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1 Introduction

During the last years there was a significant progress in constructing realistic inflationary

models in supergravity. This difficult task can be most efficiently achieved in theories with

Kähler potentials with a flat direction corresponding to the inflaton field. In such theories,

the inflaton potential has a shift symmetry broken only by the superpotential. This allows

to develop a large class of flat inflationary potentials suitable for the implementation of

various versions of chaotic inflation [1–3].

It was found also that many successful versions of supergravity inflation, which had

flat potentials for seemingly unrelated reasons, may in fact be equivalently represented

as theories with Kähler potentials with a flat direction. This includes, in particular, the

very first version of chaotic inflation in supergravity [4–6]. More recent progress is related

to the development of a class of α-attractors [7–12] based on the hyperbolic geometry of

the moduli space [13]. These models provide an excellent fit to the latest cosmological

data [14–16]. Flatness of the inflaton potential in the original formulation of these models

did not require flatness of the Kähler potential in the inflaton direction; is was related to
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the hyperbolic geometry of the moduli space [13]. However, using the symmetries of the

hyperbolic geometry it was possible to cast the original Kähler potentials of these models

into a form with the flat direction corresponding to the inflaton field [10, 11]. This helped

to solve the problem of initial conditions for inflationary models of this type [11, 17], and

facilitated the development of models which could simultaneously describe inflation, dark

energy and supersymmetry breaking [12]. The formulation of such models is especially

simple in the context of the theory of orthogonal nilpotent superfields1 [22–24], where the

Kähler potential is flat in the inflaton direction.

In this paper we will reveal yet another advantage of inflationary models with Kähler

potentials with a flat direction: a broad class of such models, including all models men-

tioned above, can be consistently generalized by adding matter multiplets. Under certain

conditions to be specified below, the scalar fields from the matter multiplets have all van-

ishing vacuum expectation values during inflation, and therefore they do not affect the

inflationary dynamics. This is rather important, because in general one could expect that

interactions between various fields could lead to tachyonic instabilities and a very compli-

cated multi-field cosmological evolution. Meanwhile in the theories to be discussed below

one can introduce matter multiplets while preserving all advantages of the previously con-

structed inflationary models.

More specifically, we will consider inflationary models with the inflaton Φ and a sta-

bilizer S. The stabilizer S can be either a nilpotent superfield S2(x, θ) ≡ S2 = 0 or just

a very heavy field due to the presence of the sectional curvature term −(SS̄)2/Λ2 in the

Kähler potential [2, 3]. We assume that the Kähler potential for the matter fields U i is

canonical, and that there is no direct coupling in the Kähler potential between the two

sectors:

K = Kinfl(Φ, Φ̄;S, S̄) +Kmat(U
i, Ū ı̄) = Kinfl(Φ, Φ̄;S, S̄) +

∑

i

U iŪ ı̄ . (1.1)

The simplest option to consider is that the inflaton field and the stabilizer belong to the

hidden sector, so there is no direct interactions between these fields and the matter fields

U i, not only in the Kähler potential but also in the superpotential. This separation can

be very useful, if one wants to suppress the reheating temperature in the theory. However,

our main results will be valid in a more general class of theories, so we will start with a

more general superpotential which can describe direct interactions between all fields,

W =Winfl(Φ, S) +Wmat(U
i,Φ, S) , (1.2)

where

Wmat(U
i,Φ, S) =

1

2
AijU

iU j +
1

3!
BijkU

iU jUk + . . . (1.3)

Here . . . denotes terms with higher powers in the U i and Aij , Bijk, etc. may, in principle,

depend on the inflaton sector. But to guarantee the absence of tachyons, we will find that

such a dependence in Aij is very restricted.

1Various constrained superfields were studied in application to particle physics and cosmology for a long

time, see for example [18–21].
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Our condition that the matter multiplets have vanishing vev’s and that the Kähler

potential and superpotential are quadratic in matter fields is a choice valid, for example,

for the superfields like squarks and leptons

U i = 0 . (1.4)

In this case we are able to establish rather general conditions for the absence of tachyons.

The case of matter fields with non-vanishing vev’s has to be investigated separately. See

also appendix A.3 for a discussion of these issues.

Various studies of multi-sector supergravities were performed in the past. For example

cases with K = K1 +K2 and W =W 1 ·W 2 were studied in [25] where also the references

to earlier work are given. This is different from our setting in eq. (1.2). In inflationary

models developed in [27] it was proposed to have a superpotential at least quadratic in

matter fields, however, due to the nature of these models, the coupling of matter fields to

the nilpotent superfield was required to be of the formW (Φ, S, U i) = fDZ(Φ, U i)(1+
√
3S).

This is a subclass of our models considered in eq. (1.2).

We will find that in general our models in eqs. (1.2) and (1.3) might have some tachyonic

matter directions during inflation. However, the situation becomes much better, if the

inflaton field corresponds to a flat direction of the Kähler potential. For definiteness, we

will assume that the inflaton direction corresponds to the real field Φ + Φ̄ and the Kähler

potential in the inflaton direction Φ + Φ̄ is flat,2 i.e.

∂ΦK
∣

∣

∣

Φ−Φ̄=0
= 0 , (1.5)

whereas the sinflaton Φ − Φ̄ is stabilized at Φ − Φ̄ = 0. In such a case we find that all

tachyons disappear under the condition that Aij is either independent of Φ, S or has a

certain restricted dependence on the inflaton sector fields. The simplest Kähler potential

of such type is −(Φ − Φ̄)2/2 [2, 3]. Magically, the hyperbolic α-attractor models [10–12],

compatible with the current and future data, belong to this class of ‘Kähler flat’ models.

