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Coupling Online and Offline
Analyses for Random Power
Law Graphs
Fan Chung and Linyuan Lu

Abstract. We develop a coupling technique for analyzing online models by using offline

models. This method is especially effective for a growth-deletion model that gener-

alizes and includes the preferential attachment model for generating large complex

networks which simulate numerous realistic networks. By coupling the online model

with the offline model for random power law graphs, we derive strong bounds for a

number of graph properties including diameter, average distances, connected compo-

nents, and spectral bounds. For example, we prove that a power law graph generated

by the growth-deletion model almost surely has diameter O(logn) and average distance
O(log logn).

1. Introduction
In the past few years, it has been observed that a variety of information networks,

including Internet graphs, social networks, and biological networks among others

[Aiello et al. 00, Aiello et al. 02, Barabási and Albert 99, Barabási et al. 00,

Jeong et al. 00, Kleinberg et al. 99, Lu 01], have the so-called power law degree

distribution. A graph is called a power law graph if the fraction of vertices with

degree k is proportional to 1
kβ
for some constant β > 0. There are basically two

different models for random power law graphs.

The first model is an “online” model that mimics the growth of a network.

Starting from a vertex (or some small initial graph), a new node and/or new

edge is added at each unit of time following the so-called preferential attachment
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scheme [Aiello et al. 02, Barabási and Albert 99, Kleinberg et al. 99]. The

endpoint of a new edge is chosen with the probability proportional to their

(current) degrees. By using a combination of adding new nodes and new edges

with given respective probabilities, one can generate large power law graphs with

exponents β greater than 2 (see [Aiello et al. 02, Bollabás and Riordan 03] for

rigorous proofs). Since realistic networks encounter both growth and deletion of

vertices and edges, we consider a growth-deletion online model that generalizes

and includes the preferential attachment model. Detailed definitions will be

given in Section 3.

The second model is an “offline” model of random graphs with given expected

degrees. For a given sequence w of weights wi, a random graph in G(w) is

formed by choosing the edge between u and v with probability proportional to

the product of wu and wv. The Erdős-Rényi model G(n, p) can be viewed as

a special case of G(w) with all wi equal. Because of the independence in the

choices of edges, the model G(w) is amenable to a rigorous analysis of various

graph properties and structures. In a series of papers [Chung and Lu 02a, Chung

and Lu 02b, Chung et al. 03, Lu 01], various graph invariants have been examined

and sharp bounds have been derived for diameter, average distance, connected

components, and spectra for random power law graphs and, in general, random

graphs with given expected degrees.

The online model is obviously much harder to analyze than the offline model.

There has been some recent work on the online model beyond showing that the

generated graph has a power law degree distribution. Bollobás and Riordan

[Bollabás and Riordan 03] have derived a number of graph properties for the

online model by “coupling” with G(n, p), namely, identifying (almost regular)

subgraphs whose behavior can be captured in a similar way as graphs from

G(n, p) for some appropriate p.

In this paper, our goal is to couple the online model with the offline model

of random graphs with a similar power law degree distribution so that we can

apply the techniques from the offline model to the online model. The basic idea

is similar to the martingale method but with substantial differences. Although

a martingale involves a sequence of functions with consecutive functions having

small bounded differences, each function is defined on a fixed probability space

Ω. For the online model, the probability space for the random graph generated

at each time instance is different in general. We have a sequence of probability

spaces where two consecutive ones have “small” differences. To analyze this, we

need to examine the relationship of two distinct random graph models, each of

which can be viewed as a probability space. In order to do so, we shall describe

two basic methods that are not only useful for our proofs here but also interesting

in their own right.
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• Comparing two random graph models. We define the dominance of

one random graph model over another in Section 4. Several key lemmas

for controlling the differences are also given there.

• A general Azuma inequality. A concentration inequality is derived

for martingales that are almost Lipschitz. A complete proof is given in

Section 5.

The main goal of this paper is to show the following results for the random

graph G generated by the online model G(p1, p2, p3, p4,m) with p1 > p3, p2 > p4,

as defined in Section 5:

1. Almost surely the degree sequence of the random graph generated by

growth-deletion model G(p1, p2, p3, p4,m) follows the power law distrib-

ution with exponent β = 2 + (p1 + p3)/(p1 + 2p2 − p3 − 2p4).
2. Suppose m > log1+6 n. For p2 < p3+p4, we have 2 < β < 3. Almost surely

a random graph in G(p1, p2, p3, p4,m) has diameter Θ(log n) and average

distance O( log logn
log(1/(β−2) ). We note that the average distance is defined to be

the average over all distances among pairs of vertices in the same connected

component.

3. Suppose m > log1+6 n. For p2 ≥ p3 + p4, we have β > 3. Almost surely

a random graph in G(p1, p2, p3, p4,m) has diameter Θ(log n) and average

distance O( lognlog d ) where d is the average degree.

4. Supposem > log1+6 n. Almost surely a random graph inG(p1, p2, p3, p4,m)

has Cheeger constant at least 1/2 + o(1).

5. Supposem > log1+6 n. Almost surely a random graph inG(p1, p2, p3, p4,m)

has spectral gap λ at least 1/8 + o(1).

We note that the Cheeger constant hG of a graph G, which is sometimes called

the conductance, is defined by

hG =
|E(A, Ā)|

min{vol(A), vol(Ā)} ,

where vol(A) =
�

x∈A deg(x). The Cheeger constant is closely related to the
spectral gap λ of the Laplacian of a graph by the Cheeger inequality

2hG ≥ λ ≥ h2G/2.
Thus, both hG and λ are key invariants for controlling the rate of convergence

of random walks on G.



412 Internet Mathematics

2. Strong Properties of Offline Random Power Law Graphs

For random graphs with given expected degree sequences satisfying a power law

distribution with exponent β, we may assume that the expected degrees are

wi = ci−
1

β−1 for i satisfying i0 ≤ i < n + i0. Here c depends on the average

degree, and i0 depends on the maximum degree m, namely, c = β−2
β−1dn

1
β−1 and

i0 = n

w
d(β − 2)
m(β − 1)

Wβ−1
.

2.1. Average Distance and Diameter

Fact 2.1. ([Chung and Lu 02b]) For a power law random graph with exponent β > 3
and average degree d strictly greater than 1, almost surely the average distance

is (1 + o(1)) logn
log d̃

and the diameter is Θ(log n).

Fact 2.2. ([Chung and Lu 02b]) Suppose a power law random graph with exponent

β has average degree d strictly greater than 1 and maximum degree m satisfying

logm ( log n/ log logn. If 2 < β < 3, almost surely the diameter is Θ(logn)

and the average distance is at most (2 + o(1)) log log n
log(1/(β−2)) .

For the case of β = 3, the power law random graph has diameter almost surely

Θ(log n) and has average distance Θ(log n/ log logn).

2.2. Connected Components

Fact 2.3. ([Chung and Lu 02a]) Suppose that G is a random graph in G(w) with

given expected degree sequence w. If the expected average degree d is strictly

greater than 1, then the following hold:

1. Almost surely G has a unique giant component. Furthermore, the volume of

the giant component is at least (1− 2√
de
+o(1))Vol(G) if d ≥ 4

e
= 1.4715 . . .

and is at least (1− 1+log d
d

+ o(1))Vol(G) if d < 2.

2. The second largest component almost surely has size O( lognlog d ).

2.3. Spectra of the Adjacency Matrix and the Laplacian

The spectra of the adjacency matrix and the Laplacian of a non-regular graph

can have quite different distribution. The definition for the Laplacian can be

found in [Chung 97].
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Fact 2.4. ([Chung et al. 03])

1. The largest eigenvalue of the adjacency matrix of a random graph with a

given expected degree sequence is determined by m, the maximum degree,

and d̃, the weighted average of the squares of the expected degrees. We

show that the largest eigenvalue of the adjacency matrix is almost surely

(1 + o(1))max{d̃,√m} provided that some minor conditions are satisfied.
In addition, suppose that the kth largest expected degree mk is significantly

larger than d̃2. Then the kth largest eigenvalue of the adjacency matrix is

almost surely (1 + o(1))
√
mk.

2. For a random power law graph with exponent β > 2.5, the largest eigenvalue

of a random power law graph is almost surely (1+o(1))
√
m, where m is the

maximum degree. Moreover, the k largest eigenvalues of a random power

law graph with exponent β have power law distribution with exponent 2β−1
if the maximum degree is sufficiently large and k is bounded above by a

function depending on β, m, and d, the average degree. When 2 < β < 2.5,

the largest eigenvalue is heavily concentrated at cm3−β for some constant
c depending on β and the average degree.

3. We will show that the eigenvalues of the Laplacian satisfy the semicircle

law under the condition that the minimum expected degree is relatively large

(( the square root of the expected average degree). This condition contains

the basic case when all degrees are equal (the Erdös-Rényi model). If we

weaken the condition on the minimum expected degree, we can still have the

following strong bound for the eigenvalues of the Laplacian which implies

strong expansion rates for rapidly mixing:

max
iW=0

|1− λi| ≤ (1 + o(1)) 4√
w̄
+
g(n) log2 n

wmin
,

where w̄ is the expected average degree, wmin is the minimum expected

degree, and g(n) is any slow growing function of n.

3. A Growth-Deletion Model for Generating Random Power Law Graphs

One explanation for the ubiquitous occurrence of power laws is the simple growth

rules that can result in a power law distribution (see [Aiello et al. 02, Barabási

and Albert 99]). Nevertheless, realistic networks usually encounter both the

growth and deletion of vertices and edges. Here we consider a general online

model that combine deletion steps with the preferential attachment model.
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Vertex-growth step. Add a new vertex v and form a new edge from v to an

existing vertex u chosen with probability proportional to du.

Edge-growth step. Add a new edge with endpoints to be chosen among

existing vertices with probability proportional to the degrees. If existing

in the current graph, the generated edge is discarded. The edge-growth

step is repeated until a new edge is successfully added.

Vertex-deletion step. Delete a vertex randomly.

Edge-deletion step. Delete an edge randomly.

For nonnegative values p1, p2, p3, p4 summing to 1, we consider the following

growth-deletion model G(p1, p2, p3, p4):

At each step,

with probability p1, take a vertex-growth step;

with probability p2, take an edge-growth step;

with probability p3, take a vertex-deletion step;

with probability p4 = 1− p1 − p2 − p3, take an edge-deletion step.
Here we assume that p3 < p1 and p4 < p2 so that the number of vertices and

edge grows as t goes to infinity. If p3 = p4 = 0, the model is just the usual

preferential attachment model that generates power law graphs with exponent

β = 2 + p1
p1+2p2

. An extensive survey on the preferential attachment model

is given in [Mitzenmacher 05] and rigorous proofs can be found in [Aiello et

al. 02, Cooper and Frieze 03].

This growth-deletion model generates only simple graphs because the multiple

edges are disallowed at the edge-growth step. The drawback is that the edge-

growth step could run in a loop. It only happens if the current graph is a

completed graph. If this happens, we simply restart the whole procedure from

the same initial graph. With high probability, the model generates sparse graphs

so that we could omit the analysis of this extreme case.

Previously, Bollobás considered edge deletion after the power law graph is

generated [Bollabás and Riordan 03]. Very recently, Cooper, Frieze, and Vera

[Cooper et al. 04] independently consider the growth-deletion model with vertex

deletion only. We will show (see Section 6) the following.

Suppose that p3 < p1 and p4 < p2. Then almost surely the degree sequence

of the growth-deletion model G(p1, p2, p3, p4) follows the power law distribution

with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4 .
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We note that a random graph in G(p1, p2, p3, p4) almost surely has expected

average degree (p1 + p2 − p4)/(p1 + p3). For of pis in certain ranges, this value
can be below 1 and the random graph is not connected. To simulate graphs with

specified degrees, we consider the following modified model G(p1, p2, p3, p4,m),

for some integer m that generates random graphs with the expected degree

m(p1 + p2 − p4)/(p1 + p3):
At each step,

with probability p1, add a new vertex v and form m new edges from v

to existing vertices u chosen with probability proportional to du;

with probability p2, take m edge-growth steps;

with probability p3, take a vertex-deletion step;

with probability p4 = 1− p1 − p2 − p3, take m edge-deletion steps.

