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Abstract 

Two techniques commonly used in the conceptual modelling of information systems are 

process modelling and business rule modelling. In this paper we propose a tech

nique for associating certain types business rules with structures in a process modelling 

language. This coupling of the two models allows them to be used as complimentary lan

guages in conceptual modelling; the process language being suitable when modelling how 

activities interact, whilst the business rule model is suitable when we need to make precise 

statements about a certain activity. The ability to model certain aspects of business rules 

within the process model is particularly important in distributed organisations, where the 

process model may be used as a means of communication between different parts of the 

organisation. The coupling also serves (1) to make apparent what effect re-engineering 

of one model has on the structure of the other model, and (2) indicate how the process 

model may be used to drive the creation of business rules. 
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1 INTRODUCTION 

Process modelling is frequently used in the conceptual modelling of information systems. 

and allows the description of the dynamic nature of the universe of discourse (UoD), 

nsua.lly in the form of some variant of the data flow diagram (DFD) of (Gane and Sar

son 1978) or (deMarco 1978). Although useful for describing a general picture of how the 

domain functions in terms of activities (processes) and exchanges of information between 
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the activities ( dataflows ), the semantics of process models are not precise in their state
ment of facts about the domain. In particular it is not possible to generate any application 

code from a DFD model. 

In part as an answer to the lack of semantic richness in process models, business rule 

modelling has received growing attention over the past few years, one research project 

TEMPORA (Loucopoulos, McBrien, Schumacker, Theodoulidis, Kopanas and Wangler 

1991) being of interest to this paper, and commercial products using them being exem

plified by UNIFACE 6. Business rules are usually expressed in a formal language, which 

allows precise statements to be made about the domain, and which contain sufficient 

information such that application code may be automatically generated. 

A disadvantage of business rules is that they suffer from a lack of structuring mecha
nisms - the rule base is an essentially flat structure, and in large information systems 

this can become difficult to manage, test and maintain (Xiaofeng 1991 ). This will become 
more apparent in distributed organisations, where the flat rule structure must be mapped 
onto some structure in the organisation. By contrast, the ability to provide different lev

els of abstraction and to structure the model as communicating activities can be seen as 

advantages of process modelling, In particular, process modelling supports the notion of 

interaction between different parts of a distributed organisation. 

In (Krogstie, McBrien, Owens and Seltveit 1991) it was proposed that the two mod

els could be coupled, by defining how certain constructs in one model would indicate 

the presence of constructs in the other model. Rules were viewed as having the general 

structure 

when (trigger} if (condition) then (consequence} 

where (trigger), (condition) and (consequence) are logical expressions which may con
tain several flow names. Such rules would imply the existence of a process which has 

triggering input (the flows contained in (trigger}), non-triggering input (the flows con

tained in (condition}), and output (the flows contained in (consequence)). 

In this paper we elaborate upon the approach in (Krogstie et a!. 1991) to define how 
the structure of the rules may be more precisely defined within the process model. This 

tighter coupling facilitates the following activities: 

• rule capture by the ability to express certain logical constructs within the process 

model. 

• process re-engineering being carried out in the process model, since the conse

quences of such changes in the rule model are made apparent immediately. 

• business rule re-engineering being carried out in the rule model, since the conse

quences of such changes in the process model made apparent immediately. 

• communication of business rules between parts of a distributed organisation, since 

the relationship of rules to processes means that business rules can be located within 

a structural framework of the organisation as represented by the process model. 

The remainder of this paper is structured as follows. Section 2 briefly describes the 

TEMPORA process and rule modelling languages. Section 3 describes how the two models 

may be coupled. Section 4 describes the rule capture process. Section 5 describes the use 

of the coupling mechanism in information systems re-engineering. 
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Figure 1 Enhancements on DFD found in the PID. 

2 THE TEMPORA PROCESS AND RULE MODELS 

In TEMPORA the capture of a conceptual model is made using three modelling languages: 

• An entity-relationship model called the ERT (McBrien, Seltveit and Wangler 1992), 

containing various extensions to the ER model of (Chen 1976), including the ability 

model valid-time data model (Jensen et a/1984). 

• A process modelling language called the PID (Krogstie et al. 1991), containing ex

tensions to DFD modelling which we detail below, and based on the PPP modelling 

language (Gulla, Lindland and Willumsen 1991). 

