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SUMMARY

The red blood cell (RBC) aggregation plays an important role in many physiological phenomena, in
particular the atherosclerosis and thrombotic processes. In this research, we introduce a new modelling
technique that couples Navier–Stokes equations with protein molecular dynamics to investigate
the behaviours of RBC aggregates and their e�ects on the blood rheology. In essence, the
Lagrangian solid mesh, which represents the immersed deformable cells, is set to move on top of
a background Eulerian mesh. The e�ects of cell–cell interaction (adhesive=repulsive) and hydrody-
namic forces on RBC aggregates are studied by introducing equivalent protein molecular potentials
into the immersed �nite element method. The aggregation of red blood cells in quiescent �uids is
simulated. The de-aggregation of a RBC cluster at di�erent shear rates is also investigated to pro-
vide an explanation of the shear-rate-dependence of the blood viscoelastic properties. Finally, the in-
�uences of cell–cell interaction, RBC rigidity, and vessel geometry are addressed in a series of test
cases with deformable cells (normal and sickle RBCs) passing through micro- and capillary vessels.
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1. INTRODUCTION

Human blood circulatory systems have evolved to supply nutrients and oxygen to, and carry
the waste away from, the cells of multi-cellular organisms through the transport of blood,
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a complex �uid composed of deformable cells, proteins, platelets, and plasma. Currently,
cardiovascular diseases represent the leading cause of death in developed countries. The lack
of understanding of short and long-term development and evolution of many of the arterial and
vascular diseases directly limits the disease diagnosis and prevention as well as the planning of
the therapeutic approaches. It is therefore of signi�cant clinical relevance to understand blood
composition and its rheological behaviours in the context of multi-scale and multi-physics
hemodynamics.
As depicted in Fahraeus–Lindqvist e�ects, blood viscosity is lower in small vessels than

in large vessels. In fact, the viscosity in capillaries is less than half of that in large vessels
in part due to red cells moving together in single �les through small vessels. While theo-
ries of suspension rheology generally focus on homogeneous �ows in in�nite domains, the
important phenomena of blood �ows in micro-circulation depend on the combined e�ects of
vessel geometries, cell deformability, wall compliance, �ow shear rates, and many micro-scale
chemical, physiological, and biological factors [1, 2]. There have been past studies on shear
�ow e�ects on one or two cells [3], leukocytes adhesion to vascular endothelium [4], and
particulate �ow based on continuum enrichment methods [5, 6]. However, no mature theory is
yet available for the prediction of blood rheology and blood perfusion through micro-vessels
and capillary networks. The di�erent time and length scales as well as large motions and
deformations of immersed solids pose tremendous challenges to the mathematical modelling
of blood �ow at that level [7, 8].
In this paper, we concentrate on the rheological aspects of �ow systems of arterioles,

capillaries, and venules which involve deformable cells, cell–cell interactions, and compli-
ant vessels. In particular, we propose a new modelling technique with a combination of
the newly developed immersed �nite element method (IFEM) [9] and protein molecular
dynamics.
We �rst give a detailed description of the discrete red blood cell (RBC) and aggregation

models in Section 2. In Section 3, we illustrate the key ingredients of the proposed combination
of the IFEM and protein molecular dynamics. The discussion and conclusions of the RBC
aggregation test models are presented in Sections 4 and 5.

2. MATHEMATICAL MODELS

2.1. Discrete RBC model

The role of RBCs in the human body is to pick up oxygen as the blood passes through the
lungs and release it to the cells over the entire body. The RBC membrane contains a lipid
bilayer structure. Unlike the white blood cell, in suspension culture, RBC assumes a biconcave
disc shape which permits its passage through capillaries. The biconcave disc shape enables
the surface-to-volume ratio of a typical RBC to be signi�cantly higher than that of a sphere
formed by a tensioned membrane.
As shown in Figure 1, to account for both bending and membrane rigidities, RBC mem-

brane is modelled with a three-dimensional �nite element formulation using the Lagrangian
description. Thus, a RBC is modelled as a �exible three-dimensional thin structure enclosing
an incompressible �uid. In this work, a typical membrane is discretized with 1043 nodes and
4567 tetrahedra elements. Moreover, a function is used to describe the x–y co-ordinates of the
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Figure 1. A three-dimensional �nite element mesh of a single RBC model:
(a) 3D RBC model; (b) RBC cross-section; (c) RBC mesh.

cross-sectional pro�le [10]:

�y=0:5[1− �x2]1=2(a0 + a1 �x2 + a2 �x4); −16 �x61 (1)

with a0 = 0:207, a1 = 2:002, and a2 = 1:122, and the non-dimensional co-ordinates �x and �y are
scaled as x=5 and y=5 �m, respectively.
Finally, a Neo-Hookean strain energy function is used to depict the material behaviour of

the RBC membrane:

W =C1(J1 − 3) + C2
2
(J2 − 1)2 (2)

with the material properties C1 and C2, where J1 and J2 are the functions of the invariants of
the deformation gradient C as de�ned in References [9, 11].