Suppose that p3 < p1 and p4 < p2. Then almost surely the degree sequence of

the growth-deletion model G(p1, p2, p3, p4,m) follows the power law distribution

with the exponent β the same as the exponent for the model G(p1, p2, p3, p4):

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4 .

Many results for G(p1, p2, p3, p4,m) can be derived in the same fashion as for

G(p1, p2, p3, p4). Indeed, G(p1, p2, p3, p4) = G(p1, p2, p3, p4, 1) is usually the

hardest case because of the sparseness of the graphs.

4. Comparing Random Graphs

In the early work of Erdős and Rényi on random graphs, they first used the

model F (n,m) that each graph on n vertices and m edges is chosen randomly

with equal probability, where n and m are given fixed numbers. This model is

apparently different from the later model G(n, p), for which a random graph is

formed by choosing independently each of the
D
n
2

i
pairs of vertices to be an edge

with probability p. Because of the simplicity and ease to use, G(n, p) is the model

for the seminar work of Erdős and Rényi. Since then, G(n, p) has been widely

used and often been referred to as the Erdős-Rényi model. For m = p
D
n
2

i
, the

two models are apparently correlated in the sense that many graph properties

are satisfied by both random graph models. To precisely define the relationship

of two random graph models, we need some definitions.

A graph property P can be viewed as a set of graphs. We say that a graph

G satisfies property P if G is a member of P . A graph property is said to

be monotone if whenever a graph H satisfies A, then any graph containing H

must also satisfy A. For example, the property A of containing a specified

subgraph, say, the Peterson graph, is a monotone property. A random graph G
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is a probability distribution Pr(G = ·). Given two random graphs G1 and G2 on

n vertices, we say that G1 dominates G2 if, for any monotone graph property A,

the probability that a random graph from G1 satisfies A is greater than or equal

to the probability that a random graph from G2 satisfies A, i.e.,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write G1 ≥ G2 and G2 ≤ G1. For example, for any p1 ≤ p2, we
have G(n, p1) ≤ G(n, p2).
For any 6 > 0, we say that G1 dominates G2 with an error estimate 6 if, for

any monotone graph property A, the probability that a random graph from G1
satisfies A is greater than or equal to the probability that a random graph from

G2 satisfies A up to an 6 error term, i.e.,

Pr(G1 satisfies A) + 6 ≥ Pr(G2 satisfies A).

If G1 dominates G2 with an error estimate 6 = 6n, which goes to zero as n

approaches infinity, we say that G1 almost surely dominates G2. In this case,

we write almost surely G1 � G2 and G2 O G1.
For example, for any δ > 0, we have almost surely

G

X
n, (1− δ) mDn

2

i~ O F (n,m) O GXn, (1 + δ)
mD
n
2

i~ .
We can extend the definition of domination to graphs with different sizes in the

following sense. Suppose that the random graph Gi has ni vertices for i = 1, 2,

and n1 < n2. By adding n2 − n1 isolated vertices, the random graph G1 is

extended to the random graph GI1 with the same size as G2. We say that G2
dominates G1 if G2 dominates G

I
1.

We consider random graphs that are constructed inductively by pivoting at

one edge at a time. Here we assume the number of vertices is n.

Edge-pivoting. For an edge e ∈ Kn, a probability q (0 ≤ q ≤ 1), and a random
graph G, a new random graph GI can be constructed in the following way.
For any graph H , we define

Pr(GI = H) =

F
(1− q) Pr(G = H) if e W∈ E(H),
Pr(G = H) + q Pr(G = H \ {e}) if e ∈ E(H).

It is easy to check that Pr(GI = ·) is a probability distribution. We say
that GI is constructed from G by pivoting at the edge e with probability q.
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For any graph property A, we define the set Ae to be

Ae = {H ∪ {e}|H ∈ A}.

Further, we define the set Aē to be

Aē = {H \ {e}|H ∈ A}.

In other words, Ae consists of the graphs obtained by adding the edge e to the

graphs in A; Aē consists of the graphs obtained by deleting the edge e from the

graphs in A. We have the following useful lemma.

Lemma 4.1. Suppose that GI is constructed from G by pivoting at the edge e with

probability q. Then for any property A, we have

Pr(GI ∈ A) = Pr(G ∈ A) + q[Pr((A ∩ Ae)ē)− Pr(A ∩ Aē)].

In particular, if A is a monotone property, we have

Pr(GI ∈ A) ≥ Pr(G ∈ A).

Thus, GI dominates G.

Proof. The set associated with a property A can be partitioned into the following
subsets. Let A1 = A ∩ Ae be the graphs of A containing the edge e, and let

A2 = A ∩ Aē be the graphs of A not containing the edge e. We have

Pr(GI ∈ A) = Pr(GI ∈ A1) + Pr(GI ∈ A2)
=
3
H∈A1

Pr(GI = H) +
3
H∈A2

Pr(GI = H)

=
3
H∈A1

(Pr(G = H) + q Pr(G = H \ {e}))

+
3
H∈A2

(1− q) Pr(G = H)

= Pr(G ∈ A1) + Pr(G ∈ A2) + q Pr(G ∈ (A1)ē)− q Pr(A2)
= Pr(G ∈ A) + q[Pr((A ∩ Ae)ē)− Pr(A ∩ Aē)].

If A is monotone, we have A2 ⊂ (A1)ē. Thus,

Pr(GI ∈ A) ≥ Pr(G ∈ A).

Lemma 4.1 is proved.
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Lemma 4.2. Suppose that GIi is constructed from Gi by pivoting the edge e with

probability qi, for i = 1, 2. If q1 ≥ q2 and G1 dominates G2, then G
I
1 domi-

nates GI2.

Proof. Following the definitions of A, and letting A1 and A2 be as in the proof of
Lemma 4.1, we have

Pr(GI2 ∈ A) = Pr(G2 ∈ A) + q2[Pr(G2 ∈ (A1)ē)− Pr(G2 ∈ A2)]
= Pr(G2 ∈ A) + q2 Pr(G2 ∈ ((A1)ē \A2))
≥ Pr(G1 ∈ A) + q1 Pr(G1 ∈ ((A1)ē \A2))
= Pr(G1 ∈ A) + q1[Pr(G1 ∈ (A1)ē)− Pr(G1 ∈ A2)]
= Pr(GI1 ∈ A).

The proof of Lemma 4.2 is complete.

Let G1 and G2 be the random graphs on n vertices. We define G1 ∪G2 to be
the random graph as follows:

Pr(G1 ∪G2 = H) =
3

H1∪H2=H

Pr(G1 = H1) Pr(G2 = H2)

where H1, H2 range over all possible pairs of subgraphs that are not necessarily

disjoint.

The following lemma is a generalization of Lemma 4.2.

Lemma 4.3. If G1 dominates G3 with an error estimate 61 and G2 dominates G4
with an error estimate 62, then G1∪G2 dominates G3∪G4 with an error estimate
61 + 62.

Proof. For any monotone property A and any graph H , we define the set f(A,H)
to be

f(A,H) = {G|G ∪H ∈ A}.
We observe that f(A,H) is also a monotone property. Therefore,

Pr(G1 ∪G2 ∈ A) =
3
H∈A

3
H1∪H2=H

Pr(G1 = H1) Pr(G2 = H2)

=
3
H1

Pr(G1 = H1) Pr(G2 ∈ f(A,H1))

≥
3
H1

Pr(G1 = H1)(Pr(G4 ∈ f(A,H1))− 62)

≥ Pr(G1 ∪G4 ∈ A)− 62.
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Similarly, we have

Pr(G1 ∪G4 ∈ A) ≥ Pr(G3 ∪G4 ∈ A)− 61.
Thus, we get

Pr(G1 ∪G2 ∈ A) ≥ Pr(G3 ∪G4 ∈ A)− (61 + 62),

as desired.

Suppose that φ is a sequence of random graphs φ(G1),φ(G2), . . . , where the

indices of φ range over all graphs on n vertices. Recall that a random graph G

is a probability distribution Pr(G = ·) over the space of all graphs on n vertices.
For any random graph G, we define φ(G) to be the random graph defined as

follows:

Pr(φ(G) = H) =
3

H1∪H2=H

Pr(G = H1) Pr(φ(H1) = H2).

We have the following lemmas.

Lemma 4.4. Let φ1 and φ2 be two sequences of random graphs where the indices of

φ1 and φ2 range over all graphs on n vertices. Let G be any random graph. If

Pr(G ∈ {H|φ1(H)dominates φ2(H)with an errorestimate 61}) ≥ 1− 62,

then φ1(G) dominates φ2(G) with an error estimate 61 + 62.

Proof. For any monotone property A and any graph H , we have

Pr(φ1(G) ∈ A) =
3
H∈A

3
H1∪H2=H

Pr(G = H1) Pr(φ1(H1) = H2)

=
3
H1

Pr(G = H1) Pr(φ1(H1) ∈ f(A,H1))

≥
3
H1

Pr(G = H1) Pr(φ2(H1) ∈ f(A,H1))− 61 − 62

≥ Pr(φ2(G) ∈ A)− (61 + 62),

as desired, since f(A,H) = {G|G ∪H ∈ A} is also a monotone property.

Let G1 and G2 be the random graphs on n vertices. We define G1 \G2 to be
the random graph as follows:

Pr(G1 \G2 = H) =
3

H1\H2=H

Pr(G1 = H1) Pr(G2 = H2),

where H1 and H2 range over all pairs of graphs.
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Lemma 4.5. If G1 dominates G3 with an error estimate 61 and G2 is dominated
by G4 with an error estimate 62, then G1 \G2 dominates G3 \G4 with an error
estimate 61 + 62 .

Proof. For any monotone property A and any graph H , we define the set ψ(A,H)
to be

ψ(A,H) = {G|G \H ∈ A}.
We observe that ψ(A,H) is also a monotone property. Therefore,

Pr(G1 \G2 ∈ A) =
3
H∈A

3
H1\H2=H

Pr(G1 = H1) Pr(G2 = H2)

=
3
H2

Pr(G2 = H2) Pr(G1 ∈ ψ(A,H2))

≥
3
H2

Pr(G2 = H2)(Pr(G3 ∈ ψ(A,H2))− 61)

≥ Pr(G3 \G2 ∈ A)− 61.
Similarly, we define the set θ(A,H) to be

θ(A,H) = {G|H \G ∈ A}.
We observe that the complement of the set θ(A,H) is a monotone property. We

have

Pr(G3 \G2 ∈ A) =
3
H∈A

3
H1\H2=H

Pr(G3 = H1) Pr(G2 = H2)

=
3
H1

Pr(G3 = H1) Pr(G2 ∈ θ(A,H1))

≥
3
H1

Pr(G3 = H1)(Pr(G4 ∈ θ(A,H1))− 62)

≥ Pr(G3 \G4 ∈ A)− 62.
Thus, we get

Pr(G1 ∪G2 ∈ A) ≥ Pr(G3 ∪G4 ∈ A)− (61 + 62),

as desired.

A random graph G is called edge-independent (or independent, for short) if

there is an edge-weighted function p : E(Kn)→ [0, 1] satisfying

Pr(G = H) =
�
e∈H

pe ×
�
eW∈H

(1− pe).
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For example, a random graph with a given expected degree sequence is edge-

independent. Edge-independent random graphs have many nice properties, sev-

eral of which we derive here.

Lemma 4.6. Suppose that G and GI are independent random graph with edge-

weighted functions p and pI; then, G ∪ GI is edge-independent with the edge-
weighted function pII satisfying

pIIe = pe + p
I
e − pepIe.

Proof. For any graph H, we have

Pr(G ∪GI = H) =
3

H1∪H2=H

Pr(G = H1) Pr(G
I = H2)

=
3

H1∪H2=H

�
e1∈H1

pe1

�
e2∈H2

pIe2
�

e3 W∈H1

(1− pe3)
�

e4 W∈H2

(1− pIe4)

=
�
e W∈H

(1− pe)(1− pIe)
�
e∈H

(pe(1− pIe) + (1− pe)pIe + pepIe)

=
�
e∈H

pIIe ×
�
eW∈H

(1− pIIe ).

Lemma 4.7. Suppose that G and GI are independent random graph with edge-

weighted functions p and pI; then, G \GI is independent with the edge-weighted
function pII satisfying

pIIe = pe(1− pIe).

