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In a non-ideal classical Coulomb one-component plasma (OCP), all thermodynamic properties are

known to depend only on a single parameter—the coupling parameter C. In contrast, if the pair inter-

action is screened by background charges (Yukawa OCP) the thermodynamic state depends, in addi-

tion, on the range of the interaction via the screening parameter j. How to determine in this case an

effective coupling parameter has been a matter of intensive debate. Here we propose a consistent

approach for defining and measuring the coupling strength in Coulomb and Yukawa OCPs based on

a fundamental structural quantity, the radial pair distribution function (RPDF). The RPDF is often ac-

cessible in experiments by direct observation or indirectly through the static structure factor.

Alternatively, it is directly computed in theoretical models or simulations. Our approach is based on

the observation that the build-up of correlation from a weakly coupled system proceeds in two steps:

First, a monotonically increasing volume around each particle becomes devoid of other particles

(correlation hole), and second (upon further increase of the coupling), a shell structure emerges

around each particle giving rise to growing peaks of the RPDF. Using molecular dynamics simula-

tion, we present a systematic study for the dependence of these features of the RPDF on C and j and

derive a simple expression for the effective coupling parameter.VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4900625]

I. INTRODUCTION

Strongly coupled or strongly correlated systems are abun-

dant in many fields of physics. In plasma physics, they have

come into the focus in recent times due to the increasing avail-

ability of experimental realizations. In these experiments, the

mutual repulsion of the like-charged particles is comparable

to or even greater than their thermal kinetic agitation. This

leads to the emergence of complex phenomena such as shear

waves,1,2 solidification,3 cooperative behavior,4 and anoma-

lous transport.5,6 Because of these rich physics, there is strong

aspiration to reach ever stronger degrees of correlation in the

experiments.

However, despite the central role of the coupling strength,

it is often difficult to assess from experimental data as it

requires detailed knowledge about the system state. In addi-

tion, the role of Debye-screened interaction is often neglected

when statements about the coupling strength are made. This

leads to difficulties in comparing the degree of correlation

across experiments which include dusty plasmas,7 ultracold

neutral plasmas,8 ions in traps,9 and warm dense matter setups.

The situation is even more complex in a system contain-

ing multiple species such as two-component plasmas. Here,

in principle, one has to distinguish the coupling strength of

the two components as well as the inter-species coupling. In

high density plasmas, such as warm dense matter, where the

light component (i.e., the electrons) may be quantum degen-

erate and weakly coupled, the heavy component may be clas-

sical and strongly coupled. In addition, partial ionization

may be relevant making the analysis of structural and ther-

modynamic properties challenging.

In this work, we give a structural definition of the cou-

pling strengths in nonideal plasmas, focusing exclusively on

one-component plasmas. There, the coupling strength is typi-

cally given in terms of a coupling parameter g of the form

g ¼ hENNi
kBT

; (1)

where ENN is a measure of the typical nearest-neighbor inter-

action. Strong coupling is associated with g> 1. For

Coulomb systems with the interaction potential VðrÞ ¼ Q=r,
the coupling takes the form

C ¼ Q2=a

kBT
; (2)

where Q is the particle charge and a ¼ ½3=ð4npÞ�1=3 is the

Wigner-Seitz radius, a measure of the nearest-neighbor dis-

tance. Evaluation of C for a given experimental situation

thus requires the measuring of T and Q separately (alongside

the density n). The importance of the coupling parameter for

a model one-component Coulomb plasma (OCP) arise from

the observation that its mean energy and all thermodynamic

quantities do not depend on density and temperature sepa-

rately but only on C.

In Yukawa systems, the interaction potential V(r) takes

the form

VðrÞ ¼ Q=r � expð�jr=aÞ; j ¼ a=k: (3)

In a classical plasma k is given by the Debye length whereas,

in a strongly degenerate quantum plasma, it is given by the
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Thomas-Fermi screening length. In general, k is defined by

the static long-wavelength limit of the longitudinal polariza-

tion function, see, e.g., Ref. 10. It is customary to give the

coupling strength of Yukawa systems in terms of C as per

Eq. (2) together with the inverse screening length j.

