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ABSTRACT

In this paper we describe the optimization of a facility layout scenario, which involves coupling simulation with the optimization
environment HeuristicLab. For this purpose we show a problem formulation that acts as an interface between these two
domains of problem modeling and optimization, and discuss optimization methodologies and their results for a number of
artificial test problems as well as more complex real-world problems. HeuristicLab was designed with both practitioners
and algorithm developers in mind. Practitioners benefit from a graphical user interface that facilitates so-called interactive
algorithm engineering, where algorithms can be adjusted without actually writing code. Algorithm developers are aided in
the development process by the plug-in based, easily extensible architecture and integrated parallelization functionality.

1 INTRODUCTION

In the last decade a great deal of research has been devoted to a successful coupling of simulation models with optimization.
To satisfy the ever increasing demand for simulation optimization from both researchers and practitioners, commercial
simulation software is now frequently shipped with integrated or add-on optimization packages, such as for example
AutoStatTM(Carson 1997), OptQuest R© (Sadowski and Bapat 1999), or the WITNESS R© Optimizer (Rawles 1998). The
listed commercial software solutions frequently employ metaheuristic algorithms for optimization, listing among others
genetic algorithms, evolution strategy, tabu search, simulated annealing, scatter search, or hill-climbers. The vendors try to
help the analyst to optimize simulation models (i.e., input parameters, structural assumptions) without burdening the user
with too much algorithmic complexity. Therefore, the optimization interfaces usually expose only a limited set of algorithm
parameters that can be tuned, and focus on statistical analyses of the optimization result rather than the characteristics of the
optimization run, such as convergence behavior.

This black box approach is certainly favorable with respect to general-purpose robustness and usability of an embedded
optimization tool but also limits the potential of the employed metaheuristics. We believe that advanced practitioners would
profit from more transparency in simulation and optimization. In particular, the optimization environment should provide a
diverse set of classical and advanced optimization algorithms to choose from and hide unnecessary complexity from the user
who might not be an expert on metaheuristic optimization, while still providing ways to adapt and extend these algorithms
on code-level if so desired. In this paper we show how the optimization framework HeuristicLab (Wagner 2009), which
has recently been extended to communicate with simulation software such as AnyLogicTM or SimuLink R©, addresses these
issues. We also apply the software to optimize a facility layout with respect to material transport costs between production
facilities.

The rest of the paper is organized as follows: Section 2 summarizes previous work on simulation optimization with
HeuristicLab and gives a brief overview about the key features of the framework. In Section 3, a motivation for the facility
layout problem and pending difficulties are provided. Moreover, the quadratic assignment problem (QAP) is introduced
as a way to represent facility layout problems where the layout objective is to reduce material transport costs. The QAP
is later refined to formulate the so-called machine placement problem (MPP), which is described in detail in Section 3.2.
Section 4 focuses on metaheuristic optimization approaches and briefly introduces simulated annealing, genetic algorithms
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and evolution strategies. These algorithms are applied to solve the MPP and results are described and analyzed in Section 5
and 6 respectively. Finally, Section 7 concludes the paper with a summary of the findings and an outlook on future work.

2 PREVIOUS WORK ON HEURISTICLAB AND SIMULATION

HeuristicLab is a framework for heuristic and evolutionary algorithms, developed and successively applied by members of
the Heuristic and Evolutionary Algorithms Laboratory since 2002. Among other aspects, a sophisticated graphical user
interface distinguishes HeuristicLab from existing heuristic optimization frameworks, which usually require comprehensive
programming skills to adjust and extend the algorithms for a particular problem. In HeuristicLab algorithms are represented
as operator graphs and changing or rearranging operators can be done by drag-and-drop without actually writing code
(Wagner et al. 2008). The framework thereby shifts algorithm development capability from the software engineer to the user
and practitioner. It is of course still possible to extend the framework on code level and algorithm developers benefit from
HeuristicLab’s light-weight plug-in mechanism that allows them to integrate custom algorithms, solution representations or
optimization problems with ease. This concept leads to a significant level of code reuse across metaheuristic variants and
encourages users to successively gain more knowledge about algorithm development (Wagner et al. 2007, Wagner 2009).

