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We derive explicitly the coupling property for the transition semigroup of a Lévy process and gradient
estimates for the associated semigroup of transition operators. This is based on the asymptotic behaviour of
the symbol or the characteristic exponent near zero and infinity, respectively. Our results can be applied to
a large class of Lévy processes, including stable Lévy processes, layered stable processes, tempered stable
processes and relativistic stable processes.
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1. Introduction and main results

Let Xt be a pure jump Lévy process on R
d with the symbol (or characteristic exponent)

�(ξ) =
∫

z �=0

(
1 − eiξ ·z + iξ · z1B(0,1)(z)

)
ν(dz),

where ν is the Lévy measure, that is, a σ -finite measure on R
d \ {0} such that the integral∫

z �=0(1 ∧ |z|2)ν(dz) < ∞. There are many papers studying regularity properties of Lévy pro-
cesses in terms of the symbol �. For example, recently [15], Theorem 1, points out the relations
between the classic Hartman–Wintner condition (see [9] or (1.1) below) and some smoothness
properties of the transition density for Lévy processes. In particular, the condition that the symbol
�(ξ) of the Lévy process Xt satisfies

lim inf|ξ |→∞
Re�(ξ)

log(1 + |ξ |) = ∞ (1.1)

is equivalent to the statement that for all t > 0 the random variables Xt have a transition density
pt (y) such that ∇pt ∈ L1(R

d) ∩ C∞(Rd), where C∞(Rd) denotes the set of all continuous
functions which vanish at infinity. The main purpose of this paper is to derive an explicit coupling
property and gradient estimates of Lévy processes directly from the corresponding symbol �.

Let (Xt )t≥0 be a Markov process on R
d with transition probability function {Pt (x, ·)}t≥0,x∈Rd .

An R
2d -valued process (X′

t ,X
′′
t )t≥0 is called a coupling of the Markov process (Xt )t≥0, if both
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(X′
t )t≥0 and (X′′

t )t≥0 are Markov processes which have the same transition functions Pt(x, ·) but
possibly different initial distributions. In this case, (X′

t )t≥0 and (X′′
t )t≥0 are called the marginal

processes of the coupling process; the coupling time is defined by T := inf{t ≥ 0: X′
t = X′′

t }. The
coupling (X′

t ,X
′′
t )t≥0 is said to be successful if T is a.s. finite. If for any two initial distributions

μ1 and μ2, there exists a successful coupling with marginal processes starting from μ1 and
μ2, respectively, we say that Xt has the coupling property (or admits successful couplings).
According to [19] and the proof of [27], Theorem 4.1, the coupling property is equivalent to the
statement that

lim
t→∞‖Pt(x, ·) − Pt (y, ·)‖Var = 0 for any x, y ∈ R

d ,

where Pt(x, ·) is the transition function of the Markov process (Xt )t≥0. By ‖μ‖Var we denote the
total variation norm of the signed measure μ. We know from [27], Theorem 4.1, that every Lévy
process has the coupling property if the transition functions have densities for all sufficiently
large t > 0. In this case, the transition probability function satisfies

‖Pt(x, ·) − Pt (y, ·)‖Var ≤ C(1 + |x − y|)√
t

∧ 2 for t > 0 and x, y ∈ R
d . (1.2)

It is clear that for any x, y ∈ R
d and t ≥ 0, ‖Pt (x, ·) − Pt(y, ·)‖Var ≤ 2, and that the norm

‖Pt(x, ·) − Pt (y, ·)‖Var is decreasing with respect to t . This shows that it is enough to estimate
‖Pt(x, ·)−Pt (y, ·)‖Var for large values of t . We will call any estimate for ‖Pt (x, ·)−Pt(y, ·)‖Var

an estimate of the coupling time. The rate 1/
√

t in (1.2) is not optimal for general Lévy pro-
cesses which admit successful couplings. For example, for rotationally invariant α-stable Lévy
processes we can prove, see [2], Example 2.3, that

‖Pt(x, ·) − Pt (y, ·)‖Var � 1

t1/α
as t → ∞,

where for any two non-negative functions g and h, the notation g � h means that there are two
positive constants c1 and c2 such that c1g ≤ h ≤ c2g.

Let Pt (x, ·) and Pt be the transition function and the semigroup of the Lévy process Xt , re-
spectively. We begin with coupling time estimates of Lévy processes which satisfy the following
Hartman–Wintner condition for some t0 > 0:

lim inf|ξ |→∞
Re�(ξ)

log(1 + |ξ |) >
d

t0
; (1.3)

this condition actually ensures that the transition function of the Lévy process Xt is, for all t > t0,
absolutely continuous, see, for exampe, [9] or [15]. Note that (1.3) becomes (1.1) if t0 → 0.

Theorem 1.1. Suppose that (1.3) holds and

Re�(ξ) � f (|ξ |) as |ξ | → 0,
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where f : [0,∞) → R is a strictly increasing function which is differentiable near zero and which
satisfies

lim inf
r→0

f (r)| log r| < ∞
and

lim sup
s→0

f −1(2s)/f −1(s) < ∞.

Then the corresponding Lévy process Xt has the coupling property, and there exist two constants
c, t1 > 0 such that for any x, y ∈ R

d and t ≥ t1,

‖Pt(x, ·) − Pt (y, ·)‖Var ≤ cf −1(1/t).

It can be seen from the above remark on rotationally invariant α-stable Lévy processes that the
estimate in Theorem 1.1 is sharp.

