
12

Coupling Process Models and

Business Rules

Peter MC: Brien

King's College London

Strand, London WC2R 2LS, UK

Tel: +441718732469, email:pjm@dcs.kcl.ac.uk

Anne Helga Selt·veit

The Norwegian Institute for Technology

Tmndheim N-7034, Norway

Tel: +4 7 73593677, email: ahs<hdt. unit. no

Abstract

Two techniques commonly used in the conceptual modelling of information systems are

process modelling and business rule modelling. In this paper we propose a tech

nique for associating certain types business rules with structures in a process modelling

language. This coupling of the two models allows them to be used as complimentary lan

guages in conceptual modelling; the process language being suitable when modelling how

activities interact, whilst the business rule model is suitable when we need to make precise

statements about a certain activity. The ability to model certain aspects of business rules

within the process model is particularly important in distributed organisations, where the

process model may be used as a means of communication between different parts of the

organisation. The coupling also serves (1) to make apparent what effect re-engineering

of one model has on the structure of the other model, and (2) indicate how the process

model may be used to drive the creation of business rules.

Keywords

Conceptual modelling, Process modelling, Business rule modelling, Business process re

engineering.

1 INTRODUCTION

Process modelling is frequently used in the conceptual modelling of information systems.

and allows the description of the dynamic nature of the universe of discourse (UoD),

nsua.lly in the form of some variant of the data flow diagram (DFD) of (Gane and Sar

son 1978) or (deMarco 1978). Although useful for describing a general picture of how the

domain functions in terms of activities (processes) and exchanges of information between

A. Sölvberg et al. (eds.), Information Systems Development for Decentralized Organizations

© Springer Science+Business Media Dordrecht 1995

202 Information Systems Development for Decentralized Organizations

the activities (dataflows), the semantics of process models are not precise in their state
ment of facts about the domain. In particular it is not possible to generate any application

code from a DFD model.

In part as an answer to the lack of semantic richness in process models, business rule

modelling has received growing attention over the past few years, one research project

TEMPORA (Loucopoulos, McBrien, Schumacker, Theodoulidis, Kopanas and Wangler

1991) being of interest to this paper, and commercial products using them being exem

plified by UNIFACE 6. Business rules are usually expressed in a formal language, which

allows precise statements to be made about the domain, and which contain sufficient

information such that application code may be automatically generated.

A disadvantage of business rules is that they suffer from a lack of structuring mecha
nisms - the rule base is an essentially flat structure, and in large information systems

this can become difficult to manage, test and maintain (Xiaofeng 1991). This will become
more apparent in distributed organisations, where the flat rule structure must be mapped
onto some structure in the organisation. By contrast, the ability to provide different lev

els of abstraction and to structure the model as communicating activities can be seen as

advantages of process modelling, In particular, process modelling supports the notion of

interaction between different parts of a distributed organisation.

In (Krogstie, McBrien, Owens and Seltveit 1991) it was proposed that the two mod

els could be coupled, by defining how certain constructs in one model would indicate

the presence of constructs in the other model. Rules were viewed as having the general

structure

when (trigger} if (condition) then (consequence}

where (trigger), (condition) and (consequence) are logical expressions which may con
tain several flow names. Such rules would imply the existence of a process which has

triggering input (the flows contained in (trigger}), non-triggering input (the flows con

tained in (condition}), and output (the flows contained in (consequence)).

In this paper we elaborate upon the approach in (Krogstie et a!. 1991) to define how
the structure of the rules may be more precisely defined within the process model. This

tighter coupling facilitates the following activities:

• rule capture by the ability to express certain logical constructs within the process

model.

• process re-engineering being carried out in the process model, since the conse

quences of such changes in the rule model are made apparent immediately.

• business rule re-engineering being carried out in the rule model, since the conse

quences of such changes in the process model made apparent immediately.

• communication of business rules between parts of a distributed organisation, since

the relationship of rules to processes means that business rules can be located within

a structural framework of the organisation as represented by the process model.

The remainder of this paper is structured as follows. Section 2 briefly describes the

TEMPORA process and rule modelling languages. Section 3 describes how the two models

may be coupled. Section 4 describes the rule capture process. Section 5 describes the use

of the coupling mechanism in information systems re-engineering.