The optimization framework HeuristicLab has successfully been coupled with a variety of simulation frameworks to
optimize selected input parameters of simulation models. Affenzeller et al. (2007) initially developed the conceptual design for
simulation optimization with HeuristicLab. The actual implementation was done by Beham et al. (2008), who subsequently
generated dispatching rules with genetic programming to optimize a simulation model of a semiconductor manufacturing plant.
He also applied evolution strategies to optimize a supply chain model shipped with AnyLogicTM 6 (Beham et al. 2008). Further
tests regarding robustness in stochastic simulation-based optimization were conducted in Beham et al. (2009). Moreover,
HeuristicLab has been used to optimize the image quality of a medical ultrasound transducer simulator (Kofler et al. 2008)
and to solve a buffer allocation problem (Can, Heavey, and Beham 2008a, Can, Heavey, and Beham 2008b). The exchange
of input and output data between HeuristicLab and the simulation model can be file-based, as employed for the ultrasound
simulation optimization, or require a more sophisticated mechanism. For this purpose, a protocol layer has been implemented
that allows the definition of a data exchange procedure via a state machine, thus allowing the injection or extraction of data
from the simulation model at pre-defined synchronization points.

3 FACILITY LAYOUT PROBLEM

Layout planning for a production plant includes decisions regarding the physical allocation of work areas in a facility.
The planner has to take various business strategic considerations and additional constraints into account, such as for
example movement costs of resources (people, material, and machinery) between working areas, enforced placement and size
restrictions, expected waiting times, required material buffer zones, and plant safety. The relevance of the listed constraints
and target values is of course specific to the particular production scenario and must be defined together with plant experts.
In this study we will focus on the material transport costs and assume an unconstrained, rectangular production floor.

It should also be noted that optimizing a facility layout once might not suffice, if the production scenario changes over
time. In this case it could be necessary to adjust a carefully designed and calibrated layout to account for internal and
external influences. For example changes in production volumes, work flow processes, technology, or product portfolio might
call for a re-layout of sections or the whole production floor. A flexible layout should be either robust enough to tolerate
such fluctuations or easily and cost-efficiently adjustable to reflect changing environmental conditions. For the real-world
problems considered in this paper, re-layout is so far not a relevant issue, but the necessity could arise at a later stage of
our project.

Within the operations research community numerous benchmark problems have been introduced that deal with certain
aspects and objectives of facility layout planning. These include the quadratic assignment problem and various 2D cutting
and packing problems such as bin packing or strip packing (Lodi, Martello, and Monaci 2002). Variants of the quadratic
assignment problem are most commonly employed to model facility layout planning, if the core objective is the reduction
of material transport costs.

3.1 Quadratic Assignment Problem

The quadratic assignment problem (QAP) was initially introduced by Koopmans and Beckmann (1957). The goal of the
QAP is to assign a number of facilities to a number of locations in such a way that flow costs between the facilities are
minimized. The problem is fully specified by a distance matrix for the locations and a flow matrix that represents the strength
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of the coupling between pairs of facilities. Facilities can for example denote machines in a manufacturing plant or medical
units in a hospital (Hahn and Krarup 2001). In these cases, the respective flow might be the number of material transported
between machines or the number of patients that have to visit a sequence of units in the course of a medical intervention.
In the classical formulation of the QAP the number of facilities equals the number of available locations.

The QAP is a combinatorial problem that has been shown to be NP-hard by Sahni and Gonzalez (1976) and is still
challenging to solve even for modest problem sizes of n > 25 (Drezner, Hahn, and Taillard 2005). Common QAP benchmark
problems were collected since 1991 in the QAPLIB (Burkard, Karisch, and Rendl 1997) and are also available online
(Burkard et al. 2009). The QAPLIB maintainers also keep an up-to-date list of researchers working on the QAP and
reference the algorithms that were successfully applied to various QAP problem instances, such as tabu search, simulated
annealing, evolution strategies, ant colony optimization, scatter search, or GRASP.

