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We perform an analytical study of the scattering matrix and bound states in problems with many
physical coupled channels. We establish the relationship of the couplings of the states to the different
channels, obtained from the residues of the scattering matrix at the poles, with the wave functions
for the different channels. The couplings basically reflect the value of the wave functions around the
origin in coordinate space. In the concrete case of the X(3872) resonance, understood as a bound
state of D0D̄∗0 and D+D∗− (and c.c.1), with the D0D̄∗0 loosely bound, we find that the couplings
to the two channels are essentially equal leading to a state of good isospin I = 0 character. This
is in spite of having a probability for finding the D0D̄∗0 state much larger than for D+D∗− since
the loosely bound channel extends further in space. The analytical results, obtained with exact
solutions of the Schrödinger equation for the wave functions, can be useful in general to interpret
results found numerically in the study of problems with unitary coupled channels methods.

I. INTRODUCTION

The X(3872) resonance, observed by Belle [1] and con-
firmed by CDFII, D0 and BaBar collaborations [2–4], has
been the object of intense debate from the theoretical
point of view (see recent workshop on charm exotics at
Badhonef [5]). Although different tentative explanations
to its nature have been provided [6–12] the idea most sup-
ported recently is that it corresponds to a loosely bound
state of DD̄∗ [12, 14–27] or slightly unbound, virtual
DD̄∗ state [13, 28]. However, the energy of the resonance
is very close to the D0D̄∗0 threshold, with the eventual
charged components D+D∗− bound by about 8 MeV.
The binding of the D0D̄∗0 could be so small as to render
the relatively very bound charged components irrelevant,
at least from the probability point of view, given the fact
that the loosely bound component would extend much
further in space than the charged components. This is
the idea behind many works [17, 19, 21–23, 25]. However
it was found in [13] that the couplings of the resonance
to the charged and neutral components were practically
identical, implying a near I = 0 nature of the resonance
as experimentally established. A pure D0D̄∗0 component
would have an equal admixture of I = 0 and I = 1 and,
according to [13] would produce a ratio of

B(X → J/ψπ+π−)

B(X → J/ψπ+π−π0)
, (1)

much larger than experiment. Indeed, in [29] several
works based on pion exchange as the source for the DD̄∗

1From now on, when we refer to D0D̄∗0, D+D∗− or DD̄∗ we
are actually referring to the combination of these states with their
complex conjugate in order to form a state with positive C-parity.

binding are analysed thoroughly, stressing the impor-
tance of taking into account the neutral and charged
components to properly study isospin violation in the
X(3872). There seems to be a contradiction between the
intuitive idea of a dominance of the loosely bound compo-
nent and the fact that experiment demands clearly an im-
portant contribution from the charged components. The
clarification of this puzzle and establishing the meaning
of the couplings in terms of wave functions is the purpose
of this present work. While in the theoretical calculations
one normally uses field theoretical methods to evaluate
observables [12], without resorting to wave functions, the
clarification of the puzzle forces one to face this problem
solving the Schrödinger equation for the wave functions
in coupled channels.
For simplicity, we will assume that the X(3872) mass

is below both the D+D∗− and D0D̄∗0 thresholds. The
work proceeds as follows: in the next section we make a
brief summary of [13] to expose the problem. In sections
III and IV we solve the Schrödinger equation in the case
of one and two channels. In section V we extend the
findings to the case of many channels. In section VI we
come back to the X(3872) and comment on its decay to
J/ψ plus two and three pions, in section VII we comment
on the independence of the results with the choice of the
potential and in section VIII we outline our conclusions.