2.2. RBC aggregation

Cell–cell adhesion plays an important role in various physiological phenomena including the
recognition of foreign cells [12]. Although the exact physiological mechanisms of the RBC
coagulation and aggregation are still ambiguous, it has been found that both the RBC sur-
face structure and membrane proteins are key factors in producing adhesive=repulsive forces.
The proposed explanations in general fall into two categories: the bridging and adsorption
models with the adsorption and exclusion of the plasmatic macromolecules at RBC surfaces,
respectively. The primary macromolecules that cause the RBC aggregation are the so-called
�brinogen. The depletion layer results in a reduction of osmotic pressure in the gap between
nearby RBCs, which consequently produces an attractive force. It can be assumed that the
adhesion between RBCs will occur only if the RBCs are close enough. Nevertheless, when
the nearby RBCs are too close to each other, a repulsive force will hinder them from contact.
The repulsive forces include the steric forces due to the glycocalyx and the electrostatic re-
pulsive force induced from the same negative �xed charges at RBC surfaces. Of course, the
level of the RBC aggregation depends on the initial position of the cells and the strength of
the adhesive force in comparison with other forces, such as hydrodynamic forces.
The aim of this paper is not to identify the exact mechanism of the RBC coagulation and

aggregation. Instead, we focus on the study of the behaviours of RBC aggregates and their
e�ects on viscoelastic properties of blood �ows. To our knowledge, it is the �rst attempt to
study this phenomenon using three-dimensional continuum models of the RBC aggregation
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Figure 2. Non-dimensionalized Morse potential and force.

with the e�ects of shear rates, RBC geometries, cell–cell interaction forces, and non-linear
material descriptions.
Recently, Neu and Meiselman [13] proposed a theoretical model for depletion-mediated

RBC aggregation in polymer solutions. The basic behaviour of the interaction forces between
two RBCs is simply illustrated as the weak attractive and strong repulsive forces at far
and near distances. Due to the complexity of the aggregation process, we accumulate the
intermolecular force, electrostatic force, and protein dynamics into a potential function, similar
to an intermolecular potential. Here we adopt the Morse potential, found to be capable of
generating similar interactional energy versus RBC–RBC separation distance plot given in
Reference [13]. As shall be seen later, the aggregation behaviours simulated by this potential
qualitatively agree with experimental observations:

�(r)=De[e2�(r0−r) − 2e�(r0−r)] (3)

f(r)= − @�(r)
@r

=2De�[e2�(r0−r) − e�(r0−r)] (4)

where r0 and De stand for the zero force length and surface energy, respectively, and � is a
scaling factor. The non-dimensionalized Morse potential and force are plotted in Figure 2.

2.3. Blood viscoelasticity

Blood plasma can be accurately modelled with the Newtonian �uid model, yet blood �ows do
exhibit non-Newtonian or viscoelastic behaviours, particularly under low Reynolds numbers.
In fact, human blood is a typical thixotropic material of which the viscoelastic characteristics
may vary signi�cantly with its stress and strain levels. In practice, we often characterize the
blood �ow with the strength of the shear �ow which is measured with the shear rate �̇ within
the range from 0.1 to 100 s−1.
An illustration of the shear-rate-dependence of blood viscoelasticity is shown in Figure 3.

It is clear that as the shear rate increases the blood viscosity decreases initially and even-
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Figure 3. An illustration of the shear-rate-dependence of blood viscoelasticity (reproduced based on
http:==www.vilastic.com=TECH10.html).

Figure 4. Blood microscopic changes under di�erent shear rates: (a) Low shear
region; (b) mid-shear region; (c) high shear region.

tually reaches a plateau marking the plasma viscosity, and the blood elasticity continues to
decrease.
On the microscopic level, RBCs play an important role in the blood viscoelastic behaviours

[14, 15]. In the quiescent state, normal RBCs tend to aggregate. Under low shear rate, aggre-
gates are mainly in�uenced by the cell–cell interaction forces; in the mid-shear rate region,
RBC aggregates start to disintegrate and the in�uence of the deformability gradually increases;
and under high shear rate, RBCs tend to stretch, align with the �ow, and form layers. The
illustration of these three di�erent stages is shown in Figure 4.