A more general class of Kähler potentials described in [2, 3] also satisfies this condition.

It requires the Kähler potential to be invariant under the following transformations

Φ ↔ Φ̄ , Φ → Φ+ a, a ∈ R . (1.6)

In many of such models, the inflationary trajectory Φ − Φ̄ = 0 is a stable minimum with

respect to the field Φ − Φ̄. The requirement that inflation takes place at Φ − Φ̄ = 0 can

be also implemented by either using the nilpotent orthogonal superfields S(Φ− Φ̄) = 0 as

proposed in [22, 23], or, if necessary, by adding a sinflaton stabilization term to the Kähler

potential of the form ASS̄(Φ− Φ̄)2 [2, 3]. Here A defines the bisectional curvature of the

Kähler manifold which may depend on the inflaton field.

The condition for inflation to take place at Φ−Φ̄ = 0 usually requires the superpotential

to be a holomorphic function of the superfields with real coefficients, as explained in [2, 3,

26]. This condition may be relaxed in theories with nilpotent orthogonal superfields [22–24]

2We will often refer to these models which have a flat direction in a Kähler potential as models ‘with a

flat Kähler potential’. Note, however, that this should not be confused with the Kähler manifold curvature.

For example in α-attractor models [10–12] the curvature is RK = − 2

3α
, but the Kähler potential has a flat

inflaton direction.
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where Φ− Φ̄ = 0 by construction. Also, as we will show in this paper, in the theories with

nilpotent orthogonal superfields one can introduce matter fields with arbitrary dependence

of Aij on the inflaton field, without affecting stability of the inflationary trajectory.

Note that one may equivalently consider Kähler potentials which are flat in the imag-

inary direction, such as (Φ + Φ̄)2/2 [1, 27]. In that case the formulation of the condition

equivalent to the reality condition mentioned above is slightly more involved, see [26].

2 Coupling the inflationary sector to matter

2.1 General case

We start with a model of inflation defined via two fields Φ and S and the following Kähler

and superpotential

K = k(Φ, Φ̄) + SS̄ , W = g(Φ) + Sf(Φ) . (2.1)

We will consider nilpotent fields S2 = 0,3 which only allows for an S independent term and

a term linear in S in the superpotential.

Now we couple this model to matter fields U i that satisfies two criteria: 1) The Kähler

potential is canonical Kmat =
∑

i U
iŪ ı̄ and 2) the superpotential Wmat(S,Φ, U

i) is at least

quadratic in the fields U i.4 The full model is then

K = k(Φ, Φ̄) + SS̄ +
∑

i

U iŪ ı̄ ,

W = g(Φ) + Sf(Φ) +W g
mat(Φ, U

i) + SW f
mat(Φ, U

i) . (2.2)

HereW g
mat adds a matter dependent term to g(Φ) andW f

mat adds a matter dependent term

to f(Φ). In general, we will study the case where the term in the superpotential that is

quadratic in the U i depends on Φ and S:

W = g(Φ) + Sf(Φ) +
1

2

(

Ag
ij(Φ) + SAf

ij(Φ)
)

U iU j + . . . (2.3)

i.e. we specify that in (1.3) Aij(Φ, S) = Ag
ij(Φ) + SAf

ij(Φ).

We find the following scalar potential

V = ek+
∑

i U
iŪ ı̄

(

|f +W f
mat|2 − 3|g +W g

mat|2 +
∑

i

|∂iW g
mat + Ū ı̄(g +W g

mat)|2

+KΦΦ̄|g′ + (W g
mat)

′ + (g +W g
mat)∂Φk|2

)

. (2.4)

Here ′ means ∂Φ on holomorphic functions and ∂Φ̄ on anti-holomorphic functions. Thanks

to the above requirements, we see that for

U i = 0 we have W
g/f
mat = ∂iW

g/f
mat = ∂nΦW

g/f
mat = ∂nΦ∂iW

g/f
mat = 0 , ∀n , (2.5)

3The same conclusion can be reached for models in which S is not nilpotent, if one adds the sectional

curvature term −(SS̄)2/Λ2 to the Kähler potential and takes Λ to be sufficiently small to decouple S.
4These conditions seem to be satisfied for the MSSM and NMSSM. We also only need the weaker

condition that U i = 0 implies ∂iK = ∂ijK = 0.
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and the scalar potential in this case reduces to

Vinf = ek
(

|f |2 − 3|g|2 +KΦΦ̄|g′ + g∂Φk|2
)

, (2.6)

which is just the inflaton potential resulting from (2.1).

The interesting fact is that U i = 0 is actually a critical point at which the mass matrix

is block diagonal with one block corresponding to the inflaton sector and the other block

corresponding to the matter sector.

Let us first show that U i = 0 is a critical point:

∂iV = Ū ı̄V + ek+
∑

l U
lŪ l̄

[

(∂iW
f
mat)(f +W f

mat)− 3∂iW
g
mat(g +W g

mat)

+
∑

j

(∂ijW
g
mat + Ū ̄∂iW

g
mat)(∂jW

g
mat + U j(g +W g

mat))

+ (∂iW
g
mat + Ū ı̄(g +W g

mat))(g +W g
mat)

+KΦΦ̄(∂i(W
g
mat)

′ + ∂iW
g
mat∂Φk)(g

′ + (W g
mat)

′ + (g +W g
mat)∂Φk)

]

. (2.7)

We see that the above expression vanishes for U i = 0 due to eq. (2.5).