Coupling process models and business rules 203

Control

Data
J J)]]

AND OR XOR optional repeating

(a) Control and Data Flows (b) Flow Logic (c) Flow Cardinality

ld Name

rn
(d) Timers (e) ERT View

Figure 1 Enhancements on DFD found in the PID.

2 THE TEMPORA PROCESS AND RULE MODELS

In TEMPORA the capture of a conceptual model is made using three modelling languages:

• An entity-relationship model called the ERT (McBrien, Seltveit and Wangler 1992),

containing various extensions to the ER model of (Chen 1976), including the ability

model valid-time data model (Jensen et a/1984).

• A process modelling language called the PID (Krogstie et al. 1991), containing ex

tensions to DFD modelling which we detail below, and based on the PPP modelling

language (Gulla, Lindland and Willumsen 1991).

• A rule modelling language called the ERL (McBrien, Niezette, Pantazis, Thedoulidis,

Tziallas, Seltveit, Sundin and Wohed 1991), which allows the specification of rules as

logical constraints on the static ERT and dynamic PID models. The ERL uses as its

basis the temporal US logic (Gabbay 1989), allowing the querying of the valid-time

data model in the ERT. The use of the ERL as a mechanism for specifying logical

constraints on the PID is the subject of Section 3.

So as to make this paper self contained, we detail a few key aspects of the PID and

ERL in the following subsections.

2.1 An Enhanced Process Modelling Language: PID

The key differences between the PID model and the DFD model as proposed by (Gane

and Sarson 1978) are itemised below, and the new constructs introduced in the PID are

illustrated in Figure 1.

204 Information Systems Development for Decentralized Organizations

• The PID distinguishes between control and data flows. A triggering flow is drawn

with a thick line. Each occurrence of a triggering flow causes the processes at which it

ends to be considered for execution. A non-triggering flow is drawn with a thin line,

and may only be used by a process that is already executing.

e A triggering flow only leads to a process being considered for execution. It will only

actually execute if the flow logic is satisfied. The logic is specified using a combination

of AND ports, OR ports and XOR ports. This indicates what logical combinations

of input flows must be present in order for the process to execute.

• The flow cardinality is the number of instances of a flow that must be present for a

valid process execution. By default it is assumed that one instance of each input flow

is used in a process execution, and that one instance of each output flow is generated

by the execution. The fact that there may be a lower bound of zero is indicated by a

conditional port, and an upper bound of many is indicated by a repeating port.

• The notion that clock events may be generated at specified intervals is represented by

the concept of a timer.

• The fact that data stores are views on an entity-relationship model leads to a new

syntax for the object, which is called an ERT view.

2.2 A Rule Modelling Language: ERL

The ERL is intended to allow the semantic modelling of logical statements about the static

model captured in the ERT, and the dynamic view in the PID. In conceptual modelling,

we may interpret all rules as stating logical constraints on the models they are associated

to, and all rules are based on a single structure:

when (trigger) if (condition) then (consequence)

A rule holds when its (trigger) has just begun to hold (i.e. an event has occurred which

makes (trigger) true), and its (condition) holds. If a rule holds then its (consequence)

must also hold, and if this cannot be made the case then an exception should be raised.

If either the (trigger) or (condition) part is omitted then that part is assumed to hold.

Since trigger events must be modelled in the PID, a rule with a non-empty (trigger) must

be associated to some process in the PID, in a manner we will detail in Section 3.

The (trigger), (condition) and (consequence) all have the syntax of an (ERL expression).

The (ERL expression) can contain (flows), (ERT access expressions), (logical connectives),

(temporal connectives), or (aggregates) (i.e. sets).

• (ERT access expressions) are ERL constructs which select data from an ERT model,

where the classes are named, and relationships are used to restrict the selection of

instances from classes in some way.

• (flows) name tuples of data (single or aggregates) selected from the ERT. They allow

information to be shared between rules, and model the flows in the PID model.

• (logical connectives) are the usual first order logical connectives, together with an n-ary

exclusive or. We list the connectives in Table 1, where e1, e2 , ••• are instances of (ERL

expression)

• (temporal connectives) are temporal logic counterparts to the first order connectives,

and for the purposes of this paper need not be detailed further. However, it should be

ERL expression

true

false

e1 and e2

e1 or e2

not e1

Coupling process models and business rules

Table 1 Logical propositions and connectives.

