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Coupling of shear flow and pressure gradient 
instabilities 

I. ¾oronkov, R. R•nkin, P. Frycz, ¾. T. Tikhonchuk, • •nd J. C. S•mson 
Department of Physics, University of Alberta, Edmonton, Alberta, Canada 

Abstract. The nonlinear dynamics of a shear flow and its subsequent evolution 
in the equatorial plane of the inner pl•sm• sheet is studied. A linear •n•lysis of 
the ideal MHD equations reveals • hybrid vortex instability which •ppe•rs because 
of the coupling of Kelvin-Helmholtz (KH) •nd R•yleigh-T•ylor instabilities. The 
hybrid vortex mode grows f•ster th•n • KH mode, extracts •mbient potential 
energy, •nd le•ds to vortex cells that h•ve • l•rger spatial extent th•n • simple 
KH vortex. In the nonlinear stage, vortices become surge-like •nd m•y destroy the 
she•r flow region. The relevance of this model to vortex generation •nd •uror•l •rc 
intensifications •t the inner edge of the pl•sm• sheet is discussed. 

1. Introduction 

Many observations of discrete auroral arcs have shown 
that they are often associated with shear flow and large- 

scale (hundreds of kilometers) vortex structures [$teen 
and Coilis, 1988; Elphinstone et al., 1995; Samson et al., 
1996]. The evening and premidnight sector seems to be 
the most active region [Kidd and Rostoker, 1991; Mur- 
phree and Johnson, 1996; Samson et al., 1996]. Some 
authors have suggested that vortex formation in auro- 
ral arcs might be caused by shear flows and Kelvin- 
Helmholtz (KH) instabilities in the auroral arc [Steen 
and Uollis, 1988; Kidd and Rostoker, 1991; Rankin et 

al., 1993a]. Nevertheless, we should note that KH in- 
stabilities alone do not lead to increased kinetic energy 

in the plasma flow and cannot explain the very large 
and active auroral vortices that are sometimes seen. A 

mechanism is needed which will allow extraction of the 

potential energy stored in regions of the magnetosphere, 
for example, the growth phase magnetosphere, in order 
to allow the explosive (tens of seconds) growth of the 
kinetic energy associated with plasma flows. A clue 
to what this mechanism is might be found in the fact 
that these active electron arcs are often seen within 

regions of strong H/3 emissions and energetic proton 
(tens of keV) precipitation at the equatorward edge 
of the evening sector auroral region [Samson et al., 
1992, 1996]. These H/3 emissions are on field lines 
which thread the inner edge of the plasma sheet in re- 
gions where there are strong earthward pressure gradi- 
ents [Kistler et al., 1992], particularly during substorm 
growth phases. Owing to the energetic ion trajecto- 
ries, the strongest pressure gradients are found in the 
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evening sector and before local midnight [Lyons and 
Samson, 1992]. 

The strong earthward pressure gradients suggest that 
ballooning or Rayleigh-Taylor (RT) modes might play 
a role in the extraction of the potential energy stored in 
the near-Earth magnetotail. Nevertheless, most analy- 
ses have shown that this region is ballooning stable or 

only slightly unstable [Ohtani and Tamao, 1993]. Fur- 
thermore, a simple ballooning instability does not take 
into account the presence of the auroral arc. The pres- 
ence of both shear flow in the auroral arc and strong 
pressure gradients in the equatorial magnetosphere sug- 
gests that a coupling of shear flow instabilities with a 
pressure gradient might be a possible mechanism for the 
formation of large-scale vortices. Vi•as and Madden 
[1986] have already suggested that these instabilities 
might produce some of the ultralow frequency (ULF) 
magnetohydrodynamic waves seen in the Earth's mag- 
netosphere. 

It is well known that shear flows can stabilize balloon- 

ing modes with large wavenumbers [Vi•as and Mad- 
den, 1986; Tajima et al., 1991], in our case, large 
azimuthal wavenumbers. Nevertheless, the evolution 
of lower wavenumber modes might allow substantial 
growth of vortex structures and a rapid enhancement 
of the plasma kinetic energy. While it is not obvious 
that KH modes have flows and structures which allow 

the driving of hybrid shear flow ballooning modes, we 
will show the results of linear analysis and nonlinear 
computer simulations which indicate that this coupling 
can occur. In the linear stage, the system develops a 
KH-like mode which generates a vortex. In the nonlin- 
ear stage, this vortex drives radial flows which disturb 

the initial equilibrium pressure. The pressure pertur- 
bations are unstable with respect to the RT instability 
and initiate cell-like flows which constructively add to 
the initial vortex. This nonlinear interaction results in 

the growth of a KH-RT hybrid mode, which starts from 

large amplitude with a spatial scale that is defined by 
the nonlinear KH-like vortex. It will be shown that the 
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hybrid instability can grow very rapidly in the equato- 
rial magnetosphere, with e-folding times of the order of 
tens of seconds. 

