
Journal of

Mechanics of

Materials and Structures

COUPLING OF PERIDYNAMIC THEORY

AND THE FINITE ELEMENT METHOD

Bahattin Kilic and Erdogan Madenci

Volume 5, No. 5 May 2010

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

Vol. 5, No. 5, 2010

COUPLING OF PERIDYNAMIC THEORY

AND THE FINITE ELEMENT METHOD

BAHATTIN KILIC AND ERDOGAN MADENCI

The finite element method is widely utilized for the numerical solution of structural problems. However,

damage prediction using the finite element method can be very cumbersome because the derivatives of

displacements are undefined at the discontinuities. In contrast, the peridynamic theory uses displace-

ments rather than displacement derivatives in its formulation. Hence, peridynamic equations are valid

everywhere, including discontinuities. Furthermore, the peridynamic theory does not require an exter-

nal criterion for crack initiation and propagation since material failure is invoked through the material

response. However, the finite element method is numerically more efficient than the peridynamic theory.

Hence, this study presents a method to couple the peridynamic theory and finite element analysis to

take advantage of both methods. The regions where failure is expected are modeled using peridynamics

while remaining regions are modeled utilizing the finite element method. Finally, the present approach

is demonstrated through a simple problem and predictions of the present approach are compared against

both the peridynamic theory and finite element method. The damage simulation results for the present

method are demonstrated by considering a plate with a circular cutout.

1. Introduction

Over the past several decades, the finite element method has become the most commonly accepted

technique for the numerical solution of the equations of classical continuum mechanics. The success

of the finite element method comes from its straightforward formulation, which primarily involves three

basic steps. The first step is the approximate representation of the equations by either the variational or

weighted residual method. The second step concerns construction of a system of governing algebraic

equations by discretizing the region into finite elements. The last step involves the effective solution of the

finite element equations. There are many commercial computer programs, such as ANSYS, ABAQUS,

etc., and these programs enable the analysis of many engineering problems without much difficulty. How-

ever, the use of the finite element method can be quite challenging for damage prediction. This difficulty

arises from the presence of spatial derivatives of displacements in the equations of classical continuum

mechanics. These derivatives are undefined when the displacements are discontinuous, such as across

cracks or interfaces. Hence, failure simulation based on stresses becomes invalid at these discontinuities

because stresses asymptotically approach infinity. However, linear elastic fracture mechanics provides

external failure criteria based on the stress intensity factor, energy release rate, etc.

Also, these criteria are often limited to the prediction of the smallest load for crack propagation and the

direction of initial crack growth. In order to circumvent these shortcomings, the cohesive crack growth

is introduced into the finite element method. As explained in [Moës and Belytschko 2002], there are
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two main procedures for predicting crack growth: discrete interelement cracks and discrete intraelement

cracks. In the interelement method, cohesive zone elements, as interelements, are placed in between

each pair of neighboring elements in the mesh. However, these elements require a priori knowledge of

the crack growth path, which might not be available unless an extremely fine mesh is employed.

The intraelement procedure incorporates a discontinuous mode at the element level and this method

is used to model crack and shear band propagation. The use of an embedded discontinuous mode does

not require remeshing but stability issues need to be considered in these methods [Moës and Belytschko

2002]. A comparative study of finite element methods with embedded discontinuous modes is given in

[Jirásek 2000].

Belytschko and Black [1999] and Moës et al. [1999] introduced the extended finite element method X-

FEM, which incorporates discontinuity in the displacement field along the crack path regardless of crack

location and exploits the partition of the unity property of finite elements [Melenk and Babuška 1996]. In

this method, the solution space is enriched by a priori knowledge about the behavior of the solution near

any discontinuity and the additional number of degrees of freedom is minimized since the enrichment

only includes the nodes that belong to the elements cut by cracks [Zi et al. 2007]. As explained in this last

reference, there is a blending region that includes the neighboring elements of the tip element in which

the crack tip is positioned. Partial enrichment exists for the elements in the blending region for which

the partition of unity does not hold. Hence, the solution becomes inaccurate in the blending region.

Silling [2000], realizing the limitations, completely reformulated the basic equations of continuum

mechanics. The resulting approach is known as the peridynamic theory. The main difference between the

peridynamic theory and classical continuum mechanics is that the former utilizes displacement compo-

nents without their spatial derivatives. This feature allows damage initiation and propagation at multiple

sites with arbitrary paths inside the material without resorting to special crack growth criteria. In the

peridynamic theory, internal forces are expressed through nonlocal interactions between pairs of material

points within a continuous body, and damage is a part of this interaction. Interfaces between dissimi-

lar materials have their own properties, and damage can propagate when and where it is energetically

favorable for it to do so.

The peridynamic theory was utilized successfully for damage prediction of many problems. Silling

[2003] considered the Kalthoff–Winkler experiment in which a plate having two parallel notches was

impacted by a cylindrical impactor, and the peridynamic simulations successfully captured the angle

of crack growth observed in the experiments. Impact damage was also predicted using peridynamics

by Silling and Askari [2004; 2005]. This last paper considered a plate with a center crack to show the

convergence of their numerical method. The peridynamic theory was applied to damage analysis of plain

and reinforced concrete structures in [Gerstle and Sau 2004]. A new constitutive model was introduced

for tearing and stretching of rubbery materials in [Silling and Askari 2005]. Using this model, they

predicted oscillatory crack path when a blunt tool is forced through a membrane. The peridynamic

theory was also applied successfully in [Askari et al. 2006] and [Colavito et al. 2007b] to predict damage

in laminated composites subjected to low-velocity impact. Colavito et al. [2007a] used the peridynamic

theory for damage prediction of woven composites subjected to static indentation. Xu et al. [2007] and

Kilic [2008] considered notched laminated composites under biaxial loads.

Although the peridynamic theory provides deformation as well as damage initiation and growth with-

out resorting to an external criterion, it is computationally more demanding than the finite element method
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(FEM). Furthermore, the finite element method is very effective for modeling problems without damage.