• A rule modelling language called the ERL (McBrien, Niezette, Pantazis, Thedoulidis, 

Tziallas, Seltveit, Sundin and Wohed 1991), which allows the specification of rules as 

logical constraints on the static ERT and dynamic PID models. The ERL uses as its 

basis the temporal US logic (Gabbay 1989), allowing the querying of the valid-time 

data model in the ERT. The use of the ERL as a mechanism for specifying logical 

constraints on the PID is the subject of Section 3. 

So as to make this paper self contained, we detail a few key aspects of the PID and 

ERL in the following subsections. 

2.1 An Enhanced Process Modelling Language: PID 

The key differences between the PID model and the DFD model as proposed by (Gane 

and Sarson 1978) are itemised below, and the new constructs introduced in the PID are 

illustrated in Figure 1. 
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• The PID distinguishes between control and data flows. A triggering flow is drawn 

with a thick line. Each occurrence of a triggering flow causes the processes at which it 

ends to be considered for execution. A non-triggering flow is drawn with a thin line, 

and may only be used by a process that is already executing. 

e A triggering flow only leads to a process being considered for execution. It will only 

actually execute if the flow logic is satisfied. The logic is specified using a combination 

of AND ports, OR ports and XOR ports. This indicates what logical combinations 

of input flows must be present in order for the process to execute. 

• The flow cardinality is the number of instances of a flow that must be present for a 

valid process execution. By default it is assumed that one instance of each input flow 

is used in a process execution, and that one instance of each output flow is generated 

by the execution. The fact that there may be a lower bound of zero is indicated by a 

conditional port, and an upper bound of many is indicated by a repeating port. 

• The notion that clock events may be generated at specified intervals is represented by 

the concept of a timer. 

• The fact that data stores are views on an entity-relationship model leads to a new 

syntax for the object, which is called an ERT view. 

2.2 A Rule Modelling Language: ERL 

The ERL is intended to allow the semantic modelling of logical statements about the static 

model captured in the ERT, and the dynamic view in the PID. In conceptual modelling, 

we may interpret all rules as stating logical constraints on the models they are associated 

to, and all rules are based on a single structure: 

when (trigger) if (condition) then (consequence) 

A rule holds when its (trigger) has just begun to hold (i.e. an event has occurred which 

makes (trigger) true), and its (condition) holds. If a rule holds then its (consequence) 

must also hold, and if this cannot be made the case then an exception should be raised. 

If either the (trigger) or (condition) part is omitted then that part is assumed to hold. 

Since trigger events must be modelled in the PID, a rule with a non-empty (trigger) must 

be associated to some process in the PID, in a manner we will detail in Section 3. 

The (trigger), (condition) and (consequence) all have the syntax of an (ERL expression). 

The (ERL expression) can contain (flows), (ERT access expressions), (logical connectives), 

(temporal connectives), or (aggregates) (i.e. sets). 

• (ERT access expressions) are ERL constructs which select data from an ERT model, 

where the classes are named, and relationships are used to restrict the selection of 

instances from classes in some way. 

• (flows) name tuples of data (single or aggregates) selected from the ERT. They allow 

information to be shared between rules, and model the flows in the PID model. 

• (logical connectives) are the usual first order logical connectives, together with an n-ary 

exclusive or. We list the connectives in Table 1, where e1, e2 , ••• are instances of (ERL 

expression) 

• (temporal connectives) are temporal logic counterparts to the first order connectives, 

and for the purposes of this paper need not be detailed further. However, it should be 



ERL expression 

true 

false 

e1 and e2 

e1 or e2 

not e1 
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Table 1 Logical propositions and connectives. 

Semantics 

Always true 

Always false 

Both e1 and e2 hold for some set of variable substitutions. 

Either e1 or e2 holds for some set of variable substitutions. 
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e1 does not hold for the set of variable substitutions applied to 

the expression which the connective is part of. 

Holds if exactly one of e1, e2, ... holds. 

noted that their presence, together with the coupling between ERLand PID, give the 

process model temporal semantics. 

• (aggregates) of the variables VI, v2, ... may be formed by the expression: 

{ v1 , v2 , ••• for _which (ERL expression)} 

The semantics of rules lead to the following requirements on what must be placed in 

each part of a rule: 

• In the (trigger) part of the rule, we describe what must have just become true for the 

rule to be true. The trigger should contain the events which must have just occurred if 

the rule is relevant. The use of (ERT access expressions) or (flow) in the (trigger) will 

manifest themselves as triggering input flows in the PID. 