In this study, we consider a simplified nonlinear model 
of shear flow and hybrid instabilities in the equatorial 
plane of the plasma sheet. Our major objective is to 
show that hybrid modes can grow and to explain the 
coupling that exists between shear flow and pressure 
gradient modes. We assume that initially a constant 
earthward pressure gradient provides a tailward force 
which is in equilibrium with an earthward "effective 
gravitational force," which models the effect of mag- 
netic field line curvature. The computer model shows 

that the instability evolves as a two stage process. The 
initial vortex formation is very much like that found for 
the KH instability, though the vortex evolves somewhat 
more rapidly when pressure gradients are present. Fol- 
lowing this initial stage, the system can develop strong 
radial flows and "billows" like those found in Rayleigh- 

Taylor or ballooning modes. In this way, the shear flow 
instability can work as a trigger for a pressure gradient 
energy release. 

We compare the effect of unidirectional and bidirec- 
tional shear flows on the excitation and growth of con- 
vective cells. The former can provide stronger excita- 
tion but faster saturation, because of azimuthal motion 

of vortices. The latter can generate much larger immo- 
bile convective cells. 

2. Theoretical Model 

2.1. Basic Equations 

We adopt a magnetohydrodynamic (MHD) set of 
equations that will be used to model plasma in the equa- 
torial region of the inner edge of the plasma sheet: 

vx(VxB) -- 0, (1) 
0t 

ov 8' (B-v)B - o + o(V-v)V + V(e + - , 
(2) 

+ - 0, 

d P 

d--• (•-•) = 0. (4) 

In these equations, B is the magnetic field, V is the 
fluid velocity, p is the plasma density, P is the ther- 
modynamic pressure, and 7 is the adiabatic constant. 
We neglect the effect of magnetic field line tying in the 
ionosphere and concentrate on a local analysis of the 
instability in the equatorial region of the plasma sheet. 
We shall develop a model which assumes that magnetic 
field lines are stretched slightly tailward and consider 
the case where the radius of meridional magnetic field 
line curvature is much smaller than the radius of az- 

imuthal curvature. In this study, we choose a fluid 
treatment of the problem, neglecting kinetic or finite 
Lapmop radius effects, and have assumed that resistiv- 

ity is negligible. These limitations will be discussed in 
section 4. 

In the equatorial plane, there are two forces pro- 
duced by magnetic field line curvature that act on 
plasma in the radial direction: the particle inertial force 
pVz2/R directed tailward and the magnetic curvature 
force -Bz 2/4•rR acting earthward, where z is the direc- 
tion of the ambient magnetic field and R is the radius 
of the magnetic field line curvature in the meridional 
plane. For simplicity, in this study we assume that the 
difference between these two forces produces an effec- 

tive centripetal acceleration g in the earthward direc- 
tion, which is considered to be constant in the interac- 

tion region. This assumption allows us to incorporate 
a Cartesian geometry, in which the x axis is directed 
earthward, the y axis is in the dawn-dusk direction, 
and the z axis is in the ambient magnetic field direc- 
tion. This geometry is demonstrated in Figure 1. We 
suppose that the shear flow is directed in the azimuthal 

direction, V v -- Vo (x). In equilibrium, the plasma den- 
sity, pressure, magnetic field, and shear flow velocity are 
considered to be functions of x only. These assumptions 

are similar to tho•se made in other papers devoted to a 
local analysis of shear flow processes [Vi•as and Mad- 
den, 1986; Miura and Pritchett, 1982]. The dynamics 
of the shear flow in a plasma with a pressure gradient 
can then be described using the two-dimensional form 

of MHD in (1)-(4) with (2) replaced by 

Figure 1. The geometry of the inner plasma sheet' a shear flow is embedded in a region of 
pressure gradient and stretched magnetic field lines. 
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0V B 2 

+ + v(e + = 0, 

where Vñ stands for the gradient in the equatorial 
plane. 

Our equilibrium is defined as the balance between the 
effective acceleration and pressure force, 

O (Po 4- (6) p0 .a = 

We consider the stability of this equilibrium with re- 

spect to a small perturbation e i(ku-'"t). Assuming that 
the half width of the shear flow 5 is much smaller than 

the pressure gradient spatial scale L, one can reduce the 
system of MHD equations above to an equation for the 
radial component of the flow velocity V•, 

VJ' = k•V•,(1 - k(co - kVo) - (co - kVo)• )' (7) 
where 

W = gpo' g• 
t,o v] (s) 

is the analog of the Brunt-V/iis'gl/i•i frequency [Pedlosky, 

1987], o., - kVo•x)is a Doppler-shifted wave frequency , 
V• = Cs 2 + Va' is the square of the fast mode velocity, 
V0(x) is the shear flow velocity, and the prime symbol 
stands for the derivative with respect to x. Cs and Va 
are acoustic and Alfvdn velocities, respectively. 