We can see analogously that ∂ΦV = 0 reduces for U i = 0 to ∂ΦVinf = 0. Similarly, the

second derivatives with respect to Φ and/or Φ̄ are unchanged and are the same for Vinf
and V at U i = 0. This follows from eq. (2.5).

Now let us look at mixed derivatives

∂Φ∂iV = Ū ı̄∂ΦV + ∂Φ

[

ek+
∑

l U
lŪ l̄

(

(∂iW
f
mat)(f +W f

mat)− 3∂iW
g
mat(g +W g

mat)

+
∑

j

(∂ijW
g
mat + Ū ̄∂iW

g
mat)(∂jW

g
mat + U j(g +W g

mat))

+ (∂iW
g
mat + Ū ı̄(g +W g

mat))(g +W g
mat)

+KΦΦ̄(∂i(W
g
mat)

′ + ∂iW
g
mat∂Φk)(g

′ + (W g
mat)

′ + (g +W g
mat)∂Φk)

)]

. (2.8)

We see that every term will be multiplied by a term that vanishes for U i = 0 (see eq. (2.5)).

So we have shown that U i = 0 implies VΦU i = 0. Analogously, we can see that VΦ̄U i = 0

for U i = 0. So we can conclude that the matter sector does not affect the inflationary

sector at all.

Now we check how the inflaton sector affects the matter sector:

∂i∂̄V = δīV + Ū ı̄∂̄V + U j(∂iV − Ū ı̄V )

+ ek+
∑

l U
lŪ l̄

[

(∂iW
f
mat)(∂jW

f
mat)− 3∂iW

g
mat∂jW

g
mat

+ ∂iW
g
mat(∂jW

g
mat + U j(g +W g

mat))

+
∑

l

(∂ilW
g
mat + Ū l̄∂iW

g
mat)(∂jlW

g
mat + U l∂jW

g
mat)

+ (∂iW
g
mat + Ū ı̄(g +W g

mat))∂jW
g
mat + δī|g +W g

mat|2

+KΦΦ̄
(

(∂iW
g
mat)

′ + ∂iW
g
mat∂Φk

)(

(∂jW
g
mat)

′ + ∂jW
g
mat∂Φk

)

]

. (2.9)
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This simplifies substantially for U i = 0, where we are left with

∂i∂̄V = δīV + ek
(

∑

l

(∂ilW
g
mat)(∂jlW

g
mat) + δī|g|2

)

= δī

(

V + ek|g|2
)

+ ek
∑

l

(∂ilW
g
mat)(∂jlW

g
mat) . (2.10)

So we find a positive contribution from the inflaton sector to the diagonal entries of the

mass matrix.

Let us now check the derivatives along two holomorphic matter directions

∂i∂jV = Ū ı̄∂jV +Ū ̄(∂iV −Ū ı̄V )+ek+
∑

l U
lŪ l̄

[

(∂ijW
f
mat)(f +W f

mat)−3∂ijW
g
mat(g +W g

mat)

+
∑

l

(∂ijlW
g
mat + Ū l̄∂ijW

g
mat)(∂lW

g
mat + U l(g +W g

mat))

+ (∂ijW
g
mat + Ū ̄∂iW

g
mat)(g +W g

mat) + (∂ijW
g
mat + Ū ı̄∂jW

g
mat)(g +W g

mat)

+KΦΦ̄
(

(∂ijW
g
mat)

′ + (∂ijW
g
mat)∂Φk

)(

g′ + (W g
mat)

′ + (g +W g
mat)∂Φk

)

]

. (2.11)

This again simplifies substantially for U i = 0 where we are left with

∂i∂jV = ek
(

(∂ijW
f
mat)f̄ +KΦΦ̄

(

(∂ijW
g
mat)

′ + (∂ijW
g
mat)∂Φk

)

(g′ + g∂Φk)− (∂ijW
g
mat)ḡ

)

.

(2.12)

The matter mass matrix at U i = 0 has thus the following form

M2 =

(

∂īV ∂ijV

∂ı̄̄V ∂ı̄jV

)

= 1

(

V + ek|g|2
)

+ ek

(

(Ag · Āg)ī c1A
g
ij + c2(A

g
ij)

′ + f̄Af
ij

c̄1Ā
g
ı̄̄ + c̄2(Ā

g
ı̄̄)

′ + fĀf
ı̄̄ (Āg ·Ag)ı̄j

)

, (2.13)

where we defined

c1 = KΦΦ̄∂Φk (g′ + g∂Φk)− ḡ , (2.14)

and

c2 = KΦΦ̄ (g′ + g∂Φk) (2.15)

and we used that A
f/g
ij = ∂ijW

f/g
mat for U i = 0 (see eq. (2.3)).5

In general Ag
ij , (A

g
ij)

′ and Af
ij are independent and it is not possible to diagonalize

the mass matrix (2.13). So we will now discuss more specific cases. In particular, one can

diagonalize the mass matrix above, whenever c2(A
g
ij)

′ + f̄Af
ij = 0 or more generally, when

c2(A
g
ij)

′ + f̄Af
ij ∝ Ag

ij . In this case we define c via

c1A
g
ij + c2(A

g
ij)

′ + f̄Af
ij ≡ cAg

ij , (2.16)

5Note that Bijk(Φ, S) that controls the couplings that are cubic in the U i (see eq. (1.3)) does not appear

at all in the mass matrix and therefore does not affect the stability.
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and the mass matrix takes the form

M2 = 1

(

V + ek|g|2
)

+ ek

(

(Ag · Āg)ī cAg
ij

c̄Āg
ı̄̄ (Āg ·Ag)ı̄j

)

. (2.17)