Remark 1.2. (1) In our earlier paper [2], in particular [2], Theorem 1.1 and (1.3), we showed that
the following condition on the Lévy measure ν ensures that a (pure jump) Lévy process admits a
successful coupling:

ν(dz) ≥ |z|−dg(|z|−2)dz (1.4)

for some Bernstein function g. In the present paper, we use a different condition in terms of the
characteristic exponent �(ξ). Let us briefly compare [2], Theorem 1.1, and Theorem 1.1. If (1.4)
holds, then we know that

�(ξ) = �ρ(ξ) + �μ(ξ),

where �ρ and �μ denote the (pure-jump) characteristic exponents with Lévy measures ρ(dz) =
|z|−dg(|z|−2)dz and μ = ν − ρ, respectively. Note that (1.4) guarantees that μ is a nonnegative
measure. By [13], Lemma 2.1, and some tedious, but otherwise routine, calculations one can see
that �ρ(ξ) � g(|ξ |2) as |ξ | → 0.

If g satisfies [2], (2.10) and (2.11), – these conditions coincide with the asymptotic properties
required of f in Theorem 1.1 –, we can apply Theorem 1.1 to the symbol �ρ(ξ) with f (s) =
g(s2), and follow the argument of [2], Proposition 2.9 and Remark 2.10, to get a new proof of
[2], Theorem 1.1. Note that this argument uses the fact that, we can (in law) decompose the Lévy
process with exponent �(ξ) into two independent Lévy processes with characteristic exponents
�ρ(ξ) and �μ(ξ), respectively.

(2) The considerations from (1) can be adapted to show that we may replace the two-sided
estimate Re�(ξ) � f (|ξ |) in Theorem 1.1 by Re�(ξ) ≥ cf (|ξ |); this, however, requires that
we know in advance that �(ξ)− cf (ξ) is a characteristic exponent of some Lévy process. While
this was obvious under (1.4) and for the difference of two Lévy measures being again a nonneg-
ative measure, there are no good conditions in general when the difference of two characteristic
exponents is again an characteristic exponent of some Lévy process.

(3) The present result, Theorem 1.1, trivially applies to most subordinate stable Lévy pro-
cesses: here the characteristic exponent is of the form f (|ξ |α), 0 < α ≤ 2, but the corresponding
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Lévy measures cannot be given in closed form. In Example 1.5 below, we have a situation where
the Lévy measure is known. Nevertheless, the methods of [2] are only applicable in one particular
case, while Theorem 1.1 applies to all non-degenerate settings.

Now we turn to explicit gradient estimates for the semigroup of a Lévy process. For a function
u ∈ Bb(R

d) we define

|∇u(x)| := lim sup
y→x

|u(y) − u(x)|
|y − x| , x ∈ R

d .

If u is differentiable at x, then |∇u(x)| is just the norm of the gradient of u at x. We are interested
in sub-Markov semigroups Pt on Bb(R

d) which satisfy that for some positive function φ on
(0,∞)

‖∇Ptu‖∞ ≤ ‖u‖∞φ(t), t > 0, u ∈ Bb(R
d).

Similar uniform gradient estimates for Markov semigroups have attracted a lot of attention in
analysis and probability, for example, see [21] and references therein. Because of the Markov
property of the semigroup Pt , φ(t) is decreasing with respect to t . Thus, it is enough to obtain
sharp estimates for φ(t) both as t → 0 and t → ∞. For Lévy processes, we have the following
theorem.

Theorem 1.3. Assume that (1.1) holds. If there is a strictly increasing function f which is dif-
ferentiable near infinity and which satisfies

lim sup
s→∞

f −1(2s)/f −1(s) < ∞,

and

Re�(ξ) � f (|ξ |) as |ξ | → ∞,

then there exists a constant c > 0 such that for t > 0 small enough,

‖∇Ptu‖∞ ≤ c‖u‖∞f −1(1/t), u ∈ Bb(R
d). (1.5)

Similarly, let f be a strictly increasing function which is differentiable near zero and which
satisfies

lim inf
r→0

f (r)| log r| < ∞, lim sup
s→0

f −1(2s)/f −1(s) < ∞

and

Re�(ξ) � f (|ξ |) as |ξ | → 0.

Then there exists a constant c > 0 such that (1.5) holds for t > 0 large enough.

We will see in Remark 3.3 below that Theorem 1.3 is also sharp for rotationally invariant
α-stable Lévy processes. Roughly speaking, Theorems 1.1 and 1.3 show that the gradient esti-
mate (1.5) for a Lévy process for small t � 1 depends on the asymptotic behaviour of the symbol
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� near infinity, while (1.5) for large t � 1 relies on the asymptotic behaviour of the symbol �

near zero. This situation is familiar from estimates of the coupling time of Lévy processes. More
details can be found in the examples given below.

In order to illustrate the power of Theorems 1.1 and 1.3, we present two examples.

Example 1.4. Let Xt be a subordinate Brownian motion with symbol f (|ξ |2), where f (λ) =
λα/2(log(1 +λ))β/2, α ∈ (0,2) and β ∈ (−α,2 −α). To see that f is indeed a Bernstein function
we observe that λ, log(1 + λ) and λ/ log(1 + λ) are complete Bernstein functions, and that for
α,β ≥ 0

λα/2 · (log(1 + λ)
)β/2 is a complete Bernstein function if

α

2
+ β

2
≤ 1,

while for −α ≤ β ≤ 0 ≤ α

λ(α−β)/2 ·
(

λ

log(1 + λ)

)β/2

is a complete Bernstein function if
α

2
+ β

2
≤ 1.

This follows easily from [26], (Proof of) Proposition 7.10, see also [28], Examples 5.15, 5.16.
There are two constants c1, t0 > 0 such that for all x, y ∈ R

d and t ≥ t0,

‖Pt(x, ·) − Pt (y, ·)‖Var ≤ c1t
−1/(α+β),

and there exists a constant c2 > 0 such that for all u ∈ Bb(R
d),

‖∇Ptu‖∞ ≤
{

c2
[
t−1

(
log(1 + t−1)

)−β/2]1/α‖u‖∞ for small t � 1;
c2t

−1/(α+β)‖u‖∞ for large t � 1.