3.2 Machine Placement Problem

3.2.1 Problem Formulation

We extended the classical formulation of the QAP to model the real-world scenario of planning a new factory more accurately.
A global view of our scenario is given in Figure 1 which shows the involved domains and the problem formulation acting
as an interface between them. In detail, we were interested in the optimal placement of a set of machines on a production
floor to minimize material transport costs. Machines are represented as rectangles with given space requirements (x and y
dimension) and can be placed in an arbitrary position on the floor. A buffer zone is reserved in the upper left corner of
each machine, which is used to store and handle incoming or outgoing material. Moreover machines can be rotated by 90
degree steps, which changes the position of the buffer zone. The distance between two buffer zones is calculated as the
Manhattan distance between their respective x and y coordinates. This problem is similar to the (dynamic) facility layout
problem (D)FLP as for example given in McKendall, Shang, and Kuppusamy (2006), however in their work the machines
or departments were of equal size and possible locations for their placement as well as the distance matrix were predefined.

The frequency of material flow between two machines is obtained from an external source and stored in a flow matrix.
In a real production facility material flow between machines is hardly uniformly distributed. Data obtained from enterprise
resource planning systems as well as simulation models provide different views on the occurring flows. A combination of
these views results in flow matrices that can describe the real situation quite accurately.

Figure 1: The interplay of process simulation and optimization on the MPP

3.2.2 Problem & Solution Representation

Problem, solution instance and objective function of the machine placement problem (MPP) are defined as follows:

• An MPP problem instance is fully specified by the x- and y-dimension of the floor, the dimensions of each separate
machine, and the material flow matrix or matrices.

• A solution candidate of the MPP can be represented as three integer arrays, �x and �y for the center coordinates and
� for the rotation states of the machines, respectively. Each machine can be in one of 4 rotation states, zero being
the default, where the buffer zone is located in the upper left corner of the machine. States one to three denote
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the remaining 90 degree counter-clockwise rotation steps. This representation allows the creation of unfeasible
candidates, i.e., solutions with overlapping segments, a problem which is addressed in Section 3.2.3.

• Since material transport costs should be minimized, the objective function is defined as the total sum of all buffer
zone distances weighted by the respective flow factor.

3.2.3 Dealing with Unfeasible Solutions

Metaheuristic algorithms are most directly applicable to unconstrained optimization. In case of constraints a way must be
found to deal with unfeasible solutions. In the current formulation of the MPP, solutions with overlapping machine sections
or sections that protrude the valid floor space can be generated. Common strategies to address this issue are discussed by
Yeniay (2005), among them the discard or repair of unfeasible solutions and the employment of penalty functions. The
most common issue with penalty functions is their correct parameterization, which is often problem-specific and obtained
by trial and error search or costly meta optimization. These parameters heighten the complexity of algorithm tuning, which
already involves a multitude of parameter decisions for each metaheuristic, such as the choice of suitable crossover and
mutation operators, a population replacement strategy, population size, and mutation rate. For the test scenario in this paper
we therefore use only a very basic additive penalty scheme, penalizing each constraint violation with a constant factor.

We denote the MPP solution representation vectors as �x, �y and � , the dimensions of the available production floor as x
and y, and the flow and machine dimension matrices as F and D. Given the objective function O(�x,�y, �,x,y,F,D), which
returns the total sum of all buffer zone distances weighted by the respective flow factor, and the function I(�x,�y, �,x,y,D),
which returns the number of invalid, meaning overlapping or out of bounds, sections, we can now define the evaluation
function

E(�x,�y, �,x,y,F,D) = O(�x,�y, �,x,y,F,D)+ I(�x,�y, �,x,y,D) ·P(�x,�y, �,x,y,F), (1)

with a penalty factor P(�x,�y, �,x,y,F) = (x+ y) ·Max(F) ·Length(�x). (2)

The penalty factor multiplies the maximum possible floor distance by the maximal flow and weights it with the number of
machines. It thereby ensures that valid and invalid solutions occupy different ranges of the evaluation domain. This penalty
scheme is not very sophisticated but circumvents the parameter tuning problem and turned out to be quite sufficient for the
conducted experiments.

