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Coupling of Element Free Galerkin and Hybrid Boundary

Element methods using modified variational for mulation

G.R.Liuand Y. T.Gu

Dept. of Mechanical and production Engineering
National University of Singapore
10 Kent Ridge Crescent, Singapore 119260

Abstract

A novel method is proposed by coupling the Elenteee Galerkin (EFG) and the
Hybrid Boundary Element (HBE) methods to achievieitean efficiency and accuracy
for stress analysis in solids. A modified variaabriormulation is derived for the
present coupled EFG/HBE method so that the conyinamnd compatibility can be
preserved on the interface between the domains s Bnd HBE. The coupled
EFG/HBE method has been coded in FORTRAN. The wpl@ahd efficiency of the
proposed method are demonstrated through a nunil@xample problems. It is found
that the present method can take advantages of BBth and HBE methods. The
present method is very easy to implement, and flexible for obtaining displacements
and stresses of desired accuracy in solids, asftitws for meshing the problem domain

have been significantly reduced due to the useooinBary Element Method (BEM).

KEYWORDS: Meshless Method; Element Free Galerkinthdd; Boundary Element

Method; Stress Analysis; Numerical Analysis
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1. Introduction

Meshless methods have become recently attractieenatives for problems in
computational mechanics, as it does not requireeahnto discretize the problem
domain, and the approximate solution is construaatrely in terms of a set of
scattered nodes. The principle attraction of thehiess methods is the possibility of
simplifying adaptivity and problems with moving bwlaries and discontinuities, such
as phase changes and crack propagation.

Some meshless methods are proposed and achievedkadbe progress, such as
Reproducing Kernel Particle (RKP) method by Liu att (1995), Meshless Local
Petrov-Galerkin (MLPG) method by Atluri and Zhu €B) and Element Free Galerkin
(EFG) method by Belytschko et al. (1994). The EF@thud is a very promising
method for the treatment of partial different equad. It has been successfully applied
in a large variety of problems. However, there &sxisome inconvenience or
disadvantages in using EFG. First, it is diffictdt implement essential boundary
conditions in EFG, because the shape function, whmnstructed by Moving Least
Squares (MLS) approximation, lacks the delta functproperty. Second, the EFG is
computationally expensive for some problems, asMh& approximation has to be
performed for each Gauss point of integration dkierbackground integration mesh for
the entire problem domain. The numerical integratt@an be computationally very
expensive especially for problems with infinitesemi-infinite domains.

Some strategies (Zhu et al., 1998; Liu, 1999; Lnd &u, 1999; Liu and Yang,
1998) have been developed for the alleviation & #bove-mentioned problems.
Coupling the EFG with other established numericathnds can also be a possible
solution. For certain problems it is desirable &edeficial to combine a few methods

together in order to exploit their advantages wktading their disadvantages (Liu et
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al., 1992). In coupling EFG with other methods, EiEGised only in the sub-domains
where their unigue advantages are beneficial, agdn the areas of crack growth, and
Finite Element (FE) or Boundary Element (BE) metli®@mployed in the remaining
part of the domain. Some research work has beeea iothe coupled EFG/FE method
(Belytschko and Organ, 1995; Hegen, 1996). The maificulty of the coupling is
how to satisfy the displacement compatibility caioti on the interface between the
domains of the two methods. Interface element nasthand methods based on
extension of weak forms have been so far emplayeld coupled EFG/FE.

For some specific problems, the Boundary Elementhbte (BEM) is undoubtedly
superior to the ‘domain’ type techniques such asaR& EFG. Therefore, the idea of
combining BE with other numerical techniques isunaty of great interest in many
practical problems. A coupled EFG/BE method hasibreeently presented by Gu and
Liu (1999). An interface element is formulated armgkd along the interface between
EFG and BE domains. The shape function used witli@rface element is continuous
from the EFG domain across to the interface elenmémivever the derivative of shape
functions is discontinuous across the boundaryaddition, the symmetrization of the
BE stiffness matrix has to be done in the couplEGBE method. All these can lead to
a loss of accuracy and efficiency. In this paplee, attention is focused on finding an
effective approach to avoid the above-mentionedd¥iantages in coupling EFG with
BE methods.