In order to take advantage of the computational robustness of FEM, Macek and Silling [2007] imple-

mented the peridynamic model in a conventional finite element analysis code, ABAQUS by representing

the peridynamic interactions with truss elements and using embedded element technique for the overlap

region. However, the present study presents a direct approach to couple the peridynamic theory and finite

element method to take advantage of their salient features. The regions involving failure are modeled

using the peridynamic theory while the finite element method is utilized for the regions without failure.

The coupling introduces an overlap region in which both the peridynamic and finite element equations

are used simultaneously.

2. Peridynamic theory

The nonlocal peridynamic theory is concerned with the physics of a material body at a material point

that interacts with all points within its range, as shown in Figure 1. As in the classical (local) continuum

theory, the material points of a body are continuous, as opposed to discrete in the case of molecular

dynamics. However, the main difference between the peridynamic and the classical continuum theories

is that the former is formulated using integrodifferential equations, as opposed to partial differential

equations that include spatial derivatives of the displacement components. Displacement derivatives do

not appear in peridynamic equations, which allows the peridynamic formulation to be valid everywhere

whether or not displacement discontinuities are present. As described in [Silling 2000], the peridynamic

equation of motion at a reference configuration of position x and time t is given as

ρ
∂2u

∂t2
=

∫

R

dVx′ f
(
u(x, t), u(x′, t), x′, t

)
+ b(x, t), (1)

in which R is the domain of integration, u is the displacement vector field, b is a prescribed body-force

density field, and ρ is mass density. The response function, f , is defined as the force vector per unit

volume squared that the material point at x′ exerts on the material point at x. The integral equation

(1) represents a distinct mathematical system that is not derivable from the classical partial differential

equations (PDEs).

2.1. Response function. Within the realm of the peridynamic theory, the material points interact with

each other directly through a prescribed response function, which contains all the constitutive information

associated with the material. The forces within the material are treated through interactions between pairs

of material points in the continuum. The deformed position of a given material point is determined by

the summation of forces between itself and all other material points with which it interacts. However,

the response functions must obey the linear and angular admissibility conditions, which are examined in

detail in [Silling 2000]. Any function satisfying the admissibility conditions is a valid response function.

Therefore, the response functions are not restricted to be linear, which makes the peridynamic equation

of motion given by (1) valid for both linear and nonlinear analyses. However, the response functions

appearing in the literature and in this study assume pairwise interactions, which limits the Poisson’s ratio

to 0.25. Also, the limiting values of the Poisson’s ration under plane stress and plane strain assumptions

are explained in [Gerstle et al. 2005]. The response function relates the dependence of the interaction

force on reference positions and displacements of any material point pairs. This interaction force can also
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Figure 1. Pairwise interaction of a material point with its neighboring points.

be viewed as a bond force between the material points. The present study utilizes the response function

described in [Kilic 2008], which can be written as

f (η, ξ) =
ξ + η

|ξ + η|
µ(ξ , t)

9k

πl4
e−(|ξ |/ l)2

s, (2)

in which k is the bulk modulus and l is the internal length, which is the measure of nonlocal behavior.

The locality of interactions depends on the internal length l and interactions become more local with

decreasing internal length, as shown in Figure 2. The relative position, ξ , can be expressed as ξ = x′ − x

in the reference configuration, as illustrated in Figure 3. The relative displacement, η, can be written as

Figure 2. Effect of internal length on the locality of interactions.
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Figure 3. Definition of geometric parameters.

η = u − u between points x′ and x, as shown in Figure 3. The stretch, s, is given as

s =
|ξ + η| − |ξ |

|ξ |
(3)

and it is the ratio of the change in distance to initial distance between points x′ and x. Failure is included

in the material response through a history-dependent scalar-valued function µ (see [Silling and Bobaru

2005]), defined as

µ(ξ , t) =

{
1 if s(t ′, ξ) < s0 for all 0 < t ′ < t,

0 otherwise,
(4)

in which s0 is the critical stretch for failure to occur, as shown in Figure 4. In the solution phase, the

displacements and stretches between pairs of material points are computed. When the stretch between

two points exceeds the critical stretch, s0, failure occurs and these two points cease to interact. As derived

in [Silling and Askari 2005], the critical stretch value can be related to the well-known fracture parameters

such as the energy release rate. Thus, damage in a material is simulated in a much more realistic manner

Figure 4. Model for bond failure.
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Figure 5. Comparison of response functions under constant stretch.

compared to the classical continuum-based methods. The inexplicit nature of local damage at a point,

arising from the introduction of failure in the constitutive model, is removed by defining the local damage

as

ϕ(x, t) = 1 −

∫
R

dVx′µ(t, ξ)e−(|ξ |/ l)2

∫
R

dVx′e−(|ξ |/ l)2
. (5)

Thus, the local damage is the weighted ratio of the amount of the broken interactions to the total amount

of interactions.

The present response function is more complicated than that given in [Silling and Askari 2005] due to

the exponential term in (2). The behavior of this response function under constant stretch is illustrated in

Figure 5. As shown in this figure, Silling and Askari’s response function suggests that interaction force

remains the same within the horizon regardless of the distance between the interacting points. However,

the forces acting among bodies decrease with increasing distances. Hence, present method utilizes the

response function in (2) in which interaction force decreases with increasing distance between the two

material interaction points.

Because the peridynamic theory is nonlocal, material points interact across the interfaces. Hence, the

response function needs to be specified for the interface, in addition to the response functions for individ-

ual materials. Therefore, the peridynamic theory is capable of modeling different adhesion strengths of

the materials. If the domain consists of two dissimilar materials (Figure 6), three different interactions

need to be specified. Two of these interactions occur between material points having the same material,

labeled 1 and 2 in the figure, and the material properties used by the response function are trivially chosen

to be those of the material point. In the case of interactions across the interface, labeled 3, the numerical

experiments revealed that displacement predictions are insensitive to properties of the interface material

if the numbers of interactions across the interfaces are much smaller than those for material points having

the same material. Also, when the numbers of interactions across the interfaces are comparable to those

Figure 6. Interactions among material points.
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(a) (b) (c) (d)

Figure 7. Boundary conditions: (a) domain of interest; (b) tractions in classical contin-

uum mechanics; (c) interaction of a point in the domain �+ with the domain �−; (d)

force densities acting on the domain �+ due to the domain �−.

between the material points having the same material the use of the smaller of the bulk moduli of the two

materials gives better results. Hence, the response function for interactions across the interface utilizes

the material properties of the region having the smaller bulk modulus.