4 METAHEURISTIC ALGORITHMS

The no free lunch theorem (NFL) postulates that no given optimization strategy can be better than any other on all kinds of
optimization problems. In other words, for each optimization strategy one can find a problem and according fitness landscape
where the strategy will perform bad (Wolpert and Macready 1997). One consequence of the NFL is the development of
a multitude of different optimization strategies, each with unique characteristics and the hope that it performs better than
others on a certain subset of all optimization problems. However, testing a given problem with several different strategies is
a complex task and requires considerable programming effort. Generic frameworks have evolved that offer an abstraction of
optimization requirements in order to minimize programming effort and maximize reuse. HeuristicLab is such a framework
which shifts the application of optimization strategies from an implementation point of view to a modeling point of view. In
HeuristicLab algorithms are modeled by combining several generic parts using a graphical user interface. Similarly, problems
are abstracted such that they make use of a certain representation and provide a fitness function as well as import parsers
and graphical representations. The underlying representation, also called the encoding of a solution, provides manipulation
operators such as crossover or mutation.

4.1 Simulated Annealing

Simulated annealing (SA) is among the oldest metaheuristics which offered an explicit strategy to escape from local optima.
Its origins date back to the early days of scientific computing, when Metropolis et al. (1953) proposed an algorithm that can
be used to efficiently simulate the thermal motion of atoms during a cooling process. Kirkpatrick, Gelatt, and Vecchi (1983)
generalized the metropolis algorithm by replacing the atom’s energy with a cost function, termed it simulated annealing in
analogy to the annealing process in metallurgy, and successfully applied the algorithm to optimize computer chip design
and the traveling salesman problem. SA employs the temperature as a simple control parameter that guides the search and
balances phases of diversification and intensification. As the algorithm proceeds, a step-wise reduction of the temperature
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focuses the search on a promising region of the solution space, which eventually leads to convergence. The algorithm’s
performance depends largely on the initial temperature as well as on the cooling scheme. If the temperature drops too
quickly the search might get stuck in a worse local optimum; on the other hand, if the cooling is too slow, the algorithm
might not have converged when it reaches the stop criterion, which might be for example a maximum number of evaluated
solutions. A typical annealing scheme is multiplicative annealing which decreases the temperature in an exponentially shaped
curve. Figure 2 displays a schematic chart of the simulated annealing algorithm. In our case an inner loop is performing
neighborhood sampling at a given temperature until either an accepting solution is found or a maximum effort reached.

Figure 2: Schematic display of simulated annealing, the gray boxes mark problem-specific operators

4.2 Genetic Algorithms

Genetic algorithms (GAs) were introduced in the early 70s by John Holland as what is now known as the canonical genetic
algorithm using binary solution encoding, a fitness-proportional selection, single point crossover, and bit flip mutation. John
Holland proved that in this configuration so-called building blocks evolve over time which in turn are assembled in individual
solutions such that finally a reasonably good solution is achieved (Holland 1975, Goldberg 1989). Over the years the GA
community has expanded the application of genetic algorithms to other domains and introduced additional encoding schemes
as well as crossover and mutation operators. Empirically obtained results show that GAs are able to perform well under
such conditions (Affenzeller et al. 2009, Doerner et al. 2007).

The genetic algorithm used in this study is based on what has been established as the standard genetic algorithm (SGA)
(Dumitrescu et al. 2000) that applies crossover to all individuals, mutates them with a certain, and generally low, probability,
and replaces the whole parent generation with the new children except for a small number of elite parent individuals that
are allowed to survive.