Example 1.5. Let μ be a finite nonnegative measure on the unit sphere S and assume that μ is
nondegenerate in the sense that its support is not contained in any proper linear subspace of R

d .
Let α ∈ (0,2), β ∈ (0,∞] and assume that the Lévy measure ν satisfies that for some constant
r0 > 0 and any A ∈ B(Rd),

ν(A) ≥
∫ r0

0

∫
S

1A(sθ)s−1−α dsμ(dθ) +
∫ ∞

r0

∫
S

1A(sθ)s−1−β dsμ(dθ).

Then, by Theorem 1.1, there are two constants c1, t0 > 0 such that for all x, y ∈ R
d and t ≥ t0,

‖Pt (x, ·) − Pt (y, ·)‖Var ≤ c1t
−1/(β∧2).

In the present situation, the methods of [2] only apply if μ is (essentially) the uniform measure
on S; this is not the case for the condition of Theorem 1.1.

Moreover, Theorem 1.3 shows that there exists a constant c2 > 0 such that for all u ∈ Bb(R
d),

‖∇Ptu‖∞ ≤
{

c2‖u‖∞t−1/α for small t � 1;
c2‖u‖∞t−1/(β∧2) for large t � 1.
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Coupling techniques for Lévy-driven SDEs and Lévy-type processes have been considered in
the literature before, see, for example, [16–18,32]. As far as we know, however, only the papers
[30,31] by F.-Y. Wang deal with couplings of Lévy-driven SDEs. Wang shows the existence of
successful couplings and gradient estimates for Ornstein–Uhlenbeck processes driven by Lévy
processes.

The remaining part of this paper is organized as follows. In Section 2, we first present estimates
for the derivatives of the density for infinitely divisible distributions in terms of the corresponding
Lévy measure; this part is of some interest on its own. Then we use these estimates to investigate
derivatives of the density for Lévy processes, whose Lévy measures have (modified) bounded
support. In Section 3, we give the proofs of all the theorems and examples stated in Section 1,
by using the results of Section 2. Some remarks and examples are also included here to illustrate
the optimality and the efficiency of Theorems 1.1 and 1.3.

2. Derivatives of densities for infinitely divisible distributions

Let π be an infinitely divisible distribution. It is well known that its characteristic function
π̂(ξ) := ∫

Rd eiξ ·yπ(dy) is of the form exp(−�(ξ)), where

�(ξ) =
∫

y �=0

(
1 − eiξ ·y + iξ · y1B(0,1)(y)

)
ν(dy),

and ν is a Lévy measure on R
d \ {0} such that

∫
y �=0(1 ∧ |y|2)ν(dy) < ∞. In this section, we first

aim to study estimates for derivatives of the density of π . As usual, we denote for every n ∈ N0
by Cn

b (Rd) the set of all n-times continuously differentiable functions on R
d which are, together

with all their derivatives, bounded; for n = 0 we use the convention that C0
b(Rd) = Cb(R

d)

denotes the set of continuous and bounded functions on R
d .

Proposition 2.1. If for some n, m ∈ N0,∫
e−Re�(ξ)(1 + |ξ |)n+m dξ < ∞, (2.6)

and ∫
|y|>1

|y|2∨nν(dy) < ∞, (2.7)

then π has a density p ∈ Cm+n
b (Rd) such that for every β ∈ N

d
0 with |β| ≤ m,

|∂βp(y)| ≤ ψ(n,m,ν)(1 + |y|)−n, y ∈ R
d,

where for n ≥ 0

ψ(n,m,ν) = C(n,d)

(
1 +

∫
(|y|2 + |y|2∨n)ν(dy)

)n ∫
e−Re�(ξ)(1 + |ξ |)n+m dξ.
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Proof. The existence of the density p ∈ Cm+n
b (Rd) is a consequence of (2.6) and [23], Proposi-

tion 28.1, or [20], Proposition 0.2.
To prove the second assertion, we recall some necessary facts and notations. Given a function

f ∈ L1(Rd), its Fourier transform is given by

f̂ (ξ) =
∫

Rd

f (y)eiξ ·y dy.

For ξ ∈ R
d and a multiindex β = (β1, β2, . . . , βd) ∈ N

d
0 , we set Mβ(ξ) := ξβ = ξ

β1
1 ξ

β2
2 · · · ξβd

d .
If f̂ ∈ CN(Rd) and ∂γ (Mβf̂ ) ∈ L1(Rd) for N ∈ N0 and every γ ∈ N

d
0 such that |γ | ≤ N , then,

using the inverse Fourier transform and the integration by parts formula, we obtain that for every
δ ∈ N

d
0 with |δ| ≤ N

yδ∂βf (y) = (2π)−d(−1)|β|(i)|β|−|δ|
∫

∂δ[Mβf̂ ](ξ)e−iy·ξ dξ.

This yields

|yδ∂βf (y)| ≤ (2π)−d

∫
|∂δ[Mβf̂ ](ξ)|dξ. (2.8)

In particular, for every n ∈ N0,

|yk|n|∂βf (y)| ≤ (2π)−d

∫ ∣∣∣∣ ∂n

∂ξn
k

[Mβf̂ ](ξ)

∣∣∣∣dξ. (2.9)

For n = 0, the required assertion immediately follows from (2.8) if we use f = p and δ = 0.
If n > 0, then for every β ∈ N

d
0 such that |β| = 1 we have

∂β�(ξ) = −i
∫

yβ
(
eiξ ·y − 1B(0,1)(y)

)
ν(dy).