II. THE X(3872) WITHIN COUPLED

CHANNELS D0D̄∗0 AND D+D∗−

In [12] theX(3872) was plausibly explained as an I = 0
dynamically generated state in coupled channels with
positive C-parity. However, in that work the charged
and neutral D mesons were put with the same mass, in
which case one had a good isospin symmetry. In [13] the

http://arxiv.org/abs/0911.4407v2
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masses were taken different and a small isospin break-
ing was produced. Summarizing the approach of [12] we
call channels 1 and 2 the D0D̄∗0 and D+D∗−. It was
found in this work, using the hidden gauge Lagrangians
adapted to the SU(4) flavor symmetry, containing ex-
plicit breaking of the symmetry, that the potential in
coupled channels, in s-wave, was very close to the type

V FT =

(

vFT vFT

vFT vFT

)

, (2)

the label FT standing for field theoretical approach, and
vFT is, in principle, a function of the invariant mass s
(see Eqs. (7) and (12) of Ref. [13]). To describe the dy-
namics of the X(3872), which is placed quite close to the
DD̄∗ threshold, it is sufficient to take the potential given
in Eq. (7) of Ref. [13]) at threshold, neglecting in the po-
tential all isospin breaking corrections induced by the dif-
ference of masses between charged and neutral mesons1

vFT = −mDmD∗

f2
D

(3)

with fD ∼ 165 MeV, the D−meson decay constant, and
mD and mD∗ averages of the neutral and charged D and
D∗ meson masses, respectively. The above interaction,
should be considered with an ultraviolet cutoff in mo-
mentum space of natural size for hadron interactions,
Λ < 1 GeV. In numerical calculations we usemD0 = 1865
MeV, mD̄∗0 = 2007 MeV, mD+ = mD− = 1870 MeV and
mD∗+ = mD∗− = 2010 MeV.
The Bethe-Salpeter equation in coupled channels in the

on-shell factorization approach stemming from the use of
the N/D method [30–32] is given by:

TFT = (1 − V FTGFT)−1V FT (4)

where both V FT and TFT are on-shell2, and GFT is the
diagonal loop function for the two intermediate D and
D̄∗ meson propagators. In the particular case of Eq. (2),
Eq. (4) is trivially written as

TFT =
V FT

1− vFTGFT
11 − vFTGFT

22

(6)

We will assume that the TFT-matrix develops a pole,
in the first Riemann sheet and below both thresholds,
for the X(3872) resonance and the couplings gFTi to the

1 We will keep those isospin breaking corrections in the loop func-
tion G that will be introduced below. As it was discussed at
length in Ref. [13], they turn out to be quite relevant.

2 The normalization is fixed thanks to the relation between the
scattering matrix and the differential center of mass cross section,

dσ

dΩ

∣

∣

∣

CM
=

1

64π2s

∣

∣TFT
∣

∣

2
. (5)

X

J /ψ

ω, ρ

D

D*

FIG. 1. X decay mechanism into J/ψω(ρ) assuming the X
to be a DD̄∗ molecule.

channels DD̄∗ are defined such that in the vicinity of the
pole

TFT
ij =

gFTi gFTj
s− sR

(7)

with sR the squared mass of the resonance, which allows
one to obtain the couplings via

gFTi gFTj = lim
s→sR

(s− sR)T
FT
ij =

−1
d
ds

(

GFT
11 +GFT

22

)

∣

∣

∣

∣

∣

s=sR

(8)

= [gFT]2 (9)

All the couplings are equal in this case and, as we see in
Eq. (9), they are independent of vFT and only depend on
the derivative of the loop function GFT. One is tempted
to interpret the couplings as the components of the wave
function, and since the couplings are equal we would have

|X(3872)〉 ∝ |D0D̄∗0〉+ |D+D∗−〉 (10)

which represents a pure isospin I = 0 state. Such an
interpretation has some basis since the equality of the
couplings is what makes the state behave as an I = 0
state in the field theoretical approach. Indeed, think of
the ratio of Eq. (1). The two pion and the three pion
states in the decay of the X(3872) correspond to a ρ and
an ω respectively, according to experiment [33, 34]. In a
field theoretical approach the mechanism for this decay
is depicted in Fig. 1, and the ratio for ρ and ω decays
would be given by3

Rρ/ω =

(

gFT1 GFT
11 − gFT2 GFT

22

gFT1 GFT
11 + gFT2 GFT

22

)2

. (11)

The plus and minus signs in the numerator and denom-
inator of Eq. (11) are simply a consequence of the fact
that J/ψρ has I = 1 while J/ψω has I = 0. If we had
equal masses for the charged and neutral D mesons, the
numerator of Eq. (11) vanishes and the decay X → J/ψρ
is forbidden, since it violates isospin. If the masses of the
two channels are different, even taking the two couplings