4.3 Evolution Strategies

At about the same time genetic algorithms were developed, evolution strategies (ES) appeared in first publications. Originally,
they differed from the genetic algorithm such that the main operator responsible for the creation of solutions is the mutation
operator. Ingo Rechenberg and Hans-Paul Schwefel introduced several basic variants of ES before adopting more complex
solution manipulation concepts, such as recombination, to broaden the applicability of the evolution strategy (Rechenberg 1973).
The first variant is the simple (1+1)-ES where a mutant was created from a given parent which replaced the parent only if
it was better. It was shown that such a simple strategy coupled with a more intelligent adaption of the mutation strength
allowed the ES to converge quickly to a good solution. Further evolved variants make use of a population, by extending
the (1+1)-ES to a generic (+ )-ES and also include generational replacement, called “comma replacement”. Additionally,
recombination was introduced into the algorithm, as well as a way to self-adapt the mutation strength during the progress
of the search.
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4.4 Problem specific operators

The behavior of the mutation operators used in this study is shown in Figure 3. Uniform1Position changes the values of
one machine in the solution vector to arbitrary values in the whole range. Swap mutation exchanges the x,y and rotation
coordinates of one machine with that of another, while RoundedNormalAddition adds a small value to the positions of each
machine and rotates one machine on average in the solution vector.

Figure 3: Exemplary graphical description of the three mutation operators

Additionally, two crossover/recombination operators have been used in the study. The first one is a simple single point
crossover which works similarly to the single point crossover used in the canonical GA: The parents’ solution vectors are
cut in half at a randomly chosen point and the children composed of the respective halves. The discrete crossover performs
a cutting principally at every position such that for each machine it is randomly decided which parent genes to use.

5 EXPERIMENTS

We applied the three algorithms on 6 different problem instances of the MPP, three of which are artificial, and three more
are adopted from real life data. Situation 1-3 describe facilities with square departments that can be arranged very nicely.
The simplest case 4 squares consists of four squares that are to be placed together such that each of the buffer locations
are adjacent to each other and the shape of the whole layout looks like a bigger square. The next situation 8 squares is
slightly more difficult in that the previous situation is doubled. Two blocks of square machines are to be evolved that are
not interconnected by flows. Thus the algorithm has to perform a clustering of those machines with flows between them as
well as rotate them in an optimal position. The third problem situation 2x8 squares yet again doubles the previous. The
algorithm has to find the optimal layout for 16 squares where there are 4 groups of 4 squares that have stronger flows and
two groups of 8 squares with weaker flows. The optimal solution of these instances are not too difficult to find for a human
layout planner as the flows are homogeneous within the respective group. The main purpose of these situations is to test an
algorithm’s performance under controlled conditions. An optimal arrangement of these situations can be seen in Figure 4.

Figure 4: Optimal solutions in the three artificial square problems with 4, 8 and 16 machines. The respective buffer zones
are marked by a white border.

Problem situations 4-6 are adopted from real life data and test the algorithm’s ability to find layouts under more realistic
conditions. In these instances the machines are rectangular as well as square shapes, also including rather extreme shape
sizes, such as rectangles with a high width to height ratio. The strength of the flows have been calculated by evaluating
a model of the facility under several hypothetical situations. The complexity of the facility is increased by looking at 12,
20 and 30 different machines. The goal of these tests is not to find and prove the effectiveness of a layout for all these
situations, but to evaluate the algorithm’s ability to find good solutions given the flows of a certain model situation. Each
of the three tested algorithms is allowed to run until a certain number of solutions has been evaluated at which time the
algorithm is aborted.
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The applied variant of the evolution strategy was a (10+200)-ES using a RoundedNormalAddition N(0,i). The strategy
parameter vector� was adjusted using two learning parameters  and 0 which were initialized according to the recommendation
given in (Beyer and Schwefel 2002). The elements of the initial mutation strength vector were randomly initialized in the
interval [0; Max(x,y)

10 [, with x and y being the dimensions of the floor space. A second tested variant, a (10/2+200)-ES, made
use of recombination in the form of discrete recombination for the solution vector and intermediate recombination for the
strategy vector � .