By the Hölder inequality,

|∂β�(ξ)|

≤
[∫

|y|2ν(dy)

]1/2[
2
∫

B(0,1)

(
1 − cos(ξ · y)

)
ν(dy) + ν(B(0,1)c)

]1/2

≤
[∫

|y|2ν(dy)

]1/2[
|ξ |2

∫
B(0,1)

|y|2ν(dy) + ν(B(0,1)c)

]1/2

(2.10)

≤
∫

|y|2ν(dy) · (|ξ |2 + 1)1/2

≤ (1 + |ξ |)
∫

|y|2ν(dy).
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On the other hand, for 1 < |β| ≤ n, we have

∂β�(ξ) = −(i)|β|
∫

yβeiξ ·yν(dy),

and so

|∂β�(ξ)| ≤
∫

|y||β|ν(dy). (2.11)

For symmetric Lévy measures ν similar estimates are due to Hoh [10], see also [12], Theo-
rem 3.7.13.

Let k ∈ {1, . . . , d} and M ∈ N with M ≤ n. We use Faa di Bruno’s formula, see [6], to obtain

∂M

∂ξM
k

p̂(ξ) = M! exp(−�(ξ))

M∑
j=1

∑
u(M,j)

M∏
l=1

(
∂l(−�)

∂ξ l
k

(ξ)

)λl/
((λl !)(l!)λl ),

where

u(M,j) =
{

(λ1, . . . , λM): λl ∈ N0,

M∑
l=1

λl = j,

M∑
l=1

lλl = M

}
.

This, (2.10) and (2.11) yield∣∣∣∣ ∂M

∂ξM
k

p̂(ξ)

∣∣∣∣ ≤ | exp(−�(ξ))|
M∑

j=1

∑
u(M,j)

M∏
l=1

M!
(λl !)(l!)λl

[
(1 + |ξ |)

∫
Rd

|y|l∨2ν(dy)

]λl

≤ e−Re�(ξ)

M∑
j=1

[
(1 + |ξ |)

∫
Rd

(|y|2 + |y|2∨n)ν(dy)

]j ∑
u(M,j)

M∏
l=1

M!
(λl !)(l!)λl

≤ e−Re�(ξ)(1 + |ξ |)M
M∑

j=1

[∫
Rd

(|y|2 + |y|2∨n)ν(dy)

]j ∑
u(M,j)

M∏
l=1

M!
(λl !)(l!)λl

≤ c1(n)e−Re�(ξ)(1 + |ξ |)n
[

1 +
∫

Rd

(|y|2 + |y|2∨n)ν(dy)

]n

.

We note that this inequality remains valid for M = 0.
For β ∈ N

d
0 with |β| ≤ m, we can use the Leibniz rule to get∣∣∣∣ ∂n

∂ξn
k

(Mβp̂)(ξ)

∣∣∣∣ ≤
n∑

j=0

(
n

j

)∣∣∣∣ ∂j

∂ξ
j
k

Mβ(ξ)
∂n−j

∂ξ
n−j
k

p̂(ξ)

∣∣∣∣
≤ (1 + |ξ |)|β|

n∑
j=0

(
n

j

)∣∣∣∣ ∂n−j

∂ξ
n−j
k

p̂(ξ)

∣∣∣∣
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≤ c2(n)e−Re�(ξ)(1 + |ξ |)n+m

[
1 +

∫
Rd

(|y|2 + |y|2∨n)ν(dy)

]n

.

By (2.9), we see

|yk|n|∂βp(y)| ≤ c2(n)

[
1 +

∫
Rd

(|y|2 + |y|2∨n)ν(dy)

]n ∫
e−Re�(ξ)(1 + |ξ |)n+m dξ.

Finally,

(1 + |y|)n ≤ 2n−1(1 + |y|n) ≤ 2n−1dn/2

(
1 +

d∑
k=1

|yk|n
)

,

and the required assertion follows with C(n,d) = 2n−1dn/2(d + 1)c2(n). �

We will now study the derivatives of transition densities for Lévy processes with (modified)
bounded support. For this, we need Proposition 2.1. Let � be the symbol (i.e., the characteristic
exponent) of a Lévy process and consider for every r > 0 the semigroup of infinitely divisible
measures {P r

t , t ≥ 0} whose Fourier transform is of the form P̂ r
t (ξ) = exp(−t�r(ξ)), where

�r(ξ) =
∫

|y|≤r

(1 − eiξ ·y + iξ · y)ν(dy)

(ν is the Lévy measure of the symbol �). For ρ > 0 and t > 0, we define

ϕ(ρ) = sup
|η|≤ρ

Re�(η) and h(t) := 1

ϕ−1(1/t)
. (2.12)

Proposition 2.2. Assume that (1.3) holds, and there exist m ∈ N0 and c, t1 > 0 such that for all
t ≥ t1, ∫

exp(−(t Re�(ξ)))|ξ |m dξ ≤ c

(
ϕ−1

(
1

t

))m+d

. (2.13)

Then there is a constant t2 = t2(m,d) > 0 such that for any t ≥ t2, there exists a density p
h(t)
t ∈

Cm
b (Rd) of P

h(t)
t , and for every n ∈ N0 and β ∈ N

d
0 with |β| ≤ m − n,∣∣∂β

y p
h(t)
t (y)

∣∣ ≤ C(m,n, |β|,�)(ϕ−1(t−1))d+|β|(1 + ϕ−1(t−1)|y|)−n
, y ∈ R

d .

Proof. Step 1. For ξ ∈ R
d ,

|P̂ r
t (ξ)| = exp

(
−t

∫
|y|<r

(
1 − cos(ξ · y)

)
ν(dy)

)
= exp

(
−t

(
Re�(ξ) −

(∫
|y|≥r

(
1 − cos(ξ · y)

)
ν(dy)

)))
(2.14)

≤ exp(−t (Re�(ξ))) exp(2tν(B(0, r)c)).
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By (1.3) and [23], Proposition 28.1, it follows that there exists t3 := t3(d) > 0 such that for all
r > 0 and for any t ≥ t3, the measure P r

t has a density pr
t ∈ Cb(R

d).

