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Abstract

In this work we provide a novel energy-consistent formulation for the classical 1D

formulation of blood flow in an arterial segment. The resulting reformulation is shown

to be suitable for the coupling with a lumped (0D) model of the heart that incorporates

a reduced formulation of the actin-myosin interaction. The coupling being consistent

with energy balances, we provide a complete heart-circulation model compatible with

thermodynamics hence stable numerically and informative physiologically. These latter

two properties are verified by numerical experiments.

Keywords: Reduced-order models, Cardiovascular modelling, Energy-preserving

time-scheme, Shallow-water models, Heart models, Dicrotic notch, Ageing

Introduction

The importance of reduced-order (RO) models in clinical applications has been exten-

sively assessed in the last years. In particular, ROmodels are nowadays very widespread in

the scientific literature [1–5] concerning cardiovascular applications for patient-specific

model predictions. Lumped-parameter zero-dimensional (0D) models—typically Wind-

kessel models [6–8]—can provide a general view on the global response, e.g. in pressure

and flow, of the whole cardiovascular system or a portion of it [4,9]. Hence, RO models

can be used as simplified limit conditions for a more detailed system, e.g. a full three-

dimensional (3D) heart model [10–13] and in practice they are often used to represent

the circulation upstream and/or downstream of the domain of a higher-order model and

to define the relationship between pressure and flow at its boundaries [14–16].

ROmodels used in cardiovascular applications are one-dimensional (1D) models of the

blood circulation. The 1D formulation accounts for the effects due to pulsewave transmis-

sion and thus enables to predict important markers such as pressure wave velocity. These

models have been validated against in vitro [17,18] and in vivo [19,20] measurements and

have proven to provide useful insights for the understanding of cardiovascular physiology

and pathology. Further, 1D models may be preferred over 0D models when local vascular

changes or distributed properties (e.g. tapering, branching, stenoses) are under study, and
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when the impact of physiological and disrupted wave transmission on the circulation (f.e.

the origin and clinical relevance of the dicrotic notch, as in [21]) is investigated. Therefore,

1D models are ideal to simulate blood flow in a single arterial segment [14,20,22,23] or a

more structured tree of arteries [16–18,24]. In addition, 1D models may also be used to

take into account other components (e.g. coronary circulation) [19] and be employed to

simulate the global human circulation [25–28] (in combination with lumped-parameter

models for the heart dynamics [29], pulmonary circulation and microvascular beds).

In addition, ROmodels can also be employed tomodel the heart dynamics. The simplest

approach to model the heart dynamics is based on the use of time-varying elastance heart

dynamicsmodels [30].More accurateROapproacheswere also developed, see for instance

[31,32]. In the 0Dmodel proposed in [32], the geometry of the left ventricle is considered

to be a thick sphere and the dependence on space of the heart motion is only related to

the radius of the sphere. In [31], the mechanics of ventricular interaction is based on the

assumption of a simplified ventricular composite geometry. In more detail, ventricular

geometry is approximated by three thick-walled spherical segments encapsulating the LV

and RV cavities.

Due to their reduced computational cost, ROmodels are well suited for real-time mon-

itoring when coupled with data assimilation strategies [33–35]. Furthermore, due to the

reduced number of parameters used to describe the reduced dynamics (compared to full

3D models for instance), they are more adequate for the stable solution of inverse prob-

lems (IP). However, IP strategies and data assimilation strategies may fail if the forward

problem lacks of appropriate stability properties. Typically, the forward model must pro-

vide a stable solution, especially when it is solved with various sets of parameters and

(noisy) feedback terms. In this regard, energy-preserving schemes are ideal to discretize

forward problems, since they are stable with respect to a variation of parameters and

they ensure a reliable control on the behavior of the solution [36]. Moreover, energy bal-

ance and exchanges turn out to be important physiological markers that should be well

approximated and be easily accessed, thus motivating once more the use of RO models

that preserve the energy balance intrinsic to the considered modeled phenomena.

Several difficulties must be overcome when deriving energy-preserving ROmodels and

their associated discretization. First at the continuous level, ROmodels do not necessarily

come under a form that is obviously compliant with energy principles (appropriate energy

balancemay be lost during themodel reduction). Hence, suchROmodelsmust be adapted

or transformed. Then, it is also not obvious to construct a numerical scheme that preserves

the continuous energy balance, since advanced RO models are often highly non-linear.

In this work, we extend the previous work of [29] by introducing a coupling strategy

involving the heart model of [32] and an arterial segment. On the one hand, we provide

a novel energy-consistent formulation for the classical 1D formulation of blood flow in

an arterial segment. Of note, although the application envisaged blood circulation, this

energy-consistent mathematical framework and the formulation proposed are prone to

extension to other non-linear hyperbolic 1D problems, like shallow water equations. The

resulting reformulation is shown to be suitable for the coupling with the lumped (0D)

model of the heart initially proposed in the work of [32]. On the other hand, the novelty

concerning the cardiac model is that we are able to prove the stability both in the contin-

uous and discrete reduced order formulations, hence guaranteeing the consistency with

the energy relation described by [36] for a 3D heart model. The coupling being consistent



Manganotti et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:21 Page 3 of 37

with energy balances, we finally provide a complete heart-circulation model compatible

with thermodynamics hence stable numerically and informative physiologically.

The paper is structured as follows: first, in “Partial differential equations of the reduced

models” section we present the equations that describe, respectively, the 1D blood flow

model, the 0D heart model and the valve dynamics, and we report their energy rela-

tion for all the compartments. Then, in “An energy-compliant formulation for the blood

flow model” section we detail the changes of variables that are performed in the blood

flow model to obtain an energy-compliant formulation and we illustrate its non trivial

numerical aspects. The key aspects of the discretization are presented in “Discretization”

section. Finally, in “Simulations and results” section we show the results of the numerical

simulations and we draw the conclusions and perspectives.

Partial differential equations of the reducedmodels

One-dimensional blood flowmodel

Blood propagation in the aorta

Momentum and continuity equations in their one-dimensional formulation are widely

used to model the arterial tree, or a portion of it, and to study pressure and blood flow

[19]. The standard formulation that describes blood flow propagation in a vessel is derived

from the Navier-Stokes equation by an asymptotic analysis procedure [2,37]. For all time

t > 0 we look for a blood flow Q(t, s) and a cross-section A(t, s), along the axis s of the

vessel, that are solution of
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tA + ∂sQ = 0,

∂tQ + αvp ∂s
Q2

A
+

A

ρ
∂sP(A) + Kr

Q

A
= 0,

P(A) = Pext + ψe(A) + ψv(A) ,

(1)

where αvp is a coefficient related to the a-priori assumption on the velocity profile in the

vessel, P(A) is the pressure, Pext the exterior pressure, ρ the density of blood (considered

as a constant value) andKr the friction parameter. In this workwe assume that the velocity

profile is flat, therefore

αvp = 1.

The first equation of System (1) represents a reduced form of the continuity equation,

whereas the second one corresponds to the momentum conservation and the last one

is a relation that accounts for the vessel wall displacement. In particular, it links the

change in pressure to the wall deformation and deformation rate, hence the change in the

cross-section A. It reads:

ψe(A) = β

√
A −

√
A0

A0
and ψv(A) =

Ŵ

A0

√
A

∂tA, (2)

where β = (4
√

πE h0)/3, with E the Young modulus of the vessel and h0 its thickness,

Ŵ = (2
√

πh0ν)/3, with ν viscosity of the wall and A0 the reference area of the cross-

section of the vessel. The analysis ofψv will be addressed in “Viscosity of the wall” section.

Therefore, if not specified, in the following sections ψ corresponds to ψe.

System (1) should be completed with the initial condition A(0, s) = A0 and Q(0, s) = 0

as well as boundary conditions that are the subject of the forthcoming sections. When

Ŵ and Kr are considered equal to zero, System (1) is composed by non-linear hyperbolic

equations and discontinuities may appear in time, e.g. shocks, even when smooth data are
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considered.However, the presence of viscosity smoothens the solution and it is reasonable

to assume that its derivative with respect to s exists.

It is possible to show that, for smooth solutions, an energy relation holds. Surprisingly,

such relation has not yet been used in the literature to deduce numerical models for

the propagation of blood flow, although it is well known that energy-consistent methods

provide great benefits in terms of stability, which is a key aspect in the context of multi-

physics couplings.

Considering the continuous problem, if we take into account a vessel of length L, then

we can define the energy related to (A,Q)—or to (A, u) where u is the blood velocity since

Q = Au—as

Ear(t) =
∫ L

0
e(t, s) ds (3)

with

e =
ρ

2
Au2 + 
(A) and 
(A(t, s)) =

∫ A(t,s)

A0

ψe(a) da ≥ 0. (4)

Moreover, we define the instantaneous loss term as

Dar(t) = ρ Kr

∫ L

0
u2 ds +

Ŵ

A0

∫ L

0

|∂s(Au)|2
√
A

ds ≥ 0 .

Then, a straightforward extension of [37, Lemma 2.2] can be deduced.

Lemma 1 Any smooth solution of System (1) satisfies the conservation property

d

dt
Ear + Dar + Q

(

Ptot − Pext
)∣

∣

L

0
= 0, (5)

with Ptot defined as

Ptot = P(A) +
ρ

2
u2. (6)

Outflow and inflow conditions

The energy balance (5) shows that the energy defined in (3) is a decreasing function of time

if there is no bloodflow imposed at the inlet and the outlet. But of course, System (1) should

be completed with more realistic boundary conditions, typically relating the input flux

(output flux, respectively) or the pressure described in (6) at the inlet (outlet, respectively)

with the flux or pressure in other systems. In our case, a simple three-elementWindkessel

[38] is employed at the outlet, hence we introduce a new unknown, a pressure Pc, that

satisfies

Cc
d

dt
Pc +

Pc

Rper
= Q(L), (Ptot − Pext) − Pc = RcQ(L), (7)

where Cc , Rper and Rc are positive parameters that correspond to a conductance and

resistances in the Windkessel terminology. At the inlet, we have

Par = Ptot(0) − Pext, Qar = Q(0), (8)

where Par and Qar stand for the arterial pressure and the arterial flux at the inlet of the

aorta, respectively. One can then easily deduce from Lemma 1 an energy balance for the

coupled Eqs. (1) and (7).

Theorem 2 Any smooth solution of Systems (1,7) satisfies the conservation property

d

dt

(

Ear + Ew

)

+ Dar + Dw = ParQar, (9)
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where

Ew =
Cc

2
P2
c , Dw =

P2
c

Rper
+ RcQ(L)2.

In the next two subsections a non-linear reduced-model of the heart and cardiac valves

is derived as an efficient parametrized generator of an inlet flow. This reduced model will

then be adequately coupled to the one-dimensional model proposed in this work in order

to preserve the energy balance.