2.2. Boundary conditions. Since peridynamics is a nonlocal theory and its equations of motion uti-

lize integrodifferential equations as opposed to partial differential equations in the case of the classical

continuum theory, the application of boundary conditions is also very different from that of the classical

continuum theory. The difference can be illustrated by considering a body that is subjected to mechanical

loads. If this body is fictitiously divided into two domains, �− and �+ as shown in Figure 7a, there must

be a net force, F+, that is exerted to domain �+ by domain �− so that force equilibrium is satisfied.

According to the classical continuum mechanics, the force F+ can be determined by integrating

surface tractions over the cross section area, ∂�, of the domains �− and �+:

F+ =

∫

∂�

dA T , (6)

in which T denotes the surface tractions (Figure 7b). In the case of the peridynamic theory, the material

points located in �+ interact with the other material points in �− (Figure 7c). Hence, the force densities,

L, acting on points in �+ must be determined by integrating the response function over �−:

L(x) =

∫

�−

dV f (x, x′). (7)

Finally, the force F+ can be computed by volume integration of these force densities (Figure 7d) over �+:

F+ =

∫

�−

dV L(x). (8)

Hence, the tractions or point forces cannot be applied as boundary conditions since their volume inte-

grations result in a zero value. Therefore, the boundary conditions are applied over the volumes as body

forces, displacements, and velocities.
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3. Numerical implementation

In order to solve (1), a collocation method is adopted and the numerical treatment involves the dis-

cretization of the domain of interest into subdomains (Figure 8). Collocation (integration) points are

subsequently placed into subdomains in order to reduce the peridynamic equation of motion into a finite

sum as

ρ ü(xi , t) = b(xi , t) +

N∑

e=1

Ne∑

j=1

w j f
(
u(xi , t), u(x′

k, t), xi , x′
k, t

)
, (9)

where xi is the position vector located at the i-th collocation point, N is the number of subdomains,

and Ne is the number of collocation points in the e-th subdomain. The position vector x′
k represents the

j-th integration point of the e-th subdomain. The parameter w j is the integration weight of the point x′
k .

Present discretization becomes identical to that given in [Silling and Askari 2005] when the number of

collocation points is set to 1.

In this study, volume integration is performed using hexahedron-shaped subdomains utilizing eight

integration points. This type of discretization leads to a large number of collocation points in some

problems. Therefore, parallel processing using OpenMP is also employed to reduce computation time

while utilizing uniform grids as arrays of linked lists as described in [Kilic 2008]. A binary space

Figure 8. Discretization of the domain of interest.
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Figure 9. Surface effects in the domain of interest.

decomposition introduced in [Berger and Bokhari 1987; Kilic 2008] is used to obtain good load bal-

ancing on each processor. The decomposition involves division of the space into two subunits, with an

approximately equal number of collocation points. Each subunit is then continuously divided into two

subunits until the number of subunits and processors become equal. Division is performed only on the

x-, y-, or z-plane, with the constraint of minimum division surface to reduce the communication cost

among the processors.

Also, the response function given by (2) is derived with the assumption that the point located at

x is in an infinite domain consisting of a single material. However, this assumption becomes invalid

when the material point is close to free surfaces or material interfaces (Figure 9). Therefore, there is a

reduction in material stiffness near the free surfaces. On the other hand, stiffness near the interface can

exhibit an increase or reduction, depending upon how dissimilar material regions interact across their

interface. Since free surfaces and material interfaces vary from one problem to another, it is impractical

to resolve this issue analytically. Therefore, the stiffness reduction or increase due to surfaces is corrected

numerically as explained in Appendix A.

The problems considered herein necessitate the determination of steady-state and quasistatic solutions.

However, the system of ordinary nonlinear differential equations given in (9) includes dynamic terms that

need to be eliminated. Thus, the adaptive dynamic relaxation method given in [Kilic 2008] is utilized to

obtain a steady-state solution. The dynamic relaxation method is based on the fact that the static solution

is the steady-state part of the transient response of the solution. An artificial damping is introduced to

guide the solution into the steady-state regime as fast as possible. Although this method is successfully

utilized by Silling and his coworkers in the Emu code, it is not always possible to determine the most

effective damping coefficient. Alternate to the numerical (artificial) damping, Underwood [1983] intro-

duced an adaptive dynamic relaxation method in which the damping coefficient is changed adaptively

in each time step. This method was recently extended in [Kilic 2008] for the solution of peridynamic

equations in the present numerical method in which (9) is modified at time step n as

Ün(X, tn) + cU̇n(X, tn) = 3−1 Fn(Un, U ′n, X, X ′), (10)
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in which c is the damping coefficient and 3 is the fictitious diagonal density matrix that is expressed in

[Kilic 2008] as

λi i ≥
1

4
1t2 max

( N∑

e=1

Ne∑

j=1

abs(ξ)w j

18k

πl4
e−(|ξ |/ l)2 1

|ξ |2

)
, (11)

where max is the function that returns the value of the maximum component of the three-dimensional

vector in its argument. Hence, the densities associated with a particular material point are the same

in every direction of the coordinate frame, making them frame invariant. The function abs(·) returns

a three-dimensional vector whose components are the absolute values of the three components of the

vector in its argument. The vectors X and U represent positions and displacements at the collocation

points, respectively, and they can be expressed as

XT = {x, x2, . . . , xM}, (12)

U T = {u(x1, t), u(x2, t), . . . , u(xM , t)}, (13)

where M is the total number of collocation points. Finally, the vector F is the summation of internal and

external forces, and its i-th component can be written as

Fi = b(xi , t) +

N∑

e=1

Ne∑

j=1

w j f (u(xi , t), u(x′
k, t), xi , x′

k, t)). (14)