Semantics

Always true

Always false

Both e1 and e2 hold for some set of variable substitutions.

Either e1 or e2 holds for some set of variable substitutions.

205

e1 does not hold for the set of variable substitutions applied to

the expression which the connective is part of.

Holds if exactly one of e1, e2, ... holds.

noted that their presence, together with the coupling between ERLand PID, give the

process model temporal semantics.

• (aggregates) of the variables VI, v2, ... may be formed by the expression:

{ v1 , v2 , ••• for _which (ERL expression)}

The semantics of rules lead to the following requirements on what must be placed in

each part of a rule:

• In the (trigger) part of the rule, we describe what must have just become true for the

rule to be true. The trigger should contain the events which must have just occurred if

the rule is relevant. The use of (ERT access expressions) or (flow) in the (trigger) will

manifest themselves as triggering input flows in the PID.

• In the (condition) part of the rule, we describe what needs to be true for the rule to

be considered. The condition should contain statements which must be true (and may

have been true for some time) if the rule is relevant. If the condition is false, then the

rule does not hold, no action or effect will result. The use of (ERT access expressions)

or (flow) in the (condition) will manifest themselves as non-triggering input flows in

the PID.

• In the (consequence) part of the rule, we state what must be true if the condition is true.

The execution of a TEMPORA specification will attempt to ensure that the consequence

is made true if the condition is true. If for any reason this can not be achieved, an error

will raised in the runtime system. The use of (ERT access expressions) or (flow) in the

(consequence) will manifest themselves as output flows in the PID.

3 COUPLING THE RULE AND PROCESS LANGUAGES

This section details how the connection between the ERL and the PID at the conceptual

level can be made, using the semantics of the PID and the ERL as a basis.

Both the ERL and the PID can be used to describe the dynamics of a system, and

thus there is clearly a degree of overlap in what the languages model in the domain.

This motivates us to consider what precisely is to be contained in each model, and the

206 Information Systems Development for Decentralized Organizations

manner in which concepts shared between the models cause one model to define what

must appear in the other. We refer to this interaction as a coupling between rule and

process modelling languages.

3.1 Defining the Basic Coupling

As already mentioned in Section 2.2, different parts of an ERL rule correspond to the use

of flows in a PID model. We say that the rule is associated to the process which has

as input and output the flows which the rule uses. The basic relationship is depicted in

Figure 2 and can be described as follows:

• The trigger part of the process structure, i.e. the triggering flow a entering a process

corresponds to the (trigger} part of an ERL rule.

• The conditional part of the process structure, i.e. non-triggering flow f3 entering a

process, corresponds to the (condition) part of an ERL rule. The process logic 'Y should

also be included in the (condition) part. Since the ERL expressions are logical formulae,
they can be rewritten to disjunctive normal form (DNF), where an (ERL expression)

e may be regarded as taking the form:

e =(en and e12 ...) or (e21 and e22 ...) ...

Thus a condition c has a DNF c1 or c2 or ... where each of c1, c2 , •.• can be divided into

an input part c1,{J and a processing part c1m giving c the form:

(cl,{J and c1,'"Y) or (c2,{3 and c2,'"Y) or ...

The input part c1,p may contain a flow or name ERT objects in an ERT access expres

sion, and the processing part c1 ,'"Y may contain ERL expressions excluding flows and

ERT objects, such as arithmetic expressions.

• The action part of the process structure, i.e. the output flows, corresponds to the

then part of an ERL rule. The action part may contain both triggering flows 81 and

non-triggering flows 82.

We have now presented the basic connection between the ERL and the PID by describ

ing the way in which (trigger), (condition), and (consequence) fields are reflected in the

PID and vice versa. We now elaborate how the various constructs of the PID detailed in

Section 2.1 may be associated to parts of an ERL rule.

Processes

A process requires information from its surroundings, that is, it interacts with other

processes, ERT views, timers, and external agents via flows. A process may have one or

more input flows and one or more output flows. A process' combinations of flows (input

flows or output flows) is expressed using the concept of ports and control aspects are

expressed using triggering flows. Triggering flows and ports make it possible:

• To represent permitted combinations of input/output flows for each process, i.e. the

way the various elements of the (trigger}, (condition}, and (consequence) fields are

logically related.

Coupling process models and business rules 207

when a if (3 and "' then 82 and 81

Figure 2 Relationship between the PID and the ERL.

