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Coupling of Element Free Galerkin and Hybrid Boundary 

Element methods using modified variational formulation  

 

G. R. Liu and Y. T. Gu 

Dept. of Mechanical and production Engineering 

National University of Singapore 

10 Kent Ridge Crescent, Singapore 119260 

 

Abstract 

A novel method is proposed by coupling the Element Free Galerkin (EFG) and the 

Hybrid Boundary Element (HBE) methods to achieve solution efficiency and accuracy 

for stress analysis in solids. A modified variational formulation is derived for the 

present coupled EFG/HBE method so that the continuity and compatibility can be 

preserved on the interface between the domains of EFG and HBE. The coupled 

EFG/HBE method has been coded in FORTRAN. The validity and efficiency of the 

proposed method are demonstrated through a number of example problems. It is found 

that the present method can take advantages of both EFG and HBE methods. The 

present method is very easy to implement, and very flexible for obtaining displacements 

and stresses of desired accuracy in solids, as the efforts for meshing the problem domain 

have been significantly reduced due to the use of Boundary Element Method (BEM). 

 
KEYWORDS: Meshless Method; Element Free Galerkin Method; Boundary Element 

Method; Stress Analysis; Numerical Analysis 
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1. Introduction 

Meshless methods have become recently attractive alternatives for problems in 

computational mechanics, as it does not require a mesh to discretize the problem 

domain, and the approximate solution is constructed entirely in terms of a set of 

scattered nodes. The principle attraction of the meshless methods is the possibility of 

simplifying adaptivity and problems with moving boundaries and discontinuities, such 

as phase changes and crack propagation.   

Some meshless methods are proposed and achieved remarkable progress, such as 

Reproducing Kernel Particle (RKP) method by Liu et al. (1995), Meshless Local 

Petrov-Galerkin (MLPG) method by Atluri and Zhu (1998) and Element Free Galerkin 

(EFG) method by Belytschko et al. (1994). The EFG method is a very promising 

method for the treatment of partial different equations. It has been successfully applied 

in a large variety of problems. However, there exists some inconvenience or 

disadvantages in using EFG. First, it is difficult to implement essential boundary 

conditions in EFG, because the shape function, which constructed by Moving Least 

Squares (MLS) approximation, lacks the delta function property.  Second, the EFG is 

computationally expensive for some problems, as the MLS approximation has to be 

performed for each Gauss point of integration over the background integration mesh for 

the entire problem domain. The numerical integration can be computationally very 

expensive especially for problems with infinite or semi-infinite domains.  

Some strategies (Zhu et al., 1998; Liu, 1999; Liu and Gu, 1999; Liu and Yang, 

1998) have been developed for the alleviation of the above-mentioned problems. 

Coupling the EFG with other established numerical methods can also be a possible 

solution. For certain problems it is desirable and beneficial to combine a few methods 

together in order to exploit their advantages while evading their disadvantages (Liu et 
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al., 1992). In coupling EFG with other methods, EFG is used only in the sub-domains 

where their unique advantages are beneficial, such as in the areas of crack growth, and 

Finite Element (FE) or Boundary Element (BE) method is employed in the remaining 

part of the domain. Some research work has been done in the coupled EFG/FE method 

(Belytschko and Organ, 1995; Hegen, 1996). The major difficulty of the coupling is 

how to satisfy the displacement compatibility condition on the interface between the 

domains of the two methods. Interface element methods and methods based on 

extension of weak forms have been so far employed in the coupled EFG/FE. 

For some specific problems, the Boundary Element Method (BEM) is undoubtedly 

superior to the ‘domain’ type techniques such as FE and EFG. Therefore, the idea of 

combining BE with other numerical techniques is naturally of great interest in many 

practical problems. A coupled EFG/BE method has been recently presented by Gu and 

Liu (1999). An interface element is formulated and used along the interface between 

EFG and BE domains. The shape function used within interface element is continuous 

from the EFG domain across to the interface element. However the derivative of shape 

functions is discontinuous across the boundary. In addition, the symmetrization of the 

BE stiffness matrix has to be done in the coupled EFG/BE method. All these can lead to 

a loss of accuracy and efficiency. In this paper, the attention is focused on finding an 

effective approach to avoid the above-mentioned disadvantages in coupling EFG with 

BE methods. 