3.1. Finite element equations. The theory for the development of the finite element method is well

established [Belytschko 1983; Bathe 1982; Zienkiewicz 1977]; however, this section briefly describes

the assembly of finite element equations and the solution of the assembled equations using the adaptive

dynamic relaxation technique. The finite element formulation utilized in this study can be found in

most finite element textbooks such as [Zienkiewicz 1977]. Hence, details will not be given here but the

interested reader can refer to [Kilic 2008]. The present study utilizes direct assembly of finite element

equations without constructing the global stiffness matrix. Hence, the element stiffness vector can be

expressed as
f (e) = k(e)u(e), (15)

in which k(e) is the element stiffness matrix described in [Zienkiewicz 1977] and u(e) is the vector

representing the nodal displacements of the e-th element. The element stiffness vector, f (e), includes

internal forces resulting from the deformation of the element. They can be assembled into a global array

of internal forces by using the convention of [Belytschko 1983] as

f int = A
e

f (e), (16)

where A is the assembly operator. These operations are strictly performed as additions. Finally, the

equations of motion for adaptive dynamic relaxation can be written as

ün + cn u̇n = M−1 Fn, (17)

in which M is the mass matrix, c is the damping coefficient, and n indicates the n-th time increment.

The force vector F can be expressed as

Fn = f ext(tn) − f int(un) (18)
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where t is time and f ext is the vector of external forces. As suggested in [Underwood 1983], components

of the diagonal mass matrix can be effectively computed using

mi i ≥
1

4
1t2

∑

j

|Ki j |, (19)

where Ki j is the global stiffness matrix. However, the global stiffness matrix necessitates the use of a large

amount of computer memory, which is herein avoided by constructing the mass matrix approximately as

M = I m̃, (20)

in which I is the identity matrix. The mass vector, m̃, is constructed as

m̃ = A
e

m̂(e), (21)

where the components of vector m̂(e) can be written as

m̂
(e)
i =

8∑

j=1

∣∣k(e)
i j

∣∣, (22)

in which k
(e)
i j indicates the components of the element stiffness matrix given in [Zienkiewicz 1977]. This

approach for the construction of a mass matrix is not as effective as that given in (19). However, it

is not intended in this study to present a numerically efficient adaptive dynamic relaxation method for

the finite element method; the choice of this method is solely based on simplicity of the numerical

implementation. The components of the mass matrix given in (20) always satisfy the inequality given in

(19) because the construction of the global matrix involves addition of positive and negative values and

the present approach uses summation of their absolute values.

3.2. Coupling of peridynamic theory and finite element method. In order to take full advantage of the

peridynamic theory and finite element method, the domain of interest is partitioned into two regions.

These regions are modeled using the finite element method and the peridynamic theory, as shown in

Figure 10a. In order to reduce the peridynamic equation of motion to its discrete form, the peridynamic

region is discretized into subdomains (Figure 10b), and Gaussian integration points are placed into each

subdomain (Figure 10b). As explained in [Kilic 2008], subdomains with different shapes can be utilized

during the discretizations. However, this study only considers subdomains with a hexahedral shape and

volume integration is performed by employing eight integration points.

According to the response function given in (2), a material point interacts with all other points within

the problem domain. However, it is computationally expensive to include the interaction of a large

number of collocation points. As shown in Figure 2, the magnitude of the response function fortunately

decreases rapidly when the distance between the points increases. Thus, a cutoff radius, rc, is introduced

to reduce the computation time by limiting the interaction range (described in detail in [Kilic 2008]).

However, the internal length, l, cannot be chosen arbitrarily small since the accuracy of volume integrals

in (1) is dependent on the variation of the response function within the subdomains. Kilic [2008] numeri-

cally investigated the effect of the internal length and cutoff radius on the numerical predictions in detail.
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Figure 10. Schematic for coupling of the finite element method and peridynamics. Left:

finite element (FEA) and peridynamic regions. Right: discretization.

Based on his findings, the internal length, l, is chosen to be approximately the maximum edge length of

the hexahedral subdomains and the cutoff radius, rc, is then set to 2.5 times the internal length, l.

The finite element region is also discretized to construct (17) by using hexahedral elements (Figure 10,

right). In the region of overlap shown in Figure 10, left, both the peridynamic and the finite element

equations are utilized. to achieve the appropriate coupling, the discrete peridynamic equation of motion

is rewritten as {
Ün

p

Ün
p

}
+ cn

{
U̇n

p

U̇n
p

}
=

[
3−1 0

0 3−1

] {
Fn

p

Fn
p

}
, (23)

where U is a vector that contains displacements at the collocation points, subscript p denotes the variables

associated with the peridynamic region, and single and double underscores denote the variables located

outside and inside the overlap region, respectively. The finite element equations are also rewritten as
{

Ün
f

Ün
f

}
+ cn

{
U̇n

f

U̇n
f

}
=

[
M−1 0

0 M−1

] {
Fn

f

Fn
f

}
, (24)

in which subscript f denotes the variables associated with the finite element region. The solution vector

U̇ p, representing displacements at the collocation points, is expressed in terms of the solution vector U̇n
f ,

denoting nodal displacements of finite element interpolation functions, as

up =

8∑

i=1

Ni u
(e)
i (25)

where Ni are the shape functions given in [Zienkiewicz 1977]. The vector u
(e)
i is the i-th nodal dis-

placements of the e-th element and it is extracted from the global solution vector, U f . The vector up

represents displacements of a collocation point located inside the e-th element. Since vector U p can be

computed using (25), the force density vector Fn
p can then be computed by utilizing (14). Furthermore,

the body force densities at the collocation points are lumped into the nodes as

f
(e)
I =

∫

Ve

dVe NI ρ g (26)
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in which ρ is the mass density of the e-th element, g is the body force density, and I indicates the I -th

node of the e-th element. Hence, f
(e)
i indicates the external force acting on the I -th node. The body

force density is only known at the collocation points. Fortunately, the collocation points are placed by

using a Gaussian integration technique. This allows the numerical evaluation of (26) by using collocation

points as integration points for the e-th element. Furthermore, Fn
f is constructed by assembling the nodal

forces given by (26). Finally, the coupled system of equations can be expressed as