2.2. Qualitative Analysis of the Hybrid Mode 

Instability 

Equation (7) describes velocity perturbations that 
arise due to a pressure gradient (W) and a shear flow 
(V0). Depending on the sign of W, the pressure gradi- 

ent may be stable (W > 0) or unstable (W < 0). In 
the case where the thermal pressure is a function of ra- 

dial distance, whereas the density and magnetic field 
are uniform in the equilibrium state, W is always neg- 
ative and therefore the RT growth rate 7}tT is positive: 

7RT • (-W) 1/2 • V.•/L for k • X/L, Where L 
is the scale of the pressure gradient. The KH insta- 

bility also has a positive growth rate, 7KH • Vol5, 
for wave numbers k ,.• 1/5. Now we demonstrate 
that these two processes interact in a constructive way, 

thereby increasing the growth rates of both instabili- 

ties and generating a new hybrid mode. This hybrid 

mode has both RT-cell and vortical (KH) components 
and allows for energy exchange between them. 

The physical processes responsible for the coupling 
can be described as follows (Figure 2). Let us assume 
that po(x) and g(x) are constant and that the gradient 
of plasma pressure is caused by a temperature gradient 
in the region where the shear flow exists. We also as- 

sume that 1/o/5 >> Vf/L, so that the KH instability 
has the faster growth rate. This means that the instabil- 
ity is initiated as a pure KH instability which generates 
a vortex as follows: SupPose that a small perturbation 
of the radial component of the velocity appears in the 

shear flow. This involves motion of plasma from a re- 

gion of higher velocity ryl to a region of lower velocity 
Vy2 (perpendicular to the ambient flow) and leads to a 
reduction of the velocity in they direction. However, if 

the plasma is incompressible, this reduction of Vy should 
be compensated by a gain in the x component in order 
to maintain the velocity divergence free. Therefore the 
flow deviates from its initial direction. This initiates a 

shear flow vortex shown in the center of Figure 2. Now 

let us assume that this KH vortex evolves in a plasma 

with a temperature gradient and therefore involves a 
transfer of plasma energy along stream lines. Let us 
consider the evolution of the plasma pressure and ef- 

fective gravity in association with plasma motion along 

y 
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Figure 2. A schematic showing the interaction of a shear flow vortex with a pressure gradient 
cell. A Gaussian-shaped shear flow is assumed. 
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flow streamlines. In Figure 2, the radial flux into cell A, 
initiated by the flow from region Vul to region Vu2 , is 
opposite the plasma pressure gradient and involves mo- 
tion of plasma from a hotter region to a colder region. 
The colder region allows the hotter region to expand, so 
that the plasma pressure grows in cell A. The increased 
pressure in cell A initiates a plasma flow in the y direc- 
tion, which contributes to the vortex component and is 
associated with plasma motion into cell B, providing for 
a growth of the density in the cell B. As a result, the 
radial component of the effective force pg - uP de- 
viates from its equilibrium value and is directed out of 
cell B along the KH vortex streamlines. The resulting 
acceleration provides additional growth of the KH vor- 
tex. Therefore the RT mode accelerates the shear flow 

vortex and provides a constructive interaction between 
these two modes. 

modes may develop in the system for k • 2/6, whereas 
the hybrid mode is suppressed. 

The formation of both interacting and noninteracting 
modes is further explained in Figure 4. In Figure 4, the 
solid arrows show the direction of plasma motion due 

to the KH vortex, whereas the empty arrows indicate 
plasma flow within RT cells. An initial perturbation, 
which develops into a vortex, is in phase with a large- 

scale (kx • I/L) RT cell in Figure 4a. In this case, 
the RT mode interacts with the vortex, and coupling 

occurs. The growth rate of this mode corresponds to 
the solid line in Figure 3. Now let us consider the RT 
mode with the radial wavenumber kx • 2/L. This 
RT mode is shown in Figure 4b and consists of two RT 
cells in the radial direction. It equally enhances (in the 
bottom part) and suppresses (in the top part) the shear 
flow vortex, providing a net contribution of zero. 