3. IFEM WITH PROTEIN MOLECULAR DYNAMICS

Let us consider an incompressible three-dimensional deformable structure in �s (i.e. RBC
membranes) completely immersed in an incompressible �uid domain �f. The boundary of
the deformable structure is denoted as �s. Together, the �uid and the solid occupy a domain
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�, but they do not intersect:

�f ∪�s=� and �f ∩�s= ∅ (5)

In this work, we have extended the pioneer work of Professor Charles Peskin and co-workers
on the Immersed Boundary (IB) method [16] to the so called Immersed Finite Element Method
(IFEM) [11]. In contrast to the IB formulation, the solid domain can occupy a �nite volume
in the �uid domain. Since we assume both the �uid and the solid to be incompressible, the
union of two domains can be treated as one incompressible continuum with a continuous
velocity �eld. In the computation, the �uid spans over the entire domain �, thus an Eulerian
�uid mesh is adopted; whereas a Lagrangian solid mesh is constructed on top of the Eulerian
�uid mesh.
In the computational �uid domain �, the �uid grid is represented by the time-invariant

position vector x; while the material points of the structure in the initial solid domain �s0 and
the current solid domain �s are represented by Xs and xs(Xs; t), respectively. The superscript
s is used in the solid variables to distinguish the �uid and solid domains.
In the �uid calculations, the velocity v and the pressure p are the unknown �uid �eld

variables; whereas the solid domain involves the calculation of the nodal displacement us,
which is de�ned as the di�erence of the current and the initial co-ordinates: us=xs −Xs.
To delineate the Lagrangian description for the solid and the Eulerian description for the

�uid, we introduce di�erent velocity �eld variables vsi and vi to represent the motions of the
solid in the domain �s and the �uid within the entire domain �. The coupling of both velocity
�elds is accomplished with the Dirac delta function:

vsi (X
s; t)=

∫
�
vi(x; t) �(x − xs(Xs; t)) d� (6)

As illustrated in details in References [9, 11], we de�ne the �uid–structure interaction force
within the domain �s as fFSI; si , where FSI stands for �uid–structure interaction:

fFSI; si = − (�s − �f) dvi
dt
+ �sij; j − �fij; j + (�s − �f)gi in �s (7)

The �uid–structure interaction force fFSI; si within the domain �s can be illustrated as the force
exerted on the surrounding �uid from the immersed solid.
The cell–cell interaction force is applied on the surfaces of cells:

�sijnj=f
c
i (8)

The transformation of the weak form from the updated Lagrangian to the total Lagrangian
description is to change the integration domain from �s to �s0. Since we consider incompress-
ible �uid and solid, in the solid domain, the Jacobian determinant is 1, and the transformation
of the weak form to total Lagrangian description yields

∫
�s0

�ui(�s − �f) �usi d�s0 +
∫
�s0

�ui; jPji d�s0 −
∫
�s0

�uifci d�
s
0

−
∫
�s0

�ui(�s − �f)gi d�s0 +
∫
�s0

�uifFSI; si d�s0 = 0 (9)
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Figure 5. Illustration of an in�uencing domain of surface interaction within a cut-o� radius.

where the �rst Piola–Kirchho� stress Pij is de�ned as Pij= JF−1
ik �

s
kj and the deformation

gradient Fij as Fij= @xi=@Xj.
For structures with large displacements and deformations, the second Piola–Kirchho� stress

Sij and the Green–Lagrangian strain Eij are used in the total Lagrangian formulation:

Sij=
@W
@Eij

and Eij=
1
2
(Cij − �ij) (10)

where the �rst Piola–Kirchho� stress Pij can be obtained from the second Piola–Kirchho�
stress as Pij= SikFjk .
With respect to the cell–cell interaction force, as shown in Figure 2, the cut-o� length is

chosen to be around 3 �m, beyond which the attractive force decays very fast, i.e. the nodes
that are outside of the in�uencing domain, essentially a sphere with the cut-o� length as its
radius, have very little e�ects. Moreover, the potential function is chosen such that the RBCs
will de-aggregate at the shear rate above 0:5 s−1, according to the experimental observation
[17]. In this paper, for convenience, we set the zero force length as 250 nm. However, as
we reduce the zero force length, local enrichment and multi-scale coupling must also be
introduced. This topic will be addressed separately in a di�erent paper.
In the actual implementation, after the �nite element discretization of the solid domain, as

depicted in Figure 5, a sphere with the diameter of the cut-o� length is used to identify the
cell surface Yc within the in�uencing domain around the cell surface Xc. Hence, a typical
cell–cell interaction force can be denoted as:

f c(Xc)= −
∫
�(Yc)