In the late eighties, alternative BE formulations have been developed based on 

generalized variational principles. Dumont (1988) has proposed a hybrid stress BE 

formulation based on the Hellinger-Reissner principle. DeFigueiredo and Brebbia 

(1989), DeFigueiredo (1991) and Jin et al. (1996) presented a Hybrid displacement 

Boundary Element (HBE) formulations. The HBE formulation led to a symmetric 
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stiffness matrix. This property of symmetry can be an added advantage in coupling the 

HBE with other methods.  

A novel coupled EFG/HBE method for continuum mechanics problems is presented 

in this paper. The compatibility condition on the interface boundary is introduced into 

the variational formulations of EFG and HBE using Lagrange multipliers. Coupled 

system equations have been derived based on the variational formulation. A program of 

the coupled method has been developed in FORTRAN, and several numerical examples 

are presented to demonstrate the convergence, validity and efficiency of the coupled 

method. 

Compared to the EFG/BE approach developed earlier by the authors (Gu and Liu, 

1999), the present EFG/HBE advances mainly in the following: 

a) The coupled system equations are formulated in a different but more general 

manner. 

b) System matrices obtained by EFG/HBE are symmetric, and there is no need for 

operation of symmetrization. 

c) The order of continuity of the shape functions obtained near the interface is 

higher, as a modified variational formulation is used. 

d) There is no need for interface elements, and therefore mesh generation becomes 

much simpler, and there is no special treatment needed on the interface. 

2. EFG formulation 

2.1 Moving Least Squares interpolant 

In this section a briefing of MLS approximation is given. More details can be found 

in a paper by Lancaster and Salkauskas(1981). 
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Consider a problem domain Ω. To approximate a function u(x) in Ω, a finite set of 

p(x) called basis functions is considered in the space coordinates xT=[x, y]. The basis 

functions in two-dimension is given by 

 pT(x)=[1, x, y, x2, xy, y2…] (1) 

The MLS interpolant uh(x) is defined in the domain Ω by 

 
∑

=

==
m

j
jj

h apu
1

T )()()()()( xaxpxxx  (2) 

where m is the number of basis functions, the coefficient aj(x) in equation (2) is also 

functions of x; a(x) is obtained at any point x by minimizing a weighted discrete L2 

norm of: 
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where n is the number of points in the neighborhood of x for which the weight function 

w(x-xi)≠0, and ui is the nodal value of u at x=xi .  

The stationarity of J with respect to a(x) leads to the following linear relation 

between a(x) and ui: 

 A(x)a(x)=B(x)u (4) 

Solving a(x) from equation (4) and substituting it into equation (2), we have 
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where the MLS shape function φi(x) is defined by  
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where A(x) and B(x) are the matrices defined by 
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(7) 

 B(x)=[w1(x)p(x1), w2(x)p(x2),…,wn(x)p(xn)] (8) 

2.2 Discrete equations of EFG 
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Consider the following two-dimensional problem of solid mechanics in domain Ω 

bounded by Γ : 

 ∇σσσσ+b=0       in Ω (9) 

where σ is the stress tensor, which corresponds to the displacement field u={u, v} T, b is 

the body force vector, and ∇ is the divergence operator. The boundary condition are 

given as follows: 

 uu =         on  Γu (10) 

 tn =⋅σ              on  Γt  (11) 

in which the superposed bar denotes prescribed boundary values and n is the unit 

outward normal to domain Ω.  

    The principle of minimum potential energy can be stated as follows: The solution of a 

problem in the small displacement theory of elasticity is the vector function u which 

minimizes the total potential energy Π given by 

 

∫ ∫ ∫
Ω Ω Γ

Γ⋅−Ω⋅−Ω⋅=Π
t

ddd
2

1 TTT tubuσε  (12) 

with the boundary condition (10), where εεεε is the strain. 