• In the (condition) part of the rule, we describe what needs to be true for the rule to 

be considered. The condition should contain statements which must be true (and may 

have been true for some time) if the rule is relevant. If the condition is false, then the 

rule does not hold, no action or effect will result. The use of (ERT access expressions) 

or (flow) in the (condition) will manifest themselves as non-triggering input flows in 

the PID. 

• In the (consequence) part of the rule, we state what must be true if the condition is true. 

The execution of a TEMPORA specification will attempt to ensure that the consequence 

is made true if the condition is true. If for any reason this can not be achieved, an error 

will raised in the runtime system. The use of (ERT access expressions) or (flow) in the 

(consequence) will manifest themselves as output flows in the PID. 

3 COUPLING THE RULE AND PROCESS LANGUAGES 

This section details how the connection between the ERL and the PID at the conceptual 

level can be made, using the semantics of the PID and the ERL as a basis. 

Both the ERL and the PID can be used to describe the dynamics of a system, and 

thus there is clearly a degree of overlap in what the languages model in the domain. 

This motivates us to consider what precisely is to be contained in each model, and the 
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manner in which concepts shared between the models cause one model to define what 

must appear in the other. We refer to this interaction as a coupling between rule and 

process modelling languages. 

3.1 Defining the Basic Coupling 

As already mentioned in Section 2.2, different parts of an ERL rule correspond to the use 

of flows in a PID model. We say that the rule is associated to the process which has 

as input and output the flows which the rule uses. The basic relationship is depicted in 

Figure 2 and can be described as follows: 

• The trigger part of the process structure, i.e. the triggering flow a entering a process 

corresponds to the (trigger} part of an ERL rule. 

• The conditional part of the process structure, i.e. non-triggering flow f3 entering a 

process, corresponds to the (condition) part of an ERL rule. The process logic 'Y should 

also be included in the (condition) part. Since the ERL expressions are logical formulae, 
they can be rewritten to disjunctive normal form (DNF), where an (ERL expression) 

e may be regarded as taking the form: 

e =(en and e12 ... ) or (e21 and e22 ... ) ... 

Thus a condition c has a DNF c1 or c2 or ... where each of c1, c2 , •.• can be divided into 

an input part c1,{J and a processing part c1m giving c the form: 

(cl,{J and c1,'"Y) or (c2,{3 and c2,'"Y) or ... 

The input part c1,p may contain a flow or name ERT objects in an ERT access expres

sion, and the processing part c1 ,'"Y may contain ERL expressions excluding flows and 

ERT objects, such as arithmetic expressions. 

• The action part of the process structure, i.e. the output flows, corresponds to the 

then part of an ERL rule. The action part may contain both triggering flows 81 and 

non-triggering flows 82. 

We have now presented the basic connection between the ERL and the PID by describ

ing the way in which (trigger), (condition), and (consequence) fields are reflected in the 

PID and vice versa. We now elaborate how the various constructs of the PID detailed in 

Section 2.1 may be associated to parts of an ERL rule. 

Processes 

A process requires information from its surroundings, that is, it interacts with other 

processes, ERT views, timers, and external agents via flows. A process may have one or 

more input flows and one or more output flows. A process' combinations of flows (input 

flows or output flows) is expressed using the concept of ports and control aspects are 

expressed using triggering flows. Triggering flows and ports make it possible: 

• To represent permitted combinations of input/output flows for each process, i.e. the 

way the various elements of the (trigger}, (condition}, and (consequence) fields are 

logically related. 



Coupling process models and business rules 207 

when a if (3 and "' then 82 and 81 

Figure 2 Relationship between the PID and the ERL. 

• To express knowledge about the sequencing of processes. 

• To express which flows a process may only optionally use or produce, and which flows 

may be used or produced a multiple number of times. 

For the moment, we will describe only how a process including ports may be described by 

a single rule expressed using the ERL. In the Figures 3 to 7, each construct of the diagram 

syntax of a PID process including ports is shown together with its logical semantics 

expressed in the ERL. The details of port construction in the PID are described in (Yang 

1993). 

The equivalences between AND ports and the ERL and logical connective are intuitive. 