In the late eighties, alternative BE formulationsvé been developed based on
generalized variational principles. Dumont (1988} hproposed a hybrid stress BE
formulation based on the Hellinger-Reissner prilecifDeFigueiredo and Brebbia
(1989), DeFigueiredo (1991) and Jin et al. (199®sented a Hybrid displacement

Boundary Element (HBE) formulations. The HBE foratidn led to a symmetric
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stiffness matrix. This property of symmetry candmeadded advantage in coupling the
HBE with other methods.

A novel coupled EFG/HBE method for continuum medtsaproblems is presented
in this paper. The compatibility condition on theeirface boundary is introduced into
the variational formulations of EFG and HBE usinggtange multipliers. Coupled
system equations have been derived based on tiativaal formulation. A program of
the coupled method has been developed in FORTRA# saveral numerical examples
are presented to demonstrate the convergencejtyadiod efficiency of the coupled
method.

Compared to the EFG/BE approach developed eanjighd authors (Gu and Liu,
1999), the present EFG/HBE advances mainly inaheviing:

a) The coupled system equations are formulated diffarent but more general

manner.

b) System matrices obtained by EFG/HBE are symmeinid, there is no need for

operation of symmetrization.

c) The order of continuity of the shape functions ot#d near the interface is

higher, as a modified variational formulation i®ds

d) There is no need for interface elements, and tbexehesh generation becomes

much simpler, and there is no special treatmendecten the interface.

2. EFG formulation

2.1 Moving L east Squar es inter polant
In this section a briefing of MLS approximationgisen. More details can be found

in a paper by Lancaster and Salkauskas(1981).
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Consider a problem domai@. To approximate a functioa(x) in 2, a finite set of
p(x) called basis functions is considered in the sgamedinatesx'=[x, y]. The basis

functions in two-dimension is given by

PTOO=[L, % ¥, 3¢, Xy, V2...] 1)
The MLS interpolant(x) is defined in the domair? by

u"(x) = 3" p, ()3, () =p’ ()a(x) (2)
j=1
wherem is the number of basis functions, the coefficigit) in equation (2) is also

functions ofx; a(x) is obtained at any point by minimizing a weightedliscreteL ,

norm of:

J= iw(x—xi)[pT(Xi)a(X) Sk 3)

wheren is the number of points in the neighborhood déér which the weight function
w(x-xj)z0, andu; is the nodal value af atx=x; .

The stationarity of] with respect toa(x) leads to the following linear relation
betweera(x) andu;:

A(X)a(x)=B(x)u (4)

Solvinga(x) from equation (4) and substituting it into eqaat{2), we have

W) =3 g (u: ©
where the MLS shape functigg(x) is defined by
A0 =3 p, (A OBE)); ©
whereA(x) andB(x) are the matrices defined by
_Y T _ (7)
A(x) = ZWi(X)p (x)P(x;)  wi(X)=w(x-x))
B(X)=[Wa(x)p(x2), W2(X)P(X2), ... Wn(X)P(Xn)] (8)

2.2 Discrete equations of EFG
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Consider the following two-dimensional problem alid mechanics in domaiw
bounded by

Oo+b=0  inQ 9)

wherecis the stress tensor, which corresponds to thgadisment fieldi={u, v} ", b is
the body force vector, and is the divergence operator. The boundary condiicn

given as follows:

u=u on (20)
o=t on/; (11)

in which the superposed bar denotes prescribed daoyrvalues and is the unit
outward normal to domair.

The principle of minimum potential energy candbated as follows: The solution of a
problem in the small displacement theory of elastis the vector functioru which

minimizes the total potential ener@lygiven by
nzjleTBdQ—juT[bdQ—juT[ﬁdr (12)
Q 2 Q r

with the boundary condition (10), whegés the strain.