@�(r)
@r

r
r
d� (11)

where r=Xc−Yc, r= ‖Xc−Yc‖, and �(Yc) represents cell surface area within the in�uencing
domain surrounding surface Xc.
In actuality, f c represents the cell–cell interaction force at a surface point exerted by the

surfaces of other cells nearby, which is de�ned as the force per unit area. Naturally, the
interaction force fFSI; si in Equation (7) is calculated with the Lagrangian description. Moreover,
a Dirac delta function � is used to distribute the interaction force from the solid domain onto
the computational �uid domain �:

fFSIi (x; t)=
∫
�s
fFSI; si (Xs; t) �(x − xs(Xs; t)) d� (12)
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Hence, the equivalent governing equation for the �uid is derived by combining the �uid terms
and the interaction force as:

�f
dvi
dt
=�fij; j + f

FSI
i in � (13)

Since we consider the entire domain � to be incompressible, we only need to apply the
incompressibility constraint once in the entire domain �:

vi; i=0 (14)

The non-linear systems (13) and (14) are solved with the standard stabilized Galerkin method
and the Newton–Raphson iteration [18, 19]. Moreover, to improve the computation e�ciency,
we also employ the GMRES iterative algorithm and compute the residuals based on matrix-
free techniques [20, 21].
Finally, in the interpolation process from the �uid onto the solid grid, the discretized form

of Equation (6) can be written as

vsiI =
∑
J
viJ (t)�J (xJ − xsI ); xJ ∈ ��I (15)

where the discretized delta function �J is the kernel function introduced in the reproduced
kernel particle method (RKPM) [22].
Here, the solid velocity vsI at node I can be calculated by gathering the velocities at

�uid nodes within the in�uence domain ��I . A dual procedure takes place in the distri-
bution process from the solid onto the �uid grid. The discretized form of Equation (12) is
expressed as

fFSIiJ =
∑
I
fFSI; siI (Xs; t)�I (xJ − xsI ); xsI ∈ ��J (16)

By interpolating the �uid velocities onto the solid particles in Equation (15), the �uid within
the solid domain is bounded to solid material points. This ensures not only the no-slip bound-
ary condition on the surface of the solid, but also automatically stops the �uid from penetrating
the solid, provided the solid mesh is at least two times denser than the surrounding �uid mesh.
This heuristic criterion is based on the numerical evidence and needs further investigation.

4. APPLICATIONS TO HEMODYNAMICS

One microliter of normal human blood contains about 5 000 000 RBCs, 7000 white blood
cells, and 300 000 platelets. At this point, even with the current multi-physics and multi-
scale computational tools, it is still impossible to handle such complex �uids as a whole. In
this paper, we focus on a three-dimensional Newtonian �uid interacting with a few �exible
RBCs. To illustrate clearly the deformation of the RBCs, two-dimensional cross-sections of
the membranes are shown in some examples in this section.
RBCs, or erythrocytes are normally 8–10 �m in diameter and 7.5–10 nm in thickness. The

RBC density is approximately 15% higher than that of the water. The RBC membrane has
a shear modulus of 4:2× 10−3 dyn=cm2, a dilation modulus of 500 dyn=cm2, and a bending
modulus of 1:8× 10−12 dyn=cm2. Since the shear modulus of the RBC membrane is much
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smaller than the dilation modulus, the RBC membrane is susceptible to deformation by shear
with very little area change. Moreover, the inner cytoplasm is assumed to be an incompressible
Newtonian �uid with the same viscosity as the plasma, i.e. 0:01 dyn s=cm2.
The mechanical properties and functions of blood �ows are strongly in�uenced by complex

multi-scale and multi-physics factors, three of which, namely cell–cell interaction forces, shear
rates, and vessel geometries will be examined with the proposed numerical procedures.