• To express knowledge about the sequencing of processes.

• To express which flows a process may only optionally use or produce, and which flows

may be used or produced a multiple number of times.

For the moment, we will describe only how a process including ports may be described by

a single rule expressed using the ERL. In the Figures 3 to 7, each construct of the diagram

syntax of a PID process including ports is shown together with its logical semantics

expressed in the ERL. The details of port construction in the PID are described in (Yang

1993).

The equivalences between AND ports and the ERL and logical connective are intuitive.

However for OR, we have used a meta predicate 4> with the following definition:

</>(A, B)= (A and not B) or (not A and B) or (A and B)

This is necessary since if a logical disjunction is executed using SLD resolution (Hog

ger 1990) (such as in Prolog execution), then the disjunction holds twice when both its

disjuncts hold, whilst the semantics of OR are that it holds once when either or both its

disjuncts hold. It is the XOR port which corresponds to logical disjunction executed using

SLD resolution, i.e. the execution occurs once for each connective, but not together as a.

single execution.

Flows

A flow in the PID is described by a predicate notation in the ERL called ERL flow.

For example, a flow new_part carrying parameters nand pis written as new_part(n,p). It

may link rules described by two processes, a process and an ERT view, a process and an

external agent, or a process and a timer.

ERT views
An ERT view is defined in terms of an ERT access expression in the ERL. This selection

constitutes a part of the ERT and is a structural representation of the contents of the

ERT view. A process may read from an ERT view (corresponding to a flow from an ERT

view to the process) or a process may write to an ERT view (corresponding to a flow from

208 Information Systems Development for Decentralized Organizations

(a) when a 1 anda2 ... (c) ... then 61 and 62

Figure 3 The semantics of AND ports expressed using the ERL.

~4.A
~) ~)

(a) when a1ora2··· (b) ... if fJ1 or /h ... (c) ... then 61 or 62

Figure 4 The semantics of XOR ports expressed using the ERL.

~4.A
~J LJ

(b) ... if ¢({31' f32) ...

Figure 5 The semantics of OR ports expressed using the ERL.

Coupling process models and business rules 209

(a) Illegal structure (b) ... if ,Bortrue ... (c) ... then 6 or true

Figure 6 The semantics of the conditional ports expressed using the ERL.

(a) Illegal structure (b) ... if {,8} ... (c) ... then 6member_of ...

Figure 7 The semantics of the repeating ports expressed using the ERL.

the process to an ERT view). This may be expressed by (ERT access expressions) in the

ERL:

• From ERT view via triggering flow: when (ERT access expression) ...

• From ERT view via non-triggering flow: ... if (ERT access expression) ...

• To ERT view: ... then (ERT access expression)

External Agents

An external agent may be represented by an ERL rule describing the objects which are

passed from/to it in terms of ERT objects. These are expressed by ERL flows, and thus

the coupling defined in Figures 3 to 7 apply to flows from external agents.

Timers

The details of timers can be expressed using temporal constructs in the ERL. The temporal

constructs may contain temporal connectives such as sometime_in_past and jusLbefore,

references to time points through predicates such as timeJs and references to time intervals

through functions such as today and this_week. Details of the temporal constructs provided

by the ERL may be found in (McBrien et al. 1991).

210 Information Systems Development for Decentralized Organizations

when a 1 or a 2 and a 3

if 1

then .51 or 82

(a) PID process and ports (b) ERL rule

Figure 8 Nesting of ports.

4 RULE CONSTRUCTION FROM A PID SPECIFICATION

Having defined the basis of how a PID process can be described by a single rule expressed

using the ERL, it should be clear that we can use the process model as a basis for rule

capture. If the port structures in the PID are simple in nature, this will lead to rules which

also have a simple logical structure. Again if ports of processes are nested in a complex

structure, the resulting rule structure will also become complex. For practical purposes

we need some method to reduce this complexity. Furthermore, we must deal with various

levels of cooperating processes, that is, how rules are related to processes at various levels

of decomposition. There are three issues we have to deal with when constructing rules

from a PID specification:

I. How do nested input and output ports affect the rule construction.

:2. How does the relationship between input flows and output flows affect rule construction.

J. How does rule construction vary when dealing with decomposed or non-decomposed

processes.