Because the MLS interpolant function lacks the adlinction property, the
accurate and efficient imposition of essential lang condition often presents
difficulties. Strategies have been developed fevating this problem, such as using
Lagrange multipliers (Belytschko et al., 1994),ngsFFE (Krongauz and Belytschko,
1996), penalty method (Liu and Yang, 1998), andoso In the coupled EFG/HBE
method, it is desirable to include the essentialndary into the HBE domain. The
essential boundary conditions can then be easihos®d as in the HBE method. For

some problems, it maybe difficult or not efficigntinclude the essential boundary into
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the HBE domain. The method of Lagrange multiplisremployed here to enforce the
essential boundary conditions in the EFG domairthis case, the variational form of

equation (12) should be posed as follows.

I'I=£%aTBdQ—iuTEbdQ—juT[idF—rJ;xTEQu—U)dr (13)

rl
where the\ is given by the following approximation
}\:NT}\e (14)
where N is interpolation function\® is the unknown parameter. Substituting the

expression ofti andA given in equations (5) and (14) into equation (E8) using the

5 S

stationary condition yields

where
K :jBiTDBde (16a)
Q
Gy ==[@ N (16b)
rLI
f, = [gtdr (16¢)
r
d, = [gbdQ (16d)
Q
g = IWUdQ
Q (16e)
. O
B=| 0 ¢, (161)
by b
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1 v 0
D= E2 01 0 for plane stress (169)
1=V 0 a-vy2

in which f is the equivalent nodal forcend d is the vector due to the distributed
sources or body forces. A comma in equation (168ighates a partial derivative with
respect to the indicated spatial variable.
3 Hybrid displacement BE formulation

Equation (12) should satisfy the boundary ctowli (10) and the compatibility
condition

u=u on/” 17)

where U is the displacement field on the boundary, ani the displacement in the
domain. Now subsidiary condition (17) is introducedb the variational expression
(12) by introducing a set of Lagrange multipliets Thus the modified variational

principle can be written as
r|:jlsTE;dQ—judeQ—jaT[ﬁdr+jw[qa—u)dr (18)
Q 2 Q I r
The Euler equations for the above equatiorobtained when the first variation is set

equal to zero. As the Lagrange multiplidrsepresent the traction on the boundary, it is

therefore denoted explicitly by . Hence, equation (18) can be re-written as

I‘I=£%STBdQ—iuTEﬂJdQ—IGTEﬁdF+IFTEQG—u)dF (19)

I r

The first term on the right hand side can lhegrated by parts to become

n =£%tT mdr—iuT [bdQ—jaT [fdr+jfT E(G—u)dF—i%Do wdQ (20)

Iy r
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The starting integral relationship (19) which is iategral in the domain can now be
reduced to an integral on the boundary by findingaaalytical solution which makes
the last integral in equation (20) equal to zeroe Tost desirable analytical solution is
the fundamental solution, which satisfies the failog equation:

0o +A'=0 (21)
whereA' is the Dirac delta function.

The displacement and traction vectors are amated as a series of products of
fundamental solutions (DeFigueiredo, 1991) T  and unknown parametess The
boundary displacement and traction vectors aretemritas the product of known

interpolation functions by unknown parameters (ldispment and traction of boundary

nodes), i.e.,
u=U’s (22a)
t=T's (22b)
u=o'u® (22c)
t =yt (22d)

Substituting equations (21) and (22) into equafi#)), we can obtain

M=-1/2s"As—t"G s+t"Lu-u"f-s'b (23)
where
A= j u'Tdr (24a)
r
G= J"I‘U*dl' (24b)
r
L = j wao'dr (24c)
r
f= j otdr (24d)
r
b= j U'bdQ (24e)
Q

The stationary conditions fdil can now be found by setting its first variationzero.

As this must be true for any arbitrary value®g)fdu anddt, one obtains:
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Ku=f+d (25)
where
K=R'AR (26a)
R=(G")™L (26b)
d=R'b (26¢)

It can be proved that matrx is symmetric, and hence the matiix It is possible to
conclude from equation (25) that this hybrid displment boundary formulation leads
to an equivalent stiffness approach. The makixmay be viewed as a symmetric
stiffness matrix, but the above integrals are ordgded to perform on boundaries, and

the domain needs not to be discretized.