However, since Q2=a is not the true measure of the potential

energy of a Yukawa system (due to the missing screening11),

C carries no immediate physical significance for these sys-

tems. This raises the question of how to compare Yukawa

and Coulomb systems on the one hand and Yukawa systems

of different screening on the other.

We thus face two intricacies when using C as a measure

of the coupling strength: (1) It requires the measurement of Q

and T separately, and (2) it is only physically meaningful for

Coulomb systems. The goal of this work is to alleviate these

problems by finding a one-to-one mapping between the struc-

ture of Coulomb and Yukawa systems to C [Eq. (2)]. This

allows one to infer C from the structure alone, i.e., without

knowledge of Q or T. Furthermore, by using structural fea-

tures to define the coupling strength, it is possible to give an

effective coupling parameter C
eff for Yukawa systems.12–14

For a Yukawa system with a given screening length, this pa-

rameters equals the value of C of the corresponding Coulomb

system with the most similar structure, i.e., the most meaning-

ful comparison system. A similar approach has been used in

Ref. 15.

The path taken here towards this goal is the following:

Using Langevin Dynamics simulation, we obtain reference

data for the structure of Coulomb and Yukawa systems in

the form of the radial pair distribution function (RPDF) g(r).

To uniquely relate the shape of this function to the physical

degree of non-ideality, we use two of its properties: the

width of the correlation hole and the height of the first peak

of g(r).

Comparing these experimentally accessible quantities to

the reference data allows one to infer C. Carefully optimized

fit formulas are derived which connect the structure to the

coupling strength and allow for an interpolation to values not

covered in the reference data.

II. METHODS AND SIMULATION

We use Langevin dynamics simulation for N¼ 8192

particles to obtain the equilibrium properties of the Coulomb

and Yukawa One-Component plasma. The Langevin equa-

tion reads

m€ri ¼ Fi � m��vi þ yi i ¼ 1…N; (4)

where �� is the friction coefficient, Fi is the repulsive interac-

tion force between the particles, and yiðtÞ is a Gaussian

white noise with zero mean and the standard deviation

hya;iðt0Þyb;jðt0 þ tÞi ¼ 2kBTm��dijdab dðtÞ, [a; b 2 fx; y; zg].
We use a constant friction coefficient of �� ¼ 0:1xp, where

xp ¼ ½4pQ2n=m�1=2 is the nominal (Coulomb) plasma fre-

quency.32 We vary j between 0 and 2 in steps of 0.2 and

vary C to cover the entire liquid phase, i.e., from C¼ 1 up to

close to the phase transition temperature.33

To assess the structural state of the system, we use the

radial pair distribution defined as

g rð Þ ¼ 1

Nn

X

N

i; j ¼ 1

i 6¼ j

d r� rijð Þ

* +

; (5)

where rij ¼ jri � rjj and the averaging is over time. The

RPDF is the most simple structural quantity of a many-

particle system and describes the relative occurrence fre-

quency of a particular pair distance r in the system. In many

setups, it is experimentally accessible through direct optical

monitoring (e.g., in dusty plasmas) or indirectly through the

measurement of the static structure factor (e.g., through scat-

tering measurements). There are also various theoretical

approaches to calculate the RPDF including the Hypernetted

Chain Approach16,17,29 and simulations.18

For a system of non-interacting particles, gðrÞ � 1 and

any correlation effects will manifest themselves in deviation

of g(r) from unity. One of the two main RPDF characteristics

of strongly coupled systems is the correlation void at small

values of r which reflects the mutual repulsion of particles at

small distances. The second feature is the emergence of a se-

ries of peaks in g(r) related to the formation of shell-like

structures of first, second, etc., neighbors around any particu-

lar particle.

The build-up of correlation from an uncorrelated system

manifests itself in two subsequent steps (Fig. 1): First, the

correlation void grows rapidly as the correlation increases.