3 Technically, there can be a multiplicative coefficient in Eq. (11),
but in the model used in [13] it is equal to 1.
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FIG. 2. Loop function GFT for D0D̄∗0 and D+D∗− from
[13].

equal, as we found in Eq. (9), the numerator of Eq. (11)
does not vanish due to the difference in the loop function
for each channel, see Fig. 2, and the decay X → J/ψρ
is allowed. One could interpret this by saying that the
X(3872) is an I = 0 state but the intermediate loops
in the decay violate isospin. However, the free Hamilto-
nian (including masses) of the D0D̄∗0 and D+D∗− sys-
tem does not commute with isospin, which implies that
the X(3872) does not have a well defined isospin. The
decays of the X(3872) resonance can provide informa-
tion on this isospin mixture. In this work we will look
at its J/ψρ and J/ψω decays, assuming transition oper-
ators of zero (short) range. Within this scheme, we will
show that the isospin violation in these decays is linked to
the different probability amplitudes of finding the D0D̄∗0

or D+D∗− meson pairs, which form the X molecule, at
short relative distances. This is the same as stating that
the D0D̄∗0 and D+D∗− wave functions around the ori-
gin will determine the isospin violations for these decays.
Hence the couplings should not be understood as a mea-
sure of the wave function components. We shall come
back to this issue in what follows.

III. COUPLING AND WAVE FUNCTION IN

THE ONE CHANNEL CASE

We will first study the non-relativistic dynamics of a
bound state generated by the interaction of two particles
of masses m1 and m2, respectively.

A. The Lippmann Schwinger equation

We need a potential V and to illustrate our results,
which are general, we can take some easy form for it
(other forms will be analyzed in section VII). We choose
a separable function in momentum space with the mod-
ulating factor being a simple step function, Θ. Thus our
potential, already projected in s−wave, is assumed to be4

〈~p ′|V |~p 〉 =V (~p ′, ~p ) = vΘ(Λ− p)Θ(Λ− p′) (12)

where p and p′ stand for |~p | and |~p ′| and Λ is a cutoff in
momentum space.
Let the Hamiltonian be H = H0 + V with H0 the free

Hamiltonian. In this case the non-relativistic Lippmann
Schwinger equation can be written as

T = V + V
1

E −H0
T (13)

or also as

T = V + V
1

E −H
V (14)

Taking Eq. (13) we can write:

〈~p |T |~p ′〉 = 〈~p |V |~p ′〉+
∫

k<Λ

d3k
〈 ~p |V |~k〉

E −m1 −m2 − ~k 2

2µ

〈~k|T |~p ′〉 (15)

where µ is the reduced mass of the two particles that
interact [1/µ = 1/m1 + 1/m2].
Eq. (15) has solution

〈~p |T |~p ′〉 = Θ(Λ− p)Θ(Λ− p′) t (16)

which can also be seen from Eq. (14), with t given by

t = v + v G t, t =
v

1− vG
(17)

G =

∫

p<Λ

d3p
1

E −m1 −m2 − ~p 2

2µ

(18)

We can see that Eq. (17) is like the on-shell factorized
equation (no integral left) of Eq. (4), and G is indeed,
up to a factor5, the non-relativistic reduction of the loop

4 We use normalization 〈~p|~x〉 = e−i~p·~x/(2π)
3
2 which means

∫

d3x|~x〉〈~x| =
∫

d3p|~p〉〈~p| = 1 so that for a local potential we

have 〈~p ′|V |~p 〉 =
∫

d3xe−i(~p ′
−~p)·~xV (~x)/(2π)3.