4 Coupling of EFG and HBE
4.1 Continuity conditions at coupled interfaces
Consider a problem consisting of two domai@s and %, shown in Figure 1,
joined by an interfacé;. The EFG formulation is used i@ and the HBE formulation
is used in*. Continuity conditions orf; must be satisfied, i. e.
u,'=0,2 (27)
F+F*=0 (28)
wherel, * and, ? are the displacements énfor 2" and 2, Fi* andF? are the forces
on /7 for @' and.(?, respectively.
Because the shape functions of EFG are derivedgugibS, u" in equation (5)
differs with the displacement at pointx. It is not possible to couple EFG and HBE
directly along/.

4.2 Coupling EFG with HBE via modified variational form

10
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A sub-functional is introduced to enforce the cotiiplity condition (27) by means

of Lagrange multiplies on the interface boundary

M= [y 0@, =G,%)dr = [y @'dr - [y G,%r =nn72 (29)

r r r
In equation (29)M1,* and,? are the boundary integration along the EFG sidktha

HBE side. Introducindl,* andM,? separately into functions (13) and (18), geneedliz

functional forms can be written as

rlEFG:jlsTBdQ—juTEﬂ)dQ—juT[idr—ijEFGEQu—U)dHIYT[mlldr (30)
92 Q I r, r,
_ 1 T _ T (=T 5 T ~ _ _ T 2 (31)
Myge = [ 58 7 60Q - [uT (bdQ - [G7 dr + [A Thee (@ - u)dr = [ T (8, “or
Q Q I r r

In these variational formulations the domains ofGERnd HBE are connected via
Lagrange multipliey.
In EFG domainu is given by equation (5) is given by interpolation function&
and value off
y=A\"y (32)
N\ can be the interpolation of HBE. Substituting dgue (5), (14) and (32) into

equation (30), and using the stationary condittbe, following EFG equations can be

obtained
Keee G Bifu fere +dees
T —
GT 0 ORA;p= q (33)
B 0 Olly 0
whereKegrg, G, ferc andberg are defined by equation (1®,is defined as
B= [A®g"dr (34)

r

11
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Integrating first term on right hand side ofuatjon (31) by parts, substituting
equations (21),(22) and (32) into equation (31} asing the stationary condition, lead

to the following HBE equations

Kuge —H|Jul _ free +dpge (35)
-HT 0 |ly 0
whereK ygg, fuse anddyge are defined by equations (24) and (26)s defined as

H = [AD,q"dr (36)
r

Because two domains are connected along the ingetfaundaryl’, , assembling of

equations (33) and (35) yields a linear systenmeffbllowing form

K ere 0 G B ||Uge fere T der
0 Kpge O —H|JUpge| _ |frge +duge (37)
G’ 0O 0 0| & q
BT -HT 0 0| vy 0

The coupling conditions (27) and (28) are satisfiedthe above technique.

5. Numerical results
Three cases have been studied in order to exaiméneoupled EFG/HBE method in
two-dimensional elastostatics.

5.1 Cantilever beam

The coupled method is first applied to study ¢antilever beam problem. Consider a
beam of length. and heighD subjected to a parabolic traction at the free andhown
in Figure 2. The beam has a unit thickness anamepstress problem is considered. The
analytical solution is available and can be foundaitextbook by Timoshenko and

Goodier (1970).

12
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The parameters of the beam are takerEa8.0x10’, 1=0.3, D=12, L=48, and
P=1000. The beam is separated into two parts. HBEesl in the part on the left where
the essential boundary is included. EFG is usethénpart on the right. The nodal
arrangement is shown in Figure 3, and backgrourshro€6x8 is used in EFG domain.
In each integration cell, x4t Gauss quadrature is used to evaluate the stfimesrix of
the EFG. Only 100 nodes in total are used in thgleal method.