We are thus left with cAg
ij and its conjugate as the off-diagonal terms. To find the eigenval-

ues of this M2 matrix we do a Takagi factorization [31], i.e. we write Ag = UΣUT where U

is a unitary matrix whose columns are orthonormal eigenvectors of Ag · Āg, Σ is a diagonal

matrix whose entries λ1, . . . , λn are real and non-negative with λ2i being the eigenvalues of

Ag ·Āg. Now we can perform a unitary transformation and rearrange the rows and columns

to bring the matrix into the following block diagonal form
(

U † 0

0 UT

)(

(Ag · Āg)ī cAg
ij

c̄Āg
ı̄̄ (Āg ·Ag)ı̄j

)(

U 0

0 U∗

)

=

(

Σ · Σ cΣ

c̄Σ Σ · Σ

)

→

















λ21 cλ1 0 0

c̄λ1 λ21 0 0

0 0 λ22 cλ2
0 0 c̄λ2 λ22

. . .

















(2.18)

Now it is trivial to determine the eigenvalues of the mass matrix. We find the following

eigenvalues of the matrix M2 in eq. (2.17)

µ2i = V + ek|g|2 + ekλi (λi ± |c|) . (2.19)

Let us discuss the constraint c2(A
g
ij)

′ = f̄Af
ij = 0 in more detail (see subsection 2.5 be-

low for a class of models in which c2(A
g
ij)

′ + f̄Af
ij ∝ Ag

ij): in order to have c2(A
g
ij)

′ =

KΦΦ̄(g′ + g∂Φk)(A
g
ij)

′ = 0, we need either that the leading matter coupling to the inflaton

is absent, in which case the function g(Φ) can be arbitrary

∂ΦA
g
ij(Φ) = 0 , arbitrary g(Φ) ⇒ c2(A

g
ij)

′ = 0 , (2.20)

or, if we want the matter coupling Ag
ij(Φ)U

iU j in the superpotential (see (2.3)), we need

c2 = 0

∂ΦA
g
ij(Φ) 6= 0 , g′ + g∂Φk = 0 ⇒ c2(A

g
ij)

′ = 0 . (2.21)

This later case is for example realized in models with constant g and a flat Kähler po-

tential (see eq. (1.5)) or in models with vanishing g(Φ) that we discuss further below in

subsection 2.4.

The other off-diagonal term in the mass matrix, f̄Af
ij , vanishes when either f = 0 or

Af
ij = 0. If we want to use the nilpotent field S in the inflationary sector, i.e. if we want

f 6= 0, then we require

f̄Af
ij = 0 , f(Φ) 6= 0 ⇒ Af

ij = 0 , (2.22)

i.e. there is no coupling of S to the matter fields U i at the quadratic level in the superpo-

tential in (2.3). Whenever such couplings are present and f(Φ) 6= 0, we cannot calculate

the mass eigenvalues in full generality and we cannot guarantee the absence of tachyons.
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2.2 Stabilization using moduli space curvature

During inflation the curvature of the moduli space enforces the vanishing of a certain

modulus by creating a wall in the potential for a given modulus. At the level of the masses

this effect comes from the fact that the diagonal holomorphic-antiholomirphic part of the

mass matrix has a correction due to the curvature of the following form

∆Mī = −Rīkl̄F̄
kF l̄ . (2.23)

where Fi ≡ eK/2(∂iW +KiW ), F ı̄ = gı̄jFj and F̄ i = gīF̄̄.

In general, the curvature of the moduli space is related to the fourth derivative of the

Kähler potential as follows

Rīkl̄ = Kīkl̄ − Γm
ikgmm̄Γm̄

̄l̄ . (2.24)

The typical choice of the curvature as a stabilizer is when all four directions in Rīkl̄ are

such that the corresponding moduli vanish during inflation. The curvature tensor in such

a case coincides with the fourth derivative of the Kähler potential since the Christoffel

symbols vanish because they are related to a third derivative of the Kähler potential and

are therefore linear in one vanishing moduli

Rīkl̄ = Kīkl̄ , Γm
ik = 0 . (2.25)

In the inflationary sector consisting of two superfields Φ and S curvature stabilizers were

proposed in [2, 3]. For example it is known that the negative sectional curvature of the

moduli space RSS̄SS̄ forces the scalar field field S to reach the minimum at S = 0 under

the condition that F̄S and F S̄ are both non-vanishing. A bisectional curvature of the kind

RSS̄ΦΦ̄ can be constructed to enforce the condition that Φ = Φ̄ during inflation. Such

curvature stabilizers are implemented via the following choice of the non-linear terms in

the Kähler potential

∆KS = −A(Φ, Φ̄)(SS̄)2 ⇒ −RSS̄SS̄ ∼ A(Φ, Φ̄) (2.26)

∆KΦ−Φ̄ = −B(Φ, Φ̄)SS̄(Φ− Φ̄)2 ⇒ −RSS̄ΦΦ̄ ∼ B(Φ, Φ̄) (2.27)

It seems in principle always possible to make the masses of the matter fields positive,

if the underlying Kähler manifold has a corresponding bisectional curvature and if during

inflation these matter fields vanish. In particular, if we add to the Kähler potential the term

∆KU = −ζ
∑

i

SS̄U iŪ ı̄ (2.28)

then this does not affect any of our conclusions except that the matter masses squared get

shifted by ζ: µ2i → µ2i + ζ|f(Φ)|2. So for positive and sufficiently large ζ all matter fields

will have a positive mass squared. We will not consider such contributions here but rather

discuss the conditions for the absence of tachyons in the models described by eq. (2.2).
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2.3 Cases with flat Kähler potential and restricted couplings:

c2(A
g
ij)

′ = f̄A
f
ij = 0

We look for models (2.2) where during inflation ∂ΦK = 0 at Φ = Φ̄, which includes our

hyperbolic geometry models with shift symmetric Kähler potential [10–12]

k(Φ, Φ̄) = −3

2
α log

[

(1− ΦΦ̄)2

(1− Φ2)(1− Φ
2
)

]

, (2.29)

as well as the simple case

k(Φ, Φ̄) = −1

2
(Φ− Φ̄)2 . (2.30)

A new addition to the class of inflationary models based on orthogonal nilpotent multiplets

in [22, 23] also satisfies the flatness condition (1.5) of the Kähler potential. Also a general

class of models studied in [2, 3] adds more examples in which the condition (1.5) is satisfied.