Simulated annealing was configured with a maximum effort of 100 solutions per iteration, an initial temperature of 100,
and a multiplicative cooling scheme. The annealing parameter depends on the length of the run and ranged from 0.995
for runs with a maximum of 100,000 evaluations to 0.9997 for runs with a maximum of one million evaluations. The
neighborhood was threefold and randomly switched between Swap, Uniform1Position and RoundedNormalAddition N(0,2).

An SGA was tested in four different configurations: Proportional selection and 5% mutation rate (SGA Ia), proportional
selection and 10% mutation rate (SGA Ib), tournament selection and 5% mutation rate (SGA IIa), and tournament selection
and 10% mutation rate (SGA IIb). The group size of the tournament selector was set to two and 1-elitism was used. The
population sizes ranged from 100 to 300 individuals depending on the problem difficulty. The crossover operator for each
individual was randomly selected to be either single point or discrete crossover. The mutation operator was the same as the
neighborhood operator in SA.

6 RESULTS

The results are given in Table 1, showing the best qualities averaged over 30 runs, as well as the standard deviation. The
forth column lists the runtime in seconds of a single run executed on a PC equipped with a Pentium IV 2.8Ghz CPU and
1GB of RAM. The last column contains the maximum number of evaluations before the algorithm is aborted. Figure 7 shows
a graphical representation of the best results for the real-world based problem situations. Figure 8 visualizes the strongest
flows in one solution found for the problem situation with 20 machines.

Briefly summarizing the results, it turned out that simulated annealing performed best of the three algorithms in 5 out
of 6 instances, only on the most simple instance SGA performed better. The genetic algorithm also performed quite well,
especially with tournament selection and a slightly higher mutation rate. The results indicate that proportional selection
was not working well in combination with a higher mutation rate. The ES did not perform so well on the 6 instances.
Performance increased slightly by using recombination, but overall it stayed behind SGA and SA. Simulated annealing also
produced results with the lowest standard deviation of all three algorithms and thus is more predictable in providing a good
solution. SGA was sometimes able to find better solutions as indicated by the small quality difference to SA and the higher
standard deviation, but on average SA was able to converge to a better solution. A two-tailed Mann-Whitney U test has been
performed to test the best quality results of SA with the next best performing algorithm (SGA IIb); in all cases except 8
squares the null hypothesis that the results are equal could be rejected at the 0.05 significance level. Regarding the runtime,
ES without recombination was the fastest metaheuristic closely followed by SA. SGA and ES with recombination were
approximately equal in runtime.

The first algorithm that we applied to the MPP was the SGA and while it performed quite well, the layouts still showed
potential for further improvement in the artificial problem instances. As shown in Figure 5 one group of 8 interconnected
machines was arranged almost optimally by our SGA, while the other group still had visible optimization potential. So we
applied an evolution strategy to see if the problem could be solved better if mutation was to play a more central role in
the optimization process. Tuning the parameters however quickly showed that ES was not able to reach the quality of the
SGA. Nevertheless, as the results with tournament selection show, SGA is able to achieve better performance with a higher
mutation rate, so the mutation operator does benefit the optimization to a larger degree.

So we applied another mutation-oriented approach and chose simulated annealing. The advantage of SA is that it is
among the simpler metaheuristics and therefore quite easy to apply from an implementation standpoint. There is only a
single manipulation operator which creates a solution in a neighborhood of another solution. Such a manipulation operator
has already been implemented for our SGA in the form of mutation. The results indicate that using the same mutation
operators which allowed SGA to converge to good results enabled SA to surpass SGA. Taking a look at the layouts that
SA produced revealed that it arranged the machines in a very compact way. However, the question remains why SA was
able to perform well, while ES did not. Figure 6 may provide part of the answer to this question in the form of an analysis
on the quality progress curves. The quality progress curve of SGA implies that a big part of the search can be attributed to
unfocused random search as indicated by the large gap between the best, worst, and average individual and the peaks that
sometimes shrink this gap considerably and sometimes increase it to a very high level. The search fluctuates around an elite
individual described by the monotone progress in the best solution quality (darkest curve).
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Figure 5: Characteristic final result from our SGA with tournament selection and 10% mutation. One group is arranged
close to the optimum while the other group still has visible optimization potential.