Because the MLS interpolant function lacks the delta function property, the 

accurate and efficient imposition of essential boundary condition often presents 

difficulties. Strategies have been developed for alleviating this problem, such as using 

Lagrange multipliers (Belytschko et al., 1994), using FE (Krongauz and Belytschko, 

1996), penalty method (Liu and Yang, 1998), and so on. In the coupled EFG/HBE 

method, it is desirable to include the essential boundary into the HBE domain. The 

essential boundary conditions can then be easily imposed as in the HBE method. For 

some problems, it maybe difficult or not efficient to include the essential boundary into 
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the HBE domain. The method of Lagrange multipliers is employed here to enforce the 

essential boundary conditions in the EFG domain. In this case, the variational form of  

equation (12) should be posed as follows. 

 
∫∫ ∫ ∫
ΓΩ Ω Γ

Γ−⋅−Γ⋅−Ω⋅−Ω⋅=Π
ut

d)(ddd
2

1 TTTT uuλtubuσε  (13) 

where the λλλλ is given by the following approximation 

 λλλλ=NTλλλλe (14) 

where N is interpolation function, λλλλe is the unknown parameter. Substituting the 

expression of u and λλλλ given in equations (5) and (14) into equation (13), and using the 

stationary condition yields 
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where 
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in which f is the equivalent nodal force, and d is the vector due to the distributed 

sources or body forces. A comma in equation (16f) designates a partial derivative with 

respect to the indicated spatial variable. 

3 Hybrid displacement BE formulation 

    Equation (12) should satisfy the boundary condition (10) and the compatibility 

condition 

 uu =~           on  Γ (17) 

where u~ is the displacement field on the boundary, and u is the displacement in the 

domain. Now subsidiary condition (17) is introduced into the variational expression 

(12) by introducing a set of Lagrange multipliers λ. Thus the modified variational 

principle can be written as  

 
∫∫ ∫ ∫
ΓΩ Ω Γ

Γ−⋅+Γ⋅−Ω⋅−Ω⋅=Π d)~(d~dd
2

1 TTTT uuλtubuσε

t

 (18) 

    The Euler equations for the above equation are obtained when the first variation is set 

equal to zero. As the Lagrange multipliers λλλλ represent the traction on the boundary, it is 

therefore denoted explicitly by t~ . Hence, equation (18) can be re-written as 

 
∫∫ ∫ ∫
ΓΩ Ω Γ

Γ−⋅+Γ⋅−Ω⋅−Ω⋅=Π d)~(
~

d~dd
2

1 TTTT uuttubuσε

t

 (19) 

    The first term on the right hand side can be integrated by parts to become 

 
∫∫∫ ∫ ∫
ΩΓΓ Ω Γ

Ω⋅∇−Γ−⋅+Γ⋅−Ω⋅−Γ⋅=Π d
2

1
d)~(

~
d~dd

2

1 TTTT uσuuttubuut
t

 

(20) 
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The starting integral relationship (19) which is an integral in the domain can now be 

reduced to an integral on the boundary by finding an analytical solution which makes 

the last integral in equation (20) equal to zero. The most desirable analytical solution is 

the fundamental solution, which satisfies the following equation: 

 ∇σσσσ*+∆i=0 (21) 

where ∆i is the Dirac delta function.  

    The displacement and traction vectors are approximated as a series of products of 

fundamental solutions (DeFigueiredo, 1991) U*, T* and unknown parameters s. The 

boundary displacement and traction vectors are written as the product of known 

interpolation functions by unknown parameters (displacement and traction of boundary 

nodes), i.e.,  

 u=U*s (22a) 

 t=T*s (22b) 

 u~ =ΦΦΦΦTue (22c) 

 t~ =ΨΨΨΨTte (22d) 

Substituting equations (21) and (22) into equation (20), we can obtain 

 Π=−1/2sTAs−tTGTs+tTLu−uTf−sTb (23) 

where 

 ∫
Γ

Γ= d**TUA  (24a) 

 ∫
Γ

Γ= d*
ΨUG  (24b) 

 ∫
Γ

Γ= dT
ΨΦL  (24c) 

 ∫
Γ

Γ= dtΦf  (24d) 

 ∫
Ω

Ω= d*bUb  (24e) 

The stationary conditions for Π can now be found by setting its first variation to zero. 