5 The non-relativistic reduction of the scattering matrix, potential
and two particle propagator loop function introduced in previous
Sect. II are related to those defined here by

vFT = 32π3µ
√
s v, TFT = 32π3µ

√
s t (19)
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function of two particle propagators regularized with a
cutoff Λ, as is also usually done in the studies of hadron
interactions with the on-shell Bethe Salpeter equation
[35]. The name Bethe Salpeter equation was adopted
in [35] because there, relativistic meson propagators are
used. For very weak bindings, it is sufficient to use the
Lippmann Schwinger equation, which is what we do here.
The poles of Eq. (17) occur for

1− vG = 0 , (22)

which will occur for some value Eα < m1+m2 where we
have a bound state. If the energy of the state is known,
the above equation fixes the cut-off Λ, or conversely, if
the cut-off is fixed, one can predict the energy of the
state.
In the work of [12] the theoretical approach is based

on the underlying hidden gauge formalism [36–38]. One
assumes that it provides the potential V within a scale
of momenta which is of the order of the cut off assumed
here. Yet, one can assume certain uncertainties in V
which can be compensated with changes in the range Λ
in order to obtain the proper binding, as we show below.
Indeed, using Eq. (22), invariance under renormalization
leads to

d

dΛ
(vG) = 0 (23)

1

v

dv

dΛ
= − 1

G

dG

dΛ
(24)

and hence for a fixed Eα, the bare potential should have
a dependence on the cutoff to compensate that of the
loop function G.

B. The couplings of the state

The coupling in this case is defined as g such that in
the vicinity of the pole the scattering matrix behaves as

t =
g2

E − Eα
(25)

and hence

g2 = lim
E→Eα

(E − Eα)t = −
(

dG

dE

)−1

E=Eα

(26)

GFT =
G

32π3µ
√
s

(20)

with

GFT = i

∫

d4q

(2π)4
1

q2 −m2
1 + iǫ

1

(P − q)2 −m2
2 + iǫ

(21)

and PµPµ = s.

where Eq. (17) has been used for t and the l’Hôpital’s
rule has been applied in the second equation.
The integral for the G function defined in Eq. (18) can

be performed analytically and we obtain

G(Eα) = −8µπ

(

Λ− γ arctan
(Λ

γ

)

)

(27)

γ =
√

2µEαB (28)

where 0 < EαB = m1 +m2 − Eα is the binding energy of
the state α. The above equation allows us, using Eq. (26),
to write the coupling g as

g2 =
γ

8πµ2
(

arctan
(

Λ
γ

)

− γΛ
γ2+Λ2

) . (29)

We note that g has a very smooth dependence on the
cutoff Λ, which can even be removed (Λ → ∞). The
coupling is mostly determined by the binding energy (see
Eq. (51) below), specially in the limit in which the latter
one is much smaller than the cutoff, and hence g is, to
great extent, renormalization scheme independent.

C. The wave function

The Schrödinger equation is given by:

H |ψ〉 = E|ψ〉 (30)

where ψ is an eigenfunction of H , the full Hamiltonian.
We can write:

(H0 + V )|ψ〉 = E|ψ〉 (31)

|ψ〉 = 1

E −H0
V |ψ〉 (32)

which has the solution

〈~p |ψ〉 =
∫

d3k

∫

d3k′〈~p | 1

E −H0
|~k ′〉

× 〈~k ′|V |~k〉〈~k|ψ〉 (33)

= v
Θ(Λ− p)

E −m1 −m2 − ~p 2

2µ

∫

k<Λ

d3k〈~k|ψ〉 (34)

which gives us the wave function. Integrating Eq. (34)
over d3p, we obtain

1− vG(E) = 0 (35)

which is the condition to find the pole given in Eq. (22).
In Eq. (34), we determined the state wave function up

to a constant,
∫

k<Λ
d3k〈~k|ψ〉, which can be fixed from the

normalization condition. Let Eα < m1 +m2 be the solu-
tion of the above quantization equation, its wave function
will satisfy

∫

d3p |〈~p |ψ〉|2 = 1 (36)
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Note, that the wave function can be normalized because
we are dealing with a bound state whose energy is below
m1 +m2. From the above equation, one easily finds

1 = v2
∫

p<Λ

d3p

(

1

Eα −m1 −m2 − ~p 2

2µ

)2

×
∣

∣

∣

∣

∫

k<Λ

d3k〈~k|ψ〉
∣

∣

∣

∣

2

(37)

and hence, it follows

∣

∣

∣

∣

v

∫

k<Λ

d3k〈~k|ψ〉
∣

∣

∣

∣

2

= −
(

dG

dE

)−1

E=Eα

. (38)