4.1. Cell–cell interaction and shear rate e�ects

RBC aggregation is one of the main causes of the non-Newtonian behaviours of blood �ows.
Due to the presence of the cross-linking proteins �brinogen on cell membranes and globulin
in the plasma, RBCs tend to form aggregates called rouleaus, in which RBCs adhere loosely
like a stack of coins. The presence of massive rouleaus can impair the blood �ow through
micro- and capillary vessels and cause fatigue and shortness of breath. The variation in the
level of RBC aggregation may be an indication of the thrombotic disease.
In general, the cell–cell interaction forces are not su�cient to deform cell membranes.

However, the ensuing aggregate could alter the surrounding �uid signi�cantly. To illustrate
the aggregation formation, we consider two RBCs attracting each other in the quiescent �uid.
In order to show clearly the e�ects of cell–cell interaction forces, we enlarge the magnitude
of the interaction force by �ve times. As shown in Figure 6, under strong cell–cell interaction
forces, two disassociated cells gradually move together and form a doublet with moderate
deformations.
To study the e�ects of cell–cell interaction on RBC aggregates, we introduce a four-RBC

model with and without cell–cell interaction forces under di�erent shear rates. The four-RBC
model is placed at the centre of the �uid domain with vertical centre distance of 3:96 �m.
Due to the biconcave shape, the adhesive=repulsive forces mainly exist around the perimeters
of RBCs as shown in Figures 5 and 7.
With the boundary shear velocity of 5 �m=s for both upper and bottom surfaces, we get a

shear rate of 0:5 s−1. In Figure 7, the four-RBC model is subjected to three di�erent shear

Figure 6. Illustrations of the initial con�guration of the two-RBC model and the deformation in the
quiescent �uid under the in�uence of cell–cell interaction forces.
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Figure 7. Illustrations of the initial con�guration of the four-RBC model and cell–cell interaction forces.

Figure 8. The shear of the four-RBC model at the shear rate of 0:25 s−1 without cell–cell interaction
forces, at t=0, 2, and 4 s. The vortexes are also shown in the �gure.

rates. As expected, without cell–cell interaction forces, the RBCs will rotate and align with
the �ow separately while maintaining their vertical separations as shown in Figure 8. On the
other hand, the RBC aggregate with cell–cell interaction forces rotates initially as a bulk with
varying vertical distances. The comparison shows that cell–cell interaction forces restrain
the disintegration of RBC aggregates and introduce elasticity in the blood’s macroscopic
mechanical behaviour.
In a set of numerical experiments, we subject the RBC aggregate and viscous �uid mixer

to low shear rates and observe that RBC aggregate rotates as a bulk, as shown in Figure 9.
With an intermediate shear rate, our numerical simulation demonstrates that after the initial
rotations the RBC aggregate aligns with the shear direction and then de-aggregates as shown
in Figure 10. At higher shear rate, the RBC aggregate completely disintegrates and the cells
begin to orient themselves into parallel layers as shown in Figure 11. The disintegration of
RBC aggregates with the increase of the shear rate is an indication of the decrease of the
macroscopic viscosity, which is consistent with the experimental observation.
In another experiment with a multiple-cell aggregate blocking the �ow, a high shear rate

induces the RBC aggregate to rotate �rst and then partially disintegrate and eventually align
the cells into parallel layers of RBCs as shown in Figure 12. As the evidence of excellent
numerical resolution of the proposed combination of the IFEM and protein molecular dynam-
ics, the �uid vorticities surrounding the deformable cells are clearly captured along with the
large structural motions and deformations.

4.2. Micro- and capillary vessels

RBCs are important for blood �ows in microcirculation. The typical diameter of the micro-
vessel is 1.5–3 times larger than that of the cell. On the other hand, the capillary vessel
diameter is about 2–4 �m which is signi�cantly smaller. The pressure gradient which drives
the �ow is usually around 3.2–3:5 kPa. For the chosen diameter and pressure, the Reynolds
number in a typical capillary is around 0:01. In fact, in the process of squeezing through
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Figure 9. The shear of the four-RBC model at the shear rate of 0:25 s−1 with
cell–cell interaction forces, at t=0, 2, and 4 s.

Figure 10. The shear of the four-RBC model at the shear rate of 0:5 s−1 with
cell–cell interaction forces, at t=0, 0.5, and 1 s.