However for OR, we have used a meta predicate 4> with the following definition: 

</>(A, B)= (A and not B) or (not A and B) or (A and B) 

This is necessary since if a logical disjunction is executed using SLD resolution (Hog

ger 1990) (such as in Prolog execution), then the disjunction holds twice when both its 

disjuncts hold, whilst the semantics of OR are that it holds once when either or both its 

disjuncts hold. It is the XOR port which corresponds to logical disjunction executed using 

SLD resolution, i.e. the execution occurs once for each connective, but not together as a. 

single execution. 

Flows 

A flow in the PID is described by a predicate notation in the ERL called ERL flow. 

For example, a flow new_part carrying parameters nand pis written as new_part(n,p). It 

may link rules described by two processes, a process and an ERT view, a process and an 

external agent, or a process and a timer. 

ERT views 
An ERT view is defined in terms of an ERT access expression in the ERL. This selection 

constitutes a part of the ERT and is a structural representation of the contents of the 

ERT view. A process may read from an ERT view (corresponding to a flow from an ERT 

view to the process) or a process may write to an ERT view (corresponding to a flow from 
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(a) when a 1 anda2 ... (c) ... then 61 and 62 

Figure 3 The semantics of AND ports expressed using the ERL. 

~4.A 
~) ~) 

(a) when a1ora2··· (b) ... if fJ1 or /h ... (c) ... then 61 or 62 

Figure 4 The semantics of XOR ports expressed using the ERL. 

~4.A 
~J LJ 

(b) ... if ¢({31' f32) ... 

Figure 5 The semantics of OR ports expressed using the ERL. 
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(a) Illegal structure (b) ... if ,Bortrue ... (c) ... then 6 or true 

Figure 6 The semantics of the conditional ports expressed using the ERL. 

(a) Illegal structure (b) ... if {,8} ... (c) ... then 6member_of ... 

Figure 7 The semantics of the repeating ports expressed using the ERL. 

the process to an ERT view). This may be expressed by (ERT access expressions) in the 

ERL: 

• From ERT view via triggering flow: when (ERT access expression) ... 

• From ERT view via non-triggering flow: ... if (ERT access expression) ... 

• To ERT view: ... then (ERT access expression) 

External Agents 

An external agent may be represented by an ERL rule describing the objects which are 

passed from/to it in terms of ERT objects. These are expressed by ERL flows, and thus 

the coupling defined in Figures 3 to 7 apply to flows from external agents. 

Timers 

The details of timers can be expressed using temporal constructs in the ERL. The temporal 

constructs may contain temporal connectives such as sometime_in_past and jusLbefore, 

references to time points through predicates such as timeJs and references to time intervals 

through functions such as today and this_week. Details of the temporal constructs provided 

by the ERL may be found in (McBrien et al. 1991). 
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when a 1 or a 2 and a 3 

if 1 

then .51 or 82 

(a) PID process and ports (b) ERL rule 

Figure 8 Nesting of ports. 

4 RULE CONSTRUCTION FROM A PID SPECIFICATION 

Having defined the basis of how a PID process can be described by a single rule expressed 

using the ERL, it should be clear that we can use the process model as a basis for rule 

capture. If the port structures in the PID are simple in nature, this will lead to rules which 

also have a simple logical structure. Again if ports of processes are nested in a complex 

structure, the resulting rule structure will also become complex. For practical purposes 

we need some method to reduce this complexity. Furthermore, we must deal with various 

levels of cooperating processes, that is, how rules are related to processes at various levels 

of decomposition. There are three issues we have to deal with when constructing rules 

from a PID specification: 

I. How do nested input and output ports affect the rule construction. 

:2. How does the relationship between input flows and output flows affect rule construction. 

J. How does rule construction vary when dealing with decomposed or non-decomposed 

processes. 

4.1 Nested input ports and nested output ports 

A process including nested input ports together with the resulting rules is shown in 

Figure 8. To construct the rules associated with this process, the (trigger), (condition), 

and (consequence) fields of a basic ERL rule are extracted from the process structure 

according to the definitions of the coupling in Figures 3 to 7. The rules are applied to the 

innermost ports first, being used to generate a 'flow' in the form of an (ERL expression) 

to be used in the construction for the next port moving outwards. For the example, the 

two triggering flows a 2 and a 3 use the rule in Figure 3(a) to yield a 2 and a 3 , then we use 

this as input to use the rule in Figure 4( a) to get the ERL rule shown in Figure 8. 