After this process, upon further increase of the coupling

strength, the shell structure emerges and becomes gradually

more pronounced. Notably, the size increase of the correla-

tion void with the coupling strength is rapid only at small

values of the coupling, while the growth of the peak structure

is most prominent at larger coupling values. This comple-

mentary development leads us to use both features of the

RPDF in our subsequent analysis (see Fig. 1). Specifically,

we assess the size of the correlation void as the value of r1=2
defined by

gða � r1=2Þ ¼ 0:5; (6)

i.e., the dimensionless distance at which g(r) has risen to half

its asymptotic limit. For the peak structure, we use the height

of the first peak in the RPDF, i.e., its global maximum gmax.
34

FIG. 1. Radial pair distribution function of a Coulomb system at

C ¼ 1; 4; 40; 100.
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As an example, we show in Fig. 2 both r1=2 and gmax as

a function of C for a Coulomb system (note that in the left

part of Fig. 2, the C-axis is scaled logarithmically). At small

C, r1=2 varies rapidly and gmax varies only slowly while for

larger C, the inverse is true. However, since both r1=2 and

gmax are strictly monotonic functions of C at given j, they

both uniquely define the whole structural composition of the

system and thus the complete thermodynamic equilibrium

properties of the plasma. The switching between r1=2 and

gmax to define the coupling strength is thus only a matter of

practicality.

III. STRUCTURE AND COUPLING STRENGTH

We now establish a one-to-one mapping between the

structure of a system and its physical coupling strength. In

doing so, we assume that the screening strength j [Eq. (3)] is

known in a given experimental setup. This is crucial, because

in this first step, we express the coupling of a Yukawa sys-

tem in the customary way through the nominal Coulomb

coupling parameter C. Since this is not the actual physical

coupling strength of a Yukawa system, systems with the

same value of C but different j exhibit different degrees of

structural correlation. Conversely, a given structure can cor-

respond to a multitude of fC; jg pairs, so that without

knowledge of j, these systems cannot be distinguished. If,

however, j is known, then the structure [i.e., the shape of

g(r)] uniquely defines the coupling value C.

First, we consider systems whose correlation is large

enough that a peak structure has formed and the first peak in

the RPDF is clearly visible (trivially, gmax tends to unity

when the coupling strength is lowered). The relation between

gmax and C at a given j is shown in the top graph of Fig. 3.

The unique correspondence between C and gmax (at given j)

is clear from these data. One also sees that a given peak

height can correspond to several values of C, depending on

j, or, conversely, that for a given C, systems with higher j

have lower peak heights and are thus less strongly coupled.

This is a reflection of the fact that in systems with large val-

ues of j, the increased screening reduces the interaction

between the particles. To use gmax as a reliable indicator of

C, the dependence CðgmaxÞ must be sensitive to a variation

of gmax. This corresponds to those parts of the curves in

Fig. 3 which have a sufficiently high slope, i.e., gmax� 1:4.
For less strongly coupled systems, C is only a weak

function of gmax, since the peak develops slowly as the cou-

pling is increased. Instead, the build-up of correlation at

these small coupling values is indicated by the growth of the

correlation void r1=2. The dependence of C on r1=2 is shown

in the bottom graph of Fig. 3. It is clear that r1=2 is a sensitive

indicator of C in the range r1=2�1:3 and can be used to

deduce C at a given j. The complementary nature of gmax

and r1=2 is readily observable from the two graphs of Fig. 3:

While gmax is sensitive at higher values of C, r1=2 is sensitive

at small values of C. There is an overlap around C � 30…50

in which both methods are usable and give identical results.

We stress that the use of both gmax and r1=2 is made to

FIG. 2. gmax and r1=2 as a function of C for a Coulomb system. Note that in

the left part of the figure, the C-axis is scaled logarithmically. The inset

shows the curves on a semilog scale.

FIG. 3. Top: Coupling parameter C as a function of the peak height gmax of

the RPDF for j as indicated in the figure. Bottom: Coupling parameter C as

a function of r1=2 (see text for definition) for j as indicated in the figure.
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maximize the sensitivity of the measurement during both

stages of the correlation build-up.

We now develop approximate fit formulas to the data of

Fig. 3 in which the relative mean-squared deviation is mini-

mized.19 For CðgmaxÞ, the data are well described by the

polynomial

Cðgmax; jÞ ¼ a1ðjÞ þ a2ðjÞgmax þ a3ðjÞg2max;

1:4 < gmax < 2:4; (7)

where aiðjÞ is given by the values in Table I. From the errors

given in Table I, it is clear that Eq. (7) is an excellent fit to

the data. To simplify the usage of Eq. (7) and interpolate to

intermediate values of j, the functional form of aiðjÞ can be

further approximated by

a1ðjÞ ¼ 22:40� 7:88jþ 9:68j2

a2ðjÞ ¼ �70:09þ 20:28j� 32:48j2

a3ðjÞ ¼ 52:60� 12:71jþ 23:73j2:

(8)

Use of Eq. (8) in Eq. (7) yields a maximum error of

3.3% and an average error of 1.45% over all numerical data.