Ü
˜

n + cnU̇
˜

n = M
˜

−1 F
˜

n, (27)

in which

U̇
˜

= {U̇n
p U̇n

f U̇n
f }

T and Ü
˜

= {Ün
p Ün

f Ün
f }

T (28)

are the first and second time derivatives of the displacements, the matrix M
˜

is given by

M
˜

=




3 0 0

0 M 0

0 0 M


 , (29)

and the vector F
˜

by

F
˜

n = {Fn
p Fn

f Fn
f }

T . (30)

As suggested in [Underwood 1983], the damping coefficient cn can be written as

cn = 2

√(
(U
˜

n)T 1K nU
˜

n
) / (

(U
˜

n)T U
˜

n
)

(31)

in which 1K n is the diagonal “local” stiffness matrix expressed as

1K n
ii = −

(
F
˜

n
i /m

˜i i − F
˜

n−1
i /m

˜i i

)/
U̇

n−1/2
i (32)

(see [Underwood 1983]). The time integration is performed using central-difference explicit integration,

with a time step size of unity; explicitly,

U̇
˜

n+1/2 =
(
(2 − cn)U̇˜

n−1/2 + 2M
˜

−1 F
˜

n
)/

(2 + cn), (33)

U
˜

n+1 = U
˜

n + U̇
˜

n+1/2. (34)

However, the integration algorithm given by (33) and (34) cannot be used to start the integration due to

an unknown velocity field at t−1/2. Integration can be started by assuming that U
˜

0 6= 0 and U̇
˜

0 = 0:

U̇
˜

1/2 = 1
2

M
˜

−1 F
˜

1/2. (35)

4. Numerical results

The present approach is demonstrated by considering a bar subjected to tension and a plate with a circular

cutout. The bar under tension is considered to compare the displacements of the present coupled analysis,

the peridynamic theory, and finite element methods while not allowing for failure to occur. The damage

prediction capability of the coupled analysis is then illustrated by considering a plate with a circular

cutout. Although the numerical values of the material properties are representative of engineering ma-

terials, they are not specific to a particular material. Also, the effects of the peridynamic parameters
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Figure 11. Dimensions and discretization of the bar.

and discretization on the convergence of the results are established by considering a rectangular plate

subjected to uniaxial tension. The details of this convergence study are given in Appendix B.

4.1. Bar subjected to tension. Figure 11 describes the geometry of a bar having square cross section.

The material is isotropic with Young’s modulus and Poisson’s ratio of E = 107 psi and ν = 0.25, respec-

tively. The bar is divided into two regions, which are modeled by using the finite element method and

peridynamic theory. Furthermore, the lengths of these regions are specified to be l1 = 5 in and l2 = 5 in

for the finite element and peridynamic regions, respectively. The bar has a square cross section with

an edge length of t = 0.4 in. Moreover, the bar is free of any displacement constraints and subjected

to uniaxial tension of 1600 lb. Because of the nonlocal nature of peridynamics, the point and surface

loads cannot be applied directly. Hence, the body force density term in (1) is utilized to act as a uniaxial

tension. Rectangular volume at the end of the bar is then subjected to the uniform body force density

of 2 × 105 lb/in3, and its length is chosen to be h = 0.05 in. In the case of a finite element region, the

tensile load is applied as uniform point forces on the nodes located at the surface of the bar.

The three-dimensional model is constructed to obtain a steady-state displacement field in the bar under

uniform tension. Both finite element and peridynamic regions are discretized using cubic subdomains

with edge lengths of 1 = 0.05 in; see Figure 11. In order to obtain the discrete form of the peridynamic

equation of motion, eight integration points are then placed into subdomains of the peridynamic region.

The parameter defining the internal length, l, and the cutoff radius, rc, are chosen to be 0.05 in and

0.125 in, respectively.

In order to validate the present results, the bar is also modeled using only the peridynamic theory

and the finite element method. In the case of the finite element model, the SOLID45 brick element of

ANSYS is utilized, and the uniaxial tension is applied as surface tractions at the end surfaces of the bar.

The comparison of the displacements among the present coupled analysis, the peridynamic theory, and

the finite element method is shown in Figure 12. There is approximately a 5% difference between the

models using only the peridynamic theory and finite element method. Furthermore, the peridynamic

theory cannot capture Poisson’s ratio exactly as explained in [Kilic 2008]. Hence, a small jump is

observed at the intersection of the peridynamic and finite element regions.

4.2. Plate with a circular cutout. Figure 13 describes the geometry of the plate with a circular cutout.

The length and width of the plate are specified as a = 9 in and b = 3 in respectively. The thickness of

the plate has a value of t = 0.2 in and the circular cutout has a radius of r = 0.4 in. The plate is isotropic
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Figure 12. Comparison of horizontal displacements of the bar.

Figure 13. Dimensions of the plate with a circular cutout.

with Young’s modulus and Poisson’s ratio of E = 107 psi and µ = 0.25, respectively. Furthermore, the

critical stretch, s0, is assumed to be 0.0025. The plate is partitioned into five regions, as shown in the

figure. The finite element method is employed to model the regions, which are labeled 1; the length, l f ,

of these regions is specified to be 2.5 in. The regions labeled as 2 and 3 in Figure 10 are modeled by

employing the peridynamic theory; the lengths of these regions are chosen to be lb = 0.5 in and lp = 3 in,

respectively. Because of the expected errors near the peridynamic and finite element boundaries, damage

is not allowed in region 2 in order to avoid premature failures near these boundaries.

The three-dimensional model is constructed by discretizing the domain into subdomains, as shown

in Figure 14. Subdomains are hexahedron shaped with edge lengths of approximately 0.05 in. Hence,

the internal length, l, and the cutoff radius, rc, are chosen to be 0.05 in and 0.125 in, respectively. An

integration scheme using eight collocation (integration) points is employed for the peridynamic regions.
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Figure 14. Discretization of the plate with a circular cutout.