We can now use the form of Eq. (14) to solve the T
matrix. We would have

T = V +
∑

m,m′

V |m〉〈m| 1

E −H
|m′〉〈m′|V (39)

where |m〉 and |m′〉 are complete sets of eigenstates of
H . In the vicinity of the pole at E = Eα we care only
for the contribution of channel α,

〈~p |T |~p ′〉 ∼ 〈~p |V |α〉 1

E − Eα
〈α|V |~p ′〉

=

∫

d3k

∫

d3k′〈~p |V |~k 〉〈~k|α〉

× 1

E − Eα
〈α|~k ′〉〈~k ′|V |~p ′〉

=

∣

∣

∣v
∫

k<Λ d
3k〈~k|α〉

∣

∣

∣

2

E − Eα
Θ(Λ− p)Θ(Λ− p′) (40)

exhibiting the form of Eq. (16) from where we defined t.
We can obtain the residue of t as

g2 = lim
E→Eα

(E − Eα)T =

∣

∣

∣

∣

v

∫

k<Λ

d3k〈~k|α〉
∣

∣

∣

∣

2

= −
(

dG

dE

)−1

E=Eα

(41)

where we have used Eq. (38) to get the last equality (α
stands for ψ here) and we note that this is the same result
as in Eq. (26).
The wave function in coordinate space can be equally

evaluated:

〈~x|ψ〉 =
∫

d3p〈~x|~p 〉〈~p |ψ〉

=

∫

d3p

(2π)3/2
ei~p.~x〈~p |ψ〉. (42)

Using Eq. (34) we find6

6 It is possible to write Eq. (43) in terms of the analytical functions
sine integral and cosine integral.

〈~x|ψ〉 = g

√

2

π

1

r
Im

∫ Λ

0

dp p
eipr

Eα −m1 −m2 − ~p 2

2µ

(43)

For large values of r this function goes as

〈~x|ψ〉
r→∞

∼ A√
4πr

e−γr (44)

where

γ =
√

2µEαB , (45)

A = −2µg
√
2π {1 +O(1/Λ)} . (46)

The exponential fall-off at large distances is controlled
by the binding energy of the state α and the coupling
of the state. This behavior follows the general rule of
bound states outside the interaction region and, as we
see, is largely independent of the cut-off Λ. For the same
reason, A carries information on the interaction region.

D. The meaning of the coupling in terms of wave

functions

By means of Eq. (41) we know that (assuming a real
wave-function for the bound state)

g = v

∫

k<Λ

d3k〈~k|α〉, (47)

and from Eq. (42) we can obtain the value of the wave
function at the origin in coordinate space:

〈~x = ~0 |ψ〉 ≡ ψ(~0 ) =

∫

d3p

(2π)3/2
〈~p |ψ〉 (48)

and so

g = (2π)3/2G−1(Eα)ψ(~0 ) (49)

where we have also used the condition for the bound state
1− vG = 0. Since g hardly depends on the cutoff Λ, the
wave function at the origin inherits the linear dependence
on Λ exhibited by G(Eα) in Eq. (27). Yet, if v is known,
the binding energy also fixes G(Eα) from the condition
vG(Eα) = 1.
Now we define

ψ̂ = gG(Eα) = (2π)3/2ψ(~0 ). (50)

This constant will appear often in what follows. This
is an important result concerning the problem at stake:
the coupling, up to the factor G(Eα), is a measure of the
wave function in coordinate space at the origin.
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E. The limit of small bindings

Taking the limit for small values of γ in Eq. (29) we
see that

lim
γ→0

g2 =
γ

4π2µ2
(51)

a result well known (up to a normalization depending on
definitions) [39–41].
This result can also be obtained from the general form

of the scattering amplitude at low energies. Indeed, let
us recall the form of the for s-wave scattering amplitude,
f , close but above threshold,

f−1(E) = k cot δ − i k ∼ −1

a
+
r0k

2

2
+ · · · − i k, (52)

with δ the phase shifts, a and r0 effective range param-
eters and k =

√

2µ(E −m1 −m2). The analytic contin-
uation below threshold to the energy of the bound state
E = Eα reads (we assume Eα is close to threshold)

f−1(Eα) = −1

a
− r0γ

2

2
+ · · · γ (53)

where we have taken k(Eα) = iγ. The inverse of the scat-
tering matrix must vanish at E = Eα, as it corresponds
to a bound state, and the limit:

ĝ2 = lim
E→Eα

(E − Eα)f(E) = lim
E→Eα

E − Eα
f−1(E)

=
−1

d
dE

(

1
a + r0γ2

2 − γ
)

E=Eα

∼ −γ
µ
+O(γ2) (54)

which agrees with Eq. (50) of Ref. [42].
This result is equivalent to the one in Eq. (51) up to a

normalization which is easy to get recalling that

f = − TFT

8π
√
s
= −4π2µ t (55)

As a consequence the coupling that we are using becomes

g2 = − ĝ2

4π2µ
=

γ

4π2µ2
+O(γ2) (56)

which is the result obtained in Eq. (51).
A final remark concerns the comparison of this result

with the couplings defined in [13] and in general in studies
using the chiral unitary approach [35] where G is defined
in a field theoretical approach in terms of two relativistic
propagators (Eq. (21)). Note that from Eqs. (19) and
(20)

GFTvFT = Gv (57)

which guaranties that the position of the pole remains
unchanged, since it is determined by the condition Gv =
1. Besides, from Eq. (19), we trivially find

gFT =
(

64π3µE2
α

)
1
2 g (58)

∼ Eα (16πγ/µ)
1
2 (γ → 0) (59)

IV. TWO COUPLED CHANNELS

A. The couplings

We work out in this section the two channel problem
for the particular case of the X(3872) using a dynam-
ics determined by the potential of Eq. (2), which is an
isoscalar operator (i.e., it is diagonal in the isospin ba-
sis). We will work first within the Quantum Mechanics
formalism that is adequate here, since the mass of the
X(3872) resonance and that of the charged and neutral
DD̄∗ pairs differs in just few MeV. We will use again a
cut-off Λ in momentum space, and the 2 × 2 matrices T
and V will encode step functions

〈~p ′|V |~p 〉 ≡V (~p ′, ~p ) = vΘ(Λ− p)Θ(Λ− p′)

〈~p |T |~p ′〉 ≡T (~p ′, ~p ) = tΘ(Λ− p)Θ(Λ− p′) (60)

with

v =

(

v̂ v̂
v̂ v̂

)

(61)

The Lippmann Schwinger equation in the coupled chan-
nel space reads

t = (1− vG)−1v (62)

=
1

1− v̂G11 − v̂G22
v (63)

where

G =

(

G11 0
0 G22

)

, Gii =

∫

p<Λ

d3p

E −Mi − ~p 2

2µi

(64)

with E the relative energy including the mass of the par-
ticles and M1 and M2 the thresholds of each channel

M1 = mD0 +mD̄∗0 , M2 = mD+ +mD∗− (65)

and µ1 and µ2 the reduced masses of the D0D̄∗0

and D+D∗− systems respectively7. Assuming that the

7 The correspondence of the Quantum Field Theory and Quantum
Mechanics, in the nonrelativistic limit, scattering matrix, two
particle propagator and potential matrices reads

GFT =
1

32π3
√
s
µ−

1
2 Gµ−

1
2 (66)

TFT = 32π3√s µ 1
2 t µ

1
2 , (67)

V FT = 32π3√s µ 1
2 v µ

1
2 (68)

where

µ
1
2 =

(√
µ1 0
0

√
µ2

)

(69)

and µ−
1
2 the inverse of the above matrix. The Bethe Salpeter

equation (4) implies, in the non-relativistic limit, the Lippmann
Schwinger equation (62). Thus, it trivially follows

det(1− V FT GFT ) = det(1 − v G) (70)
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X(3872) is a bound state of the system, its mass (Eα ≤
M1 < M2) will be obtained by requiring that the denomi-
nator of Eq. (63) will vanish (pole of the t−matrix in the
first Riemann sheet and below all thresholds). Clearly
when Eα → M1 the D0D̄∗0 is loosely bound and the
D+D∗− is bound by about 8 MeV. The explicit expres-
sions for Gii(Eα) are given by Eq. (27) with

γi =
√

2µiEαBi (72)

EαBi =Mi − Eα. (73)