Step 2. For t ≥ t3, we define gt (y) = h(t)dp
h(t)
t (h(t)y). We consider the infinitely divisible

distribution πt (dy) = gt (y)dy. Its Fourier transform is given by

π̂t (ξ) = (h(t))d
∫

eiξ ·yph(t)
t (h(t)y)dy

=
∫

eiξ ·y/h(t)p
h(t)
t (y)dy

= exp

(
−t

∫
|y|≤h(t)

(
1 − eiξ ·y/h(t) + iξ · y

h(t)

)
ν(dy)

)
(2.15)

= exp

(
−

∫
|y|≤1

(1 − eiξ ·y + iξ · y)λt (dy)

)
= exp(−Gt(ξ)),

where λt is the Lévy measure of πt , that is, for any Borel set B ⊂ R
d \ {0},

λt (B) = t

∫
|y|≤h(t)

1B

(
y/h(t)

)
ν(dy).

For n ≥ 2, we have∫
|y|nλt (dy) = t

∫
|y|≤h(t)

( |y|
h(t)

)n

ν(dy)

≤ t

∫
|y|≤h(t)

( |y|
h(t)

)2

ν(dy)

≤ 2t

∫
|y|≤h(t)

(|y|/h(t))2

1 + (|y|/h(t))2
ν(dy)

≤ 2t

∫
(|y|/h(t))2

1 + (|y|/h(t))2
ν(dy)

= 2t

∫ ∫ (
1 − cos

(
y/h(t) · ξ))

fd(ξ)dξν(dy)

= 2t

∫ ∫ (
1 − cos

(
y · ξ/h(t)

))
ν(dy)fd(ξ)dξ

= 2t

∫
Re�

(
ξ

h(t)

)
fd(ξ)dξ,

where

fd(ξ) = 1

2

∫ ∞

0
(2πρ)−d/2e−|ξ |2/(2ρ)e−ρ/2 dρ.
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Obviously, fd(ξ) possesses all moments, see, for example, [25], (2.5) and (2.6). By using several
times the subadditivity of η �→ √

Re�(η), we can easily find, see, for example, the proof of [24],
Lemma 2.3,

Re�

(
ξ

h(t)

)
≤ 2(1 + |ξ |2) sup

|η|≤1/h(t)

Re�(η) = 2(1 + |ξ |2)1

t
.

So, ∫
Re�

(
ξ

h(t)

)
fd(ξ)dξ ≤ 2 sup

|η|≤1/h(t)

Re�(η)

∫
(1 + |ξ |2)fd(ξ)dξ =: c0

t
.

According to the definition of h(t), we get that for any t > 0,∫
|y|nλt (dy) ≤ 2c0. (2.16)

Step 3. It is easily seen from (2.15) that the characteristic exponent of πt is Gt(ξ), and

ReGt(ξ) = t Re
(
�h(t)(h(t)−1ξ)

)
.

Thus,

ReGt(ξ) = t

[
Re(�(h(t)−1ξ)) −

∫
|y|>h(t)

(
1 − cos(h(t)−1ξ · y)

)
ν(dy)

]
≥ t Re(�(h(t)−1ξ)) − 2tν(B(0, h(t))c).

For any t > 0,

ν(B(0, h(t))c) ≤ 2
∫

|y|>h(t)

(|y|/h(t))2

1 + |y|2/h(t)2
ν(dy)

≤ 2
∫

(|y|/h(t))2

1 + (|y|/h(t))2
ν(dy)

= 2
∫ ∫ (

1 − cos(h(t)−1ξ · y)
)
ν(dy)fd(ξ)dξ

= 2
∫

Re�

(
ξ

h(t)

)
fd(ξ)dξ

≤ 2c0 sup
|η|≤1/h(t)

Re�(η),

where the last two lines follow from the same arguments as those leading to (2.16). Hence, for
any t > 0, we have

tν(B(0, h(t))c) ≤ 2c0t sup
|η|≤1/h(t)

Re�(η) = 2c0.
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By (2.13), for m ∈ N0 and c1 > 0, there exists t4 := t4(m,�, c1) ≥ t3 such that for any t ≥ t4,∫
exp(−(t Re�(ξ)))|ξ |m dξ ≤ c1h(t)−(m+d).

Therefore, we obtain ∫
exp[−Re(Gt (ξ))]|ξ |m dξ

≤ e4c0

∫
exp[−t Re(�(ξ/h(t)))]|ξ |m dξ

(2.17)

= e4c0h(t)m+d

∫
exp[−(t Re�(ξ))]|ξ |m dξ

= c1e4c0 < ∞.

Step 4. According to (2.16), (2.17) and Proposition 2.1, gt ∈ Cm
b (Rd) for any t ≥ t4, and for

every n ∈ N0 and β ∈ N
d
0 with |β| ≤ m − n we get

|∂β
y gt (y)| ≤ C(m,n, |β|,�)(1 + |y|)−n, y ∈ R

d .

This finishes the proof since ∂
β
y gt (y) = h(t)d+|β|∂β

y p
h(t)
t (h(t)y). �

The following result is the counterpart of Proposition 2.2, which presents estimates for the
derivatives of the densities p

h(t)
t for small time. Recall the definitions of ϕ and h from (2.12).

Proposition 2.3. Assume that (1.1) is satisfied, and there exist constants m ∈ N0 and c, t0 > 0
such that for every 0 < t ≤ t0,∫

exp[−(t Re�(ξ))]|ξ |m dξ ≤ c
(
ϕ−1(1/t)

)m+d
. (2.18)

Then there is a constant t1 > 0 such that for all 0 < t ≤ t1, there exists a density p
h(t)
t ∈ Cm

b (Rd)

of P
h(t)
t . Moreover, for every n ∈ N0 and β ∈ N

d
0 with |β| ≤ m − n,∣∣∂β

y p
h(t)
t (y)

∣∣ ≤ C(m,n, |β|,�, t0)(ϕ
−1(t−1))d+|β|(1 + ϕ−1(t−1)|y|)−n

, y ∈ R
d .

