2(1/R − ik)
u − 1

2(1/R − ik)
∂2

su = 0. (35)

There, R stands for the radius of the circle used to truncate the unbounded domain and ∂s is
the tangential derivative relatively to the arc-length.

We again deal with the above annular domain characterized by R1 and R0 = R1 + 2π/k.
The bounded subdomain with R1 < r < R0 in polar coordinates is divided in 2 non-
overlapping subdomains. In the case of the pure FEM solution, the part of the unbounded
domain R0 < r < R is split into 4 subdomains and finally obtain a decomposition in 6
subdomains (figure 6). Table IV gives for each case of computation the number of iterations
which have been necessary for the iterative process to converge and the relative error

error =
‖u − uex‖2

‖uex‖2
,

computed relatively to the L2 norm, using the analytical expression uex for the solution to the
scattering problem available by means of a Fourier-Hankel series (see, for example, [21] where
this calculation is reproduced or [26] where a similar one can be found). As expected, the
domain decomposition method BEM-FEM is the more accurate. It is also the method which
required the lowest number of iterations.

6.3. Residual

It is mentioned in [35] that it is important to find a realistic stopping criterion in order to
not carry out iterations which improves the solution of the discrete problem without any true
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pts/wavelenght 12 16 20
k = π error in % Iterations error in % Iterations error in % Iterations

FEM 1st order RC 6.1 32 4.4 36 4.4 40
FEM 2nd order RC 6.0 33 3.5 37 2.2 41
BEM-FEM 2.9 25 1.4 27 1.0 29

Table IV. Iteration number and relative error.

pts/wavelenght 12 15
Residual error in % Iterations error in % Iterations

0.5 142 2 143 2
10−1 24 5 26 5
10−2 6.31 10 4.68 11
10−3 6.23 17 4.58 18
10−4 6.22 25 4.55 26
10−5 6.22 32 4.54 35
10−6 6.22 40 4.54 44

Table V. Iteration number and RCS relative error.

impact on the accuracy of the numerical simulation. Here, we compute the relative error of the
radiate wave in the far-field zone with respect to various values for the residual. The behavior
of the scattered field for an incident plane wave uinc is generally described by the Radar Cross
Section (RCS [39]). More precisely, in the two dimensional case, the bistatic RCS is given by

RCS(θ) = 10 log10(2π|a0(θ)|2),
where (r, θ) stands for the polar coordinates. The scattered amplitude a0(θ) in the direction θ
can be computed from the following formula

a0(θ) =
exp (−iπ/4)√

8πk

∫

Γ

{∂ny
u(y) − ikΘ · ny u(y)} exp (−ik Θ · ry)dΓy, (36)

with Θ = t(cos θ, sin θ) and ry is the radius vector of the point y. The analytical value for
the RCS is given by means of a Bessel-Hankel Fourier series expansion as above. For this
numerical experiment, we have considered the same annular domain as above with a splitting
of the FEM 5 subdomains. Table V clearly shows that a residual of order 10−3 is enough to
reach the maximum accuracy that can be delivered by the approximation process.

6.4. Convergence of the domain decomposition method

This subsection is devoted to the comparison between the EMDA with the algorithm based
on the optimization techniques. We choose the OO2 transmission conditions given in [17] for
k = 50 by

S = −ik + (5 + i 13)10−3∂2
s .

To perform this test, we consider the above annular geometry with k(R0 − R1) = 50. The
domain treated by the FEM is decomposed into 8 subdomains and the computation has been
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EMDA OO2
homogeneous 68 69

non-homogeneous 72 108

Table VI. Iteration number for EMDA and OO2 transmission conditions.

Subdomain 1 2 3 4 5 6 7 8
ε 0.4 0.8 1 1.2 1.4 1.6 1.8 2.0

Table VII. Relative permittivity.

done at 14 points per wavelength. Two simulations have been performed respectively for the
homogeneous and for the non-homogeneous case. Table VI shows that in the homogeneous
case, the EMDA and the optimization method require almost the same number of iterations.
For the non-homogeneous case, the EMDA is faster that the OO2 algorithm. However, at this
level, no conclusion can be drawn because the convergence depends on several parameters:
geometry, number of subdomains, frequency, etc and it seems to be hard to take all of them
into account.

6.5. Other geometries

The previous numerical experiments have been carried out using a particular geometry for
which an analytic expression for the solution was available to validate the approach and to
get an idea on the reduction of the residual which is needed to obtain an effective error at an
acceptable level. We now consider the geometry depicted in figure (7). The domain in which
is posed the scattering problem is divided into 25 subdomains (24 bounded subdomains dealt
with using the FEM and the unbounded one Ω∞

0 ). The wavenumber is fixed to k = 2π so that
the size of the scatterer is about 8λ × 8λ where λ is the wavelength. Finally, the mesh size
corresponds to 14 points per wavelength and ε and n are fixed to 1. A reduction of 10−6 of
the initial residual is reached in 75 iterations.