Heart model

In this section, we describe the chosen reduced heart model proposed in [32]. This model

benefits from an appealing mathematical structure while producing accurate pressure-

volume loops. It integrates in a systemofODEsamicroscopicalHuxley-likemodel of actin-

myosin binding with a macroscopical cavity deformation formulation. The dimension

reduction relies on a spherical hypothesis and a shell asymptotic derivation. Here, we will

prove that an energy balance exists for the reduced model as it is the case for the three-

dimensional formulation that is derived in [36]. This will allow us to derive a complete

energy balance property when the 0D heart model is coupled to the 1D blood flow.

Cardiacmechanics

Following [32], we can derive by an asymptotic procedure a system of ODEs describing

a lumped cardiac mechanical model that is geometrically represented by a thick sphere

of radius R and thickness d—see Fig. 2. The unknown displacement field is reduced to

a radial lumped quantity y, that is a unique scalar variable such that the deformed radius

of the sphere R, the thickness in the deformed configuration d and the volume of the

deformed cavity V [39], shown in Fig. 2, are given by

R(y) = R0 + y, d(y) = d0

(

1 +
y

R0

)−2
and V (y) =

4

3
π

(

R(y) −
d(y)

2

)3

,

where R0 and d0 are the radius and the thickness of the sphere in the reference con-

figuration, respectively. The system of ODEs also involves variables accounting for the

modeling of heart contraction through the active deformation ec and the active stress τc,

which are linked to the global deformation with the rheology pictured in Fig. 2 following

the recent formulation proposed in Kimmig et al. [40]. The system is loaded with the

ventricular pressure Pv . The dynamics reads
⎧

⎪

⎨

⎪

⎩

ρ0|�0|ÿ +
|�0|
R0

ks

( y

R0
− ec

)

+
∂Wp

∂y
(y) + Wv(y, ẏ) = Pv

∂V (y)

∂y
,

μ ėc − ks

( y

R0
− ec

)

= −τc ,
(10)

where ρ0 is the density in the reference configuration, μ a viscosity parameter, ks a stiff-

ness parameter accounting for passive components of the myosin filament—typically the

passive stiffness of the filaments themselves plus the Z-disks and |�0| is the volume of

the myocardium in the reference configuration, which is given by

|�0| =
4

3
π

[

(

R0 +
d0

2

)3
−
(

R0 −
d0

2

)3
]

.

Moreover Wp(y) and Wv(y, ẏ) are directly inferred from the passive potential and the

viscous pseudo-potential of the connective tissue matrix [32]. They are smooth functions
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that satisfy in particular

Wp(y) ≥ 0 and Wv(y, ẏ) ẏ ≥ 0.

Choosing an isotropic transverse exponential law [32,41] leads to

Wp(y) = |�0|

⎡

⎣C0e
C1

[

2
(

1+ y
R0

)2
+
(

1+ y
R0

)−4
−3

]2

+ C2e
C3

[

(

1+ y
R0

)2
−1

]2
⎤

⎦ ,

Wv(y, ẏ) = 2η|�0|
(

1 + y
R0

)2
[

1 + 2
(

1 + y
R0

)−12
]

ẏ,

where C0 and C2 are some parameters that describe the stiffness of the material and C1

and C3 are non-dimensional parameters, while η is the viscosity.

Assuming for now that the active stress τc is imposed, the dynamics described in Sys-

tem (10) gives a reduced heart dynamical systems of 2-state variables (y, ec) for which we

can derive the heart energy balance. We first introduce the energy

Ehr =
ρ0|�0|

2
ẏ2 + Wp +

|�0|ks
2

( y

R0
− ec

)2
, (11)

that is a combination of the kinetic energy ρ0|�0| ẏ
2

2 , the hyperelastic energy Wp and the

elastic energy stored in the series element. Then, we introduce the dissipation term

Dhr = Wv(y, ẏ)ẏ + μ|�0|(ėc)2 (12)

and state the following energy relation result.

Theorem 3 Any smooth solution of System (10) satisfies the energy balance

d

dt
Ehr + Dhr = Pv

d

dt
(V (y)) − |�0|τc ėc , (13)

where, at the right-hand side, we have the coupling term with the circulation and the

microscopic active stress input.

Microscopic actin-myosin bindingmodel

The chosen model of active contraction balances our need of reasonable complexity with

physiological characteristics regarding pressure-volume loops [36,40,42]. In more detail,

the microscopic active stress τc is computed from the first two moments of a Huxley-like

formulation of the actin-myosin binding phenomenon. Introducing the active stiffness

variable kc, we have the following system
⎧

⎨

⎩

τ̇c = −(|ν| + α|ėc|)τc + n0(ec)σ0|ν|+ + kc ėc ,

k̇c = −(|ν| + α|ėc|)kc + n0(ec)k0|ν|+,
(14)

where we use the symbol | · |+ to denote the positive part. The parameter k0 denotes the

maximumactive stiffness parameter and σ0 the correspondingmaximumactive stress,α is

a time constant, n0(ec) is a function with values in [0, 1] accounting for the Frank-Starling

mechanism, and ν(t) = ν([Ca2+](t)) is a function triggering the contraction, typically

when [Ca2+] > cth, with cth a given threshold, see Fig. 1.

The state variables (τc , kc) of System (14) model the active contraction triggered by the

input signal ν. For the energy balance, we introduce the energy stored in our homogenized

model of actin-myosin bridges and a dissipative term [36]

Ec =
|�0|
2

τ 2c

kc
, Dc = (|ν| + α|ėc|)Ec .
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Fig. 1 a Definition of the function n0 . b Time evolution of contraction triggering function ν . We denote here

by T the duration of a heartbeat

Theorem 4 Any smooth solution of System (14) satisfies the energy balance

d

dt
Ec + Dc = |�0|τc ėc +

|�0|n0(ec)τc
kc

(

σ0 −
τck0

2kc

)

|ν|+. (15)

Combining (13) and System (15), we finally obtain the complete energy balance for the

heart model

d

dt

[

Ehr + Ec

]

+
[

Dhr + Dc

]

= Pv
d

dt
(V (y)) +

|�0|n0(ec)τc
kc

(

σ0 −
τck0

2kc

)

|ν|+,

where, from the point of view of the heart model, ν is an input signal and Pv an external

loading.

Remark 5 The energy relation in System (15) is deduced by introducing the variable

λc = τc/
√
kc [36]. Then, as an intermediate step it can be shown that λc satisfies the

following ODE:

λ̇c = −
k̇c

2 kc
λc +

τ̇c√
kc

= −(|ν| + α|ėc|)
λc

2
+

n0(ec)√
kc

(

σ0 −
k0 λc

2
√
kc

)

|ν|+ +
√

kc ėc . (16)

The energy relation is finally obtained by multiplying (16) by |�0| λc .

Cardiac valve models and energy relation for the complete system

The inlet and outlet of the ventricular model are represented, respectively, by the atri-

oventricular and the aortic valve, as shown in Fig. 2. To represent the fact that they may

be open or closed, valves are modeled as diodes. Therefore, using Kirchhoff’s circuit laws,

we get

⎧

⎪

⎨

⎪

⎩

CmiṖv − Qv +
|Pv − Par|+

Kar
+

|Pv − Pat|+
Kiso

−
|Pat − Pv|+

Kat
= 0,

CarṖar −
|Pv − Par|+

Kar
+ Qar = 0,

(17)

where the first equation is associated with the atrioventricular valve, whereas the second

one relates to the aortic valve. In more detail, Pv , Pat and Par represent the pressure in

the ventricle, in the atria and at the inlet of the aorta, respectively, whereas Qv and Qar

correspond to the ejected blood flow throughout the ventricle and at the inlet of the

aorta, respectively. Finally, Kar, Kiso and Kat represent the resistances of the valves [43], as

depicted in Fig. 2.
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Q

P

Kiso

Pv

Rv

Pat

Kat

Par PatPv

Q = f(P )

R d

Pv

Kiso

Pat

Kat

Cmi

Kar
Par

Car

A Rc

Cc

Rper

ks µ

τc, kc

Wp,Wv

η

Fig. 2 Complete scheme of the coupled system including the heart, the cardiac valve and the arterial

segment. Note that in the upper right plot we have Rv := KarKiso/(Kar + Kiso). This model will later be referred

to as the fully coupledmodel

It is worth mentioning, for what follows, that Qv corresponds to the volume variation

of the ventricle, so one can write

−
d

dt

(

V (y)
)

= Qv . (18)

Now, ifwemultiply thefirst equationof System (17) byPv , wemultiply the second equation

by Par, we sum them and we define

Ev =
Cmi

2
P2
v +

Car

2
P2
ar, Dv =

|Pv − Par|2+
Kar

+
|Pv − Pat|2+

Kiso
+

|Pat − Pv|2+
Kat

,

we can obtain an energy relation for the cardiac valve formulation.

Theorem 6 Any smooth solution of System (17) satisfies the conservation property

d

dt
Ev + Dv =

|Pat − Pv|+ Pat

Kat
−

|Pv − Pat|+ Pat

Kiso
− Pv

d

dt

(

V (y)
)

− ParQar, (19)

where we have, at the right-hand side, the input pressure term and the coupling term that

take into account both the cardiac and the arterial contribution.

Finally, using Theorems 2 to 6, we are able to retrieve the global energy relation that takes

into account the contribution of the heart (including the microscopic modeling of the

actin-myosin binding), the valves and the arterial segment.

Corollary 7 Any smooth solution of Systems (1, 7, 10, 14, 17) satisfies the conservation

property

d

dt

(

Ehr + Ec + Ev + Ear + Ew

)

+ Dhr + Dc + Dv + Dar + Dw

=
|�0|n0(ec)τc

kc

(

σ0 −
τck0

2kc

)

|ν|+ +
|Pat − Pv|+ Pat

Kat
−

|Pv − Pat|+ Pat

Kiso
. (20)
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An energy-compliant formulation for the blood flowmodel

In order to obtain an energy-preserving scheme for the blood flow model, which satisfies

a discrete counterpart of Theorem 1, we will introduce three variational formulations.

The first one corresponds to the standard formulation that one obtains directly from

System (1). This formulation has A and u as principal unknowns, where A is the cross-

section of the aorta defined as A = Q/u and u is the blood velocity. Then, we introduce a

second formulation that uses as a primary unknown the radius of the aorta R =
√
A/

√
π

andu. This formulation is straightforwardly deduced from the first one and is a convenient

intermediate step, since it introduces several simplifications. From these intermediate

changes we deduce the last formulation that is written in the unknowns

v := R u and Φ := ϕ(R),

where ϕ(R) is a smooth bijective function from R
+ to I ⊂ R that we define later. This

change of variables has the main advantage to provide an “energy-compliant” discretiza-

tion, as it will be shown in the next chapter. As the reader will see, the energy is a quadratic

functional of the new variables (Φ , v) .

Variational formulation in (A, u)

As a first step, we substituteQ with Au in (1) and assume that Ŵ = 0, hence ψv = 0. After

some algebraic manipulations we obtain that (1) is equivalent to the system
⎧

⎪

⎨

⎪

⎩

∂tA + ∂s(Au) = 0,
(

1

2
(∂tA)u + A∂tu

)

+
(

1

2
u2 ∂sA +

3

2
Au ∂su

)

+
A

ρ
∂sP(A) + Kru = 0.