Proof. The proof is similar to that of Proposition 2.2, and we only sketch some key differences.
We continue to use the notations of the proof of Proposition 2.2. According to (2.14) and (1.1), for
all r > 0 and t > 0, the measure P r

t is absolutely continuous with respect to Lebesgue measure.
Since t > 0 may be arbitrarily small, we need (1.1) rather than (1.3). Denote by pr

t its density.
Following the argument of Proposition 2.2, we find that (2.16) is still valid, and according to
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(2.18), there exists some t2 > 0 such that (2.17) holds for all 0 < t ≤ t2. The required assertion
follows now from Proposition 2.1. �

3. Proofs of the main theorems and further examples

We will now give the proofs for Theorem 1.1 and 1.3. For this, we need to estimate the coupling
time of a general Lévy process. We will use the functions ϕ and h defined in (2.12).

Theorem 3.1. Assume that (1.3) holds, and there are c, t1 > 0 such that for any t ≥ t1,∫
exp[−(t Re�(ξ))]|ξ |d+2 dξ ≤ c(ϕ−1(1/t))2d+2. (3.19)

Then, the Lévy process Xt has the coupling property, and there exist t2, C > 0 such that for any
x, y ∈ R

d and t ≥ t2,

‖Pt(x, ·) − Pt (y, ·)‖Var ≤ C|x − y|ϕ−1(1/t). (3.20)

Proof. Set

�r(ξ) =
∫

|y|≤r

(1 − eiξ ·y + iξ · y)ν(dy)

and

�r(ξ) := �(ξ) − �r(ξ) =
∫

|y|>r

(1 − eiξ ·y)ν(dy) − iξ ·
∫

1<|y|≤r

yν(dy).

Let Yt and Zt be two independent Lévy processes whose symbols are �r(ξ) and �r(ξ), respec-
tively. Denote by Qt and Qt(x, ·) the semigroup and the transition function of Yt . Similarly, Rt

and Rt(x, ·) stand for the semigroup and the transition function of Zt . Then,

‖Pt(x, ·) − Pt (y, ·)‖Var = sup
‖f ‖∞≤1

|Ptf (x) − Ptf (y)|

= sup
‖f ‖∞≤1

|QtRtf (x) − QtRtf (y)|
(3.21)

≤ sup
‖g‖∞≤1

|Qtg(x) − Qtg(y)|

= ‖Qt(x, ·) − Qt(y, ·)‖Var.

Now, we take r = h(t). Then, according to (3.19) and Proposition 2.2, there exists t3 > 0 such
that for any t ≥ t3, the kernel Qt has a density qt ∈ Cd+2

b (Rd), and for all y ∈ R
d ,

|∇qt (y)| ≤ c(d,�)h(t)−(d+1)
(
1 + h(t)−1|y|)−(d+1)

. (3.22)
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Thus, for any t ≥ t3,

‖Qt(x, ·) − Qt(y, ·)‖Var = sup
‖f ‖∞≤1

∣∣∣∣∫ f (z)Qt (x,dz) −
∫

f (z)Qt (y,dz)

∣∣∣∣
= sup

‖f ‖∞≤1

∣∣∣∣∫ f (z)qt (z − x)dz −
∫

f (z)qt (z − y)dz

∣∣∣∣ (3.23)

=
∫

|qt (z − x) − qt (z − y)|dz.

Let t ≥ t3. Assume that |x − y| > h(t). Then,∫
|qt (z − x) − qt (z − y)|dz ≤ 2 ≤ 2|x − y|

h(t)
.

If |x − y| ≤ h(t), then, by (3.22),∫
|qt (z − x) − qt (z − y)|dz

=
∫

|z−x|>2h(t)

|qt (z − x) − qt (z − y)|dz +
∫

|z−x|≤2h(t)

|qt (z − x) − qt (z − y)|dz

≤ c(d,�)
|x − y|
h(t)d+1

[ ∫
|z−x|>2h(t)

[
h(t)d+1 sup

w∈B(z−x,|y−x|)
|∇qt (w)|

]
dz +

∫
|z−x|≤2h(t)

dz

]

≤ c(d,�)
|x − y|
h(t)d+1

[ ∫
|z−x|>2h(t)

[
1 + |z − x|

2h(t)

]−d−1

dz + cd(2h(t))d
]

= c(d,�)
|x − y|
h(t)d+1

∫ [
1 + |z − x|

2h(t)

]−d−1

dz + 2dcdc(d,�)
|x − y|
h(t)

≤ C|x − y|
h(t)

.

Therefore, there exists C > 0 such that for all x, y ∈ R
d and t ≥ t3,∫

|qt (z − x) − qt (z − y)|dz ≤ C|x − y|
h(t)

. (3.24)

The assertion follows now from (3.21), (3.23) and (3.24). �

Next, we turn to the proof of Theorem 1.1.
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Proof of Theorem 1.1. Under the conditions of Theorem 1.1, we can suppose that for any
ξ ∈ R

d ,

Re�(ξ) ≥ F(|ξ |),
where F(r) is a strictly increasing and differentiable function on (0,∞) such that

F(r) =
{

c1f (r) if r ∈ (0, c2);
c3 log(c4 + c5r) if r ∈ [c2,∞)

for some constants ci > 0, i = 1,2,3,4,5. Thus,∫
exp[−t Re�(ξ)]|ξ |d+2 dξ ≤

∫
exp[−tF (|ξ |)]|ξ |d+2 dξ

= cd

∫ ∞

0
e−tr [F−1(r)]2d+1 dF−1(r)

= cd

2(d + 1)

∫ ∞

0
e−tr d[F−1(r)]2(d+1).

Since lim infr→0 f (r)| log r| < ∞ and lim sups→0 f −1(2s)/f −1(s) < ∞, we have

lim inf
r→0

F(r)| log r| < ∞

and

lim sup
s→0

F−1(2s)/F−1(s) < ∞.