Proof. For any graph H, we have

Pr(G \GI = H) =
3

H1\H2=H

Pr(G = H1) Pr(G
I = H2)

=
3

H1\H2=H

�
e1∈H1

pe1

�
e2∈H2

pIe2
�

e3 W∈H1

(1− pe3)
�

e4 W∈H2

(1− pIe4)

=
�
e∈H

(pe(1− pIe))
�
eW∈H

(1− pe − pepIe)

=
�
e∈H

pIIe ×
�
e W∈H

(1− pIIe ).

Let {pe}e∈E(Kn) be a probability distribution over all pairs of vertices. Let

G1 be the random graph of one edge, where a pair e of vertices is chosen with

probability pe. Inductively, we can define the random graph Gm by adding
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one more random edge to Gm−1, where a pair e of vertices is chosen (as the new
edge) with probability pe. (There is a small probability of having the same edges

chosen more than once. In such cases, we will keep on sampling until we have

exactly m different edges.) Hence, Gm has exactly m edges. The probability

that Gm has edges e1, . . . , em is proportional to pe1pe2 · · · pem . The following
lemma states that Gm can be sandwiched by two independent random graphs

with exponentially small errors if m is large enough.

Lemma 4.8. Assume that pe = o( 1m ) for all e ∈ E(Kn). Let G
I be the independent

random graph with edge-weighted function pIe = (1 − δ)mpe. Let GII be the
independent random graph with edge-weighted function pIIe = (1 + δ)mpe. Then,

Gm dominates GI with error e−δ
2m/4, and Gm is also dominated by GII within

an error estimate e−δ
2m/4.

Proof. For any Graph H , we define

f(H) =
�
e∈H

pe.

For any graph property B, we define

f(B) =
3
H∈B

f(H).

Let Ck be the set of all graphs with exact k edges.

Claim 4.9. For a graph monotone property A and an integer k, we have

f(A ∩ Ck)
f(Ck)

≤ f(A ∩ Ck+1)
f(Ck+1)

.

Proof of Claim 4.9. Both f(A∩Ck)f(Ck+1) and f(A∩Ck+1)f(Ck) are homogeneous
polynomials on {pe} of degree 2k + 1. We compare the coefficients of a general
monomial

p2e1 · · · p2erper+1 · · · pe2k−r+1
in f(A∩Ck)f(Ck+1) and f(A∩Ck+1)f(Ck). The coefficient c1 of the monomial
in f(A ∩ Ck)f(Ck+1) is the number of (k − r)-subsets {ei1 , ei2 , . . . , eik−r} of
er+1, . . . , e2k−r+1 satisfying that the graph with edges

{e1, . . . , er, ei1 , ei2 , . . . , eik−r}
belongs to Ak. The coefficient c2 of the monomial in f(A ∩ Ck)f(Ck+1) is the
number of (k−r+1)-subset {ei1 , ei2 , . . . , eik−r+1} of er+1, . . . , e2k−r+1 satisfying
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that the graph with edges {e1, . . . , er, ei1 , ei2 , . . . , eik−r+1} belongs to Ak+1. Since
A is monotone, if the graph with edges {e1, . . . , er, ei1 , ei2 , . . . , eik−r} belongs to
Ak, then the graph with edges {e1, . . . , er, ei1 , ei2 , . . . , eik−r+1} must belong to
Ak+1. Hence, c1 is always less than or equal to c2. Thus, we have

f(A ∩ Ck)f(Ck+1) ≤ f(A ∩ Ck+1)f(Ck).

The claim is proved.

Now let pIe =
(1−δ)mpe
1+(1−δ)mpe = (1 + o(1))(1 − δ)mpe, or equivalently,

pIe
1−pIe =

(1− δ)mpe.

Pr(GI ∈ A) =

n3
k=0

Pr(GI ∈ A ∩ Ck)

≤
m3
k=0

Pr(GI ∈ A ∩ Ck) +
n3

k=m+1

Pr(GI ∈ Ck)

=
�

e∈E(Kn)

(1− pIe)
m3
k=0

((1− δ)m)kf(A ∩ Ck)

+ Pr(GI has more than m edges)

≤
�

e∈E(Kn)

(1− pIe)
m3
k=0

((1− δ)m)kf(Ck)f(A ∩ Cm)
f(Cm)

+ Pr(GI has more than m edges)

≤ f(A ∩ Cm)
f(Cm)

�
e∈E(Kn)

(1− pIe)
m3
k=0

((1− δ)m)kf(Ck)

+ Pr(GI has more than m edges)

=
f(A ∩ Cm)
f(Cm)

m3
k=0

Pr(GI ∈ Ck) + Pr(GI has more than m edges)

≤ f(A ∩ Cm)
f(Cm)

+ Pr(GI has more than m edges)

= Pr(Gm ∈ A) + Pr(GI has more than m edges).

Now we estimate the probability that GI has more than m edges. Let Xe

be the 0-1 random variable with Pr(Xe = 1) = pIe. Let X =
�
eXe. Then,

E(X) = (1+o(1))m(1−δ). Now we apply the following large deviation inequality:

Pr(X − E(X) > a) ≤ e− a2

2(E(X)+a/3) .
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We have

Pr(X > m) = Pr(X − E(X) > (1 + o(1))δm)
≤ e

−(1+o(1)) δ2m2

2(1−δ)m+2δm/3

≤ e−δ
2m/2.

For the other direction, let pIIe =
(1+δ)mpe
1+(1+δ)mpe

= (1 + o(1))(1 + δ)mpe, which

implies that
pIIe
1−pIIe = (1 + δ)mpe.

Pr(GII ∈ A) =

n3
k=0

Pr(GII ∈ A ∩ Ck)

≥
n3

k=m

Pr(GI ∈ A ∩ Ck)

=
�
e

(1− pIIe )
n3

k=m

((1 + δ)m)kf(A ∩ Ck)

≥
�
e

(1− pIe)
n3

k=m

((1 + δ)m)kf(Ck)
f(A ∩ Cm)
f(Cm)

≥ f(A ∩ Cm)
f(Cm)

�
e

(1− pIe)
n3

k=m

((1 + δ)m)kf(Ck)

=
f(A ∩ Cm)
f(Cm)

X
1−

m−13
k=0

Pr(GI ∈ Ck)
~

≥ f(A ∩ Cm)
f(Cm)

− Pr(GII has less than m edges)

= Pr(Gm ∈ A)− Pr(GII has less than m edges)

Now we estimate the probability that GII has less than m edges. Let Xe
be the 0-1 random variable with Pr(Xe = 1) = pIIe . Let X =

�
eXe. Then

E(X) = (1+o(1))m(1+δ). Now we apply the following large deviation inequality:

Pr(X − E(X) < a) ≤ e− a2

2E(X) .

We have

Pr(X < m) = Pr(X − E(X) < (1 + o(1))δm)
≤ e

−(1+o(1)) δ2m2

2(1+δ)m

≤ e−δ
2m/3.

The proof of Lemma 4.8 is completed.
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5. General Martingale Inequalities

In this subsection, we will extend and generalize the Azuma inequality to a mar-

tingale that is not strictly Lipschitz but is nearly Lipschitz. Similar techniques

have been introduced by Kim and Vu [Kim and Vu 00] in their important work

on deriving concentration inequalities for multivariate polynomials. Here we use

a rather general setting, and we shall give a complete proof.

Suppose that Ω is a probability space and F is a σ-field; X is a random

variable that is F -measurable. (The reader is referred to [Janson et al. 00] for
the terminology on martingales.) A filter F is an increasing chain of σ-subfields

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
A martingale (obtained from) X associated with a filter F is a sequence of

random variables X0, X1, . . . , Xn with Xi = E(X | Fi) and, in particular, X0 =
E(X) and Xn = X.

For c = (c1, c2, . . . , cn) a positive vector, the martingale X is said to be c-

Lipschitz if |Xi −Xi−1| ≤ ci for i = 1, 2, . . . , n. A powerful tool for controlling
martingales is the following:

Azuma’s inequality. If a martingale X is c-Lipschitz, then

Pr(|X − E(X)| < a) ≤ 2e−
a2

2 n
i=1

c2
i ,

where c = (c1, . . . , cn).

Here we are only interested in finite probability spaces, and we use the fol-

lowing computational model. The random variable X can be evaluated by a

sequence of decisions Y1, Y2, . . . , Yn. Each decision has no more than r outputs.

The probability that an output is chosen depends on the previous history. We

can describe the process by a decision tree T ; T is a complete rooted r-tree with

depth n. Each edge uv of T is associated with a probability puv depending on the

decision made from u to v. We allow puv to be zero and thus include the case of

having fewer than r outputs. Let Ωi denote the probability space obtained after

the first i decisions. Suppose that Ω = Ωn and X is the random variable on Ω.

Let πi : Ω → Ωi be the projection mapping each point to its first i coordinates.

Let Fi be the σ-field generated by Y1, Y2, . . . , Yi. (In fact, Fi = π−1(2Ωi) is the
full σ-field via the projection πi.) Fi forms a natural filter:

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
Any vertex u of T is associated with a real value f(u). If u is a leaf, we define

f(u) = X(u). For a general u, here are several equivalent definitions for f(u).
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1. For any non-leaf node u, f(u) is the weighted average over the f -values of

the children of u:

f(u) =

r3
i=1

puvif(vi),

where v1, v2, . . . , vr are the children of u.

2. For a non-leaf node u, f(u) is the weighted average over all leaves in the

sub-tree Tu rooted at u:

f(u) =
3

v leaf in Tu

pu(v)f(v),

where pu(v) denotes the product of edge-weights over edges in the unique

path from u to v.

3. Let Xi be a random variable of Ω, which for each node u of depth i assumes

the value f(u) for every leaf in the subtree Tu. Then, X0, X1, . . . , Xn form a

martingale, i.e., Xi = E(Xn | Fi). In particular, X = Xn is the restriction

of f to leaves of T .

We note that the Lipschitz condition |Xi −Xi−1| ≤ ci is equivalent to
|f(u)− f(v)| ≤ ci

for any edge uv from a vertex u with depth i− 1 to a vertex v with depth i.
We say an edge uv is bad if |f(u)− f(v)| > ci. We say a node u is good if the

path from the root to u does not contain any node of a bad edge.

The following theorem further generalizes the Azuma’s Inequality. A similar

but more restricted version can be found in [Kim and Vu 00].

Theorem 5.1. For any c1, c2, . . . , cn, a martingale X satisfies

Pr(|X − E(X)| < a) ≤ 2e−
a2

2 n
i=1 c

2
i + Pr(B),

where B is the set of all bad leaves of the decision tree associated with X.

Proof. We define a modified labeling f I on T so that f I(u) = f(u) if u is a good
node in T . For each bad node u, let xy be the first bad edge that intersects the

path from the root to u at x. We define f I(u) = f(x).

Claim 5.2. f I(u) =
�r

i=1 puvif
I(vi), for any u with children v1, . . . , vr.

If u is a good vertex, we always have f I(vi) = f(vi) whether vi is good or not.
Since f(u) =

�r

i=1 puvif(vi), we have f
I(u) =

�r

i=1 puvif
I(vi).
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If u is a bad vertex, v1, . . . , vr are all bad by the definition. We have f
I(u) =

f I(v1) = · · · = f I(vr). Hence,
�r

i=1 puvif
I(vi) = f(u)

�r

i=1 puvi = f(u).

Claim 5.3. f I is c-Lipschitz.

For any edge uv with u of depth i− 1 and v of depth i, if u is a good vertex,
then uv is a good edge, and

|f I(u)− f I(v)| ≤ ci.

If u is a bad vertex, we have f I(u) = f I(v), and thus,

|f I(u)− f I(v)| ≤ ci.

Let X I be the random variable that is the restriction of f I to the leaves; X I is
c-Lipschitz. We can apply Azuma’s Inequality to X I. Namely,

Pr(|X I − E(X I)| < a) ≤ 2e−
a2

2 n
i=1 c

2
i .

From the definition of f , we have

E(X I) = E(X).

Let B denote the set of bad leaves in the decision T of X. Clearly, we have

Pr(u : X(u) W= X I(u)) ≤ Pr(B).