(21)

Note that we have rewritten System (1) in a specific form adapted to the derivation of the

energy balance (in fact System (21) is obtained following the proof of Lemma 1 provided

in [37]). Indeed, multiplying the second equation of System (21) by u, one can see that

(

1

2
(∂tA)u + A∂tu

)

u =
1

2
∂t (Au

2),

and

(

1

2
u2 ∂sA +

3

2
Au ∂su

)

u =
1

2
∂s(Au

3). (22)

These two equalities are, in fact, essential to prove the energy relation of Lemma 1. The

objective is now toderive aweak formulationof System (21).Concerning thefirst equation,

we multiply it by a space-dependent test function Φ̃ and we integrate in space, obtaining

(∂tA, Φ̃) + (∂s(Au), Φ̃) = 0, (23)

where (·, ·) is the L2-scalar product in (0, L). We now focus on the second equation of

System (21) and we repeat the procedure performed above, multiplying each term by a

space-dependent test function ṽ. After some manipulations, we obtain
(ρ

2
(∂tA)u + ρA∂tu, ṽ

)

+ a(u; ṽ, A)

−(∂s(Aṽ),ψ(A)) + ρKr(u, ṽ) = g(ṽ;A, u), (24)

where a(u; ·, ·) is bilinear in its two last arguments but non-linear in u and is given by

a(u;A, ṽ) :=
∫ L

0
ρ

(

1

2
u2 ∂sA +

3

2
Au ∂su

)

ṽ ds −
ρ

2
Au2 ṽ

∣

∣

∣

L

0
, (25)
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and the non-linear functional g is defined as

g(A, u; ṽ) := −
(ρ

2
Au2 ṽ + A ṽψ(A)

)∣

∣

∣

L

0
= −Aṽ (Ptot − Pext)

∣

∣

∣

L

0
. (26)

Observe that, by construction, g is linear in ṽ and includes only boundary terms. Up to

this point, the weak formulation of the problem described in System (21) is
⎧

⎨

⎩

(∂tA, Φ̃) + (∂s(Au), Φ̃) = 0,
(ρ

2
(∂tA)u + ρA∂tu, ṽ

)

+ a(u;A, ṽ) − (∂s(Aṽ),ψ(A)) + ρKr(u, ṽ) = g(A, u; ṽ).
(27)

Finally, observe that if we substitute

Φ̃ = ψ(A), ṽ = u,

in System (27), we can easily retrieve the energy relation presented in Lemma 1. Indeed,

thanks to (22), one can see that

a(u;A, u) = 0. (28)

Moreover, we recover the energy relation

d

dt
Ear(t) + Dar(t) = g(A, u;u), (29)

with

d

dt
Ear(t) =

(ρ

2
(∂tA)u + ρA∂tu, u

)

+ (∂tA,ψ(A)) and Dar(t) = ρKr(u, u). (30)

Here Ear(t) is the total energy of the 1D model and Dar(t) represents the dissipative term

with Kr ≥ 0.

An intermediate formulation in (R, u)

In order to obtain a formulation that leads to the achievement of the energy preservation

at a discrete level, we construct an intermediate form of System (21). This formulation

is obtained by replacing A with πR2, where R represents the radius of the lumen. The

unknowns become u and R. The first equation of System (21) is now described as

2π
(

R ∂tR, Φ̃
)

+ π
(

∂s(R
2u), Φ̃

)

= 0. (31)

Then, the first term in (24) can be rewritten, substituting ṽ ← ṽ/R, as
(ρ

2
(∂tA)u + ρA∂tu,

ṽ

R

)

= π ρ
(

u ∂tR + R∂tu, ṽ
)

= π ρ
(

∂t (Ru), ṽ
)

.

Moreover, one can see that

a
(

u;A,
ṽ

R

)

= πρ

∫ L

0

(

(Ru)2

R2
∂sR +

3

2
(Ru) ∂s

Ru

R

)

ṽ ds − π
ρ

2
(Ru)2

ṽ

R

∣

∣

∣

∣

L

0

,

and
(

∂s

(

A
ṽ

R

)

,ψ(A)
)

= π (∂s(Rṽ),ψ(πR2)).

Note that the substitution ṽ ← ṽ/R does not lead to any issue, since we consider solutions

with R > 0 at any time and position. Finally, collecting the four expressions above, one

can obtain a formulation with R and u as primary unknowns. It reads
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2π
(

R ∂tR, Φ̃
)

+ π
(

∂s(R
2u), Φ̃

)

= 0,

π ρ
(

∂t (Ru), ṽ
)

+ a
(

u;π R2,
ṽ

R

)

−π (∂s(Rṽ),ψ(πR2)) + ρKr

(

u,
ṽ

R

)

= g
(

πR2, u;
ṽ

R

)

.

(32)
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It is worth noticing that the product Ru appears “almost” naturally and it is therefore

tempting to define v := Ru as a new variable. It becomes even more obvious that this

choice is suitable by looking at the energy density, defined as

e =
ρ

2
Au2 + 
(A) =

πρ

2
(Ru)2 + 
(πR2). (33)

This is precisely what motivates the introduction of the next formulation. Moreover, it is

worth mentioning that now

ψ(πR2) = β

√
πR −

√
A0

A0
, (34)

so ψ(πR2) is linear with respect to the unknown R and we will see in the next sections

that 
(πR2) is a third-order polynomial and this will simplify its analysis.

Remark 8 The changeof variableA = πR2 is stillmeaningful even if the 1Dhemodynamic

model does not assume a perfect circle for the geometry of the cross-section.Whatmatters

here is that thenewvariableRdepends on the square root ofA.Obviously, the introduction

of the factor π is natural to obtain a physical meaning for this new variable since, in

practice, arterial cross-sections are almost circular.

Variational formulation in (Φ, v)

A change of variables has to be made in order to demonstrate that the scheme is energy-

preserving after time discretization. More precisely, time discretization can easily deal

with energies that involve quadratic terms of the unknowns. However, the energy density

described in (33) is not a quadratic term of the unknowns (R, u), but we can see that the

first contribution is a quadratic term of

v := Ru.

Therefore, we propose to use v as a main unknown. A first naive choice is then to set ϕ(R)

equal to
√


(πR2), where 
(πR2) is defined as


(πR2) =
∫ A

A0

β

√
a −

√
A0

A0
da =

β

A0

[2

3
π

3
2R3 −

√
A0πR

2 +
1

3
A

3
2
0

]

, (35)

and set Φ ≡ ϕ(R) as the other main unknown. However, we show in “Variational for-

mulation in (Φ , v)” section that this choice is not convenient, since ϕ(·) would not be a

bijective function from R
+ to R

+. Instead, we define

ϕ(R) :=

{
√


(πR2) R ≥ R0,

−
√


(πR2) 0 ≤ R < R0,
with R0 =

√
A0√
π

. (36)

Before studying in more detail the impact of the choice described in System (36) (in

particular the bijectivity of the function ϕ), we formally give the variational formulation

associated with the new couple of unknowns (v,Φ), where Φ := ϕ(R). Assuming for now

that ϕ is bijective, we define the reciprocal function r(Φ) := ϕ−1(Φ). Then, each term of

the second equation of System (32) can be modified as follows:

i. The term involving the time derivative reads

π ρ
(

∂t (Ru), ṽ
)

= π ρ
(

∂tv, ṽ
)

. (37)
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ii. The non-linear transport term reads

a
(

u;π R2,
ṽ

R

)

= ã
( v

r(Φ)
, v, ṽ

)

:=
πρ

2

∫ L

0

(

2 ṽ
v

r(Φ)
∂sv + v ṽ ∂s

v

r(Φ)

)

ds −
πρ

2
ṽ v

v

r(Φ)

∣

∣

∣

∣

L

0

,(38)

where ã is now a trilinear form. Such reformulation will lead to the choice of an

adapted space discretization that preserves, for all sufficiently smooth functions v

and u, the property

ã(u, v, v) = 0, (39)

and in particular for u = v/r(Φ).

iii. The coupling term (∂s(Rṽ),ψ(πR2)) = (∂s(r(Φ)ṽ),ψ(πr(Φ)2)) is not modified.

iv. The dissipation term reads

(

u,
ṽ

R

)

=
( v

r(Φ)
,

ṽ

r(Φ)

)

. (40)

v. Finally, the boundary term g is given by

g
(

πR2, u;
ṽ

R

)

= g̃(r(Φ), ṽ) := −π ṽ r(Φ)
(

Ptot − Pext
)

∣

∣

∣

∣

L

0

, (41)

where, for simplicity, we assume that Ptot is given. Of course, if more general bound-

ary conditions are considered, g must be modified accordingly.

Using all the expressions above, we obtain the following equation (corresponding to the

second equation of System (32))

πρ(∂tv, ṽ) + ã
(v

r
, v, ṽ

)

− π (∂s(rṽ),ψ(πr2)) + ρKr

(v

r
,
ṽ

r

)

= g̃(r, ṽ), (42)

where, for the sake of clarity, we have written r instead of r(Φ). The first term in (42)

clearly shows how the introduction of v simplifies the dynamic behavior of the equation

and it will help at the discrete level to demonstrate the energy preservation. Now we deal

with the first equation of System (32) in which we use as a test function Φ̃ ← ξ (R)Φ̃ , with

ξ (R) :=
ψ(πR2)

ϕ(R)
. (43)

We show in “Variational formulation in (Φ , v)” section that this function is smooth and

positive. We obtain

2π
(

ξ (R)R ∂tR, Φ̃
)

+ π
(

ξ (R) ∂s(R
2u), Φ̃

)

= 0. (44)

If we focus on the first term in (44), we can observe that

2π ξ (R)R ∂tR = π
ψ(πR2)

ϕ(R)
∂tR

2 =
∂t
(πR2)

ϕ(R)
.

Now observe that, by definition, ϕ(R) = ±
√


(πR2). Thus, the term above can be rewrit-

ten as

2π ξ (R)R ∂tR = 2 ∂tϕ(R). (45)

Since by definition we have Φ = ϕ(R) and R = r(Φ), we can write

2π
(

ξ (R)R ∂tR, Φ̃
)

+ π
(

ξ (R) ∂s(R
2u), Φ̃

)

= 2(Φ̃ , ∂tΦ) + π (∂s(rv), Φ̃ ξ (r)), (46)
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where again we use the convention r ≡ r(Φ). At this point, the formulation reads
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2(Φ̃ , ∂tΦ) + π (∂s(Rv), Φ̃ ξ (R)) = 0,

πρ(∂tv, ṽ) + ã
(

ṽ, v,
v

R

)

− π (∂s(Rṽ),ψ(πR2)) + ρKr

( v

R
,
ṽ

R

)

= g̃(ṽ, R),

R = r(Φ).