In all these models we also find that during inflation eK = 1 at Φ = Φ̄. In such case

the mass formula (2.19) simplifies, since c = c1 = KΦΦ̄∂Φk (g′ + g∂Φk)− ḡ = −ḡ, to

µ2i = V + |g|2 + λi (λi ± |g|) . (2.31)

This can be rewritten in the form

µ2i = V +
3

4
|g|2 +

∣

∣

∣
λi ±

1

2
|g|

∣

∣

∣

2

> 0 , (2.32)

or in the form

µ2i = V +
3

4
λ2i +

∣

∣

∣

1

2
λi ± |g|

∣

∣

∣

2

> 0 . (2.33)

It is important here that the λi are real and V is positive during inflation. We conclude that

for flat Kähler potentials (1.5) all masses squared of the matter fields are positive and there

are no tachyons. Note, that the condition of flatness of the Kähler potential is sufficient for

the absence of tachyons in the matter sector but not necessary. For models with a non-flat

Kähler potential the stability of the matter sector is determined by equation (2.19).

2.4 Models with g(Φ) = 0

Another class of models that was studied in [1–3] has g(Φ) = 0. In this case the off-diagonal

entries in the mass matrix in eq. (2.13) are

c1A
g
ij+c2(A

g
ij)

′+f̄Af
ij = (KΦΦ̄∂Φk(g′+g∂Φk)−ḡ)Ag

ij+K
ΦΦ̄(g′+g∂Φk)(A

g
ij)

′+f̄Af
ij = f̄Af

ij .

(2.34)

In these models we necessarily have f 6= 0 in order to have a non-trivial inflationary sector.

If we choose however Af
ij = 0, i.e. there is no coupling of S to the matter fields U i at

the quadratic level in the superpotential in (2.3), then the off-diagonal entries in the mass

matrix all vanish (c = 0 in (2.17)). The masses squared in the matter sector are then

given by

µ2i = V + ekλ2i > 0 . (2.35)

So we see that this is another class of models without any tachyons in the matter sector

during and after inflation.
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2.5 ‘Sgoldstino-less’ models with c2(A
g
ij)

′ + f̄A
f
ij ∝ A

g
ij

Next we consider a particular case for which c2(A
g
ij)

′ + f̄Af
ij ∝ Ag

ij . Such a class of

models was proposed by in [27], where they take the superpotential to be W (Φ, S, U i) =

fDZ(Φ, U i)(1 +
√
3S). In this case we have

f(Φ) =
√
3g(Φ) , W f

mat =
√
3W g

mat , and fDZ(Φ, U i) = g(Φ) +W g
mat(Φ, U

i) . (2.36)

This implies

f̄Af
ij = 3ḡAg

ij . (2.37)

Furthermore the authors imposed a Z2 symmetry of the scalar potential that amounts in

our notation to (Ag
ij)

′ = 0. Lastly, the Kähler potential in the inflationary sector is taken to

be canonical k(Φ, Φ̄) = −1

2
(Φ− Φ̄)2, so it satisfies the Kähler flatness condition in eq. (1.5).

This leads to the following off-diagonal entries in the mass matrix

c1A
g
ij + c2(A

g
ij)

′ + f̄Af
ij = (KΦΦ̄∂Φk(g′ + g∂Φk)− ḡ)Ag

ij + 3ḡAg
ij = 2ḡAg

ij . (2.38)

Therefore the eigenvalues in this case are given by (see eq. (2.19))

µ2i = V + ek|g|2 + ekλi (λi ± 2|g|) = V + ek (λi ± |g|)2 > 0 . (2.39)

Thus we reproduced in our language the conclusion of [27] that these models have no

tachyons in the matter sector.

To obtain these results, we assumed that the field S is either nilpotent, or very strongly

stabilized at S = 0, which can be achieved by adding higher order terms such as (SS̄)2 to

the Kähler potential. Indeed, in the limit of strong stabilization, one can reproduce the

results obtained in the theory of nilpotent fields [28, 29].

One way to produce the stabilizing terms in the Kähler potential is to generate them

by quantum effects. Implementation of this method in [30] in application to the models

of [27] required deviation from the rules formulated in [27]. Consequently, it was difficult to

strongly stabilize the field S and avoid tachyons in the models proposed in [30]. However, it

is not necessary to generate higher order terms in the Kähler potential by quantum effects.

These terms are related to curvature invariants of the Kähler geometry, which can be large

already at the tree level.