The validity of the peridynamic predictions is first established in the absence of failure by comparing

the steady-state displacements against the peridynamic theory and the finite element method using AN-

SYS, a commercially available program. In the case of no failure, the plate is subjected to a uniaxial

tension of 6000 lb. Also, the plate is free of any displacement constraints. Both the peridynamic and

finite element models are constructed by utilizing the same discretization as that of the peridynamic

model shown in Figure 14. In the case of the peridynamic model, the tensile load is applied through

a uniform body force over the volumes having the length 0.05 in. Hence, the value of the body force

corresponds to 2.0 × 105 lb/in3. In the case of the finite element model, the SOLID45 brick elements of

ANSYS are utilized to approximate the displacements. The uniaxial tension is applied through surface

tractions of 1.0 × 104 lb/in2. In the case of coupled analysis, the tensile load is applied by using uniform

point forces at the nodes located at x = ±a/2 and their values are determined by dividing applied tension

by the number of nodes located at x = ±a/2.

Figure 15 shows the horizontal and vertical displacements along the bottom line of the plate. The

comparison of horizontal displacements indicates a close agreement (Figure 15, left). Although there is

also good correlation of the vertical displacements obtained from the coupled analysis, the peridynamic

theory, and the finite element method (Figure 15, right), the deviation is more significant for vertical

displacements than for horizontal displacements. The vertical displacements from the coupled analysis

and peridynamic methods are in agreement near the cutout since both methods use the peridynamic

theory in this region. However, the finite element results display a larger deviation because the Poisson’s

ratio of 0.25 is not exactly satisfied for thin plates, as explained in [Kilic 2008]. For the same reason, a

small jump is observed near the boundary between regions 1 and 2.

The plate with a circular cutout is further investigated for failure simulation. Most experiments in-

volving failure are performed under quasistatic conditions. Therefore, it may not be practical to solve

quasistatic problems using standard explicit time integrators because explicit time integrations often

require very small time steps, limiting the total time of the simulation. Therefore, the adaptive dynamic

relaxation is used to simulate failure.
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Figure 15. Horizontal (left) and vertical (right) displacements along the bottom line.

As explained in [Kilic 2008], the loading rate might significantly affect the failure patterns since the

dynamic problems locally reach higher displacement gradients than under quasistatic conditions because

of the traveling elastic waves.

In order to circumvent premature failure due to high local displacement gradients, the tensile load is

gradually applied by incrementing the displacement at each iteration of the adaptive dynamic relaxation

with a constant value of 3.125 × 10−8 in. This is a small enough value that does not create high local

displacement gradients. As evidenced with this type of loading, the plate is subjected to constant dis-

placement, and that they are applied on nodes located at x = ±a/2. Furthermore, the resulting damage

pattern in the peridynamic region is illustrated in Figure 16 as a contour plot of local damage given by

(5). As expected, the crack initiates at the cutout, near which high displacement gradients exist (Figure

16, top left), and then propagates toward the edges of the plate (top right), until ultimate failure of the

plate (bottom). The local damage index in Figure 14 is computed by (5). The local damage being 0.5

is fairly good indicator of material separation. In Figure 16, the local damage value of 0.38 indicates

extensive damage not necessarily material separation.

5. Conclusions

Coupling between the peridynamic theory and finite element method was presented in order to take

advantage of both methods. Since the finite element is numerically more efficient than the peridynamic

theory, the regions without failure were simulated using the finite element method. Furthermore, the

peridynamic theory was utilized for the regions where material failure was expected. The coupling

was introduced by defining an overlap region. Both the peridynamic and finite element equations were

used within this region. Furthermore, the displacement and velocity fields were determined using finite

element equations in the overlap region. These fields were then utilized to compute the body force

densities using the peridynamic theory. Finally, these body force densities served as external forces for

finite elements in the overlap region.
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Figure 16. Contour plot of local damage. Clockwise from top left: crack initiation,

crack propagation, and ultimate failure. The color scale is the same for each plot.

Material points near free surfaces and interfaces experience increases or decreases in material stiffness

since the response function is obtained with the assumption that a point and its surrounding points have

the same material properties. Thus, surface corrections are introduced through application of uniform

extensions. It is also showed that the Poisson’s ratio is not 1
4

for problems having a thickness less than

the cutoff radius. The results showed that the Poisson’s ratio is close to 1
3

for very thin plates and it

approaches 1
4

with increasing plate thickness. However, the surface correction method uses a Poisson’s

ratio of 1
4

regardless of the plate thickness, which resulted in a numerical error for thin plates. The effects

of internal length and cutoff radius were also investigated. It was found that internal length has a lower

bound due to the discretization. Results indicate that the smallest internal length should be in the range

of the edge length of the subdomains for integration schemes using eight integration points. The cutoff

radius needs to be larger than 2.5 times the internal length for accurate volume integration.

The present approach has been validated by considering a bar with a square cross section and a rectan-

gular plate with a circular cutout, both under tension. In the case of the bar, steady-state displacements

were determined for the coupled problem and compared against predictions of the peridynamic theory

and finite element method. Comparisons indicate very good agreement but a small displacement jump

was observed at the intersection of the peridynamic and finite element regions because the peridynamic
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theory does not exactly satisfy its theoretical Poisson’s ratio of 0.25. In the case of the plate with the

cutout, the steady-state results show trends similar to the bar problem when compared against predictions

of the peridynamics and finite element methods. The failure simulation was also performed for a plate

with a cutout. As expected, two cracks initiated at the cutout and they propagated with increasing tensile

load until ultimate failure of the plate.

Appendix A

The correction factor is determined based on the application of uniaxial tensile loadings to the actual

finite domain of interest and the infinite domain. As illustrated in Figure A1, the correction procedure

first involves the application of uniaxial tension in the x-direction, and the resulting displacement field

can be expressed at the point x as

uT (x) =

{
∂u∗

∂x
x −ν

∂u∗

∂x
y −ν

∂u∗

∂x
z

}T

, (A1)

in which ∂u∗/∂x is the applied constant displacement gradient. The Poisson’s ratio ν = 0.25 because the

response function given in (2) is restricted to a pairwise interaction.

Based on numerical experimentation with varying values of displacement gradients, there exists no

significant effect on the surface corrections. Thus, the displacement gradient, ∂u∗/∂x is assigned a value

of 0.001. The contractions in the y- and z-directions are ν times the applied displacement gradient,

∂u∗/∂x .