As this must be true for any arbitrary values of δs, δu and δt, one obtains: 
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 Ku=f+d (25) 

 

where  

 K=RTAR (26a) 

 R=(GT)−−−−1L (26b) 

 d=RTb (26c) 

    It can be proved that matrix A is symmetric, and hence the matrix K. It is possible to 

conclude from equation (25) that this hybrid displacement boundary formulation leads 

to an equivalent stiffness approach. The matrix K may be viewed as a symmetric 

stiffness matrix, but the above integrals are only needed to perform on boundaries, and 

the domain needs not to be discretized.  

4 Coupling of EFG and HBE 

4.1 Continuity conditions at coupled interfaces 

Consider a problem consisting of two domains Ω1 and Ω2, shown in Figure 1, 

joined by an interface ΓI. The EFG formulation is used in Ω1 and the HBE formulation 

is used in Ω2 . Continuity conditions on ΓI must be satisfied, i. e.  

 
Iu~ 1= Iu~ 2 (27) 

 FI
1+FI

2=0 (28) 

where Iu~ 1  and Iu~ 2 are the displacements on ΓI for Ω1 and Ω2, FI
1 and FI

2 are the forces 

on  ΓI for Ω1 and Ω2, respectively. 

Because the shape functions of EFG are derived using MLS, uh in equation (5) 

differs with the displacement u at point x. It is not possible to couple EFG and HBE 

directly along ΓI. 

4.2 Coupling EFG with HBE via modified variational form  
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A sub-functional is introduced to enforce the compatibility condition (27) by means 

of Lagrange multiplier λ on the interface boundary 

 ΠI= ∫∫∫
ΓΓΓ

Γ−Γ=Γ−⋅
III

IIII d~d~d)~~( 2121 uγuγuuγ =ΠI
1-ΠI

2 (29) 

In equation (29), ΠI
1 and ΠI

2 are the boundary integration along the EFG side and the 

HBE side. Introducing ΠI
1 and ΠI

2 separately into functions (13) and (18), generalized 

functional forms can be written as 
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ΓΓΩ Ω Γ

Γ⋅+Γ−⋅−Γ⋅−Ω⋅−Ω⋅=Π
Iut

IEFGEFG d~γd)(λddd
2

1 1TTTTT uuutubuσε  (30) 
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ΓΓΩ Ω Γ

Γ⋅−Γ−⋅+Γ⋅−Ω⋅−Ω⋅=Π
It

IHBEHBE d~γd)~(λd~dd
2

1 2TTTTT uuutubuσε  
(31) 

In these variational formulations the domains of EFG and HBE are connected via 

Lagrange multiplier γγγγ. 

    In EFG domain, u is given by equation (5). γγγγ is given by interpolation functions ΛΛΛΛ 

and value of γγγγI 

 γγγγ=ΛΛΛΛTγγγγI (32) 

ΛΛΛΛ can be the interpolation of HBE. Substituting equations (5), (14) and (32) into 

equation (30), and using the stationary condition, the following EFG equations can be 

obtained 
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where KEFG, G, fEFG and bEFG  are defined by equation (16), B is defined as 

 Γ= ∫
Γ

dT

I

EFGΛΦB  (34) 
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    Integrating first term on right hand side of equation (31) by parts, substituting 

equations (21),(22) and (32) into equation (31), and using the stationary condition, lead 

to the following HBE equations 
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where KHBE, fHBE and dHBE are defined by equations (24) and (26). H is defined as 

 Γ= ∫
Γ

dT

I

HBEΛΦH  (36) 

Because two domains are connected along the interface boundary ΓI , assembling of 

equations (33) and (35) yields a linear system of the following form 
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(37) 

The coupling conditions (27) and (28) are satisfied via the above technique. 

5. Numerical results 

Three cases have been studied in order to examine the coupled EFG/HBE method in 

two-dimensional elastostatics.  

5.1 Cantilever beam 

    The coupled method is first applied to study the cantilever beam problem. Consider a 

beam of length L and height D subjected to a parabolic traction at the free end as shown 

in Figure 2. The beam has a unit thickness and a plane stress problem is considered. The 

analytical solution is available and can be found in a textbook by Timoshenko and 

Goodier (1970). 
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    The parameters of the beam are taken as E=3.0×107, ν=0.3, D=12, L=48, and 

P=1000. The beam is separated into two parts. HBE is used in the part on the left where 

the essential boundary is included. EFG is used in the part on the right. The nodal 

arrangement is shown in Figure 3, and background mesh of 6×8 is used in EFG domain. 