(47)

One can see in System (47) an apparent lack of symmetry. Indeed, one could expect the

second term in the first equation to be equal to the third term in the second equation.

This is true however, since we have, using (43),

(∂s(Rṽ),ψ(πR2)) = (∂s(Rṽ), ϕ(R) ξ (R)) = (∂s(Rṽ), Φ ξ (R)).

This observation is fundamental to obtain an energy estimate. To summarize, we have

deduced from the dynamics (32) the following formulation:

for all (Φ̃ , ṽ) sufficiently smooth find, for all t > 0, (Φ(t), v(t)) solution of
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2(Φ̃ , ∂tΦ) + π (∂s(Rv), Φ̃ ξ (R)) = 0,

πρ(∂tv, ṽ) + ã
(

ṽ, v,
v

R

)

− π (∂s(Rṽ), Φ ξ (R)) + ρKr

( v

R
,
ṽ

R

)

= g̃(ṽ, R),

R = r(Φ),

(48)

with the following initial data

Φ(0) = ϕ(R(0)) = ϕ(
√
A0/

√
π ) = 0, v = 0. (49)

This is whatwe call the energy-compliant variational formulation. At the continuous level,

the energy is easily obtained by choosing Φ̃ = Φ and ṽ = v. This simple choice of test

functions to deduce the energy relation at the continuous level will help in achieving the

same energy relation property at a discrete level.

Remark 9 The formulation of System (48) can be obtained for other tube laws ψ(A).

However, some properties should be satisfied by the function ψ . In particular, ψ must be

at least continuous and

ψ ′(A) > 0, ψ(A0) = 0.

Strong formulation

For the sake of completeness, we show the strong formulation of System (48). Choosing a

smooth test function with compact support in [0, L], one can show, using integration by

parts, that the following partial differential equations hold:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2∂tΦ + πξ (R)∂s(Rv) = 0,

πρ∂tv +
πρ

2

(

2
v

R
∂sv + v ∂s

v

R

)

+ ρKr
v

R2
+ πR∂s(ξ (R)Φ) = 0,

R = r(Φ).

(50)

Then, choosing a smooth test function in [0, L] vanishing at the boundaries in System (48)

and using integration by parts for System (50), one can deduce the following boundary

conditions:

ρ

2

v2

R
+ R ξ (R)Φ = −R

(

Ptot − Pext
)

, s ∈ {0, L}.

Analysis of the function ϕ(R)

In this section we provide further details on the properties of the function ϕ(R). The

definition in System (36) is motivated by the expression of 
 = 
(πR2) that is rewritten
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Ψ(πR2)

Ψ(πR2)

ϕ(R)
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0

2

4

R

ξ(R)

ψ(πR2)

ϕ(R)

Fig. 3 Plot of
√


(R), 
(R), ϕ(R) and ξ (R) for R0 = 1 and β = 1

below:


(πR2) =
β

A0

[2

3
π

3
2R3 −

√

A0πR
2 +

1

3
A

3
2
0

]

=
√

πβ

3R2
0

(R − R0)
2 (2R + R0), (51)

where—in this section—R0 =
√
A0/

√
π is the reference radius of the cross-section. The

behavior of this function is shown in Fig. 3. It is straightforward to see that this function,

as well as its square root, is not bijective. However, using System (36), the function ϕ(R)

is then given by

ϕ(R) =
(R − R0)

R0

√√
πβ

3

(

2R + R0

)

. (52)

In Fig. 3 we can observe the comparison between
√


(πR2) and ϕ(R). For every R ≥ R0

the two functions coincide, whereas for R < R0 they are opposite. However, we can also

see that ϕ is bijective from R to some interval I satisfying R
+ ⊂ I ⊂ R. Moreover, it is

easy to prove the following Property.

Theorem 10 Assume R0 > 0, then

ϕ : [0,+∞) �→ [Φmin,+∞)

R �→ ϕ(R)
with Φmin = −

√

β
√

πR0

3

is monotone increasing (hence bijective) and belongs to C∞([0,+∞)).

Analysis of the function ξ(R)

Wenow focus on the property of the function ξ (R) that is defined by ξ (R) = ψ(πR2)/ϕ(R).

In particular we want to check whether the function is smooth and bounded. This is not

true because ϕ(R) vanishes and, as one can see in Fig. 3 and in (52), this happens at R = R0

where—in this section—R0 =
√
A0/

√
π is the reference radius of the cross-section. Using

Eqs. (34) and (52) one can compute

ξ (R) =
β
√

π

πR2
0

R − R0

ϕ(R)
=

√
3β

π
3
4 R0

√

(2R + R0)
.

We see in Fig. 3 that ξ (R) has no singularity, it is smooth, strictly positive and monotoni-

cally decaying. This result is summarized in the following Property.
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Theorem 11 Assume R0 > 0, then

ξ : [0,+∞) −→
(

0,

√

3β

π
3
2R3

0

]

R �→ ξ (R)

is monotone decreasing, strictly positive, and belongs to C∞([0,+∞)).

Extension of the model in a non-physiological range

There is an equivalence between System (27) and System (48). More precisely, we can

state the following Theorem.

Theorem 12 Let Ptot(t) ∈ C0([0, T ]) be given. We have the following results:

• Let (A, u) ∈ C1([0, T ] × [0, L])2 be solution of System (27). If A > 0 and if we define

R =
√
A/

√
π , then (Φ(R), R u) ∈ C1([0, T ] × [0, L])2 is solution of System (48).

• Reciprocally, if (Φ , v) is solution of System (48) and if

Φ > Φmin, (53)

then (π r(Φ)2, v/r(Φ)) is solution of System (27).

Although the bounddefined in (53) is expected physiologically, after space discretization

there is no guarantee that such property holds intrinsically at any time and any point.

Therefore, we propose to modify System (48) for a non-physiological range, e.g. close

to R ≃ 0, or equivalently, Φ ≃ Φmin. More precisely, r(Φ) is not defined for Φ taking

smaller values than Φmin. To circumvent this problem we introduce, for a given ǫ > 0—a

relaxation parameter—the function rǫ , defined by

rǫ(Φ) :=

{

r(Φ) Φ ≥ Φǫ ,

ae−bΦ Φ < Φǫ ,
with Φǫ = Φmin + ǫ, (54)

where (a, b) ∈ R
2 are only defined by the constraint that rǫ ∈ C1(R). In more detail, one

needs to check that

r(Φǫ) = ae−bΦǫ , (r)′(Φǫ) = −a b e−bΦǫ ,

hence one can compute that

b = −
(r)′(Φǫ)

r(Φǫ)
and then a = ebΦǫ r(Φǫ).

The main advantage of using rǫ instead of r is that rǫ is a bijective function from R

to R
+ \ {0}. Hence, at the discrete level for any value of the unknown Φ we are able to

compute a corresponding aortic radius R. In this process we introduce—mathematically

speaking—a modeling error with respect to System (27). Nevertheless, we have the fol-

lowing straightforward result.

Theorem 13 Let Ptot(t) ∈ C0([0, T ]) be given andAǫ = π [rǫ(Φǫ)]
2.We have the following

results:

• Let (A, u) ∈ C1([0, T ] × [0, L])2 be solution of System (27). If A ≥ Aǫ and if we define

R =
√
A/

√
π , then (Φ(R), R u) ∈ C1([0, T ] × [0, L])2 is solution of System (48) with rǫ

instead of r.
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• Reciprocally, if (Φ , v) is solution of System (48) with rǫ instead of r and if

Φ ≥ ϕǫ , (55)

then (π rǫ(Φ)2, v/ϕǫ(Φ)) is solution of System (27).

Note that we can choose ǫ small enough so that the range of values A(x, t) ∈ (0, Aǫ) for

which themathematical equivalence with System (27) is not satisfied can be set as desired.

In particular, considering the application to hemodynamics, this interval can be chosen

so that a solution of System (27) with values A < Aǫ is outside the validity of the the tube

law described in (2).

Viscosity of the wall

In “One-dimensional blood flow model” section we introduced the third equation of

System (1) that relates the pressure with the strain and strain rate of the wall. In particular,

it takes into account the velocity of radial displacements [34] thanks to the term ψv that

was assumed to vanish in “Variational formulation in (A, u)” section in order to derive

the energy-compliant variational formulation. In this section we address the treatment

of this term, ψv , through the change of variables introduced in “An energy-compliant

formulation for the blood flow model” section. Starting from System (21), we have

A

ρ
∂sP(A) =

A

ρ
∂s(ψe(A) + ψv(A)) =

A

ρ
∂s

( β

A0
(
√
A −

√

A0) +
Ŵ

A0

√
A

∂tA
)

. (56)

Since we have already dealt in the previous section with the first term, related to ψe, we

focus now on the last one of the equation above, related to ψv . Starting from (56) and

using the first equation of System (21), we obtain

A

ρ
∂s

( Ŵ

A0

√
A

∂tA
)

= −
A

ρ
∂s

( Ŵ

A0

√
A

∂sQ
)

. (57)

This motivates the introduction of the non-linear form c(·; ·, ·) defined by

c(R; v, ṽ) =
√

π Ŵ

R2
0

∫ L

0

1

R
∂s(Rṽ) ∂s(Rv) ds. (58)

Taking into account the manipulations performed in “An intermediate formulation in

(R, u)” and “Variational formulation in (Φ , v)” sections, one can show that

−
(A

ρ
∂s

( Ŵ

A0

√
A

∂sQ
)

, ρ
ṽ

R

)

= c(R; v, ṽ) + π Rψv(A) ṽ
∣

∣

∣

L

0
. (59)

Then, it can be shown that the second equation of System (48) can be replaced by

πρ(∂tv, ṽ) + ã
(

ṽ, v,
v

R

)

− π (∂s(Rṽ), Φ ξ (R)) + c(R; v, ṽ) + ρKr

( v

R
,
ṽ

R

)

= g̃(ṽ, R).

Note that the boundary terms in (59) are indeed taken into account, since g̃—defined in

(41)—involves the total pressure that is given by (6) and now reads

Ptot = Pext + ψe (A) + ψv (A) +
ρ

2
u2.

Outflow conditions, inflow conditions and energy relation

In order to complete theweak formulationof the problemgiven in System (48), the outflow

and inflow conditions need to be specified. This is done by expanding the term g̃ using

the coupling condition described in (7) at the outlet, whereas at the inlet we use

Par(t) = Ptot(0, t) − Pext, π R(0, t) v(0, t) = Qar(t),
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where Par(t) and Qar(t) are the arterial pressure and the arterial flow, respectively. We

obtain the following system of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2(∂tΦ , Φ̃) + π (∂s(R v), Φ̃ , ξ (R)) = 0,

πρ(∂tv, ṽ) + ã
(

ṽ, v,
v

R

)

− π (∂s(Rṽ), Φ ξ (R)) + c(R; v, ṽ) + ρKr

( v

R
,
ṽ

R

)

= −π ṽ(L)R(L)
(

Pc + Rc π R(L) v(L)
)

+ π ṽ(0)R(0)Par,

R = r(Φ),

π R(0) v(0) = Qar,

Cc
d

dt
Pc +

Pc

Rper
= π R(L) v(L).