3 Models with orthogonal nilpotent multiplets

Inflationary models based on an orthogonal nilpotent multiplet like the ones in [22–24]

provide another interesting class of models that can easily be coupled to matter. In these

models the terms in the scalar potential that are linear or quadratic in DΦW = ∂ΦW +

W∂ΦK are absent in the inflaton potential. For Φ = Φ̄, S = 0, U i = 0 the potential is

V = f2(Φ)− 3g2(Φ) , (3.1)

and K vanishes along the inflationary trajectory. In our language, for U i = 0 this amounts

to setting terms proportional to DΦW = g′ + g∂Φk equal to zero when we work with the
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general case in section 2.1. This does not change the diagonal entries in the mass matrix

in eq. (2.13) but simplifies the off-diagonal entries as follows

− ḡAg
ij + c2(A

g
ij)

′ + f̄Af
ij = −ḡAg

ij + f̄Af
ij , (3.2)

since

c1 = KΦΦ̄∂Φk (g′ + g∂Φk)− ḡ = −ḡ , (3.3)

and

c2 = KΦΦ̄ (g′ + g∂Φk) = 0 . (3.4)

This means, for example, that a direct cubic coupling between matter and inflaton, Wm ∼
ΦU iU j , does not lead to instabilities in these models. However, couplings to S, such as

Wm = SAf
ijU

iU j , may lead to instabilities.

If we now consider models where the matter fields U i do not couple to S at the

quadratic level, then Af
ij = 0. The mass matrix eigenvalues are then given by the same

formula as in subsection 2.3

µ2i = V + |g|2 + λi (λi ± |g|) = V +
3

4
|g|2 +

∣

∣

∣
λi ±

1

2
|g|

∣

∣

∣

2

> 0 . (3.5)

In this case there are also no tachyons in the matter sector during and after inflation. Note

that this result is valid in this class of models even if Ag
ij does depend on Φ, i.e. even if

(Ag
ij)

′ 6= 0. This may simplify the construction of phenomenologically acceptable models

of this type in cases where there is a direct interaction of matter fields with the inflaton in

the superpotential.

Another interesting feature of the models with orthogonal nilpotent multiplets is that

the inflatino χφ is proportional to the fermion of the S multiplet χs. Therefore in unitary

gauge, where χs = 0 at the minimum of the potential, the true goldstino

v = e
K
2

(

χsDSW + χφDΦW
)

(3.6)

vanishes:

χφ ∼ χs ⇒ v|χs=0 = 0 . (3.7)

The massive gravitino is decoupled from other spin 1/2 fermions and the analysis of the

reheating is relatively simple. In models where the inflaton is not orthogonal to S, i.e. where

S(Φ − Φ̄) 6= 0 one has to deal either with the mixing of the gravitino with the inflatino,

γµψµχ
φDΦW , in the χs = 0 gauge, or in a gauge v = 0 with complicated non-linear

inflatino couplings.

Thus, the models with orthogonal multiplets have simplified the fermion sector of

the inflationary models. However, now when matter was added, the goldstino has to be

supplemented by additional terms

v = e
K
2

(

χsDSW + χφDΦW + χui

DU iW
)

. (3.8)

In principle, terms like that could destroy the simplicity of the fermion sector at the min-

imum since the gravitino is mixed with matter fermions χui

. Fortunately, our matter

couplings are such that

DU iW = ∂U iW +KU iW
∣

∣

∣

U i=0
= 0 . (3.9)
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Therefore the decoupling of the massive gravitino from all the spin 1/2 fermions of the

theory is preserved at the minimum of the potential in models with orthogonal nilpotent

multiplets in the unitary gauge χs = 0.

4 Examples without tachyons

4.1 A simple model with a single matter multiplet

The example below is one of the first and simplest models where one can confirm stability

of the inflationary trajectory and absence of tachyons when coupling the inflationary sector

to matter. We considered nilpotent and orthogonal superfields, S2 = S(Φ− Φ̄) = 0, which

further simplifies the study. The model is

K = −3

2
α log

[

(1− ΦΦ̄)2

(1− Φ2)(1− Φ̄2)

]

+ SS̄ + UŪ ,

W = g(Φ) + Sf(Φ) +
m

2
U2 , (4.1)

where we can take m > 0 by absorbing its phase in U . The mass eigenvalues of the complex

matter field U are then

µ2 = V + |g|2 ± |g|m+m2 = V +
3g2

4
+

(

m± |g|
2

)2

≥ 3

(

H2 +
g2

4

)

, (4.2)

confirming the general case in eqs. (2.31), (2.33) with λ1 = m. The last term in this

equation takes into account that V ≈ 3H2 during inflation.

One can also check that, in agreement with our general discussion, the mass eigen-

values remain positive if g(Φ) = const and one adds a term proportional to ΦU2 to the

superpotential.

Whereas matter fields are already stable in this model, it is interesting to check what

will happen, if one adds a higher order term −ζSS̄UŪ to the Kähler potential. The result is

that it adds ζ|f(Φ)|2 to the mass eigenvalues (4.2), which provides additional stabilization

of the fields for ζ > 0, as explained for the general case in section 2.2.

4.2 A model with two matter multiplets

Our next example has generic functions f(Φ) and g(Φ) in the superpotential (2.1) and the

hyperbolic geometry inflaton independent Kähler potential in (2.29). We couple this infla-

tionary model with matter fields U and Y , which we introduce according to the explanation

above

K = −3

2
α log

[

(1− ΦΦ̄)2

(1− Φ2)(1− Φ̄2)

]

+ SS̄ + UŪ + Y Ȳ ,

W = g(Φ) + Sf(Φ) +
M

2
U2 +

m

2
UY , (4.3)

where we can take m,M > 0 without loss of generality. Here the inflaton superfield Φ is a

disk variable, ΦΦ̄ < 1, S is a nilpotent superfield, both belong to the inflaton sector of the

theory. The inflaton is Φ + Φ̄ in these models where Φ− Φ̄ = 0 during inflation.
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The two matter multiplets, U and Y have canonical Kähler potentials and quadratic

dependence in W . In this relatively simple case, we can compute the mass eigenvalues for

the matter fields U and Y either directly, or using the general formula (2.32). These two

computations agree, the relevant values of λ1 and λ2 being
√
m2 +M2±M . As before, all

4 eigenvalues of the mass matrix are greater than V ≈ 3H2 during inflation:

µ2i = V +
3|g|2
4

+

(

√

M2 +m2 ±M ± |g|
2

)2

, (4.4)

where i = 1, 2, 3, 4 correspond to four different combinations of the signs ± in this equation.