Therefore, we have

Pr(|X − E(X)| < a) ≤ Pr(X W= X I) + Pr(|X I − E(X I)| < a)

≤ 2e
− a2

2 n
i=1 c

2
i + Pr(B).

The proof of the theorem is complete.

For some applications, even nearly Lipschitz condition is still not feasible.

Here we consider an extension of Azuma’s inequality. Our starting point is the

following well-known concentration inequality (see [McDiarmid 98]).

Theorem 5.4. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2i , for 1 ≤ i ≤ n;
2. |Xi −Xi−1| ≤M , for 1 ≤ i ≤ n.
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Then, we have

Pr(X − E(X) ≥ a) ≤ e−
a2

2( n
i=1

σ2
i
+Ma/3) .

In this paper, we consider a strenghtened version of the above inequality where

the variance Var(Xi|Fi−1) is instead upper bounded by a constant factor ofXi−1.
We first need some terminology. For a filter F,

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

A sequence of random variables X0, X1, . . . , Xn is called a submartingale if Xi
is Fi-measurable and E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.
A sequence of random variables X0, X1, . . . , Xn is said to be a supermartingale

if Xi is Fi-measurable and E(Xi | Fi−1) ≥ Xi−1 , for 1 ≤ i ≤ n.
We have the following theorem.

Theorem 5.5. Suppose that a submartingale X, associated with a filter F, satisfies

Var(Xi|Fi−1) ≤ φiXi−1

and

Xi − E(Xi|Fi−1) ≤M
for 1 ≤ i ≤ n. Then, we have

Pr(Xn > X0 + a) ≤ e−
a2

2((X0+a)( n
i=1

φi)+Ma/3) .

Proof. For a positive λ (to be chosen later), we consider

E(eλXi |Fi−1) = eλE(Xi|Fi−1)E(eλ(Xi−E(Xi|Fi−1))|Fi−1)

= eλE(Xi|Fi−1)
∞3
k=0

λk

k!
E((Xi − E(Xi|Fi−1)k)|Fi−1)

≤ eλE(Xi|Fi−1)+ ∞
k=2

λk

k! E((Xi−E(Xi|Fi−1)k)|Fi−1).

Let g(y) = 2
�∞
k=2

yk−2
k! =

2(ey−1−y)
y2

. We use the following facts:

• g(y) ≤ 1, for y < 0.
• limy→0 g(y) = 1.
• g(y) is monotone increasing, when y ≥ 0.

When b < 3, we have
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g(b) = 2

∞3
k=2

bk−2

k!
≤
∞3
k=2

bk−2

3k−2
=

1

1− b/3 . (5.1)

Since Xi − E(Xi|Fi−1) ≤M , we have
∞3
k=2

λk

k!
E((Xi − E(Xi|Fi−1)k)|Fi−1) ≤ g(λM)

2
λ2Var(Xi|Fi−1).

We define λi ≥ 0 for 0 < i ≤ n, satisfying λi−1 = λi +
g(λ0M)

2 φiλ
2
i , while λ0 will

be chosen later. Then,

λn ≤ λn−1 ≤ · · · ≤ λ0,

and

E(eλiXi |Fi−1) ≤ eλiE(Xi|Fi−1)+ g(λiM)
2 λ2iVar(Xi|Fi−1)

≤ eλiXi−1+
g(λ0M)

2 λ2iφiXi−1

= eλi−1Xi−1 ,

since g(y) is increasing for y > 0.

By Markov’s inequality, we have

Pr(Xn > X0 + a) ≤ e−λn(X0+a)E(eλnXn)

= e−λn(X0+a)E(E(eλnXn |Fn−1))
≤ e−λn(X0+a)E(eλn−1Xn−1)

...

≤ e−λn(X0+a)E(eλ0X0)

= e−λn(X0+a)+λ0X0 .

Note that

λn = λ0 −
n3
i=1

(λi−1 − λi)

= λ0 −
n3
i=1

g(λ0M)

2
φiλ

2
i

≥ λ0 − g(λ0M)
2

λ20

n3
i=1

φi.

Hence,

Pr(Xn > X0 + a) ≤ e−λn(X0+a)+λ0X0

≤ e−(λ0−
g(λ0M)

2 λ20
n
i=1 φi)(X0+a)+λ0X0

= e−λ0a+
g(λ0M)

2 λ20(X0+a)
n
i=1 φi .
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Now we choose λ0 =
a

(X0+a)(
n
i=1 φi)+Ma/3 . Using the fact that λ0M < 3 and

Inequality (5.1), we have

Pr(Xn > X0 + a) ≤ e
−λ0a+λ20(X0+a)

n
i=1 φi

1
2(1−λ0M/3)

≤ e
− a2

2((X0+a)(
n
i=1

φi)+Ma/3) .

The proof of the theorem is finished.

The condition of Theorem 5.5 can be further relaxed using the same technique

as in Theorem 5.1, and we have the following theorem. The proof will be omitted.

Theorem 5.6. For a filter F

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a random variable Xj is Fi-measurable, for 1 ≤ i ≤ n. Let B1

be the bad set in the decision tree associated with Xs where at least one of the

following conditions is violated:

E(Xi | Fi−1) ≤ Xi−1,

Var(Xi|Fi−1) ≤ φiXi−1,

Xi − E(Xi|Fi−1) ≤ M.

Then, we have

Pr(Xn > X0 + a) ≤ e−
a2

2((X0+a)(
n
i=1 φi)+Ma/3) + Pr(B1).

The theorem for supermartingale is slightly different due to the asymmetry of

the condition on variance.

Theorem 5.7. Suppose that a supermartingale X, associated with a filter F, satisfies,
for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ φiXi−1

and

E(Xi|Fi−1)−Xi ≤M.
Then, we have

Pr(Xn < X0 − a) ≤ e−
a2

2(X0(
n
i=1 φi)+Ma/3) ,

for any a ≤ X0.
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Proof. The proof is similar to that of Theorem 5.5. The following inequality still

holds:

E(e−λXi |Fi−1) = e−λE(Xi|Fi−1)E(e−λ(Xi−E(Xi|Fi−1))|Fi−1)

= e−λE(Xi|Fi−1)
∞3
k=0

λk

k!
E((E(Xi|Fi−1)−Xi)k)|Fi−1)

≤ e−λE(Xi|Fi−1)+ ∞
k=2

λk

k! E((E(Xi|Fi−1)−Xi)
k)|Fi−1)

≤ e−λiE(Xi|Fi−1)+ g(λM)
2 λ2Var(Xi|Fi−1)

≤ e−λiXi−1+
g(λM)

2 λ2φiXi−1 .

We now define λi ≥ 0, for 0 ≤ i < n satisfying λi−1 = λi− g(λn)
2 φiλ

2
i ; λn will be

defined later. Then, we have

λ0 ≤ λ1 ≤ · · · ≤ λn,

and

E(e−λiXi |Fi−1) ≤ e−λiE(Xi|Fi−1)+ g(λiM)
2 λ2iVar(Xi|Fi−1)

≤ e−λiXi−1+
g(λnM)

2 λ2iφiXi−1

= e−λi−1Xi−1 .

By Markov’s inequality, we have

Pr(Xn < X0 − a) = Pr(−λnXn > −λn(Xn − a))
≤ eλn(X0−a)E(e−λnXn)

= eλn(X0−a)E(E(e−λnXn |Fn−1))
≤ eλn(X0−a)E(e−λn−1Xn−1)

...

≤ eλn(X0−a)E(e−λ0X0)

= eλn(X0−a)−λ0X0 .

We note that

λ0 = λn +

n3
i=1

(λi−1 − λi)

= λn −
n3
i=1

g(λnM)

2
φiλ

2
i

≥ λn − g(λnM)
2

λ2n

n3
i=1

φi.



432 Internet Mathematics

Thus, we have

Pr(Xn < X0 − a) ≤ eλn(X0−a)−λ0X0

≤ eλn(X0−a)−(λn− g(λnM)
2 λ2n

n
i=1 φi)X0

= e−λna+
g(λnM)

2 λ2nX0
n
i=1 φi .

We choose λn =
a

X0(
n
i=1 φi)+Ma/3 . We have λnM < 3 and

Pr(Xn < X0 − a) ≤ e
−λna+λ2nX0

n
i=1 φi

1
2(1−λnM/3)

≤ e
− a2

2(X0(
n
i=1

φi)+Ma/3) .

It remains to verify that all λi are nonnegative. Indeed,

λi ≥ λ0

≥ λn − g(λnM)
2

λ2n

n3
i=1

φi

≥ λn

X
1− 1

2(1− λnM/3)λn
n3
i=1

φi

~
= λn(1− a

2X0
)

≥ 0.

The proof of the theorem is complete.

Again, the above theorem can further relaxed as follows.

Theorem 5.8. For a filter F

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,
suppose that a random variable Xj is Fi-measurable, for 1 ≤ i ≤ n. Let B2 be
the bad set where at least one of the following conditions is violated:

E(Xi | Fi−1) ≥ Xi−1,

Var(Xi|Fi−1) ≤ φiXi−1,

E(Xi|Fi−1)−Xi ≤ M.

Then, we have

Pr(Xn < X0 − a) ≤ e−
a2

2(X0(
n
i=1 φi)+Ma/3) + Pr(B2),

for any a ≤ X0.
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6. Main Theorems for the Growth-Deletion Model

We say that a random graph G is “almost surely edge-independent” if there

are two edge-independent random graphs G1 and G2 on the same vertex set

satisfying the following:

1. G dominates G1.

2. G is dominated by G2.

3. For any two vertices u and v, let p
(i)
uv be the probability of edge uv in Gi

for i = 1, 2. We have

p(1)uv = (1− o(1))p(2)uv .
We will prove the following:

Theorem 6.1. Suppose that p3 < p1, p4 < p2, and log nU m < t
p1

2(p1+p2) . Then,

1. Almost surely the degree sequence of the growth-deletion model

G(p1, p2, p3, p4,m)

follows the power law distribution with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4 .

2. G(p1, p2, p3, p4,m) is almost surely edge-independent. It dominates and is

dominated by an edge-independent graph with probability p
(t)
ij of having an

edge between vertices i and j, i < j, at time t, satisfying:

p
(t)
ij ≈

⎧⎨⎩
p2m

2p4τ(2p2−p4)
l2α−1
iαjα

w
1 +
p
1− p4

p2

Q D
j
t

i 1
2τ+2α−1

W
if iαjα ( p2mt

2α−1
4τ2p4

1− (1 + o(1)) 2p4τ
p2m

iαjαt1−2α if iαjα U p2mt
2α−1

4τ2p4

where α =
p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) and τ =

(p1+p2−p4)(p1−p3)
p1+p3

.

Without the assumption onm, we have the following general but weaker result:

Theorem 6.2. In G(p1, p2, p3, p4,m) with p3 < p1 and p4 < p2, let S be the set of
vertices with index i satisfying

i( m
1
α t1−

1
2α .

Let GS be the induced subgraph of G(p1, p2, p3, p4,m) on S. Then,
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1. GS dominates a random power law graph G1, in which the expected degrees

are given by

di ≈ p2m

2p4τ (2p2 − p4)( p1
p1−p3 − α)

tα

iα
.

2. GS is dominated by a random power law graph G2, in which the expected

degrees are given by

di ≈ m

2p4τ (
p1

p1−p3 − α)
tα

iα
.

Theorem 6.3. In G(p1, p2, p3, p4,m) with p3 < p1 and p4 < p2, let T be the set of
vertices with index i satisfying

iU m
1
α t1−

1
2α .

Then, the induced subgraph GT of G(p1, p2, p3, p4,m) is almost a complete graph.

Namely, GT dominates an edge-independent graph with pij = 1− o(1).

Let nt (or τt) be the number of vertices (or edges) at time t. We assume that

the initial graph has n0 vertices and τ0 edges. When t is large enough, the graph

at time t depends on the initial graph only in a mild manner. The number of

vertices n0 and edges τ0 in the initial graph affect only a lower order term to

random variables under consideration. We first establish the following lemmas

on the number of vertices and the number of edges.

Lemma 6.4. For any t and k > 1, in G(p1, p2, p3, p4,m) with an initial graph on

n0 vertices, the number nt of vertices at time t satisfies

(p1 − p3)t−
0
2kt log t ≤ nt − n0 ≤ (p1 − p3)t+

0
2kt log t, (6.1)

with probability at least 1− 2
tk
.