Let us now pay attention to the couplings of the bound
state to each of the two channels. Since all elements of
the matrix v are equal, both couplings g1 and g2 are the
same:

g21 = g22 ≡ g2 = lim
E→Eα

(E − Eα)tij

= −
(

dG11

dE
+
dG22

dE

)−1
∣

∣

∣

∣

∣

E=Eα

(74)

On the other hand, as in Eq. (58), we obtain

gFT =
(

64π3µ̄E2
α

)
1
2 g (75)

with µ̄, the average of the µ1 and µ2 reduced masses, as
discussed in the footnote 7. By using Eqs. (74) and (75),
we find not only a qualitative, but also a quantitative
good agreement with the results for the coupling shown
in Fig. 3 of Ref. [13]. For instance, if the neutral channel
is bound by 1 (0.1) MeV, the denominator of Eq. (63)
will vanish for a value of the cutoff Λ of around 680 (653)
MeV, with v̂ given by Eq. (71). This leads to a cou-
pling gFT of the order of 5400 (3200) MeV, in reasonable
agreement with the result in Ref. [13].
In the limit when EαB1 → 0, we have dG11

dE

∣

∣

E=Eα

→ ∞
and we find

g21 = g22 ∼ γ1
4π2µ2

1

, EαB1 → 0 (76)

thus, both couplings go to zero as
√
γ1.

which guaranties that poles are placed in the same position in
both approaches. Finally, note that a potential in the field the-
ory approach of the form in Eq. (2) does not lead to a quantum
mechanics potential of the form assumed in Eq. (61), unless that
both reduced masses µ1 and µ2 are taken to be equal in Eq. (69).
This is an excellent approximation for the case of the coupled
channels D0D̄∗0 and D+D∗−, and we have done so here when
relating Quantum Field Theory and Quantum Mechanics quan-
tities. Thus, we have taken µ1 ∼ µ2 ∼ µ̄, with µ̄ some average
reduce mass. Hence, the Quantum Mechanics potential, v̂, near
threshold and for an ultraviolet cutoff of natural size for hadron
interactions Λ < 1 GeV, can be now approximated by

v̂ = − 1

32π3f2D
(71)

as deduced from Eq. (3), with the further approximation µ̄
√
s ≈

mDmD∗ .

B. The wave function

For the bound state we have now a two component
wave function, representing each of the D0D̄∗0 and
D+D∗− channels, and the Schrödinger equation reads

(H0 + V )|ψ〉 = E|ψ〉 (77)

|ψ〉 =
(

|ψ1〉
|ψ2〉

)

(78)

The solution to this equation is given by

|ψ〉 = 1

E −H0
V |ψ〉 (79)

〈~p |ψ〉 =





1
E−M1−~p 2/2µ1

0

0 1
E−M2−~p 2/2µ2





×
∫

d3k〈~p |V |~k〉〈~k|ψ〉 (80)

which represents two coupled channels equations

〈~p |ψ1〉 = v̂
Θ(Λ− p)

E −M1 − ~p 2

2µ1

×
∫

k<Λ

d3k
(

〈~k|ψ1〉+ 〈~k|ψ2〉
)

(81)

〈~p |ψ2〉 = v̂
Θ(Λ− p)

E −M2 − ~p 2

2µ2

×
∫

k<Λ

d3k
(

〈~k|ψ1〉+ 〈~k|ψ2〉
)

(82)

which require to know
∫

k<Λ
d3k〈~k|ψi〉 for its solution. To

evaluate this latter magnitude let us integrate over ~p in
Eq. (80) and we get

∫

p<Λ

d3p〈~p |ψ〉 = Gv

∫

p<Λ

d3p〈~p |ψ〉 (83)

an algebraic equation that requires for its solution

det(1−Gv) =1− v̂G11 − v̂G22 = 0 (84)

This equation is satisfied for the poles, E = Eα, of the
t matrix corresponding to bound states (see Eq. (63)).
Eq. (83) can be now be solved and we obtain

∫

p<Λ

d3p〈~p |ψ2〉 =
v̂ Gα22

1− v̂ Gα22

∫

p<Λ

d3p〈~p |ψ1〉

=
Gα22
Gα11

∫

p<Λ

d3p〈~p |ψ1〉 (85)

where Gαii = Gii(E = Eα). Thus, Eqs. (81) and (82) can
be written as

〈~p |ψ1〉 =
1

Gα11

Θ(Λ− p)