The dependence Cðr1=2Þ is approximated by the follow-

ing relation:

Cðr1=2; jÞ ¼ b1ðjÞ expðb2r31=2Þ þ b3ðjÞ;
C � 1 and r1=2 < 1:3; (9)

where b2 ¼ 1:575 is a constant and the other fit parameters

are given in Table II alongside the maximum and average

deviation from the numerical data. For bi, the following

approximation can be given

b1ðjÞ ¼ 1:238� 0:280jþ 0:644j2;

b2 ¼ 1:575;

b3ðjÞ ¼ �0:931þ 0:422j� 0:696j2;

(10)

which, in combination with Eq. (9), gives a maximum error of

5.59% and an average error of 1.68% over all numerical data.

Thus, in conclusion, we have developed a measure of

the coupling strength based solely on structural features of

the system. From this follow two complementary methods to

infer the value of C from the structure of the system. Figure

3 shows the relationship between gmax and C and between

r1=2 and C and can be used directly to obtain C from the

RPDF at a given j. Equations (7) and (9) provide a more

convenient means and allow the interpolation to intermediate

screening lengths while only incurring a small error.

Together these methods provide a non-invasive measurement

method for C for both Coulomb and Yukawa systems. The

only knowledge required is the density n (to obtain a) and ei-

ther the peak height gmax or the correlation void size r1=2,

both of which are generally much easier to measure than the

charge state Q and the kinetic temperature T.

IV. EFFECTIVE COUPLING STRENGTH

After having addressed the problem of the definition and

measurement of the coupling parameter C in Sec. III, we

now turn to the question of how a unified effective coupling

parameter Ceff can be defined which carries physical signifi-

cance not only for Coulomb but also for Yukawa systems.

This problem has been considered before, especially for two-

dimensional Yukawa systems13,14,20–22 but also for three-

dimensional systems, based, e.g., on the packing fraction.12

Here, our goal is to give a definition based on the struc-

tural information contained in gmax and r1=2, answering, in

essence, the question “Given a Yukawa system with a known

nearest-neighbor correlation (i.e., a given gmax or r1=2), what

is the structurally most similar Coulomb system?”

This question can be answered by a graphical solution

based on Fig. 3 whose principle is sketched in Fig. 4: The

value of gmax or r1=2 for the known Yukawa system is pro-

jected down on the corresponding CðgmaxÞ curve for j¼ 0

and the corresponding C, which is now equivalent to C
eff, is

read off. For situations in which both C and j of a Yukawa

system are known (e.g., in simulations), the corresponding

gmax or r1=2 can be obtained directly from Fig. 3 as well.

For a formulaic solution to the question posed above,

one needs to invert the relation Cðgmax; jÞ [Eq. (7)] to yield

gmaxðC; jÞ and obtain C
eff as

C
effðC; jÞ¼: CðgmaxðC; jÞ; j ¼ 0Þ: (11)

The same procedure yields, mutatis mutandis, the comple-

mentary definition

TABLE I. Fit parameters of Eq. (7). Also given are the maximum and aver-

age deviation from the numerical data.

j a1 a2 a3 Dmax (%) Davg (%)

0.0 22.86 �68.94 51.21 0.23 0.09

0.2 18.64 �64.53 50.29 0.21 0.06

0.4 21.86 �69.52 52.68 0.17 0.06

0.6 22.70 �72.80 55.28 0.24 0.07

0.8 23.61 �77.27 59.01 0.24 0.09

1.0 23.76 �82.11 63.73 0.25 0.08

1.2 26.84 �91.75 70.83 0.20 0.08

1.4 28.30 �101.5 79.29 0.25 0.11

1.6 35.85 �120.4 91.76 0.22 0.10

1.8 37.09 �135.4 105.2 0.28 0.08

2.0 47.35 �164.0 124.7 0.42 0.13

TABLE II. Fit parameters for Eq. (9). Also given are the maximum and

average deviation from the numerical data.