In each integration cell, 4×4 Gauss quadrature is used to evaluate the stiffness matrix of 

the EFG. Only 100 nodes in total are used in the coupled method.  

Figure 4 illustrates the comparison between the shear stress calculated analytically 

and by the coupled method at the section of x=L/2. The plot shows an excellent 

agreement between the analytical and numerical results. The computational result by 

coupled method using interface elements (I.E.) is also shown in the same figure. There 

is clear evidence that the accuracy of the coupled method using the modified variational 

formulation (M.V.F.) is higher than that of using the interface element method. 

    The displacement along the interface boundary is shown in the Table 1. It is shown 

that the compatibility is satisfied very well using the present modified variational 

formulation method. 

5.2 Hole in an infinite plate 

    A plate with a circular hole subjected to a unidirectional tensile load of 1.0 in the x 

direction is considered. Due to symmetry, only the upper right quadrant (size 10×10) of 

the plate is modeled as shown in Figure 5. When the condition b/a>5 is satisfied, the 

solution of finite plate is very closed to that of the infinite plate (Roark and Young, 

1975). Plane strain condition is assumed, and E=1.0×103, ν=0.3. Symmetry conditions 

are imposed on the left and bottom edges, and the inner boundary of the hole is traction 

free. The tensile load in the x direction is imposed on the right edge. The exact solution 

for the stresses of infinite plate is 
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where (r,θ) are the polar coordinates and θ is measured counter-clockwise from the 

positive x axis. The plate is divided into two domains, where EFG and HBE are applied, 

respectively.  

    As the stress is most critical, detailed results on stress are presented here. The stress 

σx at x=0 obtained by the coupled method are plotted in Figure 6. The result are 

obtained using two kinds of nodal arrangement. The nodal arrangement of 65 nodes is 

shown in Figure 5. It can be observed from Figure 6 that the coupled method yields 

satisfactory results for the problem considered. The convergence of the present method 

is also demonstrated in this figure. As the number of nodes increases, the results 

obtained approaches to the analytical solution. Compared to the EFG method, fewer 

nodes are needed in the present coupled method. A previous research indicates that 231 

nodes are needed in EFG method to obtained the results of same accuracy as those 

obtained by the present method where only 144 nodes are required. 

5.3 Semi-infinite foundation 

In this example the coupled method is used in soil-structure interaction problem. A 

structure stands on a semi-infinite soil foundation is shown in Figure 7. The infinite soil 

foundation can be treated in practice in either of the following three ways: by truncating 

the semi-infinite plane at a finite distance (approximate method), using a fundamental 

solution appropriate to the semi-space problem rather than a free-space Green’s function 
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in BEM, and using infinite element in FEM.  The first approximate method is used 

herein. The present EFG/HBE method, the EFG/BE method (using interface elements), 

EFG and FE methods are used for the calculation, and the results are compared and 

investigated in details. 

As shown in Figure 7, Region 2 represents the semi-infinite foundation and is given 

a semi-circular shape of a very large diameter in relation to Region 1 that represents the 

structure. Boundary conditions to restrain rigid body movements are applied. Region 1 

is the EFG domain and Region 2 is the HBE domain. The nodal arrangement of the 

coupled EFG/HBE and EFG/BE methods is shown in Figure 8. The nodal arrangement 

of EFG for the entire domain is shown in Figures 9 and 10. Two loading cases shown in 

Figure 10 are computed: Case 1 considers five concentrated vertical loads on the top of 

the structure and case 2 considers an additional horizontal load acting at the right 

corner.  

The displacement results on top of the structure are given in Table 2. The FEM 

result obtained by Brebbia and Georgiou (1979) is also included in the same table. The 

results obtained by the present method are in very good agreement with those obtained 

using other methods including the FE and EFG methods for the entire domain. The 

present method uses much fewer nodes to model foundation. Only 30 nodes are used in 

the HBE method compared to 120 nodes used in the EFG for the foundation. 