2.3. Linear Theory of the Hybrid Instability 

The solution to (7) was found numerically using a 
spectral method (see appendix). The growth rate for 
pure Kelvin-Helmholtz, hybrid (KI-I+RT), and nonin- 
teractive RT modes is shown in Figure 3. A Gaus- 
sian profile for the shear flow in the radial x direc- 
tion was chosen in the following form' Vu(x)/Vo = 
exp(-(x- xo)2/62). The Brunt-V'aisi[l•i frequency for 
this case corresponds to W6:•/Vo 2 = -0.01. The hy- 
brid mode shown in Figure 3 is a result of the coupling 
of the main RT and KH modes. This mode behaves 

as a pure RT mode when k approaches 0. When k 
is extremely small, 7 goes to 0 (not shown in Figure 
3). Figure 3 also shows that the hybrid mode is sup- 
pressed for k >_ 2/6. The KH vortex may develop 
only for k •< 2/5, and the hybrid vortex spectra is 
also limited to these wavenumbers. At the same time, 

the linear analysis reveals an existence of noninteractive 
RT modes which develop independently in the system. 
As demonstrated in Figure 3, only noninteractive RT 
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Figure 3. G•ow[h m[e 7 = /m(•)•/Vo of hybrid 
mode (solid Hne), KH instability (dashed Hne), •nd non- 
interactive RT mode (dotted line) as a function of k6. 
The growth rates for hybrid and noninteractive modes 
are computed for W(6/Vo) :• - -0.01. 

3. Numerical Results 

The results of the linear analysis of the hybrid insta- 

bility have been compared with numerical solutions to 
the full set of MHD equations, (1) and (3)-(5). The 
two-dimentional simulations use an alternating direc- 

tion implicit method [Finan and Killeen, 1981; Rankin 
et al., 1993b]. 

3.1. Vortex Evolution 

In order to test the excitation and evolution of a hy- 

brid vortex mode, a shear flow which is unstable to the 

KH instability was initiated in a plasma with a pressure 

gradient. The shear flow was chosen uniform in the y di- 
rection, with a Gaussian profile in the x direction of the 

form Vy(x) = V0 exp(-(x- x0)2/62), where V0 = 100 
km/s, 6 = 0.0425./•E and x0 is at the center of the 
simulation box in the radial direction. The length of 
our simulation box is 1.5 RE in the radial direction and 

2•r/k (one wavelength)in the azimuthal direction. The 
mesh consists of 100 points in the azimuthal direction 
distributed uniformly and 120 points in the x direction. 
The resolution in the x direction varies from 0.009 

in the center of the box to 0.017 RE at the boundaries. 

The initial plasma density and magnetic field were set 
as p = 4.06.10 -24 g/cm a, and B0 = 0.0004 G, respec- 
tively, with a uniform distribution in both the x and y 
directions. The Alfv6n speed corresponds to Va - 560 

km/s, and the pressure corresponds to P = 4.35 nPa 
at x0 and increases linearly along x (earthward in our 
model) with OP/Ox = 5.7 nPa//•E. 

First of all, we study the growth of a hybrid mode 
with k = 0.7/6. For wavelengths k • 1/6, the 
growth rate of the RT instability is small compared to 

the growth rate of the KH instability in our model, 
which means that the extraction of potential energy 
from the ambient plasma, and the formation of the RT 

cells, is slow. However, as predicted by the linear theory, 

the combination of a shear flow and a pressure gradient 
is expected to increase the growth of the vortex through 
the formation of a hybrid mode. The growth rate in- 
crease depends on the pressure gradient, and it is about 
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a b 
Figure 4. A model of the interaction of a shear flow vortex with RT modes of different radial 
scales: (a) kz • 1/L and (b) kz • 2/L. Arrows show the direction of the plasma motion due 
to the KH vortex (solid arrows) and RT cells (empty arrows) formation 

10% for the chosen parameters of the slightly unstable 
RT mode. The growth of the initial perturbation of the 
radial component of velocity is shown in Figure 5a for 
hybrid, KH, and RT modes, respectively. The velocity 
is normalized by V``, whereas time is normalized by the 

Alfv•n transit time t`` = L/V,, = 17.1 s. Figure 5b 
shows the growth of the kinetic energy normalized by 
the initial total kinetic energy of the shear flow: 

/xe = f pV2dxdy - 1. (9) 
f pVo•dxdy 

Let us consider the evolution of the hybrid mode 
in more detail. The growth of the instability shown 

in Figure 5 implies that there are two different stages 
of evolution with different physical processes involved. 

We can distinguish the following stages: the linear 
growth and saturation of the KH-like vortex and the 

nonlinear growth and saturation of the hybrid vor- 
tex. Snapshots of the z component of the vorticity 

• = (vñxV)• L/V``, for t/t`` = 5, 7, and 10, 
respectively, which correspond to these stages of the in- 
stability evolution, are shown in Figure 6. 