Figure 4 illustrates the comparison between tharskess calculated analytically
and by the coupled method at the sectionx=if/2. The plot shows an excellent
agreement between the analytical and numericaltsesthe computational result by
coupled method using interface elements (I.E.)3e ahown in the same figure. There
Is clear evidence that the accuracy of the couplethod using the modified variational

formulation (M.V.F.) is higher than that of usirdgetinterface element method.

The displacement along the interface boundsaighown in the Table 1. It is shown
that the compatibility is satisfied very well usirige present modified variational

formulation method.
5.2 Holein an infinite plate

A plate with a circular hole subjected to adir@ctional tensile load of 1.0 in the
direction is considered. Due to symmetry, only dpeer right quadrant (size 200) of
the plate is modeled as shown in Figure 5. Whenctmgitionb/a>5 is satisfied, the
solution of finite plate is very closed to that tbe infinite plate (Roark and Young,
1975). Plane strain condition is assumed, Bafl.0x10°, 1=0.3. Symmetry conditions
are imposed on the left and bottom edges, andhtier boundary of the hole is traction
free. The tensile load in thedirection is imposed on the right edge. The esadtition

for the stresses of infinite plate is

13
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2 4

o,(xy)=1- a_z{g C0s26 + cos4d} + % cos4o (38)
r r
a?. 1 3a*
o,(xy)= ——2{500326?—00546?} —FCOSAH (39)
r r

2 4
Oy (X Y) = —a—z{%sin26+sin45} +%sin4«9
r r

(40)

where (,0) are the polar coordinates amtis measured counter-clockwise from the
positivex axis. The plate is divided into two domains, wheF&s and HBE are applied,
respectively.

As the stress is most critical, detailed ressah stress are presented here. The stress
oy at x=0 obtained by the coupled method are plotted guie 6. The result are
obtained using two kinds of nodal arrangement. ib@al arrangement of 65 nodes is
shown in Figure 5. It can be observed from Figurth& the coupled method yields
satisfactory results for the problem considerece ¢bnvergence of the present method
is also demonstrated in this figure. As the numbkmodes increases, the results
obtained approaches to the analytical solution. @aed to the EFG method, fewer
nodes are needed in the present coupled methotedops research indicates that 231
nodes are needed in EFG method to obtained thétsesfusame accuracy as those

obtained by the present method where only 144 nadesequired.

5.3 Semi-infinite foundation

In this example the coupled method is used in Soileture interaction problem. A
structure stands on a semi-infinite soil foundai®shown in Figure 7. The infinite soil
foundation can be treated in practice in eithetheffollowing three ways: by truncating
the semi-infinite plane at a finite distance (ap@mate method), using a fundamental

solution appropriate to the semi-space probleneratian a free-space Green'’s function

14
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in BEM, and using infinite element in FEM. Thesfirapproximate method is used
herein. The present EFG/HBE method, the EFG/BE otefhsing interface elements),
EFG and FE methods are used for the calculatiod,the results are compared and
investigated in details.

As shown in Figure 7, Region 2 represents the sefnite foundation and is given
a semi-circular shape of a very large diameteelation to Region 1 that represents the
structure. Boundary conditions to restrain rigidlpanovements are applied. Region 1
is the EFG domain and Region 2 is the HBE domaklre Modal arrangement of the
coupled EFG/HBE and EFG/BE methods is shown intfei@u The nodal arrangement
of EFG for the entire domain is shown in Figureané 10. Two loading cases shown in
Figure 10 are computed: Case 1 considers five cdrated vertical loads on the top of
the structure and case 2 considers an additionatdmbal load acting at the right
corner.

The displacement results on top of the structuesgiven in Table 2. The FEM
result obtained by Brebbia and Georgiou (1979)se ancluded in the same table. The
results obtained by the present method are in geod agreement with those obtained
using other methods including the FE and EFG metHod the entire domain. The
present method uses much fewer nodes to model &viond Only 30 nodes are used in
the HBE method compared to 120 nodes used in ti&fBFthe foundation.