Note that the function F also satisfies

lim
s→∞F(s)/ log s = c3.

Then, following the proof of [2], Theorem 2.1, we obtain that for t → ∞,∫ ∞

0
e−tr d[F−1(r)]2(d+1) � [F−1(1/t)]2(d+1)

= [f −1(1/t)]2(d+1)

� [ϕ−1(1/t)]2(d+1).

In the last step we used, in particular, the upper bound of the two-sided comparison Re�(ξ) �
f (|ξ |) as |ξ | → 0. The desired assertion follows from Theorem 3.1. �

The following result is the short-time analogue of Theorem 3.1 which gives, additionally,
gradient estimates for general Lévy processes.
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Theorem 3.2. Assume that (1.1) holds and let φ and h be as in (2.12). If there is a constant
c0 > 0 such that∫

exp(−t Re�(ξ))|ξ |d+2 dξ ≤ c0(ϕ
−1(1/t))2d+2 for all t � 1 [t � 1], (3.25)

then there exists a constant c > 0 such that for all u ∈ Bb(R
d)

‖∇Ptu‖∞ ≤ c‖u‖∞ϕ−1(1/t) for all t � 1 [t � 1]. (3.26)

Proof. We will treat the short- and large-time cases separately.
Recall the notations used in the proof of Theorem 3.1: Qt and Rt are the semigroups corre-

sponding to �r(ξ) and �r(ξ), respectively. According to (3.25) and Proposition 2.3, for small
enough t � 1, and r = h(t), the measure Qt has a density qt ∈ Cd+2

b (Rd) such that for any
y ∈ R

d ,

|∇qt (y)| ≤ c(d,�)(ϕ−1(t−1))d+1(1 + ϕ−1(t−1)|y|)−(d+1)
. (3.27)

Then, for all u ∈ Bb(R
d),

sup
‖u‖∞≤1

‖∇Qtu‖∞ = sup
‖u‖∞≤1

sup
x∈Rd

|∇Qtu(x)|

= sup
‖u‖∞≤1

sup
x∈Rd

∣∣∣∣∇ ∫
qt (z − x) · u(z)dz

∣∣∣∣
= sup

x∈Rd

sup
‖u‖∞≤1

∣∣∣∣∫ ∇qt (z − x) · u(z)dz

∣∣∣∣
(3.28)

= sup
x∈Rd

∫
|∇qt (z − x)|dz

=
∫

|∇qt (z)|dz

≤ cϕ−1(t−1),

where we used (3.27) and dominated convergence. This calculation shows

‖∇Qtu‖∞ ≤ cϕ−1(t−1)‖u‖∞.

Therefore,

‖∇Ptu‖∞ = ‖∇Qt(Rtu)‖∞ ≤ cϕ−1(t−1)‖Rtu‖∞ ≤ cϕ−1(t−1)‖u‖∞, (3.29)

which finishes the proof for small t � 1.
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If t � 1 is sufficiently large, we can apply (3.20), to find for any u ∈ Bb(R
d) with ‖u‖∞ = 1,

|∇Ptu(x)| ≤ lim sup
y→x

|Ptu(x) − Ptu(y)|
|y − x|

≤ lim sup
y→x

sup‖w‖∞≤1 |Ptw(x) − Ptw(y)|
|y − x|

≤ lim sup
y→x

‖Pt(x, ·) − Pt (y, ·)‖Var

|y − x|
≤ Cϕ−1(t−1).

This finishes the proof for large t � 1. �

Remark 3.3. Let Xt be a rotationally invariant α-stable Lévy process on R
d , and pt be its density

function. By the scaling property, for any t > 0 and x ∈ R
d , pt(x) = t−d/αp1(t

−1/αx). On the
other hand, it is well known that, see, for example, [8],

|∇p1(x)| ≤ c

1 + |x|d+α
.

Denote by Pt the semigroup of Xt . Then, according to the proof of (3.28), we have

sup
‖u‖∞≤1

‖∇Ptu‖∞ = t−1/α

∫
|∇p1(z)|dz.

This implies that Theorem 1.3 is optimal.

We can now use Theorem 3.2 to prove Theorem 1.3.

Proof of Theorem 1.3. The second assertion easily follows from Theorem 1.1 and the proof
of Theorem 3.2. It is therefore enough to consider the first conclusion. Under the conditions
assumed in Theorem 1.3, we know that for any ξ ∈ R

d ,

Re�(ξ) ≥ F(|ξ |),
where F(r) is an increasing function on (0,∞) such that

F(r) =
{

0 if r ∈ (0, c1];
c2f (r) if r ∈ (c1,∞)

for some constants ci > 0, i = 1,2, and f is strictly increasing and differentiable on (c1,∞).
Therefore, ∫

exp[−t Re�(ξ)]|ξ |d+2 dξ ≤
∫

exp[−tF (|ξ |)]|ξ |d+2 dξ.
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Since lim sups→∞ f −1(2s)/f −1(s) < ∞, we can choose c > 2 and s0 > 0 such that we have
f −1(2s) ≤ cf −1(s) for all s ≥ s0. For any k ≥ 1 the monotonicity of f −1 gives

f −1(2ks) ≤ ckf −1(s) = 2kαf −1(s),

where we use α = log2 c. Then, for sufficiently small t � 1,∫
exp[−tF (|ξ |)]|ξ |d+2 dξ

=
∫

|ξ |<c1

|ξ |d+2 dξ + cd

∫ ∞

c1

e−c2tf (r)r2d+1 dr

≤ C1 + cd

∫ ∞

0
e−c2sds[f −1(s/t)]2d+2

≤ C1 + cd

{∫ 1

0
+

∞∑
n=1

∫ 2n

2n−1

}
e−c2s ds[f −1(s/t)]2d+2

≤ C1 + cd [f −1(1/t)]2d+2 + cd

∞∑
n=1

exp[−c22n−1][f −1(2n/t)]2d+2

≤ C1 + cd

(
1 +

∞∑
n=1

exp[−c22n−1]2nα(2d+2)

)
[f −1(1/t)]2d+2

≤ C1 + C2[f −1(1/t)]2d+2.