As seen in Figures 5 and 6, the first stage of the evo- 
lution, tit, <_ 6, corresponds to the linear formation 
of a KH-like vortex. For our choice of parameters, 7•H 

is almost 2 times larger than 7aT. Hence the formation 
of a hybrid vortex is initially similar to the formation 

of a shear flow vortex with no pressure gradient in the 
plasma. However, the growth rate of the hybrid mode 
is slightly greater than for the KH mode because of the 

positive interaction of the KH instability with a large- 
scale RT cell. At this stage of the vortex formation, the 
kinetic energy of the initial shear flow is transformed 

into vortex kinetic energy, but the total kinetic energy 
does not increase, which corresponds to Az ~ 0 (see 
Figure 5b). The insignificant trend downward from zero 
is caused by the small numerical viscous damping which 
is required to stabilize the numerical scheme. 

The first linear stage of the evolution is complete by 
the time t/t`` • 6. The KI-I instability is then non- 
linearly saturated because of the shear flow expansion 
in the radial direction (see Figure 6). At this stage, 
the hybrid vortex experiences a transition from KHI- 
like to azimuthally moving RT-like. This transition is 
evident on comparing the contour panels of Figure 6, 
where it can be seen that billows are starting to form 
in the hybrid mode evolution. Figure 7 demonstrates 
this transition for the main plasma parameters char- 
acterizing the instability: the radial component of the 
velocity, density, and plasma pressure. The significant 
changes observed in the density and pressure indicate 
the beginning of the nonlinear KH-RT interaction. The 

KH vortex defines the spatial shape of the cell and sets 
up a large perturbation from which further growth of 
the RT-like instability within the cell can occur. This 



9644 VORONKOV ET AL.' SHEAR FLOW PRESSURE GRADIENT INSTABILITIES 

10 0 

10 -1 . 

Vz 

V. 
10 -2 . 

10 -3 

10 -4 

a 

t/ta 
2.5 

b 
2.0 

1.5 

1.0 

0.5 

0 2 4 6 8 10 

tit a 

Figure 5. Growth of (a) amplitude of the radial velocity Vx and (b) the integrated kinetic energy 
of the hybrid mode (solid line), KH mode (dashed line), and RT mode (dotted line), respectively. 
Parameters are given in the text. 

provides a constructive interaction between the KH and 

RT modes and also explains why this transition stage 

is comparatively short, At/ta • 1. As seen in Fig- 
ure 7, a new interchange cell is formed within the shear 
flow which has a radial scale comparable to the width 

of the shear flow. The growth rate of the RT instability 
of this cell is smaller than the growth rate of the large- 
scale cell which was associated with the linear stage of 
the evolution. 

When the transition stage is over, the developed hy- 
brid vortex continues to grow, as can be seen from an 

inspection of Figures 5 and 6 for t/ta _> 7. At this 
stage, the growth is slower than for the first stage and 
is comparable to the RT-instability growth rate of a cell 
which has the radial scale of the shear flow. This growth 
is accompanied by an extraction of the ambient poten- 

At this nonlinear stage, the instability modifies sig- 
nificantly the spatial distribution of the shear flow and 

pressure. By the time t/ta • 10, further growth of 
the radial component of the velocity is restricted by the 
boundaries of the expanded flow. Thus, a portion of 

the vortex flow is then directed along the outer bound- 
aries of the shear flow in order to provide momentum 

conservation. This initiates secondary flows in the di- 

rection opposite to the initial shear flow and leads to 
the azimuthally stretched and radially compressed flow 

structures shown in Figure 8. Figure 8 also displays a 
radial asymmetry, which is due to the radial gradient of 

the fast mode velocity Vf. 
As mentioned above, at the nonlinear stage the hy- 

brid vortex provides dramatic changes of the plasma 
pressure which characterizes the potential energy dis- 

tial energy and its transformation into kinetic energy of tribution in the plasma. This redistribution of plasma 
the vortex. The total kinetic energy of the vortex grows 
far beyond the value of kinetic energy of the initial shear 
flow. For this example, the energy of the hybrid vortex 
is approximately 3 times larger than the energy of the 
initial shear flow by the time t/ta ~ 11. In contrast, 
the KH instability simulations indicate that a KH vor- 
tex with k6 • i can only extract about one half of the 

total shear flow kinetic energy. 

pressure in the equatorial plane of the magnetotail is 
expected to cause a redistribution of magnetic field 
aligned currents thus providing further dynamics in the 
magnetosphere-ionosphere coupling. 