4.1 Nested input ports and nested output ports

A process including nested input ports together with the resulting rules is shown in

Figure 8. To construct the rules associated with this process, the (trigger), (condition),

and (consequence) fields of a basic ERL rule are extracted from the process structure

according to the definitions of the coupling in Figures 3 to 7. The rules are applied to the

innermost ports first, being used to generate a 'flow' in the form of an (ERL expression)

to be used in the construction for the next port moving outwards. For the example, the

two triggering flows a 2 and a 3 use the rule in Figure 3(a) to yield a 2 and a 3 , then we use

this as input to use the rule in Figure 4(a) to get the ERL rule shown in Figure 8.

Clearly, the greater the depth of the nesting, the more complicated the resulting rule.

However, we may simplify the situation by instead generating multiple rules. As already

detailed in Figure 4(a), a process with two input flows to an XOR port may be modelled

Coupling process models and business rules

(a) PID process and ports

when a 1

if /1

then ...

when a2

if /2

then ...

(b) ERL rules

Figure 9 Generating multiple rules from an XOR port.

211

as a rule with a logical disjunction in the trigger part when a 1 or a 2 •... As is the case

in standard Prolog, this disjunction may be replaced by two separate rules as shown in

Figure 9(b), each of which has as its trigger one of the triggers of the XOR port. This in

practice will tend to be the more natural representation of the specification described by

PID model in Figure 9(a).

If disjunctions appear between non-triggering flows (corresponding to the (condition)

part of a rule) or between output flows (corresponds to the (trigger) part of rule), a

composite rule can be split into simpler rules in the manner illustrated in Figure 9.

The process model shown in Figure lO(a) would lead to a trigger of the form when (a1 and

(31) or (a2 and (32) •••• Again the technique of using separate rules for a logical disjunction

we would get the rules shown in Figure lO(b). We could also split the action part of each

of the rules shown, giving a total of four rules. However, this ignores what the process

internals might indicate as far as the rules to be generated, which we will now consider.

4.2 Relationship between input flows and output flows

It should be noted that so far we have not taken the internals (i.e. 1) of the process into

consideration. Thus, there is a certain ambiguity in the rules generated- i.e. there is part

of the domain which the process model does not capture, and which must be specified in

the rule language.

From what we have already described, for a process model such as that shown in

Figure lO(a), the output 81 or 82 will be in the {consequence) part of both rules. However,

it is quite probable that 81 is associated to only a 1 and that 82 is associated to only a 2 ,

which would mean that the rules in Figure lO(c) would be a correct interpretation of the

process model.

To decide which of 81 or 82 , 81> or 82 should be in the {consequence), the relationship

between the inputs and outputs must be considered. We may represent the way inputs

and outputs of a process are related to each other in a decomposition of the process. In

212 lnfonnation Systems Development for Decentralized Organizations

Pl

(a) PID process and ports

when a 1 and /31

if /1

then 51 or 52

when a 2 and /32

if /2

then 51 or 52

(b) ERL rules

when a 1 and /31

if /1

then 51

when a2 and /32

if /2

then 52

(c) Alternative ERL rules

Figure 10 Multiple rules and nested ports.

Figure 11 the internals of the process in Figure 10 are taken into account. By doing this,

the ambiguity in the two ERL rules as described above is removed.
In Figure 12(a), we give a simple example of our method applied in a practical situation.

We have modelled a process staff_payments which handles all payments made to staff, and

have discovered that payments are based on salary or expenses records, and are triggered

by a command from a clerk or the temporal event of it being midnight. The basic coupling

between processes and rules would give the rule illustrated in Figure 12(b). This might.

seem over complex, and thus we may use the disjunction elimination to produce the four

rules shown in Figure 12(c). At this point, the various possible behaviours of the process
are made more apparent, and our analysis can check that all the rules produced correspond

to the domain. It might be the case, for example, that we never produce salary cheques

on the command of the clerk, and thus the rule

when pay_staff_no(...) if (ERT access expression)salary then give_cheque(...)

may be eliminated- a restriction on the process logic specified in Figure 12(a) which

Coupling process models and business rules 213

Pl

/ Pl.l

a1

~
n ht

f3t
1'1 u

/ Pl.2

a2

~
n 82

/32
1'2 u

Figure 11 Example of a decomposed process and its corresponding ERL rules.

we may specify in the process model by decomposition or modifying the port structure.