The force density in the x-direction, gx(x), due to the applied displacement gradient given in (A1) is

expressed as

gx(x) =

( ∫

�+

dV ′ f (u′, u, x′, x) −

∫

�−

dV ′ f (u′, u, x′, x)

)

x

, (A2)

Figure A1. Schematic showing the application of uniaxial tension in the x-direction.
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where �+ and �− are the volumes in which integration is performed and are defined to be the right and

left sides of the x-plane (Figure A1). The subscript x indicates the x- component of the resulting volume

integration. For a point, x embedded in a single material, the value of gx(x) will become 2.

Moreover, by applying the displacement gradient in the y-direction, the force density, gy(x), can

written as

gy(x) =

( ∫

�+

dV ′ f (u′, u, x′, x) −

∫

�−

dV ′ f (u′, u, x′, x)

)

y

, (A3)

where �+ and �− are the volumes in which integration is performed; they are defined to be the upper

and lower sides of the y-plane (Figure A1). The force densities, gx(x) and gy(x), are clearly different

due to dissimilar volumes of integrations. Hence, the domain under uniaxial tension exhibits directional

dependence. In other words, depending on the direction of uniaxial tension, the points closer to the free

surfaces or interfaces experience different force densities, which is not physically acceptable. Therefore,

the uniaxial tension is also applied in the y- and z-directions, which leads to three different responses at

each integration point and can be expressed in vector form

gT (x) =
{
gx gy gz

}
, (A4)

in which x , y, and z represent the directions of applied uniaxial tension.

It is assumed that there is a fictitious domain composed of a single material (Figure A2). The material

in this domain is assumed to have the same properties as those given for point x of the actual domain

of interest (Figure A1). As illustrated in Figure A2, the point located at xT = {0, 0, 0} is surrounded

by other points so that there is no surface within the cutoff radius, rc. Hence, this point does not show

any directional dependence, and it is sufficient to apply uniaxial tension only in one direction. In order

to compute the force density due to uniaxial tension given in (A1), the fictitious domain is discretized

using cubic subdomains (Figure A2). The edge length of the cube, 1∞, is typically chosen to be one

fiftieth of the cutoff radius, rc. Furthermore, the displacement field is assumed to be constant within each

Figure A2. Discretization of infinite domain with cubes.
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subdomain. Under these considerations, the force density in this domain can be approximated as,

g∞ = 2

∞∑

i=0

∞∑

j=0

∞∑

k=0

nx . f (u = 0, u′, x′, x = 0, t)13
∞, (A5)

in which nx is the unit vector in the x-direction. The position vector x′ is defined as

x′ = 1∞

{
i + 1

2
j + 1

2
k + 1

2

}T
= {x ′ y′ z′}T . (A6)

Finally, the displacement vector u′ can be written as

u′ =

{
∂u∗

∂x
x ′ − ν

∂u∗

∂x
y′ − ν

∂u∗

∂x
z′

}T

. (A7)

If the material point is surrounded by material points of the same material and there is no interface

or free surfaces within the cutoff radius, which is shown as point 1 in Figure 9, each component of the

vector given in (A4) should be equal to the response given in (A5). However, this does not occur due

to the approximations in the computation of the integral given in (1). Therefore, the present approach

also attempts to correct not only the material stiffness variations due to surface effects but also the

approximations in the numerical integration. Therefore, the correction is applied to all collocation points

regardless of their position.

As illustrated in Figure A3, the scaling constant gi j between the pair of material points located at xi

and x j is calculated by assuming an ellipsoidal variation as

gi j =
(
(nx/gi jcx)

2 + (ny/gi jcy)
2 + (nz/gi jcz)

2
)−1/2

, (A8)

in which nx , ny, nz are the components of the normal vector, n in the undeformed configuration between

the pair of material point; it is defined as

n = ζ/|ζ | = {nx , ny, nz}
T . (A9)

Figure A3. Graphical representation of scaling coefficient.
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The average coefficient vector gi jc can be written as

gi jc = (gci + gcj )/2, (A10)

in which

gT
c (x) = {gxc, gyc, gzc} = {g∞/gxc, g∞/gyc, g∞/gzc}. (A11)

After considering the surface effects, the discrete form of the equations of motion given in (9) is

corrected as

ρ ü(xi , t) = b(xi , t) +

N∑

e=1

Ne∑

j=1

gi jw j f
(
u(xi , t), u(x′

k, t), xi , x′
k, t

)
. (A12)

According to (A10), the vector gi jc is computed by taking the average of the coefficients given in (A11)

for two interacting material points. As a result, the surface correction given in (A8) is underestimated

for the material point with the larger scaling coefficient and overestimated for the material point with the

smaller scaling coefficient. Hence, a single iteration is generally not sufficient to determine the scaling

coefficients. Therefore, the scaling coefficients in (A10) are computed iteratively. Each component

given in (A10) is set to unity at the beginning of the first iteration step, and then the method outlined

above is utilized to determine the coefficients given in (A10). Then, the present method is repeated n

times, during which the results of the previous iteration are used as a scaling coefficient. After numerical

investigation, it was found that the change in the coefficients in (A10) is insignificant after approximately

twenty iterations. Hence, the number of iterations, n, is taken to be twenty in this study. Although this

method enables the correction to material behavior due to the surface effects and approximations during

the numerical integration, it is still not exact.

Appendix B

The effects of the peridynamic parameters and discretization are established by considering a rectangular

plate (Figure B1). The length and width of the plate are specified as a = 10 in and b = 4 in, respectively.

The plate is free of any displacement constraints and is subjected to uniaxial tension in the x-direction.

Figure B1. Dimensions and discretization of the plate.
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However, point and surface loads cannot be applied directly because the peridynamic equation of motion

involves a volume integral that gives rise to zero for point and surface loads. Thus, the uniaxial tension is

applied as uniform body forces over the volumes, �b, along the vertical edges having a length, l, of 0.08 in

(Figure B1). The longitudinal component of the applied body force is specified as bx = 234375.0 lb/in3.

Hence, the applied tension, F , can be computed in terms of the plate dimensions as F = lbtbx .