6. Conclusions

A coupled EFG/HBE method has been presented in ghfer. The Lagrange
multiplier is used in a modified functional for EF@nd HBE to enforce the
compatibility condition along the interface. Thesatete system equations of the
coupled method are derived. Numerical examples l@monstrated effectiveness of

the present coupled EFG/HBE method for elastostatic

15
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The method allows the advantages of both EFG anB hiBthods to be used. The

merits using the EFG/HBE are as follows:

(a) The computation cost is much lower because of itiréficant reduction on the
node numbers, as well as the reduction of areayratien in constructing
system matrices.

(b) Imposition of essential boundary condition becoeasy.

(c) The method provides a potential effective numericall in many practical
problems, such as fluid-structure interaction peats, infinite or semi-infinite

problems, cracks propagation problems in a relbtibig body, and so on.

Compared with the EFG/BE developed earliergyauthors, the present method has

advanced in the following counts:

(a) The coupled system equations have been formulatadniore general manner.
System matrices obtained are symmetric in EFG/HBIE, there is no need for
an operation on matrix symmetrization. This impobeth the accuracy of the

results and the efficiency of computation.

(b) The shape functions obtained have higher ordeowfirtuity. This translates to

higher accuracy in result obtained.

(c) There is no need for interface elements. This cathdér simplify the mesh
generation. No special treatment is required ferititerface between the EFG

and HBE domain.

16
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Figure Captions:

Figure 1 Domain division into EFG and HBE regions

Figure 2 Cantilever beam

Figure 3 Nodal arrangement

Figure 4 Shear stregg at the sectiom=L/2 of the beam

Figure 5 Nodes in a plate with a central hole sttegto unidirectional tensile load in
thex direction

Figure 6 Comparison of stresgatx=0 for problem shown in Figure 5

Figure 7 A structure standing on a semi-infinité &mndation

Figure 8 Nodal arrangement for the coupled EFG/HiigEhod

Figure 9 Nodal arrangement for the EFG method

Figure 10 Detailed nodal arrangement for the EF@oteand load cases

19
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Table 1 Vertical displacement along the interfacendary
(cantilever beam)

Node  EFG/HBE (I. E.)* EFG/HBE(M.V.F.)* Exact
(y) EFG side HBE side

5.75 -4.73203E-03 -4.73090E-03 -4.73093E-03 -4.68783
5.00 -4.72797E-03 -4.72617E-03 -4.72619E-03 -4.88303
4.00 -4.72344E-03 -4.72050E-03 -4.72059E-03 -4.8¥803
3.00 -4.71970E-03 -4.71664E-03 -4.71670E-03 -4.8F£403
2.00 -4.71704E-03 -4.71419E-03 -4.71422E-03 -4.6 133
1.00 -4.71542E-03 -4.71257E-03 -4.71261E-03 -4.869683
0.00 -4.71488E-03 -4.71199E-03 -4.71203E-03 -4.86903

* EFG/HBE (I. E.): coupled EFG/HBE method usingeiriice element

EFG/HBE (M. V. F.): coupled EFG/HBE method usMgdified Variational

Formulation
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Table 2 Vertical displacements along top of timecttire on the semi-

infinite foundation

Displacements 10

Load case 1

Node No. FE EFG EFG/BE (I. E)* EFG/HBE (M.V.F)*
1 1.41 1.42 1.42 1.41
2 1.34 1.34 1.33 1.33
3 1.32 1.32 1.32 1.32
4 1.34 1.34 1.33 1.33
5 1.41 1.42 1.42 1.41

Load case 2
1 -3.3¢ -3.4% -3.5¢ -3.41
2 -0.97 -1.01 -1.04 -1.03
3 1.35 1.35 1.34 1.35
4 3.61 3.67 3.68 3.69
5 6.00 6.04 6.13 6.11

* EFG/BE (I. E.): coupled EFG/BE method using ifdee element
EFG/HBE (M. V. F.): coupled EFG/HBE method usMgdified Variational

Formulation
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