Proof. The expected number of vertices nt satisfies the following recurrence rela-
tion:

E(nt+1) = E(nt) + p1 − p3.
Hence, E(nt+1) = n0 + (p1 − p3)t. Since we assume that p3 < p1, the graph

grows as time t increases. By Azuma’s martingale inequality, we have

Pr(|nt − E(nt)| > a) ≤ 2e− a2

2t .
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By choosing a =
√
2kt log t, with probability at least 1− 2

tk
, we have

(p1 − p3)t−
0
2kt log t ≤ nt − n0 ≤ (p1 − p3)t+

0
2kt log t. (6.2)

Lemma 6.5. The number τt of edges in G(p1, p2, p3, p4,m), with an initial graph on
n0 vertices and τ0 edges, satisfies at time t

|E(τt)− τ0 − τmt| = O(
0
t log t),

where τ =
(p1+p2−p4)(p1−p3)

p1+p3
.

Proof. The expected number of edges satisfies

E(τt+1) = E(τt) +mp1 +mp2 − p3E(2τt
nt
)−mp4. (6.3)

Let C denote a large constant satisfying the following:

1. C > 8p3
(p1−p3)2 .

2. C > 4
�

s
log s for some large constant s.

We shall inductively prove the following inequality:

|E(τt)− τ0 −mτ t| < Cm
0
t log t for t ≥ s. (6.4)

When t = s, we have

|E(τs)− τ0 −mτs| ≤ 2ms ≤ Cm
0
s log s,

by the definition of C.

By the induction assumption, we assume that |E(τt)− τ0 − τmt| ≤ C
√
t log t

holds. Then, we consider

|E(τt+1)− τ0 − τm(t+ 1)|
=

eeeeE(τt) +mp1 +mp2 − p3E w2τtnt
W
−mp4 − τ0 − τm(t+ 1)

eeee
=

eeeeE(τt)− τ0 − τmt− 2p3E w τtnt
W
+ 2p3

mτ

p1 − p3

eeee
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=

eeeew1− 2p3

(p1 − p3)t
W
(E(τt)−mτ t− τ0)

− 2p3
w
E

w
τt

nt

W
− E(τt)

(p1 − p3)t
W
− 2p3

(p1 − p3)tτ0
eeee

≤
eeeew1− 2p3

(p1 − p3)t
W
(E(τt)−mτ t− τ0)

eeee
+ 2p3

eeeeE w τtnt
W
− E(τt)

(p1 − p3)t
eeee+ 2p3

(p1 − p3)tτ0

≤ |E(τt)− τ0 − τmt|+ 2p3
eeeeE wτtw 1nt − 1

(p1 − p3)t
WWeeee+Ow1t

W
.

We wish to substitute nt by nt+ n0 +O(
√
2kt log t) if possible. However,

E

w
τt

w
1

nt
− 1

(p1 − p3)t
WW

can be large. We consider S, the event that |nt−n0− (p1+p3)t| < 4
√
t log t. We

have Pr(S) > 1− 1
t2
from Lemma 6.4. Let 1S be the indicator random variable

for the event S, and S̄ denotes the complement event of S. We can derive an

upper bound for |E((τt+1 − τ0 − τm(t+ 1))1S)| in a similar argument as above
and obtain

|E((τt+1 − τ0 − τm(t+ 1))1S)|
≤ |E((τt − τ0 − τmt)1S)|

+ 2p3

eeeeE wτtw 1nt − 1

(p1 − p3)t
W
1S

Weeee+Ow1t
W
. (6.5)

We consider each term in the last inequality separately.

2p3

eeeeE wτtw 1nt − 1

(p1 − p3)t
W
1S

Weeee
≤ 2p3mt

eeee 1

(p1 − p3)t− 4
√
t log t

− 1

(p1 − p3)t
eeee

≤
√
8p3

(p1 − p3)2
5
log t

t
+O

w
log t

t

W
. (6.6)

Since Pr(S̄) ≤ 1
t2
and τt ≤ τ0 +mt, we have

|E((τt+1 − τ0 − τm(t+ 1)))|
= |E((τt+1 − τ0 − τm(t+ 1))1S)|+ |E((τt+1 − τ0 − τm(t+ 1))1S̄)|
≤ |E((τt+1 − τ0 − τm(t+ 1))1S)|+ 2m(t+ 1)Pr(S̄)
≤ |E((τt+1 − τ0 − τm(t+ 1))1S)|+ 2m(t+ 1) 1

t2
.
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By Inequalities (6.5) and (6.6), we have

|E((τt+1 − τ0 − τm(t+ 1)))|

≤ |E((τt − τ0 − τmt)1S)|+
X √

8p3

(p1 − p3)2
5
log t

t
+O

w
log t

t

W~
+ 2mt

1

t2

≤ |E(τt − τ0 − τmt)|+
√
8p3

(p1 − p3)2
5
log t

t
+O

w
log t

t

W
+ 4m

1

t

≤ Cm
0
t log t+

X √
8p3

(p1 − p3)2
5
log t

t
+O

w
log t

t

W~
≤ Cm

0
(t+ 1) log(t+ 1).

The proof of Lemma 6.5 is complete.

To derive the concentration result on τt, we will need to bound E(τt) as the

initial number of edge τ0 changes.

Lemma 6.6. We consider two random graphs Gt and G
I
t in G(p1, p2, p3, p4,m).

Suppose that Gt initially has τ0 edges and n0 vertices, and G
I
t initially have τ

I
0

edges and nI0 vertices. Let τt and τ It denote the number of edges in Gt and GIt,
respectively. If n0 − nI0 = O(1), then we have

|E(τt)− E(τ It)| ≤ |τ0 − τ I0|+O(log t).

Proof. From Equation (6.3), we have

E(τt+1) = E(τt) +mp1 +mp2 − 2p3E
w
τt

nt

W
−mp4,

E(τ It+1) = E(τ It) +mp1 +mp2 − 2p3E
w
τ It
nIt

W
−mp4.

Then,

E(τt+1 − τ It+1) = E(τt − τ It)− 2p3E
w
τt

nt
− τ It
nIt

W
. (6.7)

Since both nt − n0 and nIt − nI0 follow the same distribution, we have

Pr(nt = x) = Pr(n
I
t = x+ n

I
0 − n0) for any x.

We can rewrite E
p
τt
nt
− τ It

nIt

Q
as follows:
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E

w
τt

nt
− τ It
nIt

W
=
3
x

1

x
E(τt|nt = x)Pr(nt = x)−

3
y

1

y
E(τ It |nIt = y)Pr(nIt = y)

=
3
x

1

x
E(τt|nt = x)Pr(nt = x)

−
3
x

1

x+ nI0 − n0
E(τ It |nIt = x+ nI0 − n0)Pr(nIt = x+ nI0 − n0)

=
3
x

Pr(nt = x)

w
1

x
E(τt|nt = x)− 1

x+ nI0 − n0
E(τ It |nIt = x+ nI0 − n0)

W
=
3
x

Pr(nt = x)

w
1

x
(E(τt|nt = x)− E(τ It |nIt = x+ nI0 − n0))

−
w
1

x
− 1

x+ nI0 − n0

W
E(τ It |nIt = x+ nI0 − n0)

W
.

From Lemma 6.4, with probability at least 1− 2
t2
, we have

|nt − n0 − (p1 − p3)t| ≤ 2
0
t log t.

Let S denote the set of x satisfying |x − n0 − (p1 − p3)t| ≤ 2
√
t log t. The

probability for x not in S is at most 2
t2
. If this case happens, the contribution

to E( τt
nt
− τ It

nIt
) is O( 1

t
), which is a minor term.

In addition, τ It is always upper bounded by τ
I
0+mt. We can bound the second

term as follows.eeeee3
x

w
1

x
− 1

x+ nI0 − n0

W
E(τ It |nIt = x+ nI0 − n0)Pr(nt = x)

eeeee
=

eeeee3
x∈S

w
1

x
− 1

x+ nI0 − n0

W
E(τ It |nIt = x+ nI0 − n0)Pr(nt = x)

eeeee+O
w
1

t

W
≤ |nI0 − n0|

�
x(τ
I
0 +mt)Pr(nt = x)

(n0 + (p1 − p3)t− 2
√
t log t)(nI0 + (p1 − p3)t− 2

√
t log t)

+O

w
1

t

W
≤ |nI0 − n0|(τ I0 +mt)

(n0 + (p1 − p3)t− 2
√
t log t)(nI0 + (p1 − p3)t− 2

√
t log t)

+O

w
1

t

W
= O

w
1

t

W
.
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Hence, we obtain

E

w
τt

nt
− τ It
nIt

W
=
3
x

Pr(nt = x)
1

x
(E(τt|nt = x)− E(τ It |nIt = x+ nI0 − n0)) +O

w
1

t

W
=
3
x∈S

Pr(nt = x)
1

x
(E(τt|nt = x)− E(τ It |nIt = x+ nI0 − n0)) +O

w
1

t

W
=

1

n0 + (p1 − p3)t+O(
√
t log t)

×
3
x∈S

Pr(nt = x)(E(τt|nt = x)− E(τ It |nIt = x+ nI0 − n0)) +O
w
1

t

W

=
1

n0 + (p1 − p3)t+O(
√
t log t)

X3
x∈S

E(τt|nt = x)Pr(nt = x)

−
3
x

E(τ It |nIt = x+ nI0 − n0)Pr(nIt = x+ nI0 − n0)
~
+O

w
1

t

W
=

1

n0 + (p1 − p3)t+O(
√
t log t)

(E(τt)− E(τ It)) +O
w
1

t

W
.

Combine this with Equation (6.7), and we have

E(τt+1 − τ It+1) =
w
1− 2p3

n0 + (p1 − p3)t+O(
√
t log t)

W
E(τt − τ It) +O

w
1

t

W
.

Therefore, we have

|E(τt+1 − τ It+1)|

≤
eeeew1− 2p3

n0 + (p1 − p3)t+O(
√
t log t)

W
E(τt − τ It)

eeee+Ow1t
W

≤ |E(τt − τ It)|+O
w
1

t

W
...

≤ |τ0 − τ I0|+
t3
i=1

O

w
1

i

W
= |τ0 − τ I0|+O(log t).

The proof of the lemma is complete.
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In order to prove the concentration result for the number of edges for

G(p1, p2, p3, p4,m), we shall use the general martingale inequality. To estab-

lish the near Lipschitz coefficients, we will derive upper bounds for the degrees

by considering the special case without deletion. For p1 = α, p2 = 1 − α, and

p3 = p4 = 0, G(α, 1 − α, 0, 0,m) is just the preferential attachment model. The
number of edge increases by m at a time. The total number of edges at time t

is exactly mt+ τ0, where τ0 is the number of edge of the initial graph at t = 0.

We label the vertex u by i if u is generated at time i. Let di(t) denote the

degree of the vertex i at time t.

Lemma 6.7. For the preferential attachment model G(γ, 1 − γ, 0, 0,m), we have,

with probability at least 1 − t−k (any k > 1), the degree of vertex i at time t

satisfies

di(t) ≤ mk
w
t

i

W1−γ/2
log t.

Proof. For the preferential attachment model G(γ, 1−γ, 0, 0,m), the total number
of edge at time t is

τt = mt+ τ0.

The recurrence for the expected value of di(t) satisfies

E(di(t+ 1)|di(t)) = di(t) +mγ di(t)
2τt

+m(1− γ)di(t)
τt

=

w
1 +

m(2− γ)
2τt

W
di(t).

We denote θt = 1 +
m(2−γ)
2τt

. Let Xt be the scaled version of di(t) defined as

follows:

Xt =
di(t)�t−1
j=i+1 θj

.

We have

E(Xt+1|Xt) = E(di(t+ 1)|di(t))�t

j=i+1 θj
=

θtdi(t)�t

j=i+1 θj
= Xt.