(60)

Note that a similar energy identity to the one given in Theorem 2 can be derived for this

system, as we state below.

Theorem 14 Any smooth solution of System (60) satisfies the conservation property

d

dt

(

Ear + Ew

)

+ Dar + Dw = ParQar, (61)

where,

Ear =
∫ L

0
Φ2 ds +

π ρ

2

∫ L

0
v2 ds, Ew =

Cc

2
P2
c ,

and,

Dar = ρ Kr

∫ L

0

v2

R2
ds +

√
π Ŵ

R2
0

∫ L

0

1

R
(∂s(Rv))

2 ds, Dw =
P2
c

Rper
+ Rc(π R(L) v(L))2.

Note that System (14) can be easily used with or without coupling with the reduced

heart model. Hence, we consider two cases:

• Case 1: Imposed inlet flux;

In this case the arterial pressure Par is considered as a new unknown, namely a

Lagrange multiplier for the constraint π R(0) v(0) = Qar.

• Case 2: Coupling with the reduced heart model.

System (60) should then be completed with Eqs. (10), (14) and (17), that describe the

reduced-order cardiac mechanics, the microscopic actin-myosin binding model and

the valve model, respectively. Note that in this model Qar is an unknown that can be

straightforwardly substituted in (17) using the relation Qar = π R(0) v(0).

Discretization

Time scheme for the blood flowmodel

In order to obtain the time discretization of the scheme, we assume a given sequence

of time instants {tn}n∈N such that tn+1 > tn and we define the time step as �tn :=
tn+1 − tn. Moreover, we define the half time sequence as tn+ 1

2 := tn + �tn/2. The

scheme proposed below is formally an implicit second-order time discretization scheme:

we consider System (48), we rewrite it at time tn+1/2 and we approximate all the terms

using a centered finite difference, i. e. for every n

∂tv(t
n+ 1

2 ) ∼
vn+1 − vn

�tn
, ∂tΦ(tn+ 1

2 ) ∼
Φn+1 − Φn

�tn
,

d

dt
Pc ∼

Pn+1
c − Pn

c

�tn
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and

v(tn+ 1
2 ) ∼

vn+1 + vn

2
=: vn+ 1

2 , Φ(tn+ 1
2 ) ∼

Φn+1 + Φn

2
=: Φn+ 1

2 ,

Pc(t
n+ 1

2 ) ∼
Pn+1
c + Pn

c

2
=: P

n+ 1
2

c .

Moreover, as in [36], we introduce some intermediate unknowns, i.e. Rn+ 1
2 ♯ and ξn+ 1

2 ♯, as

follows :

R(tn+ 1
2 ) ∼ Rn+ 1

2 ♯ := r(Φn+ 1
2 ), ξ (tn+ 1

2 ) ∼ ξn+ 1
2 ♯ := ξ (Rn+ 1

2 ♯).

With these considerations, we obtain the following semi-discrete problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
(Φn+1 − Φn

�tn
, Φ̃
)

+ π (∂s(R
n+ 1

2 ♯vn+ 1
2 ), Φ̃ ξn+ 1

2 ) = 0,

πρ
(vn+1 − vn

�tn
, ṽ
)

+ ã
(

ṽ, vn+ 1
2 ,

vn+ 1
2

Rn+ 1
2 ♯

)

− π
(

∂s(R
n+ 1

2 ♯ṽ), Φn+ 1
2 ξn+ 1

2
)

+c(Rn+ 1
2 ♯; vn+ 1

2 , ṽ) + ρKr

( vn+ 1
2

Rn+ 1
2 ♯
,

ṽ

Rn+ 1
2 ♯

)

= π ṽ(0)Rn+ 1
2 ♯(0)P

n+ 1
2

ar

−π ṽ(L)Rn+ 1
2 ♯(L)

(

P
n+ 1

2
c + Rc π Rn+ 1

2 ♯(L) vn+ 1
2 (L)

)

,

Rn+ 1
2 ♯ = r(Φn+ 1

2 ),

ξn+ 1
2 ♯ = ξ (Rn+ 1

2 ♯),

π Rn+ 1
2 ♯(0) vn+ 1

2 (0) = Q
n+ 1

2 ♯
ar ,

Cc
Pn+1
c − Pn

c

�tn
+

P
n+ 1

2
c

Rper
= π Rn+ 1

2 ♯(L) vn+ 1
2 (L).

(62)

In (62) the terms Q
n+ 1

2 ♯
ar and P

n+ 1
2

ar are not completely characterized yet. These quantities

appear below when considering the time discretization of the valve model.

Once (62) is obtained, we have to check if the semi-discrete scheme preserves the total

energy, as given in “Outflow conditions, inflow conditions and energy relation” section

for the continuous domain. This is the purpose of the following Section.

Semi-discrete energy relation

Energy preservation can be proven rather simply by following the strategy performed

at the continuous level. We substitute the test functions with the proper variables as

explained in “Variational formulation in (Φ , v)” section. More precisely, we set

ṽ = vn+ 1
2 , Φ̃ = Φn+ 1

2 .

We observe that

(Φn+1 − Φn

�tn
,Φn+ 1

2

)

=
1

2

‖Φn+1‖2 − ‖Φn‖2

�tn
,

where, by definition ‖u‖2 = (u, u) is the L2(0, L)-norm. Identically, we have

(vn+1 − vn

�tn
, vn+ 1

2

)

=
1

2

‖vn+1‖2 − ‖vn‖2

�tn
.
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The first two equations of System (62) become
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖Φn+1‖2 − ‖Φn‖2

�tn
+ π (∂s(R

n+ 1
2 ♯vn+ 1

2 ), Φn+ 1
2 ξn+ 1

2 ) = 0,

πρ

2

‖vn+1‖2 − ‖vn‖2

�tn
+ ã
(

vn+ 1
2 , vn+ 1

2 ,
vn+ 1

2

Rn+ 1
2 ♯

)

−π (∂s(R
n+ 1

2 ♯vn+ 1
2 ), Φn+ 1

2 ξn+ 1
2 ) + c(Rn+ 1

2 ♯; vn+ 1
2 , vn+ 1

2 )

+ρKr

( vn+ 1
2

Rn+ 1
2 ♯
,
vn+ 1

2

Rn+ 1
2 ♯

)

= boundary terms.

(63)

Now, we can observe that the second term of the continuity equation and the third term

of the momentum equation are equal (up to a change of sign). Thus, the latter can be

substituted with (‖Φn+1‖2 − ‖Φn‖2)/�tn, which gives

πρ

2

‖vn+1‖2 − ‖vn‖2

�tn
+

‖Φn+1‖2 − ‖Φn‖2

�tn
+ ã
(

vn+ 1
2 , vn+ 1

2 ,
vn+ 1

2

Rn+ 1
2 ♯

)

+ c(Rn+ 1
2 ♯; vn+ 1

2 , vn+ 1
2 ) + ρKr

( vn+ 1
2

Rn+ 1
2 ♯
,
vn+ 1

2

Rn+ 1
2 ♯

)

= boundary terms. (64)

The equation above can be further simplified by noticing that

ã(vn+ 1
2 , vn+ 1

2 , vn+ 1
2 /Rn+ 1

2 ♯) = 0,

thanks to (39). Then, we can define,

E
n
ar =

πρ

2
‖vn‖2 + ‖Φn‖2, E

n
w =

Cc

2
(Pn

c )
2,

and,

D
n+ 1

2
ar = ρKr

∥

∥

vn+ 1
2

Rn+ 1
2 ♯

∥

∥

2 +
√

π Ŵ

R2
0

∥

∥

1
√

Rn+ 1
2 ♯

∂s(R
n+ 1

2 ♯vn+ 1
2 )
∥

∥

2
,

D
n+ 1

2
w =

(P
n+ 1

2
c )2

Rper
+ Rc(π Rn+ 1

2 ♯(L) vn+ 1
2 (L))2, (65)

and prove, by using a telescopic sum and by adequately dealing with the boundary terms,

a semi-discrete equivalent form of (61), showing that Theorem 14 has a counterpart at

the semi-discrete level.

Theorem 15 Any solution of System (62) satisfies the following conservation property for

all n ∈ N,

En+1
ar − En

ar

�tn
+

En+1
w − En

w

�tn
+ D

n+ 1
2

ar + D
n+ 1

2
w = P

n+ 1
2

ar Q
n+ 1

2 ♯
ar . (66)

Note that the energy relation obtained in Theorem 15 holds with a time step that

may vary between each iteration. This property is fundamental since, in practice, cardiac

models often adapt the time step to deal with the abrupt changes of phase due the opening

and closure of the aortic valve.

Time scheme for the heart model

The discretization of the heart model was performed following a similar approach to the

one described in the previous section. This allows to obtain, as for the arterial model,
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a discrete equivalent of the conservation property described in Section . The time dis-

cretization method used in [36] is adapted to the zero-dimensional formulation of the

cavity with the additional introduction of the so-called Hilber–Hughes–Taylor (HHT)

Method scheme proposed in [44] for the treatment of kinetics variables and inertial terms.

The discrete velocity ẏn and the displacement yn are related by the use of an auxiliary vari-

able ÿn—that stands for an approximation of the acceleration. We proceed discretizing

the equations of System (10) at time tn+ 1
2 except for the ventricular, atrial and arterial

pressures that are interpolated using a θ-scheme (Pn+θ
v = (1− θ )Pn

v + θPn+1
v , θ ∈ [0, 1]).

Deviations from the classical implicit mid-point scheme used in “Time scheme for the

blood flow model” section are introduced to generate controlled numerical dissipation

terms that damp out purely numerical high frequencies modes that cannot be properly

resolved with a finite time step—see also “Spurious high frequencies filtering” section.

The HHT kinematics equations are
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẏn+1 − ẏn

�tn
= ÿn+ 1

2 + α�tn
ÿn+1 − ÿn

�tn
,

yn+1 − yn

�tn
= ẏn+ 1

2 +
α2

4
�t2n

ÿn+1 − ÿn

�tn
.

(67)

and the dynamics equations then read
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ0 |�0|
( ẏn+1 − ẏn

�tn

)

+
|�0|
R0

ks

(yn+ 1
2

R0
− e

n+ 1
2

c

)

+ �
n+ 1

2 ♯

hyp + Wv

(

yn+ 1
2 ,
yn+1 − yn

�tn

)

= Pn+θ
v Sn+ 1

2 ♯,

μ
en+1
c − enc

�tn
− ks

(yn+ 1
2

R0
− e

n+ 1
2

c

)

= −τ
n+ 1

2 ♯
c ,

(68)

where we use the adapted [45] energy-preserving non-linear choice

�
n+ 1

2 ♯

hyp =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Wp(y
n+1) − Wp(y

n)

yn+1 − yn
if yn+1 �= yn,

∂Wp

∂y
(yn+ 1

2 ) if yn+1 = yn = yn+ 1
2 ,

and additionally

Sn+ 1
2 ♯ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V (yn+1) − V (yn)

yn+1 − yn
if yn+1 �= yn,

∂V

∂y
(yn+ 1

2 ) if yn+1 = yn = yn+ 1
2 .

