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Abstract: In this article, homotopy perturbation method coupled with Laplace transform and Padé
0approximants is applied on the re-formulated nonlinear oscillatory systems. Numerical results and graphical
represenations explicitly reveal the complete reliability and effeicincy of the suggested algorithm. 

Key words: Padé approximants  Homotopy perturbation method  Non-linear oscillatory systems

INTRODUCTION The polynomials in (2.2) and (2.3) are constructed so

This paper is devoted to the study of reliable and to N+M agree at x = 0. In the case f(x), the approximation
efficient applications of three very powerful tools namely, is just the Maclaurin expansion for f(x). For a fixed value
homotopy perturbation method, Laplace transform and of N+M the error is smallest when P (x) and Q (x) have
Padé approximants [1-27] for re-formulated nonlinear the same degree or when Q (x) has degree one higher
oscillatory systems. It is observed that proposed then Q (x).
algorithm is highly efficient  and  accurate.  Moreover, Notice that the constant coefficient of Q  is q  = 1.
suggested coupling is easier to implement and is free from This is permissible, because it notice be 0 and R (x) is
number of inbuilt deficiencies in comparison with the not changed when both P (x) and Q (x) are divided by
existing techniques. The scheme has been successfully the same constant. Hence the rational function R (x) has
tested on Rayleigh, Van der Pol and Duffing equations. N+M+1 unknown coefficients. Assume that f(x) is
Numerical results and graphical represenations explicitly analytic and has the Maclaurin’s expansion
reveal the complete reliability and effeicincy of the
suggested algorithm. (2.4)

Padé Approximaton: A rational approximation to f(x) on
[a,b] is the quotient of two polynomials P (x) and Q (x) of And from the difference N N

degrees N and M, respectively. We use the notation
R (x) to denote this quotient. The R (x) PadéN,M N,M

approximations to a function f(x) are given by [1]

(2.1)

The method of Padé requires [22-27] that f(x) and its
derivative be continuous at x = 0. The polynomials used
in (2.1) are 

(2.2)

(2.3)

that f(x) and R (x) agree at x = 0 and their derivatives upN,M

N M

N

N

M 0

N,M

N M

N,M

(2.5)

The  lower  index  j =N+M+1   in    the   summation
on  the   right    side   of  (2.5)  is  chosen  because  the
first N+M  derivatives  of  f(x)  and R (x)  are  to agreeN,M

at x = 0.
When the left side of (10) is multiplied out and the

coefficients  of  the powers of x´  are  set  equal  to  zero
for k = 0,1,2,....,N+M, the result is a system of N+M+1
linear equations:
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n
∂
∂

( ) ( ) ( ),M u N u f r r+ = ∈Ω

[ ]( , ) : 0, 1v r p xΩ →ℜ
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0( ) ( ) and ( ) ( )M v M v A v f r− −

2 3
0 1 2 3 ...v v pv p v p v= + + + +

0 1 2 3
1

lim ...
p

u v v v v v
→

= = + + + +

2
3

2 0,d y y y
dt
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1
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1 1

dy y
dt
dy y y
dt

 =

 = − −

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(2.6)

that of H(v,p) from . In

(2.7)

Notice that in each equation the sum of the
subscripts on the factors of each product is the same and
this sum increases consecutively from 0 to N+M. The M
equations  in  (2.7)  involve  only the unknowns q ,q1 2

q ....., q  and must be solved first. Then the equations in3 M

(2.6) are used successively to find p ,p p ....., p  [1].1 2 3 N

Homotopy Perturbation Method: To illustrate the
homotopy perturbation method (HPM) for solving non-
linear differential equations, He [7, 8, 20-27] considered
the following non-linear differential equation:

(3.1)

subject to the boundary condition

(3.2)

where A is a general differential operator, B is a
boundary operator, f(r) is a known analytic function,  is
the boundary of the domain  and  denotes

differentiation along the normal vector drawn outwards
from . The operator A can generally be divided into two
parts M and N. Therefore, (3.1) can be rewritten as
follows:

(3.3)

He [9,10] constructed a homotopy

which satisfies

(3.4)
which is equivalent to

(3.5)

where p   [0,1] is an embedding parameter and u  is an0

initial approximation of (3.1). Obviously, we have

(3.6)

The changing process of p from zero to unity is just

topology, this is called deformation and
 are called homotopic.