Clearly, the greater the depth of the nesting, the more complicated the resulting rule. 

However, we may simplify the situation by instead generating multiple rules. As already 

detailed in Figure 4(a), a process with two input flows to an XOR port may be modelled 
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(a) PID process and ports 

when a 1 

if /1 

then ... 

when a2 

if /2 

then ... 

(b) ERL rules 

Figure 9 Generating multiple rules from an XOR port. 
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as a rule with a logical disjunction in the trigger part when a 1 or a 2 •... As is the case 

in standard Prolog, this disjunction may be replaced by two separate rules as shown in 

Figure 9(b ), each of which has as its trigger one of the triggers of the XOR port. This in 

practice will tend to be the more natural representation of the specification described by 

PID model in Figure 9(a). 

If disjunctions appear between non-triggering flows (corresponding to the (condition) 

part of a rule) or between output flows (corresponds to the (trigger) part of rule), a 

composite rule can be split into simpler rules in the manner illustrated in Figure 9. 

The process model shown in Figure lO(a) would lead to a trigger of the form when (a1 and 

(31 ) or (a2 and (32 ) •••• Again the technique of using separate rules for a logical disjunction 

we would get the rules shown in Figure lO(b). We could also split the action part of each 

of the rules shown, giving a total of four rules. However, this ignores what the process 

internals might indicate as far as the rules to be generated, which we will now consider. 

4.2 Relationship between input flows and output flows 

It should be noted that so far we have not taken the internals (i.e. 1) of the process into 

consideration. Thus, there is a certain ambiguity in the rules generated- i.e. there is part 

of the domain which the process model does not capture, and which must be specified in 

the rule language. 

From what we have already described, for a process model such as that shown in 

Figure lO(a), the output 81 or 82 will be in the {consequence) part of both rules. However, 

it is quite probable that 81 is associated to only a 1 and that 82 is associated to only a 2 , 

which would mean that the rules in Figure lO(c) would be a correct interpretation of the 

process model. 

To decide which of 81 or 82 , 81> or 82 should be in the {consequence), the relationship 

between the inputs and outputs must be considered. We may represent the way inputs 

and outputs of a process are related to each other in a decomposition of the process. In 
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Pl 

(a) PID process and ports 

when a 1 and /31 

if /1 

then 51 or 52 

when a 2 and /32 

if /2 

then 51 or 52 

(b) ERL rules 

when a 1 and /31 

if /1 

then 51 

when a2 and /32 

if /2 

then 52 

(c) Alternative ERL rules 

Figure 10 Multiple rules and nested ports. 

Figure 11 the internals of the process in Figure 10 are taken into account. By doing this, 

the ambiguity in the two ERL rules as described above is removed. 
In Figure 12( a), we give a simple example of our method applied in a practical situation. 

We have modelled a process staff_payments which handles all payments made to staff, and 

have discovered that payments are based on salary or expenses records, and are triggered 

by a command from a clerk or the temporal event of it being midnight. The basic coupling 

between processes and rules would give the rule illustrated in Figure 12(b ). This might. 

seem over complex, and thus we may use the disjunction elimination to produce the four 

rules shown in Figure 12(c). At this point, the various possible behaviours of the process 
are made more apparent, and our analysis can check that all the rules produced correspond 

to the domain. It might be the case, for example, that we never produce salary cheques 

on the command of the clerk, and thus the rule 

when pay_staff_no( ... ) if (ERT access expression)salary then give_cheque( ... ) 

may be eliminated- a restriction on the process logic specified in Figure 12(a) which 
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Figure 11 Example of a decomposed process and its corresponding ERL rules. 

we may specify in the process model by decomposition or modifying the port structure. 

Once we are satisfied that we have a set of rules which correctly reflect the domain, we 

may proceed to specify the details of the process logic by expanding the condition part 

of the ERL rules. 

4.3 Decomposed versus non-decomposed processes 

Each non-decomposed process should have an associated set of ERL rules describing the 

behaviour of the process. In addition, one may optionally specify in rules the behaviour of 

decomposed processes, these rules being interpreted as constraints on the behaviour of the 

rules describing the non-decomposed processes. The rules associated with the processes 

at the lowest level of decomposition constitute the rule base which may be compiled to 

executable form. Rules associated with decomposed processes may be used as constraints 

on the execution of the rules of non-decomposed processes. 