j b1 b3 Dmax (%) Davg (%)

0.0 1.20 �0.87 2.49 1.68

0.2 1.21 �0.88 2.78 1.48

0.4 1.25 �0.91 2.54 1.30

0.6 1.34 �0.98 2.29 1.29

0.8 1.45 �1.07 1.55 1.00

1.0 1.61 �1.21 1.30 0.62

1.2 1.81 �1.40 1.76 0.43

1.4 2.07 �1.65 1.68 0.52

1.6 2.40 �1.99 2.12 0.66

1.8 2.80 �2.41 1.81 0.67

2.0 3.31 �2.94 1.02 0.41
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C
effðC; jÞ¼: Cðr1=2ðC; jÞ; j ¼ 0Þ: (12)

Note that both Eqs. (11) and (12) carry the same limitations

for their application as Eqs. (7) [1:4 < gmax < 2:4] and (9)

[C � 1 and r1=2 < 1:3], respectively. Taken together, they

provide a definition of Ceff over a range of coupling strengths

equivalent to a Coulomb system with C ¼ 1…150, i.e., over

practically the whole strongly coupled liquid regime (crystal-

lization of a Coulomb system occurs at C� 172).

A further simplification can be introduced by noticing

that Eqs. (11) and (12) are very well approximated by their

respective linearizations. In addition, for a given j, the two

linearizations of these equations coincide within 3% with

their joint average, which leads us to the following simple

definition of Ceff:

C
effðC; jÞ ¼ f ðjÞ � C; 0 	 j 	 2;

1 	 C
eff 	 150 (13)

where the scaling function is given by

f ðjÞ ¼ 1� 0:309j2 þ 0:0800j3: (14)

The scaling function has been found as a least-square fit to

the average of the linearizations. In this way, the definition

(13) is the most accurate representation of CeffðC; jÞ valid

for the whole liquid range in which 1 < C
eff < 150 since it

incorporates both linearizations of (11) and (12).35

The dependence of f ðjÞ on j is shown in Fig. 5 together

with the intuitive scaling function expð�jÞ which follows

from straightforward application of Eq. (1) for a Yukawa sys-

tem. Clearly, such a simple approach fails to capture the true

structural coupling described by C
eff. The scaling function

fVKðjÞ ¼ ð1þ ajþ aj2=2Þ � expð�ajÞ with a ¼ ð4p=3Þ1=3
originally proposed by Vaulina and Khrapak23 for the phase

transition temperature, on the other hand, falls within 10% of

f ðjÞ for j 	 2. Figure 5 also shows the corresponding scaling

function for a two-dimensional Yukawa system as derived

by Hartmann et al.14 which is valid for Ceff
� 40 and where

j ¼ ðk ffiffiffiffiffiffi

pn
p Þ�1

is the two-dimensional definition of the

screening strength. This comparison shows that the nominal

screening of a Yukawa system has a stronger effect on the

effective coupling in two dimensions than it does in three

dimensions.

In Fig. 6, the RPDF is shown for systems with identical

C
eff but different screening strengths j. Evidently, even

though the present definition of Ceff only takes short-range

features into account, the agreement extends to larger pair

FIG. 4. Sketch of the graphical definition of Ceff: A Yukawa system with

C¼ 300 and j¼ 2 has an effective structural coupling of Ceff ¼ 120.

FIG. 5. The scaling function f ðjÞ (14) as a function of j (solid line). The

bounds of the gray shaded area show the linearization of Eq. (11) (upper

bound) and Eq. (12) (lower bound). Also shown are the intuitive scaling

function expð�jÞ, the scaling function fVK proposed by Vaulina and

Khrapak,23 and the scaling function for two-dimensional Yukawa systems.14

FIG. 6. The RPDF g(r) for systems with identical Ceff but different j.

FIG. 7. j� C phase diagram for Yukawa systems. The symbols indicate the

melting transition.24 The solid line marks a constant effective coupling pa-

rameter Ceff ¼ 172. Note that for larger j the phase diagram is more com-

plex due to the existence of an additional fcc-lattice phase (not shown).24
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distances as well.33 This further validates our approach of

using short-range features as a parametrization of the sys-

tem’s structure.