5 Conclusions

In this paper we considered some of the most popular models of chaotic inflation in super-

gravity with Kähler potential with a flat direction, including general models with a canon-

ical Kähler potential [1–3], as well as the advanced version of α-attractor models [10–12],

based on the hyperbolic geometry of the moduli space [13]. Flatness of the Kähler potential

in these models helps to ensure flatness of the inflaton potential. In this paper we have

shown that this class of models has an additional advantage: one can easily add matter

fields to these models without destabilizing the inflationary trajectory and even without

affecting the inflationary evolution at all. This means, in particular, that under certain

conditions outlined in this paper, one can add matter fields without creating tachyonic

instabilities or forcing many fields to evolve simultaneously: inflation may remain driven

by a single field even if many interacting matter fields are present.

The simplest version of the models protected from tachyons has the following features:

the matter has no direct coupling to the inflationary sector in the Kähler potential and in

the superpotential.6 In terms of the superpotential in eq. (2.3) it means that ∂ΦA
g
ij(Φ) = 0

and Af
ij(Φ) = 0. The matter part of the superpotential has to start with terms quadratic

in matter fields or higher, as in eq. (1.3). Finally the models have to have a flat Kähler

potential, strictly independent of the inflaton direction, as in eq. (1.5). When all three

conditions are satisfied, one can guarantee that the matter sector will not destabilize an

underlying successful model of inflation, which also means that there are no tachyons. The

mass eigenvalues for these models during inflation are derived in eq. (2.32), which can also

be given in the form

µ2i = V +
3

4
|m3/2(Φ)|2 +

∣

∣

∣λi ±
1

2
|m3/2(Φ)|

∣

∣

∣

2

> 0 , (5.1)

where V ≈ 3H2 during inflation, m3/2(Φ) ≡ g(Φ) is the inflaton-dependent mass of the

gravitino, and the λi are related to the Φ-independent coupling Aij in eq. (2.3). Since

all mass eigenvalues are greater than 3H2, all matter fields quickly reach their minima at

U i = 0 during inflation.

6Note that the condition that matter has no direct coupling to the inflationary sector in the Kähler

potential and in the superpotential is often used in supergravity cosmology, since under this condition the

decay rate of the inflaton field to matter during reheating is strongly suppressed. This leads to a smaller value

of the reheating temperature, which simplifies the solution of the cosmological gravitino problem [32–35].
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We have also explained in section 2.2 why the moduli space curvature presents a uni-

versal mechanism for moduli stabilization. Such a curvature creates a wall in the potential

for the moduli which we would like to restrict to vanishing values. In principle, the cur-

vature can make these moduli fields stable and heavy. This mechanism can be used in

addition to other stabilization tools which we studied in this paper.

We stress that our conditions in models with independent f(Φ) and g(Φ) in the infla-

tionary superpotential are sufficient for a successful coupling of the inflationary sector to

matter, but they may not be necessary. For example, in models with flat Kähler potential

the decoupling requirement between the inflationary sector and matter in the superpoten-

tial may be relaxed without affecting our main result for the positivity of masses: we still

need that in eq. (1.3) ∂SAij = 0 which means Af
ij = 0 in eq. (2.3). Also we need that

either ∂ΦAij = 0 or g′(Φ) = 0. But cubic terms with Bijk in eq. (1.3) may depend on the

inflationary sector fields, and the same for higher terms in the U i. Stabilization in some

special models, for example, the ones with g(Φ) = 0, was presented in section 2.4. Some

other cases that were studied in [27] and for which f(Φ) =
√
3g(Φ) where also argued to

lead to a successful coupling to matter, under different conditions. Here we explained these

results as a particular case of our general argument with details given in section 2.5. The

simplified features of matter moduli stabilization in models with orthogonal nilpotent mul-

tiplets [22–24] are given in section 3. Various successful examples of stabilization are given

in section 4. Examples of unsuccessful models, violating the conditions of our theorems,

can be found in appendices A.1 and A.2.

To develop these results towards a more realistic model, like combining the MSSM or

NMSSM models with an inflationary model, we will note here, as also noticed in [27] in the

context of their models, that we can now introduce, for example, the squark and slepton

multiplets with vanishing vev’s. Note that tachyonic instability in the models violating

some of our conditions may play a constructive role, creating non-vanishing vev’s, see ap-

pendix A.3. Further investigation of such models will appear in a separate publication [36].

We are grateful to J.J. Carrasco, S. Ferrara, D. Roest and J. Thaler for enlightening

discussions and collaboration on related projects. The work of RK and AL is supported

by the SITP, and by the NSF Grant PHY-1316699. The work of AL is also supported by

the Templeton foundation grant ‘Inflation, the Multiverse, and Holography’. The work of

TW is supported by COST MP1210. TW thanks the Department of Physics of Stanford

University for the hospitality during a visit in which this work was initiated.