Note that in practice, the expressions for yn+1 �= yn are implemented using a series

development of Wp and V , respectively, to avoid numerical rounding errors. Further,

τ
n+ 1

2 ♯
c is computed from the already proposed energy-balanced time discretization of

System (14) and (16) [36], namely

τ
n+ 1

2 ♯
c =

√

kn+1
c λ

n+ 1
2

c with
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

kn+1
c − knc

�tn
= −

(

|νn+1| + α

∣

∣

∣

en+1
c − enc

�tn

∣

∣

∣

)

kn+1
c

+ n0(e
n
c )k0|ν

n+1|+
λn+1
c − λnc

�tn
= −

1

2

(

|νn+1| + α

∣

∣

∣

en+1
c − enc

�tn

∣

∣

∣

)

λ
n+ 1

2
c

+
n0(e

n
c )

√

kn+1
c

⎛

⎝σ0 −
k0 λ

n+ 1
2

c

2
√

kn+1
c

⎞

⎠ |νn+1|+ +
√

kn+1
c

en+1
c − enc

�tn
.

(69)
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Since the function n0(·) has maximum value 1, it is straightforward to prove [36], from

backward Euler time discretization, the a priori bound 0 < knc ≤ k0 for all n ≥ 1 if it is

satisfied at n = 0. Moreover, the time discretization of the variable λn is consistent with

the dynamics of λc = τc/
√
kc given in Remark 5.

In order to retrieve a discrete equivalent of the discrete energy balance obtained in

Section , we multiply the second equation of System (68) by (yn+1 − yn)/�t and the third

one by |�0| (en+1
c − enc )/�tn, then we sum, obtaining

E
n+1
hr − En

hr

�tn
+

E
n+1
hr,num − En

hr,num

�tn
+ D

n+ 1
2

hr + D
n+ 1

2 ♯

hr,num

= − |�0|
en+1
c − enc

�tn
τ
n+ 1

2 ♯
c + Pn+θ

v

V (yn+1) − V (yn)

�tn
, (70)

where we have introduced the discrete energy

E
n
hr :=

ρ0|�0|
2

(ẏn)2 + Wp(y
n) +

|�0|ks
2

( yn

R0
− enc

)2
, (71)

the discrete dissipation term

D
n+ 1

2
hr := Wv

(

yn+ 1
2 ,
yn+1 − yn

�tn

)yn+1 − yn

�tn
+ μ |�0|

(en+1
c − enc

�tn

)2
, (72)

as well as a numerical stored energy

E
n
hr,num := α2�t2n

ρ0|�0|
8

(

ÿn
)2

(73)

and a numerical dissipated energy

D
n+ 1

2 ♯

hr,num := α3�t3n
ρ0|�0|

4

( ÿn+1 − ÿn

�tn

)2
, (74)

which scale both with powers of �tn. Moreover, multiplying the second equation of (69)

by |�0| λ
n+ 1

2
c we obtain

En+1
c − En

c

�tn
+ D

n+ 1
2

c =
|�0| n0(enc )
√

kn+1
c

⎛

⎝σ0λ
n+ 1

2
c −

k0 (λ
n+ 1

2
c )2

2
√

kn+1
c

⎞

⎠ |νn+1|+

+ |�0|
en+1
c − enc

�tn
τ
n+ 1

2 ♯
c , (75)

with

E
n
c :=

|�0|
2

(λnc )
2, D

n+ 1
2

c :=
(

|νn+1| + α

∣

∣

∣

en+1
c − enc

�tn

∣

∣

∣

)

|�0|
2

(λ
n+ 1

2
c )2. (76)

Note that (71), (72) and (76) are the time-discrete equivalent of (11), (12) and (13) respec-

tively. Summing (70) and (75), we obtain the following result.

Theorem 16 Any solution of System (68) and System (69) satisfies the following conserva-

tion property for all n ∈ N :

E
n+1
hr

− En
hr

�tn
+

En+1
c − En

c

�tn
+ D

n+ 1
2

hr
+ D

n+ 1
2

c = Pn+θ
v

V (yn+1) − V (yn)

�tn

+
|�0| n0(enc )
√

kn+1
c

⎛

⎝σ0λ
n+ 1

2
c −

k0 (λ
n+ 1

2
c )2

2
√

kn+1
c

⎞

⎠ |νn+1|+. (77)
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Time scheme for the valves and the energy relation for the complete semi-discrete system

The discretization strategy applied for the valve formulation is the same that we showed

for the arterial and ventricular model. In particular, we use an implicit mid-point rule, i.e.

−
d

dt
(v(y)) = Qv ∼ −

V (yn+1) − V (yn))

�tn
,

and

Qar ∼ Q
n+ 1

2 ♯
ar = π Rn+ 1

2 ♯ vn+ 1
2 ,

|Pv − Par|+
Kar

∼
|Pn+θ

v − P
n+ 1

2
ar |+

Kar
.

System (17) is then discretized as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Cmi
Pn+1
v − Pn

v

�tn
+

|Pn+θ
v − P

n+ 1
2

ar |+
Kar

+
|Pn+θ

v − P
n+ 1

2
at |+

Kiso
−

|Pn+ 1
2

at − Pn+θ
v |+

Kat
= −

V (yn+1) − V (yn))

�tn
,

Car
Pn+1
ar − Pn

ar

�tn
−

|Pn+θ
v − P

n+ 1
2

ar |+
Kar

= −Q
n+ 1

2 ♯
ar .

(78)

To obtain an energy identity wemultiply the first equation of System (78) by Pn+θ
v and the

second one by P
n+ 1

2
ar , then we sum the two equations. The discrete conservation property

reads

En+1
v − En

v

�tn
+ D

n+θ
v + D

n+ 1
2 ♯

v,num =
|Pn+ 1

2
at − Pn+θ

v |+ P
n+ 1

2
at

Kat

−
|Pn+θ

v − P
n+ 1

2
at |+ P

n+ 1
2

at

Kiso
− Pn+θ

v

V (yn+1) − V (yn)

�tn
− P

n+ 1
2

ar Q
n+ 1

2 ♯
ar , (79)

where the discrete energy for the valve model reads

En+1
v − En

v

�tn
=

Cmi

2

(Pn+1
v )2 − (Pn

v )
2

�tn
+

Car

2

(Pn+1
ar )2 − (Pn

ar)
2

�tn
,

the dissipation is

D
n+θ
v =

|Pn+θ
v − P

n+ 1
2

ar |2+
Kar

+
|Pn+θ

v − P
n+ 1

2
at |2+

Kiso
+

|Pn+ 1
2

at − Pn+θ
v |2+

Kat
,

and the numerical dissipation reads

D
n+ 1

2 ♯
v,num =

(

θ −
1

2

)

Cmi�tn

(Pn+1
v − Pn

v

�tn

)2
.

The discrete energy relation for the global system

Finally, summing Eqs. [(64), (77) and (79)], we obtain the semi-discrete conservation

property for the global system.
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Corollary 17 Any solution of System (62), (68),(69) and (78) satisfies the following conser-

vation property for all n ∈ N,

En+1
ar − En

ar

�tn
+

En+1
w − En

w

�tn
+

E
n+1
hr

− En
hr

�tn
+

E
n+1
hr,num

− En
hr,num

�tn
+

En+1
v − En

v

�tn

+ D
n+ 1

2
w + D

n+ 1
2

hr
+ D

n+ 1
2 ♯

hr,num
+ D

n+ 1
2

ar + D
n+ 1

2
v + D

n+ 1
2 ♯

v,num

=
|�0| n0(enc )
√

kn+1
c

⎛

⎝σ0λ
n+ 1

2
c −

k0 (λ
n+ 1

2
c )2

2
√

kn+1
c

⎞

⎠ |νn+1|+

+
|Pn+ 1

2
at − Pn+θ

v |+ P
n+ 1

2
at

Kat
−

|Pn+θ
v − P

n+ 1
2

at |+ P
n+ 1

2
at

Kiso
. (80)

Corollary 17 shows that without a source term, i.e when νn+1 and P
n+ 1

2
at vanish, the

energy—that is a norm for the solution—is decaying. This is the expected stability property

of a robust time discretization.

Space discretization of the blood flowmodel

The space discretization is rather simple and does not represent amain issue for the global

formulation. However, there are some terms, in the aortic model formulation, that have

to be treated carefully when choosing the space discretization method. This is the reason

why, in this section, we will only present the space discretization of the arterial model

without dealing with how the total discretization of the aorta model couples with the

other elements of the model. Indeed, these couplings are straightforward from what has

been already explained.

First,we introduce afinite dimensional subspace ofH1(0, L) of continuous functions that

is denoted by Vh and we assume an interpolation operator Ih : C0([0, L]) → Vh as given.

For each n ∈ N, we look for the solutions (Φn
h
, vn

h
) ∈ Vh ×Vh, for all (Φ̃h, ṽh) ∈ Vh ×Vh, of

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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(81)

In the equations above the missing boundary terms are easily deduced from the second

equation of System (62) by replacing Rn+ 1
2 ♯ by R

n+ 1
2 ♯

h
, v by vh and ṽ by ṽh. Moreover, we

have introduced two other notations:

i. We use the notation (·, ·)h to represent an approximation of the scalar product in

L2(0, L) by quadrature formulae. In particular (·, ·)h is a positive definite bilinear form
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and is equivalent to the L2(0, L)-norm in Vh. In what follows, for any uh ∈ Vh we

define ‖uh‖2h := (uh, uh)h.

ii. The critical point from the energetic point of view in performing the space discretiza-

tion of our scheme can be found in the definition of the term ah. As stated in “Time

scheme for the blood flow model” section for the energy conservation, this term has

to satisfy the property defined in (39). One way to guarantee this condition is to

consider the exact—i.e. we compute the integrals exactly—trilinear form ã. That is

why the form ah is defined by

ah(v
n+ 1

2

h
, R

n+ 1
2 ♯

h
; ṽh) := ã(ṽh, v

n+ 1
2

h
, u

n+ 1
2

h
). (82)

With this definition and thanks to (39), it is possible to check that, for all (vh, Rh) ∈
Vh × Vh,

ah(vh, Rh; vh) = ã
(

vh, vh,Ih
vh

Rh

)

= 0. (83)

Even though the introduction of the interpolation operator in the definition of u
n+ 1

2

h

involved in ah given by (82) seems unnecessary, one can observe from the structure of the

trilinear form ã that its last argumentwould not be polynomial without interpolation. This

implies that the application of a standard quadrature method (e.g. the Gauss integration)

would not give an exact integration property, and therefore the property stated by (83)

may be lost.