Thus, Xt forms a martingale with E(Xt) = Xi+1 = di(i + 1) = m. We apply

Theorem 5.5. First, we compute
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Var(Xt+1|Xt) =
1�t

j=i+1 θ
2
j

Var(di(t+ 1)|di(t))

≤ 1�t

j=i+1 θ
2
j

E((di(t+ 1)− di(t))2|di(t))

≤ 1�t
j=i+1 θ

2
j

m

w
γ
di(t)

2τt
+ (1− γ)di(t)

τt

W
=

1�t

j=i+1 θ
2
j

(θt − 1)di(t)

=
θt − 1

θt
�t
j=i+1 θj

Xt.

Let φt =
θt−1

θt
t
j=i+1 θj

. We have

φt =
θt − 1

θt
�t

j=i+1 θj

=

m(2−γ)
2(mt+τ0)p

1 +
m(2−γ)
2(mt+τ0)

Q�t
j=i+1

p
1 +

m(2−γ)
2(mj+τ0)

Q
≈
p
1− γ

2

Q 1
t
e
−(1− γ

2 )
t
j=i+1

1

j+
τ0
m

≈
p
1− γ

2

Q 1
t

w
i

t

W1−γ/2
≈
p
1− γ

2

Q i1−γ/2
t2−γ/2

.

In particular, we have

t−13
j=i+1

φj ≈
p
1− γ

2

Q t−13
j=i+1

i1−γ/2

j2−γ/2

≈ 1.

Concerning the last condition in Theorem 5.5, we have

Xt+1 − E(Xt+1|Xt) =
1�t

j=i+1 θj
(di(t+ 1)− E(di(t+ 1)|di(t)))

≤ 1�t
j=i+1 θj

(di(t+ 1)− di(t))

≤ 1�t

j=i+1 θj
m

≤ m.
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With M = m and
�t−1

j=i+1 φj ≈ 1, Theorem 5.5 gives

Pr(Xt < m+ a) ≤ e−
a2

2(m+a+ma/3) .

By choosing a = m(k log t− 1), with probability at least 1−O(t−k), we have
Xt < m+m(k log t− 1) = mk log t.

Hence, with probability at least 1−O(t−k), di(t) ≤ mk log t( ti )1−γ/2.

Remark 6.8. In the above proof, di(t + 1) − di(t) roughly follows the Poisson
distribution with mean

m(2− γ)di(t)
2τt

= O
p
i−(1−γ/2)t−γ/2

Q
= O
p
t−γ/2

Q
.

It follows with probability at least 1− O(t−k) that di(t+ 1)− di(t) is bounded
by 2k

γ . Applying Theorem 5.6 with M = 2k
γ and

�t−1
j=i+1 φj ≈ 1, we get

Pr(Xt < m+ a) ≤ e
− a2

2(m+a+2ka
3γ ) +O(t−k).

When m ( log t, we can choose a =
√
3mk log t so that m dominates 2ka

3γ . In

this case, we have

Pr(Xt < m+ a) ≤ e
− a2

2(m+a+2ka
3γ ) +O(t−k) = O(t−k).

With probability at least 1−O(t−k), we have di(t) ≤ (m+
√
3mk log t)( t

i
)1−γ/2.

Similarly arguments using Theorem 5.8 give the lower bound of the same order.

If i survives at time t in the preferential attachment model G(γ, 1 − γ, 0, 0,m),

then, with probability at least 1−O(t−k), we have

di(t) ≥
p
m−
0
3mk log t

Qw t
i

W1−γ/2
.

The above bounds will be further generalized for model G(p1, p2, p3, p4,m)

later in Lemma 6.11 with similar ideas.

Lemma 6.9. For any k, i, and t in graph G(p1, p2, p3, p4,m), the degree of i at time
t satisfies

di(t) ≤ Ckm log
w
t

i

W1− p1
2(p1+p2)

(6.8)

with probability at least 1−O( 1
tk
), for some absolute constant C.
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Proof. We compare G(p1, p2, p3, p4,m) with the following preferential attachment
model G(p1, p2, 0, 0,m) without deletion:

At each step,

with probability p1, take a vertex-growth step and add m edges from the

new vertex to the current graph;

with probability p2, take an edge-growth step and m edges are added

into the current graph;

with probability 1− p1 − p2, do nothing.
We wish to show that the degree du(t) in the model G(p1, p2, p3, p4,m) (with

deletion) is dominated by the degree sequence du(t) in the modelG(p1, p2, 0, 0,m).

Basically, it is a balls-and-bins argument, similar to the one given in [Cooper et

al. 04]. The number of balls in the first bin (denoted by a1) represents the degree

of u while the number of balls in the other bin (denoted by a2) represents the

sum of degrees of the vertices other than u. When an edge incident to u is added

to the graph G(p1, p2, p3, p4,m), it increases both a1 and a2 by 1. When an edge

not incident to u is added into the graph, a2 increases by 2 while a1 remains the

same. Without loss of generality, we can assume that a1 is less than a2 in the

initial graph. If an edge uv, which is incident to u, is deleted later, we delay

adding this edge until the very moment that the edge is to be deleted. At the

moment of adding the edge uv, the two bins have a1 and a2 balls, respectively.

When we delay adding the edge uv, the number of balls in each bin is still a1
and a2, respectively, compared with a1 + 1 and a2 + 1 in the original random

process. Since a1 < a2, the random process with delay dominates the original

random process. If an edge vw, which is not incident to u, is deleted, we also

delay adding this edge until the very moment that the edge is to be deleted.

Equivalently, we compare the process with a1 and a2 balls in the bins to the

process with a1 and a2 + 2 balls. The random process without delay dominates

the one with delay. Therefore, for any u, the degrees of u in the model without

deletion dominates the degrees in the model with deletion.

It remains to derive an appropriate upper bound of du(t) for model

G(p1, p2, 0, 0,m).

If a vertex u is added at time i, we label it by i. Let us remove the idle steps

and re-parameterize the time. For γ = p1
p1+p2

, we have G(p1, p2, 0, 0,m) = G(γ,

1−γ, 0, 0,m). We can use the upper bound for the degrees of G(γ, 1−γ, 0, 0,m)
as in Lemma 6.7. This completes the proof for Lemma 6.9.

Lemma 6.5 can be further strengthened as follows:
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Lemma 6.10. In G(p1, p2, p3, p4,m) with initial graph on n0 vertices and τ0 edges,
the total number of edges at time t is

τt = τ0 + τmt+O
p
kmt

1− p1
4(p1+p2) log3/2 t

Q
with probability at least 1−O(t−k) where τ = (p1+p2−p4)(p1−p3)

p1+p3
.

Proof. For a fixed s with s ≤ t, we define τs(t) = #{ij ∈ E(Gt)|s ≤ i, j ≤ t}.
We use Lemma 6.9 with the initial graph to be taken as the graph Gs at time s.

Then, Lemma 6.9 implies that, with probability at least 1−O( 1
tk−1 ), we have

τt − τs(t) ≤
3
i≤s

di(t)

≤
3
i≤s

C

w
t

i

W1− p1
2(p1+p2)

mk log t

≤ C
p1

2(p1+p2)

mkt log t

w
t

s

W− p1
2(p1+p2)

.

By choosing s =
√
t, we have

τt = τs(t) +O
p
t
1− p1

4(p1+p2)mk log t
Q
. (6.9)

We want to show that with probability at least 1−O(t−k/2+1), we have
|τt − E(τt)| ≤ |τt − τs(t)|+ |E(τt)− E(τs(t))|+ |τs(t)− E(τs(t))|

≤ O
p
mkt

1− p1
4(p1+p4) log3/2 t

Q
.

It suffices to show that τs(t)− E(τs(t)) = O(mkt1−
p1

4(p1+p4) log3/2 t).

We use the general martingale inequality as in Theorem 5.1 as follows: let ci =

Ckm( i
s
)
1− p1

2(p1+p2) log t where C is the constant in Equation (6.8). The nodes of

the decision tree T are just graphs generated by graph model G(p1, p2, p3, p4,m).

A path from the root to a leaf in the decision tree T is associated with a chain

of the graph evolution. The value f(i) at each node Gi (as defined in the proof

of Theorem 5.1) is the expected number of edges at time t with initial graph Gi
at time i. We note that Xi might be different from the number of edges of Gi,

which is denoted by τi.

Let Gi+1 be any child node of Gi in the decision T . We define f(i + 1) and

τi+1 in a similar way. By Lemma 6.6, we have

|f(i+ 1)− f(i)| ≤ |τi+1 − τi|+O(log t) ≤ (1 + o(1))ci.
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We say that an edge of the decision tree T is bad if and only if it deletes a

vertex of degree greater than (1 + o(1))ci at time i. A leaf of T is good if none

of the graphs in the chain contains a vertex with degree larger than (1 + o(1))ci
at time i. Therefore, the probability for the set B consisting of bad leaves is at

most

Pr(B) ≤
t3
l=s

O
D
l−k) = O(s−k+1

i
.

By Theorem 5.1, we have

Pr(|τs(t)− E(τs(t))| > a) ≤ 2e
− a2

t
l=s

c2
l + Pr(B)

≤ 2e

− a2

t
l=s

( l
s
)
2− p1

(p1+p2) (Cmk log t)2 +O(s−k+1)

≤ 2e
− a2

CIC2t
3− p1

p1+p2 s
−2+ p1

p1+p2 m2k2 log2 t +O(s−k+1).

We choose s =
√
t and a =

√
C ICt1−

p1
4(p1+p2)mk log3/2 t. With probability at

least 1−O(t−k/2+1), we have

|τs(t)− E(τs(t))| = O
p
t
1− p1

4(p1+p2)mk log3/2 t
Q
,

as desired.

Lemma 6.11. For the model G(p1, p2, p3, p4,m), let α =
p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) and

γ = p1
p1+p2

. If log tU m ≤ tγ/2, we have the following:
1. For p3 > 0 and 6 > 0, with probability at least 1− 6, no vertex born before

6t
p3
p1 survives at time t.

2. If the vertex i survives at time t, then, with probability at least 1−O(t−k),
the degree di(t) in a graph G of the model G(p1, p2, p3, p4) satisfies

di(t) ≥ (m− C
0
mk log t)(1− Ci−γ/4 log3/2 i)

w
t

i

Wα
,

di(t) ≤ (m+ C
0
mk log t)(1 + Ci−γ/4 log3/2 i)

w
t

i

Wα
,

for some constant C depending on p1, p2, p3, and p4.

Proof. For a fixed t and i ≤ t, let Zi denote the number of vertices left at time
i with indices less than t0 = 6t

p3
p1 (i.e., born before t0). Clearly, Zt0 ≤ t0. For
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t0 ≤ i ≤ t, we have

Zi+1 =

F
Zi − 1 with probability p3

Zi
ni

Zi otherwise.
(6.10)

We wish to upper bound the expected value of Zi+1. From Inequality (6.2) we

have

Pr(ni > (p1 − p3)i+O(
0
2ki log i)) ≤ i−k.

We write

E(Zi+1)

= E
p
Zi+11ni≤(p1−p3)i+O(

√
2ki log i)

Q
+ E
p
Zi+11ni>(p1−p3)i+O(

√
2ki log i)

Q
≤ E

p
Zi+11ni≤(p1−p3)i+O(

√
2ki log i)

Q
+ t0 Pr

p
ni > (p1 − p3)i+O

p0
2ki log i

QQ
≤ E(Zi)− p3 E(Zi)

(p1 − p3)i+O
D√
2ki log i

i
+ t0 Pr

p
ni > (p1 − p3)i+O

p0
2ki log i

QQ
≤ E(Zi)

w
1− p3

(p1 − p3)i+O(
√
2ki log i)

W
+ t0i

−k.

The above recursive formula of E(Zi) can be solved as follows. Let ai = E(Zi)−
t−1. If k > 3, we have

ai+1 −
w
1− p3

(p1 − p3)i+O(
√
2ki log i)

W
ai

≤ t0i−k − p3
(p1−p3)i+O(

√
2ki log i)

t−1 ≤ 0.

Since at0 ≤ E(Zt0) ≤ t0, we get

at ≤ at0

t−1�
i=t0

w
1− p3

(p1 − p3)i+O(
√
2ki log i)

W
≤ t0e

− t−1
i=t0

p3
(p1−p3)i+O(

√
2ki log i)

= (1 + o(1))t0e
− p3
p1−p3 ln(t/t0).