According  to   the   homotopy   perturbation   method,
the parameter p is used as a small parameter and the
solution of Eq. (3.4) can be expressed as a series in p in
the form

(3.7)

When p  1, Eq. (3.4) corresponds to the  original  one,
Eqs. (3.3) and (3.7) become the approximate solution of Eq.
(3.3), i.e.

(3.8)

The convergence of the series in Eq. (3.8) is
discussed by He in [7, 8].

Applications
Example 1 (Duffing Equation): The  Duffing equation  is
a  nonlinear  second-order  differential   equation.
Consider the equation

(4.1)

the  initial  conditions  are  chosen  to  be y(0) = a and
y´(0) = 0. By setting y  = y and introducing the new1

variable y  = y´ the second-order equation is converted to2

a first-order system

(4.2)

with the initial conditions:

y  (0) = m , y  (0) = m ,  Throughout   this   paper,  we  set1 1 2 2

a = 1 and  = 0.1.
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In this section, we will apply the homotopy
perturbation method to nonlinear ordinary differential
systems (4.2). (4.9)

Homotopy Perturbation Method to Duffing Equation: .
According to homotopy perturbation method, we derive .
a correct functional as follows:

(4.3)

where “dot” denotes differentiation with respect to t and Six terms approximations:
the initial approximations are as follows:

(4.4)

and which yields

(4.5) (4.11)

where v ,i,j = 1,2,3,.... are functions yet to be determined.i,j

Substituting Eqs.(4.4) and (4.5) into Eq. (4.3) and
arranging the coefficients of “p” powers, we have

(4.6)

In order to obtain the unknowns v (t),i,j = 1,2,3,.... wei,j

must construct and solve the following system which
includes nine equations with nine unknowns, considering
the initial conditions 

(4.7)

From Eq. (3.8), if the three terms approximations are
sufficient, we will obtain:

(4.8)

therefore

.

Here
y  (0) = 1, y  (0) = 0,  for the four-component model.1 2

A few first approximations for y (t) are calculated and1

presented below:

(4.10)

In this section, we apply Laplace transformation to (4.10),

For simplicity, let  then

(4.12)

Padé approximant [4/4]of (4.12) and substituting  , we
obtain [4/4] in terms of s. By using the inverse Laplace
transformation, we obtain

(4.13)

In  Table  1  we  show  the  differences between the
6-term HPM and the the Padé approximations solutions

Example 2 (The Vander Pol Equation): The Vander Pol
equation is a non-linear second-order differential
equation. Consider the equation

Table 1: Differences between the 6-term HPM and the the Padé
approximations  solutions  for   the   The   Duffing  equation when
 = 0.1.

t Diff
0 1.2100e-010
0.1 1.1783e-010
0.2 1.7363e-009
0.3 4.7610e-008
0.4 4.7339e-007
0.5 2.7954e-006
0.6 1.1881e-005
0.7 4.0220e-005
0.8 1.1522e-004
0.9 2.9042e-004
1 6.6153e-004
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Fig. 1: Local changes of y for  = 1 and  = 0.1.

(4.14) the initial approximations are as follows:

the  initial  conditions  are chosen   to   be  y(0) = a and
y´(0) = 0. By setting y  = y and introducing the new and1

variable y  = y´, the second-order equation is converted to (4.18)2

a first-order system

(4.15) determined.  Substituting   Eqs.   (4.17)   and  (4.18) into

With the initial conditions:
y  (0) = n , y (0) = n , Throughout this paper, we set a = 11 1 2 2

and  = 0.1.
In this section, we will apply the homotopy

perturbation method to nonlinear ordinary differential
systems (4.15).

Homotopy Perturbation Method to Vander Pol Equation:
According to homotopy perturbation method, we derive
a correct functional as follows:

(4.16)

where “dot” denotes differentiation with respect to t and

(4.17)

Where v ,i,j = 1,2,3,.... are functions  yet  to bei,j

Eq.  (4.16) and arranging the coefficients of “p” powers,
we have

(4.19)

In order to obtain the unknowns v (t),i,j = 1,2,3,.... we must construct and solve the following system which includesi,j

nine equations with nine unknowns, considering the initial conditions 

(4.20)

From Eq. (3.8), if the three terms approximations are sufficient, we will obtain:

(4.21)
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(4.22)

.