In the case of the geometry represented in figure 8, the domain is divided into 38 subdomains
(37 relative to the FEM and the unbounded one). We have taken 14 points per wavelength
and k = 4. The size is then of 10λ × 13λ. For again ε = n2 = 1, 82 iterations are required to
reduce the residual by a 10−6 factor. In the non-homogenous case (see table VIII), the same
reduction requires 162 iterations, that is, nearly the double than for the homogeneous case. A
plausible explanation is that the used operator S is designed for homogeneous materials and
thus is not probably the most adapted in the non-homogenous case. However, the application
of the DDM to solve the BEM-FEM coupling remains more efficient than the direct approach.

The last 2D example presents the following multiple scattering problem















∆u + k2u = 0, in Ω,

∂nu = g, on ∂Ω,

lim
|x|→+∞

|x|1/2
(

∂|x|u − iku
)

= 0,
(37)
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Figure 7. Partition into 25 subdomains.

Figure 8. Partition into 38 subdomains.

Subdomain 2,4 5,7 8,10 11,13 14,16 17,19
ε 0.5 0.8 1.1 1.4 1.7 2.0

Subdomain 20,22 23,25 26,28 29,31 32,34 35,38
ε 2.3 2.6 2.9 3.2 3.5 3.8

Table VIII. Relative permittivity.

Figure 9. multiple scattering problem configuration:
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Figure 10. Solution by integral equation and domain decomposition method.

where Ω is an unbounded domain such that its boundary ∂Ω is the union of the circles Γi

(i = 1, . . . , M = 10) depicted in figure 9. The data g := −∂nuinc corresponds to an incident
plane wave uinc. Again, n denotes the outward unit normal to the boundary ∂Ω. The solution
can be represented as

u(x) =

M
∑

i=1

Niλi(x), x ∈ Ω,

where Ni is the double layer potentiel (8) created by a density λi on Γi. However, a pure integral
equation solution is expensive since all the Γi are coupled. The DDM solution of the BEM-
FEM formulation has required 66 iterations to obtain a reduction of the initial residual by a
factor 10−6. The procedure makes it possible to efficiently solve the scattering problem since it
can take advantage much more easily than a pure BEM of its geometrical symmetries without
a significant loss of the accuracy (see figure 10 where are depicted the solutions obtained by a
direct BEM and the DDM procedure). We have taken k = π and 14 points per wavelength for
this numerical experiment.

6.6. Some 3D numerical examples

Consider a scattering problem with a geometry similar to the above one in 2D. The scatterer
is a hard-sound sphere of radius R0 equal to 3/4 of the wavelength λ covered by a shell of
penetrable material of relative index n = 2 filling the domain R0 < |x| < R1 := λ. For this case
too, an analytical expression of the scattered wave is available in terms of a Fourier-Hankel
series expansion when the incident field is a plane wave.

We have applied the DDM to solve the coupled FEM-BEM formulation using a
decomposition of the shell in successively 80, 100, 144 and 200 domains (see figure 11). For
the interface operator, we have simply chosen the EMDA approach with S := −ik(1 + i0.5).
The parameters, characterizing each decomposition, are reported in table IX. The results are
reported in the figures 13 and 14. It is important to note that the convergence to the exact
solution seems to be almost independent of the mesh in this case and that only 10 to 15
iterations are enough to reach the accuracy that can be delivered by the numerical process for
the determination of the far field pattern.
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Figure 11. First level decomposition.
Figure 12. Second level decomposition.
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Figure 13. Current relative error.
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Figure 14. RCS (radar cross section) relative error.

Subdomains Nodes Tetrahedrons Cross-points Interfaces IE Matrix
80 262976 1446800 5352 312 25826
100 287034 1581320 6084 390 27582
144 289536 1597248 7500 564 26618
200 312944 1728880 9384 780 29442

Table IX. This table describe, after each decomposition of the initial computational domain, the
parameters corresponding to the resulting meshes and then to the size of the local problems.
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7. Conclusion

A significant advantage of the domain decomposition methods lies in the resolution of the
BE and FE equations separately. The dense linear system resulting form the BE procedure
is efficiently solved by the public domain library SCALAPACK. For the sparse linear system
corresponding to the FE part, the domain decomposition method appears as the best strategy
since the utilization for instance of the library MUMPS, which is based on a multifrontal
method, can exceed the available capabilities in memory storage. The treatment of cross points
guarantees the stability and the convergence of the iterative method towards the discrete
coupled problem. Various numerical results have shown that the method has performances as
good in 2D as in 3D.
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