We note that

ln
t

t0
=

w
1− p3

p1

W
ln t− ln 6.
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Hence,

at ≤ (1 + o(1))t0e
− p3
p1−p3 ln(t/t0)

= (1 + o(1))6t
p3
p1 e
− p3
p1
ln t+

p3
p1−p3 ln 6

= (1 + o(1))6
p1

p1−p3 .

Therefore, we have

Pr(Zt > 0) ≤ at +
1

t0

≤ (1 + o(1))6
p1

p1−p3 +
1

t0
≤ 6.

This implies that, with probability at least 1− 6, the number of vertices, which

are born before t0 and survive at time t, is zero. Item 1 is proved.

Let Ft be the σ-algebras generated by all subsets of the probability space at
time t. Under the condition that vertex i survives at time t, we have

E(di(t+ 1)|Ft) ≈ di(t) + p1m
di(t)

2τt
+ p2m

di(t)

τt
− p3 di(t)

nt
− p4mdi(t)

τt

=

w
1 +m

(p1 + 2p2 − 2p4)
2τt

− p3
nt

W
di(t). (6.11)

To see this, with probability p1, m edges from a new vertex will be added

to the graph. For this case, the probability that the vertex i is selected as an

endpoint of these m edges is mXt

2τt
. The terms containing p2 and p4 are the con-

tributions from the edge-addition step and the edge-deletion step, respectively.

The term containing p3 is the contribution from the vertex-deletion. We note

that repetition in the edge-deletion step only causes an error of minor term in

the above computation.

By Lemma 6.10, with probability at least 1 − O(t−k), the total number of
edges is

τt = τmt+O(kmt1−γ/4 log3/2 t).

Recall that τ =
(p1+p2−p4)(p1−p3)

p1+p3
and γ = p1

p1+p2
. By Lemma 6.4, the number

nt of vertices at time t satisfies

nt = (p1 − p3)t+O(
0
2kt log t),

with probability at least 1− 2
tk
.
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Substitute τt and nt into the Recurrence Forumla (6.11) and simplify. Thus,

with probability at least 1−O(t−k), we have

E(di(t+ 1)|Ft) =

w
1 +m

(p1 + 2p2 − 2p4)
2τt

− p3
nt

W
di(t)

=

w
1 +m

(p1 + 2p2 − 2p4)
2(τmt+ O(kmt1−γ/4 log t))

− p3

(p1 − p3)t+O(
√
2kt log t)

W
di(t)

=
p
1 +

α

t
+O(t−1−γ/4 log t)

Q
di(t).

Let θt = 1 + α
t
+ Ct−1−γ/4 for some large constant C. With probability at

least 1−O(t−k), we have
E(di(t+ 1)|Ft) ≤ θtdi(t).

Now we apply Theorem 5.6 to random variables

Xt =
1�t−1

j=i+1 θj
di(t).

With probability at least 1−O(t−k), we have

E(Xt+1|Ft) = E

X
1�t
j=i θj

di(t+ 1)|Ft
~

≤ 1�t

j=i+1 θj
θtdi(t)

= Xt.

In other words, Xt is nearly a submartingale. We compute

t−1�
j=i+1

θj =

t−1�
j=i+1

w
1 +

α

j
+ Cj−1−γ/4 log3/2 j

W
≤ e

t−1
j=i+1(

α
j +Cj

−1−γ/4 log3/2 j)

= eα(log t−log i)+O(i
−γ/4 log3/2 i)

=
p
1 +O

p
i−γ/4 log3/2 i

QQw t
i

Wα
.

Next, we consider the variance Var(Xt+1|Ft):
Var(Xt+1|Ft) =

1�t

j=i+1 θ
2
j

Var(di(t+ 1)|Ft)

≤ 1�t

j=i+1 θ
2
j

E((di(t+ 1)− di(t))2|Ft).
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The second moment E((di(t+1)−di(t))2|Ft) consists of four items, which corre-
spond to four steps: vertex-growth step, edge-growth step, vertex-deletion step,

and edge-deletion step. Recall that the graphs are always simple. We have

E((di(t+ 1)− di(t))2|Ft) ≤ p1m
di(t)

2τt
+ p2m

di(t)

τt
+ p3

di

nt
+ p4m

di(t)

τt

=

w
p1 + 2p2 + 2p4

2τ
+

p3

p1 − p3 + o(1)
W
1

t
di(t).

Let φt =
p
p1+2p2+2p4

2τ + p3
p1−p3 + o(1)

Q
1

tθt
t
j=i+1 θj

. Then Var(Xt+1|Ft) ≤ φtXt.

We have

t−13
j=i+1

φj = O

⎛⎝ t−13
j=i+1

1

jθj
�t
l=i+1 θl

⎞⎠
= O

⎛⎝ t−13
j=i+1

iα

j1+α

⎞⎠
= O(1).

Let us estimate |di(t + 1) − di(t)|. It is upper bounded by 1 if it takes a
vertex-growth step or a vertex-deletion step (with i surviving). It is at most m

if it takes an edge-growth step or an edge-deletion step. We can further lower

the upper bound by considering trade-off with probability.

For an edge-growth step, it follows the Poisson distribution with mean

µ = m
di(t)

2τt

≤ m
Cmk log t( t

i
)1−γ

2mτt+ o(t)

= O(mkt−γ log t)

≤ o(t−γ/3).

By using Lemma 6.9 and m < tγ/2, with probability at least 1 − O(t−k),
di(t)− di(t+ 1) is bounded by 2k < 6k

γ .

For an edge-deletion step, it follows the Poisson distribution with mean

µ =
m

τt
≈ 1

τ t
.

With probability at least 1−O(t−k), di(t)− di(t+ 1) is bounded by 2k < 6k
γ .
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Therefore,

|E(Xt+1|Ft)−Xt+1| ≤ |E(di(t+ 1)|Ft)− di(t+ 1)|�t
j=i+1 θj

≤ 2|di(t+ 1)− di(t)|
≤ 12k

γ
.

By applying Theorem 5.6 with M = 12k
γ and

�t−1
j=i+1 φj = O(1), we have

Pr(Xt < m+ a) ≤ e
− a2

2(C(m+a)+12ka
3γ ) +O(t−k).

When m( log t, we can choose a =
√
3Cmk log t so that m dominates 12ka

3γ . In

this case, we have

Pr(Xt < m+ a) ≤ e
− a2

2(C(m+a)+ 2ka
3γ ) +O(t−k) = O(t−k).

With probability at least 1−O(t−k), we have

di(t) ≤ (m+
0
3Cmk log t)

w
1 +O

p
i−γ/4 log3/2 i

Qw t
i

WαW
.

The proof of the lower bound is similar by using Theorem 5.8 instead. Let

θIt = 1 + α
t
− Ct−1−δ for some large constant C. With probability at least

1−O( 1
tk
), we have

E(di(t+ 1)|Ft) ≥ θItdi(t).

Now, we apply Theorem 5.8 to random variables

Yt =
1�t−1

j=i+1 θ
I
j

di(t).

With probability at least 1−O(t−k), we have

E(Yt+1|Ft) = E

X
1�t

j=i θ
I
j

di(t+ 1)|Ft
~

=
1�t

j=i+1 θ
I
j

E(di(t+ 1)|Ft)

≥ 1�t

j=i+1 θ
I
j

θItdi(t)

= Yt.
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Hence, Xt is nearly a supermartingale. We have

t−1�
j=i+1

θIj =

t−1�
j=i+1

w
1 +

α

j
− Cj−1−γ/4 log3/2 j

W
= e

t−1
j=i+1(

α
j −O(j−1−γ/4 log3/2 j))

= eα(log t−log i)−O(i
−γ/4 log3/2 i)

=
p
1−O

p
i−γ/4 log3/2 i

QQw t
i

Wα
.

Similarly, let φIt =
p1+2p2+2p4

2τ +
p3

p1−p3+o(1)

tθIt
t
j=i+1 θ

I
j

. Then, Var(Yt+1|Ft) ≤ φItYt,

t−13
j=i+1

φIj = O

⎛⎝ t−13
j=i+1

1

jθIj
�t
l=i+1 θ

I
l

⎞⎠
= O

⎛⎝ t−13
j=i+1

iα

j1+α

⎞⎠
= O(1),

and

|E(Yt+1|Ft)− Yt+1| =
|E(di(t+ 1)|Ft)− di(t+ 1)|�t

j=i+1 θj

≤ 2|di(t+ 1)− di(t)|
≤ 12k

γ
.

Using Theorem 5.8 with M = 12k
γ and

�t−1
j=i+1 φ

I
j = O(1), we have

Pr(Xt < m− a) ≤ e
− a2

2(Cm+12ka
3γ ) +O(t−k).

When m( log t, we can choose a =
√
3Cmk log t so that m dominates 12ka

3γ . In

this case, we have

Pr(Xt < m− a) ≤ e
− a2

2(Cm+2ka
3γ ) +O(t−k) = O(t−k).

With probability at least 1−O(t−k), we have

di(t) ≥ (m−
0
3Cmk log t)

w
1−O

p
i−γ/4 log3/2 i

Qw t
i

WαW
.

The proof of Lemma 6.11 is complete.
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7. The Proofs for the Main Theorems

Now we are ready to prove Theorems 6.1 to 6.3.

Proof of Theorem 6.1. The probability that a vertex i survives at time t is

t�
l=i+1

w
1− p3

nl

W
≈ e t

l=i+1− p3
(p1−p3)t ≈

w
i

t

W p3
p1−p3

.

Suppose that i survives at time t. By Lemma 6.11, with high probability, we

have

di(t) = (1 + o(1))m

w
t

i

Wα
.

Recall that α =
p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) . The number of vertices with degree between

x1 and x2 can be written by

3
(1+o(1))(

x2
m )−1/αt≤i≤(1+o(1))( x1m )−1/αt

w
i

t

W p3
p1−p3

≈
Xpx1

m

Q −p1
α(p1−p3) −

px2
m

Q −p1
α(p1−p3)

~
p1 − p3
p1

≈ p1 − p3
p1

wpx1
m

Q−β+1
−
px2
m

Q−β+1W
.

We note that

−p1
α(p1 − p3) = −

2(p1 + p2 − p4)
p1 + 2p2 − p3 − 2p4 = −β + 1.

The number of vertices with degree between x and x+∆x isw
1− p3

p1
+ o(1)

WXp x
m

Q−β+1
−
w
x+∆x

m

W−β+1~
≈
w
1− p3

p1

W
βmβ−1

xβ
∆x.

Hence, G(p1, p2, p3, p4,m) is a power law graph with exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4 .

This completes the proof for Item 1.

For t0 = u 1
g(t) t

p3
p1 J, where g(t) is an arbitrarily slow growing function, Lemma

6.11 implies that almost surely any surviving vertices are born after t0. To
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prove Item 2, for some fixed l ≤ t, we consider w(l)i = m( l
i
)α and τl = mτ l, for

t ≥ l ≥ i ≥ t0 where τ = (p1+p2−p4)(p1−p3)
p1+p3

l.

For l = t0, . . . , t, let G
l(p1, p2, p3, p4,m) denote the graph at time l gener-

ated by the evolution model G(p1, p2, p3, p4,m). Now, we construct an edge-

independent random graph H l as follows. At l = t0, H
l is an empty graph. By

the induction assumption, we assume that the edge-independent random graph

Hj has been constructed, for j ≤ l.
If at time l+1 we have a vertex-growth step in Gl+1(p1, p2, p3, p4,m), we add

a new vertex labeled by l + 1 to Hl. Let F
l
v be the edge-independent random

graph with

pi,l+1 = (1− o(1))mw
(l)
i

2τl
.

We define H l+1 = H l ∪ F lv.
If at time l + 1 we have an edge-growth step in Gl+1(p1, p2, p3, p4,m), let F

l
e

be the edge-independent random graph with

pi,j = m(1− o(1))
w
(l)
i w

(l)
j

4τ2l
,

for all pairs of vertices (i, j) in Hl. We define Hl+1 = Hl ∪ F le.
If at time l + 1 we have a vertex-deletion step in Gl+1(p1, p2, p3, p4,m), we

delete the same vertex from Hl and call the resulted graph H l+1.

If at time l+1 we have an edge-deletion step in Gl+1(p1, p2, p3, p4,m), let F
l
d be

the random graph with uniform probability p = m
τl
. We define H l+1 = H l \ F ld.