Saturation of the nonlinear hybrid vortex occurs when 
the vortex size in the radial x direction becomes com- 

parable to the width of the zeroth order expanded shear 
flow, which is then stable with respect to the KH insta- 
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Figure 6. Time slices of the vorticity as obtained from the computer simulations for the (a) 
hybrid mode and (b) KH instability for t / t• = 5, 7, and 10. 

bility. Nevertheless, new large-amplitude perturbations 
of the radial component of the velocity appear in the 
secondary reversed flows discussed above. The result- 
ing vortices can be clearly seen at the boundaries of the 
shear flow in Figure 8. These vortices provide for a fur- 
ther interaction with interchange cells. Figure 9 demon- 
strates the radial distribution and time evolution of the 

radial kinetic energy (V• •) = k/(2•r)fo•/•V•d•l. 
The growth of the radial component of the velocity 
within the shear flow terminates at the time t/t• ~ 10, 
whereas the perturbations which appear at the edge of 
the shear flow then start growing. This growth pro- 
rides a further extraction of the potential energy of the 

plasma and a corresponding growth of the kinetic en- 
ergy of the newly generated vortex structures. This 
stage is seen in Figure 5b as kinetic energy growth which 
starts at t/t• • 11. The latest nonlinear stage is similar 
to the edge effects of the RT-KH interaction described 
in the fusion literature [Drake et al., 1992; Finn et al., 
1992; Finn, 1993]. 

3.2. Wavelength Dependence 

The azimuthal size of the vortex is a parameter in 

our model and is defined by the wavenumber k of the 
initial perturbation. If the perturbation has a short 
wavelength (k > 2//•), the hybrid mode is stable (see 

Figure 3), and only RT modes with larger wavenumbers 
in the radial direction (see Figure 4b) are unstable. The 
results of simulations for the mode k/• = 1.8 are pre- 

sented in Figure 10a. In this case, the shear flow, which 
is stable with respect to the KH instability, divides the 
pressure gradient area into two parts, and the noninter- 
active RT mode predicted by the theory to be unstable 

(see Figure 4b) grows above and below the shear flow 
and stabilizes in the vicinity of the flow. 

In the other extreme case of large wavelengths, the 
hybrid mode is predicted to be unstable, but the in- 
terchange component dominates. Thus the evolution of 
the hybrid vortex is defined by the RT instability, which 
evolves slower but leads to a strong deformation of the 
shear flow within the cell. The hybrid vortex takes the 

shape of a large-scale fold, as shown in Figure 10b for 
= 

3.3. Bidirectional (Antisymmetric) Flow 

In the previous sections, we considered a unidirec- 
tional Gaussian shear flow. We found that the hy- 

brid mode extracts potential energy from the ambient 
plasma, but the extension of the vortex in the radial 
direction is restricted by the boundaries of the initial 
shear flow. This restriction of the radial vortex expan- 

sion originates from the azimuthal motion of vortices 
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Figure 7. Contour plots of (a) V•, (b) density, and (c) plasma pressure for t / ta = 6 and 7, 
respectively, illustrating the transformation of the hybrid eigenmode from KH-like to RT-like. 

and interchange cells. Outside of the region of the shear 
flow, interchange cells no longer move in the azimuthal 
y direction, and the original hybrid vortex slides by the 
interchange cells without interaction. This process may 
be illustrated using Figure 2 if we imagine that a vortex 

moves with the shear flow in the y direction. Then it 

provides a constructive interaction with an interchange 
cell for a half period, when it is in between sections 
A and B, whereas the interaction is destructive when 

the vortex moves farther to the right side of section A. 

-5.4 5.2 
!ii!•=•===':. ::=::=========================== == :'." ' i 

1.$ 

x,R e .......... '•' " " 

o 
i i 

0 0.38 Y, R e 0.76 1.14 

Figure 8. The vorticity of the hybrid mode for t / t, = 10, demonstrating the generation 
of secondary shear flows which elongate the vortices in the direction that is opposite the initial 
shear flow. Three cells in the azimuthal direction are combined in order to show a whole vortex 

structure. 
_ 
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Figure 9. Radial distribution of the integrated radial kinetic energy (V•) at time t / t• - 8.8 
(solid line), 9.8 (dashed line), 10.7 (dotted line), and 11.6 (dashed-dotted line). 

Therefore the motion of the hybrid vortex may turn off 

its interaction with a larger-scale interchange cell. This 
interaction may be restored if the vortex does not move 

with respect to the ambient plasma. These types of 

vortices are produced by the KH instability of a bidi- 

rectional (antisymmetric in the radial direction) shear 
flOW. 