.

.

Here
y (0) = 1 and y (0) = 1 for the four-component model.1 2

A few first approximations for y (t) are calculated and presented below:1

Six terms approximations:

(4.23)

In this section, we apply Laplace transformation to (4.23), which yields

(4.24)
For simplicity, let  then

(4.25)

Padé approximant [4/4] of (4.25) and substituting , we obtain [4/4] in terms of s. By using the inverse Laplace

transformation, we obtain

(4.26)

In Table 2 we show the differences between the 6-term HPM and the the Padé approximations solutions

Example 3 (Rayleigh Differential Equation): The Rayleigh equation is a non-linear second-order differential equation.
Consider the equation

(4.27)

the initial conditions are chosen to be y(0) =  and y'(0) = 0. By setting y  = y and introducing the new variable1

y  = y', the second-order equation is converted to a first-order system2
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Fig. 2: Local changes of y for  = 1 and  = 0.1.

Table 2: Differences between the 6-term HPM and the the Padé approximations solutions for the The Vander Pol equation when  = 0.1.
t Diff
0 3.0000e-011
0.1 2.6393e-011
0.2 1.7350e-011
0.3 9.2888e-010
0.4 9.0588e-009
0.5 5.1941e-008
0.6 2.1424e-007
0.7 7.0359e-007
0.8 1.9538e-006
0.9 4.7684e-006
1 1.0499e-005

(4.28)

with the initial conditions:
y (0) = r , y (0) = r . Throughout this paper, we set  = 1 and µ = 0.1.2 1 2 2

In this section, we will apply the homotopy perturbation method to nonlinear ordinary differential systems (4.27).

Homotopy Perturbation Method to Rayleigh Differential Equation: According to homotopy perturbation method, we
derive a correct functional as follows:

(4.29)

Where “dot” denotes differentiation with respect to t and the initial approximations are as follows:

(4.30)

and
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r r r r r

 = + − + − 
 

  + − + − − + −    
   − + − − + − 

  +    + − + − + − + −    
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(4.31)

Where v , i,j = 1,2,3,...are functions yet to be determined. Substituting Eqs.(4.30) and (4.31) into Eq. (4.29)i,j

and arranging the coefficients of “p” powers, we have

(4.32)

In order to obtain the unknowns v (t), i,j = 1,2,3, we must construct and solve the following systemi,j

which includes nine equations with nine unknowns, considering the initial conditions

(4.33)

From Eq. (3.8), if the three terms approximations are sufficient, we will obtain:

(4.34)

therefore

(4.35)

.

.

.
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Here
y (0) = 1 and y (0) = 0 for the four-component model.1 2

A few first approximations for y (t) are calculated and presented below:1

Six terms approximations:

(4.36)

In this section, we apply Laplace transformation to (4.36), which yields

(4.37)

For simplicity, let  then

(4.38)

Padé approximant [4/4] of (4.38) and substituting , we obtain [4/4] in terms of s.

By using the inverse Laplace transformation, we obtain

(4.39)

In Table 3 we show the differences between the 6-term HPM and the the Padé approximations solutions

Fig. 3: Local changes of y for  = 1 and µ = 0.1.

Table 3: Differences between the 6-term HPM and the the Padé
approximationssolutions for the the Rayleigh differential equation
when µ = 0.1.

t Diff
0 1.0000e-011
0.1 1.2685e-011
0.2 1.1388e-010
0.3 2.3799e-009
0.4 2.3779e-008
0.5 1.4377e-007
0.6 6.2835e-007
0.7 2.1931e-006
0.8 6.4921e-006
0.9 1.6946e-005
1 4.0054e-005

CONCLUSIONS

In this paper, we apply homotopy perturbation
method coupled with Laplace transform and Padé
approximants on the re-formulated nonlinear oscillatory
systems. Numerical results and graphical represenations
explicitly reveal the complete reliability and efficiency of
the suggested algorithm.

Note: The computations associated with the examples in
this paper were performed using Maple 7 and Matlab 7.
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