Clearly, Hl+1 is edge-independent if H l is edge-independent.

From the above construction, for any two vertices i and j (i < j) in H l, the

edge probability p
(l)
ij satisfies the following recurrence formula:

p
(l+1)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m(1− o(1))w
(j)
i

2τj
if l = j − 1

plij with probability p1 + p3

plij +
p
1− p(l)ij

Q
m(1− o(1))w

(l)
i w

(l)
j

4τ2l
with probability p2

plij

p
1− m

2τl

Q
with probability p4

0 if i and j are deleted or l < j

Let al = (1 − o(1))p2mw
(l)
i w(l)yj

4τ2l
= (1 − o(1))p2m 1

4τ2iαjα l
2α−2 and bl = (1 +

o(1))p4
m
2τl

= (1 + o(1)) p42τ
1
l
. The expected value E(p

(l)
ij ) satisfies the following

recurrence formula:

E
p
p
(l+1)
ij

Q
= (1− al − bl)E

p
p
(l)
ij

Q
+ al. (7.1)
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This implies that

E
p
p
(t)
ij

Q
= (1− at−1 − bt−1)E

p
p
(t−1)
ij

Q
+ at−1

= (1− at−1 − bt−1)
p
(1− at−2 − bt−2)E

p
p
(t−2)
ij

Q
+ at−2

Q
+ at−1

...

=

t−13
s=j+1

as

t−1�
l=s

(1− al − bl) + E
p
p
(j)
ij

Q t−1�
l=j

(1− al − bl).

Before we proceed to prove that p
(t)
ij concentrates on E(p

(t)
ij ), we simplify the

expression for E(p
(t)
ij ) by solving the recurrence in Equation (7.1). We consider

the following two cases.

Case 1. at = o(bt).

For any l ≤ t, we have
al

at
≈
w
l

t

W2α−2
≤
w
l

t

W−1
≈ bl

bt
.

Hence, al ≤ at
bt
bl = o(bl).

Suppose that the Recurrence Formula (7.1) has a solution in the following

form: p
(l)
ij ≈ Clx for all l ≤ t. By substituting into the formula, we have

C(l + 1)x ≈ Clx(1− al − bl) + al.
Here we apply the estimation

(l + 1)x ≈ lx
p
1 +

x

l

Q
.

We have

Clx
px
l
+ al + bl

Q
≈ al

and

Clx ≈ al
x
l
+ al + bl

≈
p2m

4τ2iαjα

x+ p4
2τ

l2α−1.

By choosing x = 2α− 1, we have

C =

p2m
4τ2iαjα

x+ p4
2τ

=
p2m

2τ (2p2 − p4)iαjα .

Let f(l) be the difference E(p
(l)
ij ) − p2m

2τ(2p2−p4)
l2α−1
iαjα

. It is enough to establish

an appropriate upper bound for f(l). Since both E(p
(l)
ij ) and

p2m
2τ(2p2−p4) are



Chung and Lu: Coupling Online and Offline Analyses for Random Power Law Graphs 455

(asymptotic) solutions of Equation (7.1), we have f(l + 1) ≈ (1 − al − bl)f(l).
Hence,

f(t) ≈ f(j)

t−1�
l=j

(1− al − bl)

≈
X
m
w
(j)
i

2τj
− p2m

2τ (2p2 − p4)
jα−1

iα

~
e−

t
l=j(al+bl)

≈
w
1− p2

(2p2 − p4)
W
m

2τ

jα−1

iα
e−

t
l=j(al+bl)

≈
w
1− p2

(2p2 − p4)
W
m

2τ

jα−1

iα

w
j

t

W p4
2τ

=
p2m

2τ(2p2 − p4)iαjα
t2α−1

iαjα

w
1− p4

p2

Ww
j

t

W p4
2τ +2α−1

.

The solution of the Recurrence Formula (7.1) is

p
(l)
ij ≈

p2m

2p4τ (2p2 − p4)
l2α−1

iαjα

X
1 +

w
1− p4

p2

Ww
j

t

W p4
2τ +2α−1

~
.

If t( j, the above solution can be expressed as

p
(t)
ij = (1 + o(1))

p2m

2p4τ(2p2 − p4)
t2α−1

iαjα
.

Case 2. bt = o(at).

From the definition of al and bl, there is a t1 ≤ t
2 satisfying bl = o(al) for all

t1 ≤ l ≤ t. We can rewrite the Recurrence Formula (7.1) as

1− E
p
p
(l+1)
ij

Q
= (1− al − bl)

p
1− E

p
p
(l)
ij

QQ
+ bl. (7.2)

Suppose that the Recurrence Formula (7.1) has a solution with the following

form: p
(l)
ij ≈ 1− C Ily for all l ≤ t. We have

C I(l + 1)y ≈ C Ily(1− al − bl) + bl.

In a similar way as in Case 1, we have

C Ily ≈ bl
x
l
+ al + bl

≈ bl

al
≈ 2p4τ
p2m

iαjαl1−2α.
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We choose y = 1− 2α and C I = 2p4
p2
τmiαjα. Consider

f(l) = E
p
p
(l)
ij

Q
−
w
1− 2p4

p2
τmiαjαl1−2α

W
.

From Equation (7.1), we have f(l + 1) ≈ (1− al − bl)f(l). Hence,

|f(t)| ≈ |f(t1)|
t−1�
l=t1

(1− al − bl)

≤ e
− t

l=t1
(al+bl)

= o(τmiαjαl1−2α).

Hence, the solution of the Recurrence Formula (7.1) is

E(p
(l)
ij ) = 1− (1 + o(1))

2p4τ

p2m
iαjαl1−2α.

It is sufficient to prove that p
(t)
ij concentrates on its expected value. Consider a

martingale Xl = E(p
(t)
ij |p(j)ij , . . . , p(l)ij ), for l = j, . . . , t. Since p(l+1)ij only depends

on p
(l)
ij but not on the history p

(s)
ij for s < l, this implies that Xl = E(p

(t)
ij |p(l)ij ) is

the expected value at time t with initial value p
(l)
ij at time l. The solution of the

following recurrence formula is Xl = f(t):

f(s+ 1) = (1− as − bs)f(s) + as, with f(l) = p
(l)
ij .

We have

|Xl+1 −Xl| = |p(l+1)ij − p(l)ij |
�
s=l+1

(1− as − bs)

≤ |p(l+1)ij − p(l)ij |
≤ max{al(1− p(l)ij ), blp(l)ij }.

Let ci = max{al(1 − p(l)ij ), blp(l)ij } denote the sequence c for the c-Lipschitz con-
dition.

For the case at = o(bt), we first get a crude upper bound for p
(l)
ij (by setting

p2 = 1):
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p
(l)
ij ≤ 1− (1− p(j)ij )

⎛⎝1− l�
s=j

X
1−mw

(s)
i w

(s)
j

4τ2s

~⎞⎠
≤ jα−1

2τ iα
+

l3
s=j

m
w
(s)
i w

(s)
j

4τ2s

≤ (1 +O(1))
m(2α− 1)

4τ2
l2α−1

iαjα
.

Also, we have

blp
(l)
ij ≤ bl(1 +O(1))

m(2α− 1)
4τ2

l2α−1

iαjα
= Θ(al).

Hence,

t3
l=j

c2l ≤ Θ

⎛⎝ t3
l=j

a2l

⎞⎠
≈
⎧⎨⎩ O

p
m2t4α−3
(ij)2α

Q
if α > 3

4

O
p
m2j4α−3
(ij)2α

Q
if α < 3

4

=

l
Θ(t−1(E(p(t)ij )

2) if α > 3
4

Θ(t−(2α−2)E(p(t)ij )
2) if α < 3

4

= o(E(p
(t)
ij )

2).

By Azuma’s martingale inequality, almost surely, we have

p
(t)
ij = E(p

(t)
ij ) +O

⎛⎝>��: t3
l=j

c2l

⎞⎠ = (1 + o(1))E(p(t)ij ).
For the case bt = Θ(at) and E(p

(t)
ij ) = Θ(1), we have

t3
l=j

c2l = O

⎛⎝ t3
l=j

b2l

⎞⎠ = Θw1
j

W
= o(1)

and, therefore,

p
(t)
ij = E(p

(t)
ij ) +O

⎛⎝>��: t3
l=j

c2l

⎞⎠ = (1 + o(1))E pp(t)ij Q .
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Now we prove inductively that Gl(p1, p2, p3, p4,m) dominates G
l within an

error estimate o(t−K) (for some constant K > 2).

For l = t0, the statement is trivial since H
l is an empty graph. We now assume

that Gl(p1, p2, p3, p4,m) dominates H
l within error estimate o(t−K).

If at time l + 1 we have a vertex-growth step, we define the random graph

φ(H) to be the graph resulting from adding to H l m random edges from the

new vertex. The other endpoints of these edges are chosen with probabil-

ity proportional to their degrees in H . We note that Gl+1(p1, p2, p3, p4) =

φ(Gl(p1, p2, p3, p4)). Since G
l(p1, p2, p3, p4,m) dominates H

l within an error es-

timate o(t−K), Gl+1(p1, p2, p3, p4) dominates φ(H l) within an appropriate error

term.

If at time l + 1 we have an edge-growth step, we define the random graph

φ(H) to be the graph resulting from adding m random edges on the vertices

of H . The endpoints of those edges are chosen with probability proportional

to their degrees in H. We note that Gl+1(p1, p2, p3, p4) = φ(Gl(p1, p2, p3, p4)).

Since Gl(p1, p2, p3, p4,m) dominates H l within error estimate o(t−K),
Gl+1(p1, p2, p3, p4) dominates φ(G

l), with a suitable error term.

If at time l+1 we have a vertex-deletion step, it is clear that Gl+1(p1, p2, p3, p4)

dominates H l+1 within the same error estimate as at time l.

If at time l+1 we have an edge-deletion step, we note thatGl+1(p1, p2, p3, p4) =

Gl(p1, p2, p3, p4) \ H l
d. Since Gl(p1, p2, p3, p4,m) dominates H

l with an error

estimate o(t−K), Gl+1(p1, p2, p3, p4) dominates H l \ F le = Gl+1.
The total error bound is less that t times the maximum error within each step.

Hence, the error is o(t−K) for any constant K. The proof of one direction for
the domination is completed. The proof of the other direction can be treated

similarly except that the opposite direction of the domination is involved and we

omit that proof here.

Proof of Theorem 6.2. When j > i( m
1
α t1−

1
2α , we have

pij ≈ p2m

2p4τ (2p2 − p4)
t2α−1

iαjα
.

Let H1 be the edge-independent random graph with pIij =
p2m

2p4τ(2p2−p4)
t2α−1
iαjα

.

Since pij can be written as a product of a function of i and a function of j,

H1 is a random graph with given expected degrees. To calculate the expected

degrees of H1, we will use the fact that the probability that i survives at t is
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(1 + o(1))
D
i
t

i p3
p1−p3 . Hence, the expected degree of Hi is

di =
3
j∈S

pIij

w
j

t

W p3
p1−p3

≈
3

j = m
1
α t1−

1
2α
t p2m

2p4τ(2p2 − p4)
t2α−1

iαjα

w
j

t

W p3
p1−p3

≈ p2m

2p4τ (2p2 − p4)( p1
p1−p3 − α)

tα

iα
,

as claimed.

For the other direction, we note that

pij ≈ p2m

2p4τ(2p2 − p4)
t2α−1

iαjα

X
1 +

w
1− p4

p2

Ww
j

t

W p4
2τ +2α−1

~

≤ p2m

2p4τ(2p2 − p4)
t2α−1

iαjα

w
1 +

w
1− p4

p2

WW
=

m

2p4τ

t2α−1

iαjα
.

Let H2 be the edge-independent random graph with p
II
ij =

m
2p4τ

t2α−1
iαjα

. Clearly, H2

is a random graph with a given expected degree sequence. The proof is similar

and will be omitted.

Proof of Theorem 6.3. When i < j U m
1
α t1−

1
2α , we have

pij = 1− (1 + o(1))2p4τ
p2m

iαjαt1−2α = 1− o(1).

Therefore, it is dominating and dominated by the complete subgraph.
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