We consider the evolution of a hybrid vortex for 

shear flow defined by Vu(x ) = 2.5 V0 tanh((x- 
xo)/t;)/cosha((x- xo)/t;) ,vith V0 - 50 km/s and 5 - 
0.0425. R•. Other parameters remain the same as in 
previous examples. The time slices of the vorticity of 

the hybrid mode are shown in Figure 11 for k = 
(Figure 11a)and k = 0.5/5 (Figure lib). The growth 
of the mode k = 0.5/5 is slower during the initial 
linear stage, but in the nonlinear stage it grows faster 
and reaches a greater amplitude than for the mode with 

k = 1/5. Also, for the k = 0.5/5 mode, the vor- 
tex expands into the broad area beyond the shear flow, 
whereas shorter wavelength modes are still bounded by 
the shear flow radial extent. These two cases may be 
explained by the difference that exists between the sat- 
urated state of the KH vortices. The mode with the 

shorter wavelength is immersed in the shear flow. It 
can interact only with moving interchange cells and 
therefore cannot leave the region of the shear flow. Fi- 

nally, this mode saturates at the edges of the shear 
flow. This saturation is similar to the saturation of 

the hybrid mode which develops from the unidirectional 
flow as discussed in section 3.1. On the other hand, if 
larger-scale perturbations develop in the bidirectional 
flow, they evolve into vortical structures that have two 

characteristic lengths: one scale involves small vortical 
structures within the flow and the second scale involves 

0 Y, Re 0.15 0 Y, Re 1.33 
18ffitl8888•.•-•i•.•.•:!:!:!:i.'.':::::::!½!:::::!:::i.!-!--.• '" I =================================================== ' 

-3 3 -3.9 4.3 

Figure 10. The vorticity for (a) small (k - 1.8/5) and (b)large (k - 0.2/6) wavelength 
perturbations. 
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Figure 11. Time slices of the vorticity obtained from the computer simulations for the hybrid 
mode driven by a bidirectional shear flow with (a) • = 1/5 (t / ta : 10.• and 13.1) and (b) 
k- 0.5/8 (t/ta = 14.1 and 18.2). 

a larger distortion of the shear flow itself. This large- 
scale distortion can easily interact with a large-scale 

interchange cell in the plasma gradient region. The re- 
suiting hybrid vortex expands in the radial direction 
finally destroying the initial shear flow and significantly 
extending the scale of the immersed vortical structures. 

4. Discussion 

Our computer simulation of the interaction of the KH 
instability with a pressure gradient has revealed a mul- 
tistage evolution of the vortex structure. Initially, the 
vortex generation is qualitatively similar to the pure KH 
instability. Quantitatively, the vortex develops faster in 
the presence of the pressure gradient because of the con- 
structive interaction of a shear flow vortex with a larger 
scale RT cell in the radial direction. Later in time, the 

hybrid vortex extracts potential energy from the am- 
bient plasma, providing further growth of the kinetic 
energy of the vortex. This scenario suggests an expla- 

nation for observations, indicating that only vortices in 
the late evening and midnight sectors, where the pres- 
sure gradient is large, may develop in association with 
vigorous surges, whereas vortices in the darlier evening 
sector appear and vanish without further evolution. 

It follows from the simulations that perturbations 

with wavelengths k • 0.5]5 imposed onto a bidi- 
rectional flow can evolve into large-amplitude surge-like 
structures which can destroy the original shear flow and 
expand over a wide region during a char&cteristic time 
of tens of seconds. Similar behavior was e•xperimentally 

confirmed by $teen and Collis [1988] during observa- 
tions of the westward traveling surge. 

The theory and numerical results presented above are 

a simplified model of complicated processes in the in- 
ner plasma sheet. A primary goal of this model was 
to consider a situation in which an unstable shear flow 

appears on the background of a pressure gradient which 
is initially in equilibrium with a force that is imposed 

by the curvature of stretched magnetic field lines. This 
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force acts on the plasma in the earthward direction and 
is assumed to be in the simple form p. g, where g stands 
for a centripetal acceleration of the particles as a result 

of both magnetic curvature and particle inertia. Gen- 
erally, magnetic curvature may vary in time as a re- 
sult of the temporal evolution of magnetotail currents 
or through currents produced by the instability itself. 
Particle inertia may evolve in time as well, because of 

an acceleration along magnetic field lines and/or growth 
or decay of the parallel energy of the particles. In this 
model, we have neglected these effects. 

In this study, we have adopted a fluid model that 

neglects kinetic or finite Larmor radius effects. This 
means that our model is valid for describing the evolu- 

tion of structures with a spatial extension larger than 
the Larmor radius. For the sample shear flow and cho- 
sen density, the ion Larmor radius is smaller than the 
scale size of the vortices. However, if the initial shear 
flow is thinner or if fine structure of vortices is to be 

studied, ultimately, kinetic effects should be taken into 
account. Kinetic and fluid-kinetic hybrid treatments 

have been presented by Gangull et al. [1988], Thomas 
and Winske [1993], and Huba [1996]. These studies re- 
vealed the importance of small-scale effects and their 
influence on the growth rate and frequency of the shear 
flow instability. Also, the kinetic effects may be respon- 
sible for an asymmetry of the instability with respect 

to the center of the flow [Thomas, 1995; Huba, 1996]. 
All of these effects may be valid for the auroral arc fine 

structure dynamics and can be considered as an im- 
portant direction toward a comprehensive auroral arc 
model. 