The ES on the other hand shows a monotone quality progress in the whole parent population as a result of the plus
selection. The children here fluctuate to a lesser degree around the parents and are not allowed to evolve for more than a
single generation, except when they are better.

The quality progress of our SA shows that it performs several uphill moves in the beginning, but after about iteration
3000 focuses on improving the current solution as the temperature has dropped such that an uphill move becomes unlikely.
So SA balances the diversifying behavior of SGA and the intensifying behavior of ES in the course of its progress.

Figure 6: Comparison of the quality progress of SGA (left), ES (middle), and SA (right). The labels on the y-axis range
from 200,000 to 1,600,000 in the SGA chart and 2,000 to 8,000 in the ES and SA charts.

Another reason for the performance difference of ES and SA lies in the operators applied. Our ES uses a mutation
operator that only moves the machines to a certain degree in a certain direction, while SA also makes use of swap and
uniform1position. Especially swap is an operator that increases the neighborhood through exchanges of the position of two
machines. Such a move is unlikely to be performed by the addition of a small value to the position, thus including swap as
an operator of its own is beneficial to the search. But, while the evolution strategy could achieve better results together with
swap, it showed that this was not the only reason as there was still a significant gap. Tested on the 2x8 squares problem
ES with swap achieved an average best quality of 1267.67. So, another factor is the ability of SA to escape from local
optima. The evolution strategy with plus replacement is likely to converge to a local optimum very quickly and can only
escape this if another better solution is within reach of the neighborhood implicitly created by the mutation operator. We
also tried comma selection, which however could achieve only 1859.07 on the 2x8 squares problem as average best quality
over 30 runs. In simulated annealing a move to a worse solution is always accepted with a certain probability, thus the
search is less likely to get stuck in a local optimum. In the light of these results, several other metaheuristics might also be
of interest, among them tabu search (TS) and variable neighborhood search (VNS). Tabu search features an explicit strategy
for escaping local optima, while VNS could exploit to a larger degree the fact that several different mutation/neighborhood
operators are already used. Additionally scatter search (SS) could be an interesting approach as it was designed to cover
diversification and intensification explicitly. An application of these to the MPP may be the subject of a further study.
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Figure 7: Best solutions obtained from situation 4-6 with 12, 20 and 30 machines

Figure 8: Visualization of only the strongest flows in one solution of the problem situation with 20 machines

7 CONCLUSION AND OUTLOOK

7.1 Conclusion

In this paper we described the machine placement problem and showed how it can be used within an optimization task
that involves process simulation to obtain the problem specific data and layout constraints and HeuristicLab to create a
floor plan. HeuristicLab as an optimization environment has already been successfully used in various applications, ranging
from simulation-based to combinatorial optimization, as well as data mining problems. In this work we focused on the
optimization of the MPP and applied three metaheuristics, namely evolution strategies, genetic algorithms, and simulated
annealing, to optimize the placement of machines on a production floor with the aim to minimize material transport costs
between machine buffer zones.

As demonstrated in Sections 5 and 6, a considerable amount of testing and refining was necessary to find an approach
and parameterization that works well on different MPP instances. We found that simulated annealing out-performed the
standard genetic algorithm and evolution strategies with and without recombination in 5 out of 6 instances and attributed it
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Table 1: Comparison of best quality results obtained from several optimization strategies on a number of problem situations

Problem Algorithm Average Best Quality Runtime [s] Evaluations

4 squares

(10+200)-ES 23.40±3.53 20.67 100,000
(10/2+200)-ES 22.07±3.46 32.84 100,000
SA 21.67±2.17 30.76 100,000
SGA Ia 19.13±4.63 31.61 100,000
SGA Ib 21.20±4.32 31.72 100,000
SGA IIa 20.20±4.11 32.96 100,000
SGA IIb 18.47±3.43 33.33 100,000