Figure 11. The shear of the four-RBC model at the shear rate of 3:0 s−1 with
cell–cell interaction forces, at t=0, 0.25, and 0:5 s.

capillaries, large deformations of RBCs cells not only slow down the blood �ow, but also
enable the exchange of oxygens through capillary vessel walls.
Sickle cell anaemia occurs from genetic abnormalities in haemoglobin which is a complex

molecule constituting the most important component of RBCs. When sickle haemoglobin loses
oxygen, the deoxygenated molecule form rigid rods which distort the cell membrane into a
sickle or crescent shape. The sickle-shaped cells are both rigid and sticky and tend to block
capillary vessels and cause the blood �ow blockage to the surrounding tissues and organs.
To relate blood rheology to sickle cell anaemia, we consider the normal and sickle RBCs

passing through a micro-vessel contraction. The strong viscous shear introduced by such a �ow
contraction leads to some interesting phenomena of the RBC aggregation with respect to cell–
cell interaction forces and cell deformability. Furthermore, the modelling of this complex �uid–
solid system also demonstrates the capability of the coupling of the Navier–Stokes equations
with protein molecular dynamics.
In this paper, we assign the sickle cell with a crescent shape, higher rigidity and cell–cell

adhesive=repulsive forces. Unlike the discrete-particle model presented in References [23, 24],
in the proposed method, complex interaction forces between RBCs are modelled with a Morse
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Figure 12. The shear of the twelve-RBC model with the shear rate of 3:0s−1, at
t=0 s (a), 0:6 s (b), 1:2 s (c), 1:8 s (d), 2:4 s (e), 3 s (f).

potential and three-dimensional deformable biconcave cells are modelled as individual contin-
uum objects. Thus, we can take advantages of various mature �nite element formulations for
both �uids and solids.
The initial con�gurations of the channel and RBCs are depicted in Figure 13. It is shown

in Figure 14, as RBCs pass the di�user stage of the contraction, the deceleration of the RBCs
forms blockage for the incoming RBCs. Therefore, dilation of RBCs is coupled with the
pile-up of RBCs at the outlet of the vessel constriction.
As also con�rmed in Figure 15, under the similar �ow conditions, rigid and sticky sickle

cells eventually block the micro-vessel entrance which will certainly result in de-oxygenation
of surrounding tissues.
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Figure 13. The �nite element models of RBCs �ow passing through a vessel with varying diameters.

Figure 14. The normal RBC cell �ow with the inlet velocity of 10 �m=s at
di�erent time steps: (a) t=0; (b) t=2; (c) t=4; (d) t=6.

Figure 15. The sickle cell �ow with the inlet velocity of 10 �m=s at
di�erent time steps: (a) t=0; (b) t=2; (c) t=4; (d) t=6.

Finally, we present a three-dimensional simulation of a single RBC squeezing through a
capillary vessel. The RBC diameter is 1:2 times larger than that of the capillary vessel, which
leads to the divergence of the cytoplasm (internal liquid) to the two ends of the capsule by
deforming into a slug during the squeezing process. During the exiting process, there is a
radial expansion of the slug due to the convergence of the cytoplasm, which deforms the
capsule into an acaleph (or jelly�sh) shape. In Figure 16, four snapshots illustrate various
stages of the RBC with respect to the capillary vessel. The pressure drop within the capillary
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Figure 16. Three-dimensional simulation of a single RBC (essentially a hollow sphere for sim-
plicity) squeezing through a capillary vessel: (a) t=0; (b) t=0:48; (c) t=0:96; (d) t = 1:44.

Figure 17. The history of the driven pressure during the squeezing process.

vessel is also presented in Figure 17. The driven pressure here is de�ned as the average
pressure di�erence between the inlet and outlet of the �ow. It is clear that driven pressure
level corresponds to the plugged �ow which is before the entrance and exit of the deformable
cell to the capillary vessel.
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5. CONCLUSION

The coupling of the Navier–Stokes equations and protein molecular dynamics in the context
of the immersed �nite element method provides a unique tool to model complex blood �ows
within micro- and capillary vessels. In particular, this method models cell–cell adhesive=repu-
lsive forces with special molecular potentials which include the e�ects of �xed-charge density
on the cell membrane, cytoplasm, and protein. This model is applied in several test cases to
study the shear-rate-dependent de-aggregation of RBC clusters and the transport of deformable
cells (normal and sickle RBCs).
In the near future, using the recent diagnostic medical imaging tools, such as radiopaque

dyes and angiograms, physicians will be able to visualize microcirculation �ows through the
speci�c regions of the body. The proposed simulation methodology will be an important
addition to help understand various physiological phenomena in multi-physics and multi-scale
environments.
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