The other problem to be addressed is the importance 
of nonideal MHD terms which violate the frozen in flux 

condition. The importance of the Hall term for the KH 
instability evolution was described by Huba [1994] for 
spatial scales of the order of the Larmor radius. We 
neglected this effect by assuming that the width of the 
fl0w is larger than the Larmor radius. On the other 
hand, localized resistivity can initiate a large-scale tear- 
ing mode [see Hesse and Birn, 1994, and references 
therein]. This mode can be driven by magnetic cur- 
vature [$undaram and Fairfield, 1995] and implies that 
in a resistive plasma, additional hybrid modes are ex- 
pected. The interaction of the shear flow and vortices 
with these modes seems to be a significant problem 
which might be addressed in future investigations. 

Our model is also significantly simplified because we 
have neglected field-aligned gradients of plasma param- 
eters and have reduced our consideration to the equa- 

torial plane of a symmetric magnetotail. Even though 
such an approach is limited in its ability to describe 
the full dynamics of auroral arc intensifications, it has 
allowed us to obtain a simple solution to the problem, 
which reveals some of the physical mechanisms that in- 
volve an acceleration and subsequent radial expansion 
of the vortex structure. 

5. Conclusion 

Theory and numerical simulations of the evolution 
of a shear flow embedded in a pressure gradient region 

reveal a constructive interaction between the unstable 

shear flow mode (KH mode) and the Rayleigh-Taylor 
mode. In the linear stage of the instability, the KH 
vortex interacts with the main RT harmonic, which en- 

hances the growth rate. When the KH-like vortex sat- 

urates, it experiences a short transition stage, at which 
point the vortex evolution changes from KH-like to RT- 

like. At the end of the transition stage, the hybrid vor- 
tex becomes a large-amplitude perturbation for the RT 

instability and experiences further growth. 
In the nonlinear stage, the hybrid vortex defines the 

radial size of the interacting RT pressure gradient cell. 
This stage is characterized by an extraction of potential 
energy from the pressure gradient and its transforma- 
tion into kinetic energy of the hybrid vortex. During 
this nonlinear stage, the vortex evolution depends on 

the azimuthal wavenumber as well as on the shape of 
the flow. A unidirectional flow generates vortices which 

move with respect to the ambient plasma, providing a 
constructive interaction of vortices and RT cells which 

move with the flow. The optimal wavenumber for this 

interaction corresponds to k ~ 1/5. The radial ex- 
pansion of the vortex is restricted by the interaction of 
the vortex with the boundaries of the flow. This in- 

teraction saturates the hybrid vortex, but at the same 

time it modifies the flow and generates large-scale per- 
turbations of the boundaries. This leads to a further 

interaction with a large-scale RT cell and a further ex- 
traction of potential energy from the pressure gradient. 

A different evolution was obtained for a bidirectional 

shear flow with an instability wavenumber k .• 0.5/5. 
The hybrid vortex takes the shape of a radially stretched 
fold which has no azimuthal motion. In the nonlinear 

stage, this vortex interacts with a large-scale RT cell 
and leads to a fast growth and radial expansion of the 
vortex. 

Summarizing these results, we conclude that the sug- 
gested instability appears to be a valid candidate for 
providing shear flow vortex generation which is similar 
to the KH instability but which can also initiate the 

transformation of ambient potential energy into kinetic 

energy of vortices. This may lead to the formation of 
large-amplitude surges which can rapidly expand in the 
radial direction. 

Appendix: Spectral Method for the 

Solution to (7) 

Expanding the solution of (7) into a series of orthog- 
onal functions 

N 

•- • Cr, Sr,, (A1) 
n=-N 

where $•, = e (ir'a'a:/L), multiplying the equation by a 
complex conjugate value $•m, and integrating over the 
area I-L; L], we end up with a set of linear algebraic 
equations for Ca in the form of an eigenvalue problem: 
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where 

- ( 
w-kVo 

Wk 2 i•rx(n - m))dx (co - kVo)2 )exp( L 

is an operator defined by the physical parameters of the 

problem. 
This equation is homogeneous and has a nontrivial 

solution if the determinant of its coefficients equals zero. 

This equation was solved to find out the eigenvalues co. 
Then the eigenfunctions were restored for every given 

eigenvalue w. 
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