5 RE-ENGINEERING OF PROCESS AND RULE MODELS 

The strong coupling between rules and processes described in Section 3 may be used during 

business process re-engineering to facilitate the modification of models. A particular step 
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El 

Dl Salary 

Pl 

staff 
payments 

give_cheque 

(a) PID model to process payments due to staff 

when starLoLday or pay..stafLno( ... ) 

E2 

if (ERT access expression}salary or (ERT access expression}expenses 

then give_cheque( ... ) 

(b) P 1 represented as a single rule 

when starLoLday when starLoLday 

Staff 

if (ERT access expression}salary 

then give_cheque( ... ) 

if (ERT access expression}expenses 

then give_cheque( ... ) 

when pay _staff _no( ... ) 

if (ERT access expression}salary 

then give_cheque( ... ) 

when pay ..staff _no( ... ) 

if (ERT access expression}expenses 

then give_cheque( ... ) 

(c) Disjunctions removed from the single rule 

Figure 12 Example of ERL and PID Relationships. 
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in the process of business process re-engineering may involve changing either the process 

model or the rule model. We now detail how changes in one model reflect on the re
engineering of the other. 

5.1 Process Model Updates 

Modifications in the process model will imply changes be made in the rule model. 

• The deletion of a construct in the PID implies the deletion of the construct in the rules 

associated to the process. The user may view these rules to ensure that the deletion of 

the PID construct was a correct procedure to follow. 

• The addition of a process in the PID implies the creation of a rule in the rule model. 

The ports used to describe the process may be used to give a structural template of 

the rule to be created. 

• The addition of a port or flow to a process in the PID implies the alteration of the logic 

used in the rules used to implement then process. The user may be prompted with the 

rules that need modification. 

For example, if we decided in Figure 12(a) that payments to staff will now only be 

triggered by a direct command from the clerk, and not by a temporal event, then the two 

rules in Figure 12( c) that begin when start..oLday must be removed, and any details we 

have added to the condition part in the form of process logic must be incorporated in the 

two remaining rules. 

5.2 Rule Model Updates 

Modifications in the rule model will imply changes be made in the process model. 

• The deletion of a rule which is associated to a PID process, and for which some construct 

of the process no longer has a rule associated to it, implies that construct should be 

revised. Either a replacement rule needs to be created, or the construct deleted. 

• The alteration of the logic used in a rule implies the alteration of any associated process 

logic. 

• The creation of a rule which includes a (trigger) component implies that the rule be 

associated to some process in the PID. This process may already exist, or it may be 

required that some modelling activity must proceed in order to produce a new process. 

For example, if we decided in Figure 12(c) that payments to staff which exceeded a 

certain amount would be made by multiple cheques, then we would need to alter the 

process model to make the output from Pl a repeating port. 

6 SUMMARY & CONCLUSIONS 

The motivation for the coupling between the process based and rule based approaches 

was to reduce the fragmentation of specifications when multiple languages are used for 
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conceptual modelling. In achieving this, we utilises each language's strengths and used 

them as complementary languages for information systems modelling. Three particular 

areas where the strengths of one language served to enrich the other were: 

• The process model gives a flexible representation and presentation of the rule model. 

This allows us to have both a form based representation (in the ERL) and a graphi

cal representation of rules (in the PID). The form based representation uses a formal 

language, allowing the precise statement of the domain, and suited to the use of auto

mated application generation. The graphical representation of rules uses a less formal 

language, but allows the structure of specifications to be made readily apparent. 

• The ERL language has temporal connectives for the querying and update of a valid

time data model. With the ERL-PID coupling in place, this serves to give the process 

model temporal semantics. 

• The rule model serves to define the process logic of the process model, and hence turns 

it into an executable specification. We may use the rules as a basis for animating the 

model, as well as generating application code. 

Thus, in combining the process based and rule based approaches we exploit the ustr

}i'iendliness and the stru.ctural properties of a process model and the expressive powe1· and 

fonnality of a rule model. We thus allow development and maintenance to take place at the 

correct level of detail. The use of rule modelling in distributed environments is supported 

by the structuring capabilities of the process model. Re-engineering precise statements 

about activities is made on rules, and the process model altered to reflect the changes to 

rules. Re-engineering of how activities interact takes place in the process model, and the 

rule model then altered to reflect those changes. 
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