Finally, we consider the liquid-solid phase transition of

Coulomb and Yukawa fluids. Since this transition occurs

when the ratio of potential and kinetic energy exceeds a

threshold value, one expects an effective structural coupling

to be an indicator of the phase change. Figure 7 shows the

value Cm at which the phase transition occurs24 together

with a constant effective coupling parameter of Ceff ¼ 172

according to our definition (13). Evidently, even though C
eff

defined in this work has only been validated in the regime

1 	 C
eff 	 150, the phase transition is well described by this

effective coupling value. This indicates that Ceff captures the

actual physical coupling of Yukawa systems up to the phase

transition.

At the transition itself, one expects a sudden change in

gmax as was observed in the two-dimensional case13 which

signifies the re-ordering of the system into a body-centered

cubic (bcc) crystal. A similar behavior is expected to appear

at the transition from the bcc phase to the face-centered

cubic which occurs in Yukawa systems at higher screen-

ing.24,25 These questions are beyond the present analysis and

will be studied elsewhere.

In addition, it is well known that the phase transition is

closely connected to the properties of the static structure fac-

tor S(k). More precisely, the Hansen-Verlet criterion26 states

that the phase transition occurs when the maximum peak

Smax of S(k) exceeds a threshold value of typically 2.85. In

order to connect the Hansen-Verlet criterion with the short-

range definition of C
eff at hand, we have performed addi-

tional calculations in the Hypernetted Chain Approximation

(HNC) to obtain both Smax and gmax as a function of C and

j.27,28 Figure 8 shows the results of these calculations.

While the HNC calculations do not extend all the way to the

phase transition, one can see that both gmax and Smax depend

in a qualitatively identical way on C. This is not a trivial

result since S(k) is related to an integral over g(r) and thus

depends on the complete r-dependence of the pair distribu-

tion function.36 We conclude that the phase transition is indi-

cated by a critical value of gmax (and thus of C
eff) in the

same way as it is indicated by a critical value of Smax by the

Hansen-Verlet criterion.

V. SUMMARY

Particle correlations are a central issue in a wide range

of plasma conditions and experiments. Despite the field’s

growing importance, there is lack of a clear, unified language

when talking about the degree of correlation or the strength

of coupling. In this work, we have proposed an approach

based on the static structure of the system to define the

degree of correlation as well as a simple way to measure the

system’s correlation from its structural properties. Our meth-

odology is applicable to both unscreened, pure Coulomb sys-

tems as well as screened Yukawa systems with a Debye

length corresponding to j 	 2, which encompasses almost

all situations of interest.

From an experimentalist’s point of view, with the

approach presented here, it suffices to have knowledge of the

particle density n and the radial pair distribution function (or

the static structure function) to infer the coupling parameter

C, instead of the measurement of the particle charge Q, the

kinetic temperature T and the particle density n.

An assessment of the coupling strength based on the

structure of the system furthermore allows one to make

meaningful comparisons between Coulomb and Yukawa sys-

tems and between Yukawa systems with different screening.

The common denominator is the effective coupling parame-

ter Ceff, which corresponds to the equivalent value of C for a

Coulomb system with the most similar nearest-neighbor

structure. We have derived a definition of this effective cou-

pling parameter Ceff by considering the structural features of

the respective systems during all stages of correlation build-

up. Our definition (13) is thus valid for the whole range of

the strongly coupled liquid.

We also briefly remark on the need of knowing the

screening length in order to apply our method to Yukawa

systems. It is, in principle, possible to infer the value of the

screening length non-invasively from the dynamics of the

system, in much the same way as we have inferred the value

of the coupling strength from the statics of the system (see

Ref. 13 for two-dimensional systems). Other methods

include direct plasma measurements or the observation of

self-excited waves.30,31 The assumptions in this work, there-

fore, pose no principal limitation on the applicability of the

methodology presented.

FIG. 8. HNC calculations for gmax (left) and Smax (right) in the C-j-plane. The contour lines of Smax have been overlayed onto gmax in the left graph as broken

lines.
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The approach presented here for an one-component

plasma is directly extendable to multicomponent plasmas. A

detailed analysis of this generalization will be the subject of

a forthcoming paper.
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