Once we are satisfied that we have a set of rules which correctly reflect the domain, we

may proceed to specify the details of the process logic by expanding the condition part

of the ERL rules.

4.3 Decomposed versus non-decomposed processes

Each non-decomposed process should have an associated set of ERL rules describing the

behaviour of the process. In addition, one may optionally specify in rules the behaviour of

decomposed processes, these rules being interpreted as constraints on the behaviour of the

rules describing the non-decomposed processes. The rules associated with the processes

at the lowest level of decomposition constitute the rule base which may be compiled to

executable form. Rules associated with decomposed processes may be used as constraints

on the execution of the rules of non-decomposed processes.

5 RE-ENGINEERING OF PROCESS AND RULE MODELS

The strong coupling between rules and processes described in Section 3 may be used during

business process re-engineering to facilitate the modification of models. A particular step

214 Information Systems Development for Decentralized Organizations

El

Dl Salary

Pl

staff
payments

give_cheque

(a) PID model to process payments due to staff

when starLoLday or pay..stafLno(...)

E2

if (ERT access expression}salary or (ERT access expression}expenses

then give_cheque(...)

(b) P 1 represented as a single rule

when starLoLday when starLoLday

Staff

if (ERT access expression}salary

then give_cheque(...)

if (ERT access expression}expenses

then give_cheque(...)

when pay _staff _no(...)

if (ERT access expression}salary

then give_cheque(...)

when pay ..staff _no(...)

if (ERT access expression}expenses

then give_cheque(...)

(c) Disjunctions removed from the single rule

Figure 12 Example of ERL and PID Relationships.

Coupling process models and business rules 215

in the process of business process re-engineering may involve changing either the process

model or the rule model. We now detail how changes in one model reflect on the re
engineering of the other.

5.1 Process Model Updates

Modifications in the process model will imply changes be made in the rule model.

• The deletion of a construct in the PID implies the deletion of the construct in the rules

associated to the process. The user may view these rules to ensure that the deletion of

the PID construct was a correct procedure to follow.

• The addition of a process in the PID implies the creation of a rule in the rule model.

The ports used to describe the process may be used to give a structural template of

the rule to be created.

• The addition of a port or flow to a process in the PID implies the alteration of the logic

used in the rules used to implement then process. The user may be prompted with the

rules that need modification.

For example, if we decided in Figure 12(a) that payments to staff will now only be

triggered by a direct command from the clerk, and not by a temporal event, then the two

rules in Figure 12(c) that begin when start..oLday must be removed, and any details we

have added to the condition part in the form of process logic must be incorporated in the

two remaining rules.

5.2 Rule Model Updates

Modifications in the rule model will imply changes be made in the process model.

• The deletion of a rule which is associated to a PID process, and for which some construct

of the process no longer has a rule associated to it, implies that construct should be

revised. Either a replacement rule needs to be created, or the construct deleted.

• The alteration of the logic used in a rule implies the alteration of any associated process

logic.

• The creation of a rule which includes a (trigger) component implies that the rule be

associated to some process in the PID. This process may already exist, or it may be

required that some modelling activity must proceed in order to produce a new process.

For example, if we decided in Figure 12(c) that payments to staff which exceeded a

certain amount would be made by multiple cheques, then we would need to alter the

process model to make the output from Pl a repeating port.

6 SUMMARY & CONCLUSIONS

The motivation for the coupling between the process based and rule based approaches

was to reduce the fragmentation of specifications when multiple languages are used for

216 Information Systems Development for Decentralized Organizations

conceptual modelling. In achieving this, we utilises each language's strengths and used

them as complementary languages for information systems modelling. Three particular

areas where the strengths of one language served to enrich the other were:

• The process model gives a flexible representation and presentation of the rule model.

This allows us to have both a form based representation (in the ERL) and a graphi

cal representation of rules (in the PID). The form based representation uses a formal

language, allowing the precise statement of the domain, and suited to the use of auto

mated application generation. The graphical representation of rules uses a less formal

language, but allows the structure of specifications to be made readily apparent.

• The ERL language has temporal connectives for the querying and update of a valid

time data model. With the ERL-PID coupling in place, this serves to give the process

model temporal semantics.

• The rule model serves to define the process logic of the process model, and hence turns

it into an executable specification. We may use the rules as a basis for animating the

model, as well as generating application code.