8 squares

(10+200)-ES 73.33±9.31 43.69 200,000
(10/2+200)-ES 72.60±8.63 68.64 200,000
SA 43.27±4.11 59.42 200,000
SGA Ia 46.27±8.75 65.54 200,000
SGA Ib 66.20±11.98 65.07 200,000
SGA IIa 45.27±6.02 68.54 200,000
SGA IIb 43.80±5.39 68.10 200,000

2x8 squares

(10+200)-ES 1658.00±289.03 105.82 400,000
(10/2+200)-ES 1411.20±72.46 155.40 400,000
SA 686.40±29.57 131.09 400,000
SGA Ia 836.27±113.95 146.82 400,000
SGA Ib 1165.73±146.55 146.98 400,000
SGA IIa 751.60±60.00 152.29 400,000
SGA IIb 731.20±78.93 153.81 400,000

situation 4

(10+200)-ES 6746.73±964.76 78.59 300,000
(10/2+200)-ES 6015.14±722.12 115.12 300,000
SA 3018.41±238.84 95.69 300,000
SGA Ia 4002.03±419.23 109.31 300,000
SGA Ib 5045.95±559.68 109.39 300,000
SGA IIa 4346.77±633.63 113.85 300,000
SGA IIb 3848.71±476.21 114.60 300,000

situation 5

(10+200)-ES 86702.57±73064.37 192.75 600,000
(10/2+200)-ES 46551.86±14029.37 274.94 600,000
SA 12481.25±625.30 224.00 600,000
SGA Ia 21346.35±1807.69 256.76 600,000
SGA Ib 31747.84±2828.18 259.56 600,000
SGA IIa 17234.72±1351.57 260.43 600,000
SGA IIb 15728.18±1126.74 266.02 600,000

situation 6

(10+200)-ES 152134.05±98886.87 465.48 1,000,000
(10/2+200)-ES 159869.78±134391.76 616.69 1,000,000
SA 39314.40±1336.66 490.12 1,000,000
SGA Ia 95756.29±4927.72 569.51 1,000,000
SGA Ib 121004.05±6252.40 576.25 1,000,000
SGA IIa 50261.10±2782.83 572.30 1,000,000
SGA IIb 46735.43±2040.03 574.82 1,000,000

to the algorithm’s ability to escape local optima. Moreover, we identified additional metaheuristics that might perform well
on the MPP such as tabu search and variable neighborhood search.

7.2 Outlook

Our plans for future research activities revolve around two objectives. First and foremost we wish to further extend and refine
the MPP together with our partners and associated partners. Possible extensions are the addition of separate buffer zones for
incoming and outgoing material, the inclusion of floor space utilization into the cost function, the introduction of further
constraints that are necessary for the creation of a feasible layout plan, and more. However, we do not plan to evolve the
MPP into a feature-rich, highly specialized problem description, but aim to find relevant abstractions of real-world situations.
In our view, problem descriptions like the MPP are interfaces between an optimization environment and applications on a
potential real-world problem, as in this case layout problems in production environments. Creating such interfaces enables
the interaction of the problem domain, which can be modeled in simulation environments, data tables, state charts, or process
descriptions, and the optimization domain, which can be modeled via optimization algorithms, expert systems, and analysis
tools. To create such interfaces and to gain knowledge regarding their implementation is an important step to achieve our
second objective:

A growing number of problems is solved by computer aided optimization every year, and thus attracts an increasing
number of people working in this area. Simulation can be regarded as a popular way of modeling several such problems
and has thus increased the number of potential applications even more. Knowledge about the application of optimization
algorithms is generated everywhere in the world, but often enough used in only one or two projects and typically not processed
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in such a way that it can be readily shared with other practitioners. Our long term goal is to store and reuse the results that
we derive from our applications and projects in an automated way. HeuristicLab is an environment for modeling optimization
algorithms instead of programming them; as such we will be looking into ways on how to compare these algorithm models
and how to automatically derive performance measures based on the structure and parametrization of these models. The user
of this environment will not only benefit from the availability of ready-to-use optimization methodologies, but also from the
possibility to build on knowledge that is and has already been found.
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