The material of the plate is isotropic with Young’s modulus and Poisson’s ratio of E = 107 psi and

ν = 0.25, respectively. The three-dimensional peridynamic model is constructed by discretization of the

plate using cubic subdomains (Figure B1). In each subdomain, eight integration points are utilized to

reduce the peridynamic equation of motion to its discrete form. The steady-state solutions are obtained

by using the adaptive dynamic relaxation.

Within the realm of molecular dynamics, it is well known that the Poisson’s ratio is restricted to 1
4

in three dimensions and 1
3

in two dimensions if atomic interactions are pairwise and do not exhibit any

directional dependence. Gerstle et al. [2005] showed that the same restrictions apply to peridynamics

equations under the same conditions. Hence, the thickness of the plate affects the observed Poisson’s

ratio. Figure B2 shows the variation of the Poisson’s ratio with increasing plate thickness. The Poisson’s

ratio is calculated using steady-state displacements at the point located at x0, which can be expressed as

xT
0 = {x0 = 2.5, y0 = 1.0, z0 = 0.0} (B1)

and the displacement field at x0 can be written as

uT
0 = {ux0, u y0, uz0}. (B2)

Hence, the Poisson’s ratio is approximated by using initial positions and displacements as

ν = −
u y0/y0

ux0/x0

. (B3)

Figure B2. Effect of internal length on Poisson’s ratio with increasing plate thickness.
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It is apparent in Figure B2 that the Poisson’s ratio approaches its theoretical value of 1
4

with increasing

plate thickness. Conversely, the Poisson’s ratio approaches 1
3

with decreasing plate thickness. The

internal length also affects the Poisson’s ratio substantially (Figure B2). The number of interactions for

points shown in Figure 9 can be determined by finding the volume of points whose distance to point of

interest is less than the cutoff radius. Hence, the number of interactions for a point located at x can be

computed as

χ(x) =

∫

|x′−x|<rc

dVx′ . (B4)

According to (B4), a point can have the highest number of interactions if it is completely surrounded

by other points within the range of the cutoff radius. Hence, the highest number of interactions is the

volume of a sphere, which can be expressed as

χmax = 4
3
πr3

c . (B5)

For thin structures whose thickness is less than the cutoff radius, χmax is never reached. Furthermore,

the ratio of the number of interactions to χmax reduces with increasing internal length due to its propor-

tionality with the cutoff radius. Therefore, the plate behaves more like a two-dimensional medium with

increasing internal length since most interactions are in the x-y plane. As a result, the Poisson’s ratio

increases with increasing internal length, especially for thin plates (Figure B2).

It is also expected that the plate thickness affects the displacement fields because the surface correction

is based on the assumption that the Poisson’s ratio is 1
4
. However, the Poisson’s ratio is not necessarily

1
4

for thin structures (Figure B2). Thus, longitudinal displacements deviate from the results of the finite

element analysis with decreasing plate thickness (Figure B3, left). The finite element results are obtained

using SOLID45 brick elements of ANSYS. The three-dimensional finite element mesh is constructed

0.08 in

0.24 in

0.40 in

0.56 in

1.04 in

ANSYS

ANSYS

1.04 in

0.56 in

0.40 in

0.24 in

0.08 in

Figure B3. Effect of layer thickness on displacements in the x-direction (left) and the

y-direction (right). In each graph, the curves are stacked in the same order as in the

legend.
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Figure B4. Effect of cutoff radius on displacements in the x-direction (left) and the

y-direction (right).

Figure B5. Effect of internal length on displacements in the x-direction (left) and the

y-direction (right).

using the discretization shown in Figure B1, and the Poisson’s ratio is specified as 1
4
. The differences

in results are more pronounced for displacements in the transverse direction (Figure B3, right) because

they are influenced by both the surface correction and the Poisson’s ratio. However, the results converge

to that of the finite element method with increasing plate thickness (Figure B3).

Determination of the internal length and cutoff radius for a specific problem is another source of

uncertainty or approximation. The computational resources typically limit the number of subdomains.
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This limitation might be due to the available computational space and/or memory. However, the primary

limitation on the number of subdomains is the total computational time, which depends on the number

of time steps. The computational time can be minimized by using the smallest possible cutoff radius for

a given discretization. On the contrary, the accuracy of numerical integration provides a lower bound for

the cutoff radius. Here, in order to quantify the effect of the cutoff radius on the numerical predictions,

the internal length is specified as 0.08 in and the cutoff radius is varied. Figure B4 shows the change

in displacements at the point located at {2.5 1.0 0.0}T with an increasing cutoff radius. In this case,

the plate thickness is defined as 0.08 in. The volume integral given in (1) is performed over the domain

(Figure B1). However, the cutoff radius is introduced to reduce the computational time by taking advan-

tage of the rapidly decaying exponential term in the response function. For a small cutoff radius, the

volume integration is not performed accurately because the exponential term is still significant beyond

the cutoff radius. Therefore, some of the stiffness of the material is lost, resulting in high longitudinal

displacements (Figure B4, left). However, the longitudinal displacement converges with increasing cutoff

radius (Figure B4). When the cutoff radius is larger than 0.2 in, no significant difference is observed in

the displacement results. The cutoff radius of 0.2 is 2.5 times the internal length. Therefore, the present

study utilizes a cutoff radius that is 2.5 times the internal length for the remaining computations.

After determining the cutoff radius in terms of the internal length, the internal length is also varied for

a plate with a thickness of 0.8 in. Figure B5 shows the variation of the displacements at the point located

at {2.5 1.0 0.0}T with an increasing internal length. As expected, the numerical integration is not

accurate for a small internal length because the exponential term decays very fast. A material point is

mostly influenced by the nearest points, for which the exponential term is very small. For small internal

length, there is also a loss in stiffness of the material since most of the stiffness is localized near the

material point that is not captured by the numerical integration correctly. However, the displacements

converge with increasing internal length. Results do not significantly change for internal lengths larger

than 0.08 in. This specific value is the size of the cubic subdomain in the discretization and the present

study utilizes the highest edge length of the subdomains as the internal length.
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