6. Conclusions 

A coupled EFG/HBE method has been presented in this paper. The Lagrange 

multiplier is used in a modified functional for EFG and HBE to enforce the 

compatibility condition along the interface. The discrete system equations of the 

coupled method are derived. Numerical examples have demonstrated effectiveness of 

the present coupled EFG/HBE method for elastostatics. 



Computational Mechanics 26 (2000) 166-173 

 16

The method allows the advantages of both EFG and HBE methods to be used. The 

merits using the EFG/HBE are as follows: 

(a) The computation cost is much lower because of the significant reduction on the 

node numbers, as well as the reduction of area integration in constructing 

system matrices. 

(b) Imposition of essential boundary condition becomes easy. 

(c) The method provides a potential effective numerical tool in many practical 

problems, such as fluid-structure interaction problems, infinite or semi-infinite 

problems, cracks propagation problems in a relatively big body, and so on. 

    Compared with the EFG/BE developed earlier by the authors, the present method has 

advanced in the following counts: 

(a) The coupled system equations have been formulated in a more general manner. 

System matrices obtained are symmetric in EFG/HBE, and there is no need for 

an operation on matrix symmetrization. This improves both the accuracy of the 

results and the efficiency of computation. 

(b) The shape functions obtained have higher order of continuity. This translates to 

higher accuracy in result obtained. 

(c) There is no need for interface elements. This can further simplify the mesh 

generation. No special treatment is required for the interface between the EFG 

and HBE domain.  
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Figure Captions: 

Figure 1 Domain division into EFG and HBE regions 

Figure 2 Cantilever beam 

Figure 3 Nodal arrangement 

Figure 4 Shear stress τxy at the section x=L/2 of the beam 

Figure 5 Nodes in a plate with a central hole subjected to unidirectional tensile load in 

the x direction 

Figure 6 Comparison of stress σx at x=0 for problem shown in Figure 5 

Figure 7 A structure standing on a semi-infinite soil foundation 

Figure 8 Nodal arrangement for the coupled EFG/HBE method 

Figure 9 Nodal arrangement for the EFG method 

Figure 10 Detailed nodal arrangement for the EFG method and load cases 
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Node EFG/HBE (I. E.)*   Exact 

( y )  EFG side HBE side  

5.75 -4.73203E-03 -4.73090E-03 -4.73093E-03 -4.68750E-03 

5.00 -4.72797E-03 -4.72617E-03 -4.72619E-03 -4.68302E-03 

4.00 -4.72344E-03 -4.72050E-03 -4.72059E-03 -4.67802E-03 

3.00 -4.71970E-03 -4.71664E-03 -4.71670E-03 -4.67414E-03 

2.00 -4.71704E-03 -4.71419E-03 -4.71422E-03 -4.67136E-03 

1.00 -4.71542E-03 -4.71257E-03 -4.71261E-03 -4.66969E-03 

0.00 -4.71488E-03 -4.71199E-03 -4.71203E-03 -4.66914E-03 

* EFG/HBE (I. E.): coupled EFG/HBE method using interface element 

   EFG/HBE (M. V. F.): coupled EFG/HBE method using Modified Variational 

Formulation 

 

 

Table 1  Vertical displacement along the interface boundary 
(cantilever beam) 

EFG/HBE(M.V.F.)* 
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Table 2  Vertical displacements along top of the structure on the semi-

infinite foundation 

 

     

     

Node No. FE  EFG EFG/BE (I. E.)* EFG/HBE (M.V.F)*  

1 1.41 1.42 1.42 1.41 

2 1.34 1.34 1.33 1.33 

3 1.32 1.32 1.32 1.32 

4 1.34 1.34 1.33 1.33 

5 1.41 1.42 1.42 1.41 
     

1 -3.39 -3.43 -3.58 -3.41 

2 -0.97 -1.01 -1.04 -1.03 

3 1.35 1.35 1.34 1.35 

4 3.61 3.67 3.68 3.69 

5 6.00 6.04 6.13 6.11 
 

* EFG/BE (I. E.): coupled EFG/BE method using interface element 

   EFG/HBE (M. V. F.): coupled EFG/HBE method using Modified Variational 

Formulation 

 

 

 Displacements  (×10-4) 

Load case 1 

Load case 2 