A Examples with tachyons

A.1 Tachyons in models with S-coupled matter

Let us start out by looking at an example in which we satisfy all the conditions except the

decoupling of the matter sector from S in the superpotential. In particular, we take the

Kähler and superpotential

K = −3

2
α log

[

(1− ΦΦ̄)2

(1− Φ2)(1− Φ
2
)

]

+ SS̄ + UŪ ,

W = Sf(Φ) + g(Φ) +mSU2 . (A.1)
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The term in (2.22) is present and in this case we do not expect a protection from tachyons.

It is straightforward to calculate the masses squared for the field U during inflation and

we find

µ2 = V ± 2|mf |+ |g|2 . (A.2)

We see that the positivity of the masses squared is not guaranteed and in particular at the

end of inflation we have V ≈ 0 and |g|2 = m2
3/2, the gravitino mass squared. Thus we see

from eq. (A.2) that in this model it is impossible to make both masses for U larger than

the gravitino mass in the state with U = 0.

A.2 Tachyons in models with a non-flat Kähler potential

Consider the early versions of α-attractor models [7–9] which in half-flat variables can be

presented as follows

K = −3α log
[

Φ+ Φ̄
]

+ SS̄ ,

W = Φ
3α
2

(

Sf(Φ) + g(Φ)
)

. (A.3)

Here KΦ 6= 0 at Φ = Φ̄, i.e. the Kähler potential is not flat during inflation.

Now we add the interaction with matter according to our rules in (1.2) with decoupled

matter in W

K = −3α log
[

Φ+ Φ̄
]

+ SS̄ + UŪ ,

W = Φ
3α
2

(

Sf(Φ) + g(Φ)
)

+
M

2
U2 . (A.4)

We can compute the masses of the complex field U and, taking M > 0, we find the

eigenvalues of the mass matrix during inflation to be

µ2 = V + ek|g̃|2 + ekM
(

M ± |(Φ + Φ̄)g̃′ + (1− 3α)g̃|
)

, (A.5)

with g̃(Φ) = Φ
3α
2 g(Φ). One can check that the eigenvalue with the minus sign is not

positive definite so the general formula (2.19) allows for tachyons in the matter sector, i.e.

it cannot be excluded in general that the inflaton sector destabilizes the matter fields.

Now reconsider the same model by performing a Kähler transformation of the kind

made in [10]. This leads to

K = −3

2
α log

[

(Φ + Φ̄)2

4ΦΦ̄

]

+ SS̄ + UŪ ,

W =
(

Sf(Φ) + g(Φ)
)

+
M

2
Φ− 3α

2 U2 . (A.6)

This model has a flat Kähler potential but it also has a direct coupling between the inflaton

and the matter in the superpotential. In such case, the flatness of the Kähler potential is

not sufficient to protect the matter field U against becoming tachyonic due to the presence

of the inflationary sector (cf. eqs. (2.20), (2.21)). If, on the other hand, one makes the

simplest choice

K = −3

2
α log

[

(Φ + Φ̄)2

4ΦΦ̄

]

+ SS̄ + UŪ ,

W = Sf(Φ) + g(Φ) +
M

2
U2 , (A.7)

then one finds that the masses are positive and given by eq. (2.32) with λ =M .
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A.3 Models with tachyons and stable Minkowski vacuum with symmetry

breaking

In this paper we concentrated on models where one can avoid tachyons during inflation.

But tachyons are not always bad, as they are often responsible for spontaneous symmetry

breaking. Also, hybrid inflation is an example of inflationary models where a tachyonic

instability can be used constructively [37, 38].

As a simplest example, consider the model

K = −3

2
α log

[

(1− ΦΦ̄)2

(1− Φ2)(1− Φ̄2)

]

+ SS̄ + UŪ ,

W = S
(

Φ2 + λ
(

U2 − c2
))

. (A.8)

Writing Φ = φ = tanh ϕ√
6α
, U = u+ i v, one finds the potential

V = eu
2+v2

(

(

φ2 + λ(u2 − v2 − c2)
)2

+ 4λ2u2v2
)

, (A.9)

where one can check that Im(Φ) = 0 is a minimum for u, v = 0. Note that this expression

is always positive or zero. We will assume that c < 1, λ < 1/3. Then during inflation

at φ ≈ 1 the potential has a stable dS minimum for the matter fields at u = v = 0, but

also two deep separate Minkowski minima at large v and u = 0. With a decrease of φ

from 1 to
√
λ
√
2 + c2, the minimum at u = v = 0 becomes unstable, and the system may

(if it has enough time) fall to one of the two minima at u = 0, v 6= 0. However, during

the subsequent decrease of the field φ below
√
λ c, these two minima merge, and two other

minima appear, at v = 0, u 6= 0. In the end of the process the fields fall into one of the

two supersymmetric Minkowski minima φ = v = 0, u = ±c.
Thus we see that the post-inflationary cosmological evolution can be very complicated,

with two different stages of tachyonic instability, but in the end the universe falls into one

of the two Minkowski minima.

Of course, this is just a toy model, and several things should be done to make it realistic.

First of all, in the process of spontaneous symmetry breaking, the universe becomes divided

into domains with u = ±c separated by domain walls, which is a cosmological disaster

unless c is extremely small. This can be avoided in more complicated models; it is known

for example that domain walls do not appear after symmetry breaking in the standard

model. Yet another issue is that SUSY is unbroken in the minima φ = v = 0, u = ±c, and
it is not obvious whether one can break it without making these minima AdS, which is

undesirable. Therefore this toy model should be modified to address these issues. However,

this example indicates that tachyonic instabilities during or after inflation could be useful

for describing spontaneous symmetry breaking. We hope to return to a discussion of this

possibility in a separate publication [36].
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