Because of (1.1) and Re�(ξ) � f (|ξ |) as |ξ | → ∞, we find f −1(1/t) → ∞ as t → 0. Thus,∫
exp[−t Re�(ξ)]|ξ |d+2 dξ ≤

∫
exp[−tF (|ξ |)]|ξ |d+2 dξ

≤ C3[f −1(1/t)]2d+2.

In the last step we used, in particular, the upper bound of the two-sided comparison Re�(ξ) �
f (|ξ |) as |ξ | → ∞. Now the assertion follows from Theorem 3.2. �

Remark 3.4. If we assume in the statement of Theorem 1.3 that f −1(s) = sα�(s) for some α > 0
and some positive function � which is slowly varying at ∞ – that is, lims→∞ �(λs)/�(s) = 1 for
every λ > 0, then standard Abelian and Tauberian arguments (see, e.g., [1], Theorems 1.7.1 and
1.7.1′, or [7], Chapter XIII.5, Theorems 1 and 3), we can obtain that∫

exp[−tF (|ξ |)]|ξ |d+2 dξ � [f −1(1/t)]2d+2 as t → 0.

Let us finally turn to the examples from Section 1.
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Proof of Example 1.4. The symbol of the subordinate Brownian motion here satisfies

Re�(ξ) � |ξ |α+β as |ξ | → 0,

and

Re�(ξ) � |ξ |α(
log(1 + |ξ |))β/2 as |ξ | → ∞.

For r > 0, set f (r) = rα(log(1 + r))β/2 and g(r) = (r(log(1 + r))−β/2)1/α . Then, for r → ∞,
we have

f (g(r)) = r
(
log(1 + r)

)−β/2[log
(
1 + (

r
(
log(1 + r)

)−β/2)1/α)]β/2

� r(log r)−β/2
[

2 log r − β log log r

α

]β/2

= r

[
2 log r − β log log r

α log r

]β/2

� r.

This shows that f −1(r) � g(r) for r → ∞, and now Theorems 1.1 and 1.3 apply. �

Proof of Example 1.5. Let Yt and Zt be Lévy processes whose Lévy measures are given by

νY (A) :=
∫ r0

0

∫
S

1A(sθ)s−1−α dsμ(dθ) +
∫ ∞

r0

∫
S

1A(sθ)s−1−β dsμ(dθ)

and

νZ(dz) := ν(dz) − νY (dz) ≥ 0,

respectively. After some elementary calculations, we see that the symbol �Y of Yt satisfies
Re�Y (ξ) � |ξ |α as |ξ | → ∞ and Re�Y (ξ) � |ξ |β∧2 as |ξ | → 0. Let P Y

t (x, ·) and P Y
t de-

note the transition function and the semigroup of Yt . According to Theorems 1.1 and 1.3, we can
prove the claim first for Y (if we replace in these Theorems �, Pt and Pt (x, ·) by the correspond-
ing objects �Y , P Y

t and P Y
t (x, ·)). To come back to the original process resp. semigroup, we can

now use (3.21) and (3.29). �

Example 1.5 applies to a large number of interesting and important Lévy processes, whose
Lévy measures are of the following polar coordinates form:

ν(A) =
∫ ∞

0

∫
S

1A(sθ)Q(θ, s)dsμ(dθ);

Q(θ, s) is a nonnegative function on S × (0,∞). For instance, Example 1.5 is applicable for the
following processes:
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1. Stable Lévy processes [29]:

Q(θ, s) � s−α−1,

where α ∈ (0,2).
2. Layered stable processes [11]:

Q(θ, s) � s−α−11(0,1](s) + s−β−11[1,∞)(s),

where α ∈ (0,2) and β ∈ (0,∞).
3. Tempered stable processes [22]:

Q(θ, s) � s−α−1e−cs,

where α ∈ (0,2) and c > 0.
4. Relativistic stable processes [3,5]:

Q(θ, s) � s−α−1(1 + s)(d+α−1)/2e−s ,

where α ∈ (0,2).
5. Lamperti stable processes [4]:

Q(θ, s) = s−α−1 exp(sf (θ))s1+α

(es − 1)1+α
,

where α ∈ (0,2) and f : S → R such that supθ∈S f (θ) < 1 + α.
6. Truncated stable processes [14]:

Q(θ, s) � s−α−11(0,1](s),

where α ∈ (0,2).

Motivated by Example 1.5, we can present a short proof of (one part of) F.-Y. Wang’s result
on explicit gradient estimates for the semigroup of a general Lévy processes.

Theorem 3.5 (F.-Y. Wang [31], Theorem 1.1). Let Xt be a Lévy process on R
d with Lévy

measure ν. Assume that there exists some r ∈ (0,∞] such that

ν(dz) ≥ |z|−df (|z|−2)1{|z|≤r} dz,

where f is Bernstein function such that

lim inf
r→∞

f (r)

log r
= ∞ and lim sup

s→∞
f −1(2s)

f −1(s)
∈ (0,∞).

Then there exists a constant c > 0 such that for any t > 0,

‖∇Ptu‖∞ ≤ c‖u‖∞f −1
(

1

t ∧ 1

)
, u ∈ Bb(R

d).
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Proof. According to the proofs of Example 1.5 and [31], Theorem 1.1, we see that Xt can be
decomposed into two independent Lévy processes Yt and Zt , such that the symbol �Y (ξ) of Yt

satisfies �Y (ξ) � f (|ξ |2) as |ξ | → ∞. Now we can apply Theorem 1.3 and the claim follows. �
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