Using (83), it is straightforward to prove that the energy relation stated in Theorem 15

can be extended to the fully-discrete case. We obtain the following result.

Theorem 18 Any solution of System (62) satisfies the following conservation property for

all n ∈ N
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. (84)

When using the model described for simulations we divide the domain [0, L] into regular

subdomains ℓj = [sj , sj+1] of fixed length �s, such that sj = j�s with j = {0, 1, . . . , J }. In
particular, we define the space Vh as

Vh = {vh ∈ C0([0, L]) / ∀j ∈ {0, 1, . . . , J } ∈ vh|ℓj ∈ P1(ℓj)},

and we use P1-finite elements. The space Vh is spanned by the Lagrange nodal basis

functions {wj}Jj=0 that satisfy the property wj(si) = δij . The interpolation operator then

reads

(Ihv)(s) =
J
∑

j=0

v(sj)wj(s).
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We have, for all (vh, uh) ∈ Vh × Vh,

(vh, uh)h =
�s

2
vh(s0)uh(s0) + �s

J−1
∑

j=1

vh(sj)uh(sj) +
�s

2
vh(sJ )uh(sJ ).

The scalar product (·, ·)h is defined using the trapezoidal rule, while the term ã(ṽh, vh, uh)

should be computed exactly to ensure energy preservation. To do so, it is sufficient to use

the Simpson quadrature method in each element for the underlying integration, since—

thanks to the use of the interpolation operator—the integrand is a second-order polyno-

mial in each element.

Simulations and results

In order to show the results of our work, we consider three different model settings:

• The uncoupled aortic model is composed by a single 1D straight vessel with a homo-

geneous circular cross-section representing the upper thoracic aorta and by a Wind-

kessel RCR model that takes into account the impedance and compliance of all the

remaining vessels at the periphery. In this test case the inlet blood flow is imposed,

as shown in Fig. 4. This configuration allows us to study the behavior of the arterial

model alone.

• The uncoupled cardiac model, depicted in Fig. 5, is composed by the reduced cardiac

model described in the previous sections and by a lumped parameter model as outlet

boundary condition that represents the entire circulation. More precisely, we have

reduced the 1Dmodel of the aorta into an RC-model, the parameters of the resulting

0D model being the equivalent resistance and compliance of the 1D vessel combined

with the RCR boundarymodel parameters. The equivalent resistance and compliance

of the 1D vessel are obtained by (formulas readapted from [46])

R1D =
22μbL

πR4
0

and C1D =
3

2

πR3
0L

Eh0
, (85)

where μb is the blood viscosity. This setting allows to show the outcome of the

cardiovascular model when the circulation is represented by a simple Windkessel

model.

• The fully coupled model studied in the present work, with the reduced-dimensional

model of the heart and the aortic model coupled through a transmission condition

which includes the valve as represented in Fig. 2.

The simulation results are divided into two main sections. In “Numerical validation”

section we present the numerical validation of the proposed formulation, starting from

the comparison between the results obtained using the uncoupled aortic model and the

results of other numerical schemes. Then, we verify that the energy relation is indeed

satisfied at the numerical level and discuss its beneficial effect on the computations. In

“Physiological outcomes of the coupling” section we highlight the importance of the

coupling involving two case studies: dicrotic notch and physiological ageing. The first

case study is considered to demonstrate the need of having a one dimensional model as

an outlet boundary for the heart to capture all the important features of pressure waves

in the larger elastic arteries (e.g. the aorta), whereas in the second one we show how the

simulations of specific conditions of the circulation (e.g. stiffening of the vessels due to



Manganotti et al. Adv. Model. and Simul. in Eng. Sci.           (2021) 8:21 Page 26 of 37

0 0.2 0.4 0.6 0.8 1

0

2

4

·10
−4

Time

F
lo

w
(m

3
/s

)

A Rc

Cc

Rper

Fig. 4 Scheme of the uncoupled aortic model: single 1D vessel that represents the upper thoracic aorta and a

three-element Windkessel model as boundary conditions to represent the remaining part of the circulation
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Fig. 5 Scheme of the uncoupled cardiacmodel: reduced cardiac model with a lumped-parameter model as

boundary conditions to represent the entire circulation. The configuration is obtained from the fully coupled

model by reducing the 1D vessel to an RC-model

ageing) benefit from the presence of a cardiac model whose behavior depends on the

arterial conditions. Both cases reflect the natural interplay between the components of

the cardiovascular system [1] .

Numerical validation

Benchmark for the uncoupled aortic model

In order to support the validity of the developedmethod, our scheme is tested in one of the

benchmarks presented in [18]. In this work, different numerical schemes are compared

for 1D arterial modeling in a set of test cases and they made the results freely available. In

the following example we take into account the third benchmark configuration [18], that

corresponds to the upper thoracic aorta (setting presented in Fig. 4). For this particular

test case the authors considered a single uniform vessel represented by a one-dimensional

model, that relies on the classical blood flow equations described in System 1 in the

equivalent (A, u) formulation—the state variables are the cross section and the velocity—

and an RCR model as outlet boundary condition. More precisely, in this benchmark, Eqs.

(1), (7) and (8) are solved with Qar(t) imposed.
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Table 1 Model parameters of the upper thoracic aorta

(Readapted from [23])

Property Value

Length, L 24.137 cm

Radius at diastolic pressure, R0 1.2 cm

Initial flow velocity, u(s, 0) 0 m s−1

Initial pressure, P(s, 0) 0 Pa

Wall thickness, h0 1.2 mm

Blood density, ρ 1060 Kg m−3

Friction parameter, Kr 276.46 mPa s

Wall viscosity, ν 0 mPa s

Velocity profile, αvp 1

Young’s modulus, E 400.0 kPa

Diastolic pressure, PD 9.46 kPa

External pressure, Pext 0 Pa

Windkessel resistance, Rc 1.1752 · 107 Pa s m−3

Windkessel compliance, Cc 1.0163 · 10−8 m3 Pa−1

Windkessel resistance, Rper 1.1167 · 108 Pa s m−3

The parameters of the model and the inflow boundary condition used in [18] were

taken from [23] and are reported, respectively, in Table 1 and Fig. 4. We considered these

same parameters and inlet conditions, as shown in Fig. 6, and we compared our results

with those of other numerical schemes available in the datasets of [18]. In Fig. 6 it is

possible to observe that the pressure curves obtained by the numerical schemes reported

are consistent, hence validates our implementation. This shows that our formulation is

consistent with well-known discretizations. At the price of a higher computational cost—

due to the implicit nature—the proposed scheme has, in addition, the advantage to offer

a provably stable numerical coupling with a numerical approximation of a non-linear

description of the heart.

Spurious high frequencies filtering

In the discretization section, we have introduced two parameters α and θ associated with

a controlled artificial viscosity of order δt in order to damp possible undesired oscillations

(when α > 0 and θ > 1/2).We emphasize that these oscillations are not due to numerical

instability, but to energy exchanges between model compartments introduced by the

time discretization procedure, in particular the conservative part involving mid-points.

We denote these oscillations spurious high frequencies. To illustrate this effect, we show

in Fig. 7 the time evolution over a cardiac cycle of the ventricular pressure Pn
v , the aortic

valve fluxK−1
ar |Pn

v −Pn
ar|+ and the proximal arterial pressurePn

ar that are computedwith the

parameters chosen as in [47]. We compare three different configurations, (α, θ ) = (0, 0.5)

(no artificial viscosity), (α, θ ) = (0, 0.75) (artificial viscosity only on Pv) and (α, θ ) =
(1, 0.75) (artificial viscosity on ẏ andPv). It can be seen that the latter case avoids all kinds of

spurious frequencies while preserving, qualitatively, the consistency of the approximation

and the cost of the numerical scheme. Of note, the artificial viscosity decreases the formal

order of accuracy of the scheme, an acceptable price to pay as our time-step is already

rather small to account for the stiff parts of the pressure variation.
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Fig. 6 Validation of the proposed energy-preserving formulation through the comparison of the results of

our approach and those reported in [18]. DCG discontinuous Galerkin, FEM Galerkin least-squares finite

element method, FVM finite volume method, LCG locally conservative Galerkin,McC finite difference

MacCormack method, STM simplified trapezium rule method, EP energy-preserving scheme proposed in this

work

Fig. 7 Illustration of the ability of our numerical method to filter out spurious high-frequency modes. The

upper plots correspond to the time evolution over a cardiac cycle of (Pnv , |Pnv − Pnar|+/Kar , P
n
ar) for three

different choices of parameters for the numerical viscosity. The lower plots show the time evolution of the

difference with respect to a baseline case computed with (α, θ ) = (1, 0.75)
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Fig. 8 Illustration that the energy balances are satisfied at the discrete level. The energy conservation

residuals (66), (77) and (79) are evaluated numerically over time

Numerical validation of the energy balance behind the coupling strategy

As an illustration of the validity of the energy-preserving numerical methods developed

in this work, we present the numerical evaluation of the energy conservation residuals of

the three main model elements (66), (77) and (79). For that, we define the residuals as

⎧
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Their time evolution is presented in Fig. 8 over several heart cycles for the simulation with

the parameters inspired from [47] and whose results are presented in Figs. 9 and 10. We

can notice that the magnitude of the residuals is 12 orders of magnitude lower than that

of the individual energy fluxes that compose them. This result thus validates the fact that

the energy balances are indeed satisfied at the discrete level.
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Fig. 9 Energy fluxes in the coupled heart and 1D aortic circulation model obtained with the

energy-preserving numerical scheme. All quantities are given in Watts

Fig. 10 The important role of the one-dimensional aortic model as a boundary condition for the reduced

cardiac model is highlighted comparing the output of the uncoupled cardiacmodel (blue line) and the fully

coupledmodel (black line) settings, with a focus on the presence of the dicrotic notch in the aortic pressure

curve. From left to right we depict the blood flow coming from the aortic valve, the aortic pressure (Par) and

the pressure-volume loops in the left ventricle
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Having an energy-preserving formulation for the discretization of the model equations

ensures that we can make sense of the individual terms of the energy balance. On the one

hand, it allows to get a better picture on the solution of the model equations by analyzing

the fluxes of energy between the different elements of the model. We present in Fig. 9

some of the energy fluxes that can be computed. We define the following notations
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In the numerical results, we see how the contraction of the atrium creates an initial flux

of energy Pin,at towards the left ventricle. Then, the chemical energy flux PATP provided

at the micro level is transformed into the mechanical power Ẇ by the left ventricle. It can

be noted that the model predicts an energetic yield
∫ t+T
t |Ẇ(τ )|+ dτ/

∫ t+T
t PATP(τ ) dτ

of 26.2%, which lies in the physiological range: 25 to 35% [48,49]. The average power

produced by the ventricle over a heartbeat is 1.02 W, which is in accordance with the

values obtained experimentally [47,50]. Moreover, the peak of mechanical power reaches

10.4 W, which is consistent with the evaluation of this quantity from other mechanical

models for patients suffering from aortic valve disease [51]. The mechanical power is

then transferred with little dissipation through the valves into the aorta that receives

the influx of energy ParQar. On the other hand, being able to compute the individual

energy fluxes inside the model is of great interest from an application point of view, since

some of the terms of the energy balance are indeed used by medical doctors. For instance,

anesthetists are interested in the work developed by the left ventricle for themonitoring of

the heart [47] during surgical intervention, wheres cardiologists see this same parameter

as a potential biomarker for the evaluation of left ventricle dysfunctions [50] and the

myocardial efficiency is considered as a relevant indicator to assess the state of patients

having aortic or valve pathologies [52,53].