Thus, in combining the process based and rule based approaches we exploit the ustr

}i'iendliness and the stru.ctural properties of a process model and the expressive powe1· and

fonnality of a rule model. We thus allow development and maintenance to take place at the

correct level of detail. The use of rule modelling in distributed environments is supported

by the structuring capabilities of the process model. Re-engineering precise statements

about activities is made on rules, and the process model altered to reflect the changes to

rules. Re-engineering of how activities interact takes place in the process model, and the

rule model then altered to reflect those changes.

7 ACKNOWLEDGEMENTS

The work reported in this paper was partly funded by the Commission of the Euro

pean Communities under the ESPRIT R&D programme. The TEMPORA project (num

ber E2469) was a collaborative project between: BIM, Belgium; Hitec, Greece; Imperial

College, UK; LPA, UK; SINTEF, Norway; SISU, Sweden; University of Liege, Belgium

and UMIST, UK.

REFERENCES

Chen, P. P. S.: 1976, The Entity-Relationship model: Toward a unified view of data, ACM

TODS, vol. 1, no. 1.

cleMarco, T.: 1978, Structured Analysis and System Specification, Yourdon Press.

Gabbay, D.: 1989, The declarative past and executable future, Temporal Logic in Specifi

cation: Alt1·incham Workshop 1987, LNCS, Springer-Verlag, pp. 409-448.

Gane, C. and Sarson, T.: 1978, Structured Systems Analysis: Tools and Techniques,

Prentice-Hall.

Coupling process models and business rules 217

Gulla, J., Lindland, 0. and Willumsen, G.: 1991, PPP an integrated CASE environment,

Proceedings of the Third Nordic Conference on Advanced Information Systems Engi

neering, Vol. 498 of LNCS, Springer-Verlag.

Hogger, C.: 1990, Essentials of Logic Programming, Vol. 1 of Graduate Texts in Compute1·

Science, OUP.

Jensen et al, C.: 1984, A consensus glossary of temporal database concepts, SIGMOD

Record.

Krogstie, J., McBrien, P., Owens, R. and Seltveit, A.: 1991, Information systems devel

opment using a combination of process and rule-based approaches, Proceedings of the

Third Nordic Conference on Advanced Information Systems Engineering, Vol. 498 of

LNCS, Springer-Verlag.

Loucopoulos, P., McBrien, P., Schumacker, F., Theodoulidis, B., Kopanas, V. and Wangler,

B.: 1991, Integrating database technology, rule-based systems and temporal reasoning

for effective software: the TEMPORA paradigm, Journal of Information Systems.

McBrien, P., Niezette, M., Pantazis, S., Thedoulidis, B., Tziallas, G., Seltveit, A., Sundin,

U. and Wohed, R.: 1991, The TEMPORA external rule language, Proceedings of the

Third Nordic Conference on Advanced Information Systems Engineering, Vol. 498 of

LNCS, Springer-Verlag.

McBrien, P., Seltveit, A. and Wangler, B.: 1992, An entity-relationship model extended to

describe historical information, Proceedings of CISMOD '92, Bangalore, India.

Xiaofeng, L.: 1991, What is so bad about rule-based programming?, IEEE Softwa1'e

8(5), 103-105.

Yang, M.: 1993, COMIS- A Conceptual Model for Information Systems, PhD thesis, IDT,

NTH, Trondheim, Norway.

BIOGRAPHIES

Peter MC::Brien received a B.A. in Engineering and Computer Science from Cambridge

University in 1986. After working at Racal and ICL, he joined Imperial College as a

Research Associate in 1989, where he obtained his PhD in 1992. Leaving Imperial College

in January 1994, he spent two months working at The Norwegian Institute of Technology

(NTH) as a visiting academic before joining the Department of Computer Science at

King's College London as a lecturer in April1994. His research activities at present cover

the area of temporal databases, rule based programming, algebras to support conceptual

modelling, and modelling techniques for temporal and rule based systems.

Anne Helga Seltveit obtained her siv.ing. (MSc) degree from NTH in 1987. She then

worked as a research assistant in the Informations Systems Group lead by Prof. S111lvberg.

She obtained her dr.ing. (PhD) degree in January 1995. In 1988 she had seven months

study leave, working with Andersen Consulting in Chicago. Her research activities include

work on the process, rule and temporal database modelling languages.