Physiological outcomes of the coupling

In this section, we examine the physiological interest of coupling the arterial and the

cardiac model. The three model settings described above are involved to highlight the

differences in the results when one of the two components, i.e. the cardiac model or the

one-dimensional vessel, is not taken into account—the fully coupled model allowing to

study the effect of the mutual interplay between the heart and the arterial network.

Importance of the downstream circulation for the heart: the dicrotic notch

The physiological arterial pressure curve shows two main parts: the systolic and the dias-

tolic phase. During the first phase, the heart ejects the blood into the aortic root and the

arterial pressure increases rapidly and reaches a peak, known as the systolic pressure value.

Then, the pressure starts falling but it is interrupted by an incisura, known as the dicrotic

notch, that happens at the time of the passage to the diastolic phase and causes a second

peak. The pressure then continues its downslope to its minimum, the diastolic pressure

[54,55]. Any change in the shape of this curve represents a modification in the vessel
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condition, that is why it is important to be able to properly reproduce these features. We

focus here on the reproduction of the dicrotic notch. For that purpose, we perform a sim-

ulation using the uncoupled cardiac model and the fully coupled model and we compare

the results.

From the results presented in Fig. 10 we can observe that only the pressure curve

obtained with the fully coupled model (black curve in the center) shows a dicrotic notch.

Moreover, this was obtained with an inflow condition (in black in the left box), coming

from the heart, which does not present a backflow. This confirms the latest findings of

[21] and suggests that the dicrotic notch is not caused by the presence of the backflow

but can be observed when wave propagation phenomena are represented. In addition,

although both settings are able to reproduce a physiological shape for the curves, there

are more differences between the two results beyond the reproducibility of the dicrotic

notch. First, we can observe that the peak of the blood flow is slightly increased when

the lumped-parameter model is used to represent the full circulation. Moreover, from the

pressure-volume loops (in the right box) we can notice a distinction in shape between the

two ejections. This suggests that the systolic blood pressure reaches a lower peak value

when the circulation is completely represented by a lumped-parameter model. The last

consideration is confirmed even more clearly in the pressure curves, since the lumped-

parametermodel is able to fit the diastolic decay of pressure but it is not sufficient to prop-

erly reproduce the systolic peak [46] and, more generally, the systolic phase. In fact, only

when a distributed aortic model is considered it is possible to obtain a more physiological

wave showing a noticeable dicrotic notch. These results suggest that when a cardiovascu-

lar model is used to analyze phenomena strongly associated with the ventriculo-arterial

interaction, lumped-parameter models are not sufficient to represent the downstream

circulation and it is necessary to employ a higher-dimensional model (e.g. a 1D-model)

that is able to capture the influence of pulse wave transmission within the circulation.

Importance of the heart for the aorta: ageing

During ageing, the vessel walls undergo a degeneration of elastin fibers, a decrease in

smooth muscle and an increase in collagen. These changes cause the stiffening of the

arteries and in particular of the aorta. As a result, it is observed that the systolic peak pres-

sure increases and the aortic and left ventricular late systolic pressure augment, whereas

the aortic blood flow peak and the diastolic pressure decrease. These features are indeed

commonly observed among elderly subjects. Of note, the effects of ageing on the heart

are minimal with respect to those in the main arteries [56].

As it was done in [29], we use the simulation of ageing to highlight the importance

of accounting for heart-circulation interactions in cardiovascular modeling. In order to

simulate the ageing of the vessel, we modify some relevant arterial parameters. We follow

here the scheme proposed by [57], carrying out the appropriate manipulations to adapt

this strategy to our model (single one-dimensional vessel). The parameter β , which is a

surrogate of the arterial wall stiffness, the total arterial resistance and the total compliance

are modified to represent “older” vessels. To take into account the contribution of the 1D

model to the total resistance, the average pressure observed at the beginning of the aorta

(Pinlet) is used as a marker for the impedance of the vessel. A target value (Ptarget) for this

inlet pressure is calculated in order to induce the increasing pressure that is observed in
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Fig. 11 The important role of the cardiac model as an inlet condition for the distributed arterial model is

highlighted comparing the output of the uncoupled aortic model (top left and right) and the fully coupled

model (bottom left to right) settings, with a focus on the effects of ageing on the elastic arteries. On the left

we depict the blood flow at the first element of the aortic model, in the center we show the aortic pressure

(Par) at the same space element and at the bottom right we depict the pressure-volume loops in the left

ventricle, for normal physiological conditions (black line) and for an arterial ageing conditions (blue line)

normal ageing, and it is chosen as a 10% increase from the baseline inlet pressure. The

peripheral resistance— Rper in our RCR model—is updated conforming to

Rper ,k+1 + Rc =
Ptarget

Pinlet ,k

(Rper ,k + Rc),

where k is the ageing process iterative index. The parameter β is then modified as

βnew = 2.5β . The total arterial compliance is decreased as Ctot,new = Ctot/2, with the

total compliance Ctot being defined as

Ctot = C1D + C0D,distal + C0D,transmission

where C1D, C0D,distal and C0D,transmission are the equivalent compliance of the one-

dimensional arterial model, the distal Windkessel model and the transmission model (if

present), respectively. Then,C1D,new is updated according to the changes in β—see (85)—

and C0D,distal,new is obtained from

C0D,distal,new = Ctot,new − C1D,new − C0D,transmission.

The simulation of ageing is performed with the uncoupled aortic model and the fully

coupled model settings.

The obtained results are presented in Fig. 11. In both simulation settings, we can observe

numerous changes with respect to the baseline case that are typical of the ageing process:

higher systolic peak, lower diastolic pressure and a small increase in wave propagation

speed (the dicrotic notch is anticipated). However, the pressure curve obtained with the
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coupledmodel is more physiological. In particular, it is possible to see a trend towards the

merging of the pressure systolic peak and the dicrotic peak, as it happens when the ageing

process is advanced [56], and the dicrotic notch fades away. Indeed, without a cardiac

model the inflow has to be imposed and therefore it does not adapt to the arterial condi-

tions. In the ageing case with the uncoupled aortic model it is possible to observe a double

reflection that does not reflect the arterial response to ageing. Furthermore, when using

a coupled model, the blood flow is impacted itself by the ageing process. Our simulation

shows a decreased peak compared to the baseline case. Finally, the use of a coupled heart-

circulation model allows to compute the variation of the left ventricular pressure-volume

loop as a result of the ageing process. This enables to monitor the quantitative effects of

the arterial ageing on the cardiac function.

Conclusions

In this work, we present an original method to couple reduced-order blood flow circu-

lation models and heart models through the point of view of energy balance both at the

continuous and the discrete level. This is a difficult path as model reduction is often asso-

ciated with the loss of energy balances for limit models. In fact, our coupled formulation

is here proven to satisfy a full energy balance at the continuous level, with an additional

consistent and controlled numerical dissipation on the fully discrete scheme. This allows

to control the energy sources avoiding instabilities such as for instance uncontrolled back

flows or perpetual motion cardiac engines. Essentially, our controlled coupling improves

the modeling from the cardiac side and from the cardiovascular side. On the one hand,

from the cardiac point of view we obtain better physiological signals with respect to the

completely lumped heart-plus-Windkessel model proposed in [32]. On the other hand,

we introduce a more physiological heart engine than a phenomenological time-varying

elastance model acting as a flow generator in [29]. We believe that this paves the way

for suitably investigating physiological aspects of heart-circulation coupling, as illustrated

here with the dicrotic notch and the ageing process.
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Appendix: Details on the construction of the approximate radius function

In this appendix we describe how the discrete function rh(Φ) is constructed. This con-

struction is based on a pre-computation step in which the approximate tube law rh(Φ) is

sought as a bijective C1—functions of R to R
+ that corresponds to a quadratic piecewise
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approximation of r(Φ) on an interval [Φ0,ΦN ] and some smooth analytic functions over

(−∞,Φ0] and [ΦN ,+∞). After this pre-computations step the values of rh(Φ) and r′
h
(Φ)

can be obtained either by quadratic (or linear) interpolation or evaluation of one (or two)

transcendental functions. We first choose a set of points

{Φn}n=N
n=0 with Φn < Φn+1

that represents a sufficiently fine sampling of the interval [Φ0,ΦN ]. Then we compute

r(Φ0) and r′(Φn) for each n ∈ {0, . . . , N }, using Eqs. (35) and (36) and the relation r(Φ) =
ϕ−1(Φ). For each n ∈ {0, . . . , N } the value r′(Φn) corresponds to the value of the function

r′
h
(Φn) and forΦ ∈ [Φn−1,Φn] the value of r

′
h
(Φ) is obtained by affine interpolation.More

precisely

r′
h(Φ) =

Φ − Φn−1

Φn − Φn−1
r′
h(Φn) +

Φn − Φ

Φn − Φn−1
r′
h(Φn−1), Φ ∈ [Φn−1,Φn].

The function rh(Φ) forΦ ∈ [Φ0,ΦN ] is obtainedby integrating the function r
′
h
(Φ) between

Φ0 and Φ and setting rh(Φ0) = r(Φ0). In practice the values {rh(Φn)}n=N
n=0 are tabulated.

They are given by for n ∈ {1, . . . , N }

rh(Φ0) = r(Φ0) and rh(Φn) = rh(Φn−1) + (Φn − Φn−1)
r′(Φn) + r′(Φn−1)

2
,

and the function rh(Φ) for Φ ∈ [Φn−1,Φn] is given by

rh(Φ) = rh(Φn−1) +
1
2 (Φ − Φn−1)

2

Φn − Φn−1
r′
h(Φn) +

1
2 (Φn − Φn−1)

2 − 1
2 (Φn − Φ)2

Φn − Φn−1
r′
h(Φn−1).

For small values ofΦ we prescribe an exponential behavior (following the modification of

the model introduced in “Extension of the model in a non-physiological range” section),

rh(Φ) = r(Φ0) e
r′(Φ0)
r(Φ0)

(Φ−Φ0), Φ ∈ (−∞,Φ0].

A large value ofΦ corresponds to a large value ofR in (35). For these values one can expect

that r(Φ) behaves as an affine function of Φ
2
3 . Thus we set

rh(Φ) =
3

2
Φ

1
3
N r′(ΦN )Φ

2
3 + rh(ΦN ) −

3

2
ΦN r′(ΦN ), Φ ∈ [ΦN ,+∞).
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