Eα −M1 − ~p 2

2µ1

∫

k<Λ

d3k〈~k|ψ1〉 (86)

〈~p |ψ2〉 =
1

Gα11

Θ(Λ− p)

Eα −M2 − ~p 2

2µ2

∫

k<Λ

d3k〈~k|ψ1〉 (87)
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If we define the partial probability

Pi = 〈ψi|ψi〉 =
∫

d3p|〈~p |ψi〉|2 (88)

we can further use the total normalization condition

1 = P1 + P2 ≡
∫

p<Λ

d3p
{

|〈~p |ψ1〉|2 + |〈~p |ψ2〉|2
}

= −
(

1

[Gα11]
2

dG11

dE

∣

∣

∣

∣

E=Eα

+
1

[Gα11]
2

dG22

dE

∣

∣

∣

∣

E=Eα

)

×
∣

∣

∣

∣

∫

k<Λ

d3k〈~k|ψ1〉
∣

∣

∣

∣

2

(89)

from where, using Eq. (74)

∣

∣

∣

∣

∫

p<Λ

d3p〈~p |ψ1〉
∣

∣

∣

∣

2

= [Gα11]
2 g2 (90)

and hence

P1 = −g2 dG11

dE

∣

∣

∣

∣

E=Eα

, P2 = −g2 dG22

dE

∣

∣

∣

∣

E=Eα

(91)

P1

P2
=
µ2
1γ2
µ2
2γ1

arctan
(

Λ
γ1

)

− γ1Λ
γ2
1
+Λ2

arctan
(

Λ
γ2

)

− γ2Λ
γ2
2
+Λ2 )

=
γ2
γ1

[

1 +O(Λ−1)
]

=

√

EαB2

EαB1

[

1 +O(Λ−1)
]

(92)

The neglected terms are finite range corrections, which
in our case are represented by the finite cut-off. On the
other hand, assuming real wave functions, Eq. (90) to-
gether with Eq. (85) lead to

g Gα11 =

∫

p<Λ

d3p〈~p |ψ1〉 (93)

g Gα22 =

∫

p<Λ

d3p〈~p |ψ2〉 (94)

The wave functions in coordinate space would be again
given by means of Eq. (43) using µ1 for ψ1 and µ2 for ψ2

and substituting m1+m2 by Mi for each component. At
long distances this means, see Eq. (44),

〈~x|ψ1〉r→∞
∼ A1√

4πr
e−γ1r (95)

〈~x|ψ2〉r→∞
∼ A2√

4πr
e−γ2r (96)

where we have used Eq. (73). Once again
∫

p<Λ
d3p〈~p |ψi〉

can be interpreted (up to a constant factor (2π)
3
2 ) as the

wave function at the origin, as done in Eq. (48) and then
Eq. (93) and Eq. (94) can be rewritten as

gGα11 =(2π)3/2ψ1(~0 ) = ψ̂1 (97)

gGα22 =(2π)3/2ψ2(~0 ) = ψ̂2 (98)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10

φ i
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 0
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 0.15

 0.2

 0  2  4  6  8  10

4π
r2 |φ

i|2
r [fm]

φ1
φ2

FIG. 3. Neutral and charged Wave function components for
a D0D̄∗0 binding energy of 0.1 MeV. In the upper panel one
can see the value of the wave functions at the origin for both
channels, in the lower panel we plot the probability density
for each channel.

¿From the above expressions, we trivially find the ratio
of wave functions at the origin

ψ̂2

ψ̂1

=
Gα22
Gα11

= (v̂Gα11)
−1 − 1 (99)

and their departure from unity provides a tangible mea-
sure of the isospin breaking in the interaction region. On
the other hand,

d

dΛ

(

ψ̂2/ψ̂1

)

=
π

2

µ2

µ1

γ2 − γ1
Λ2

+O(1/Λ4) (100)

which shows that, though both ψ̂1 and ψ̂2 depend greatly
on the cutoff, such a dependence is much reduced in their
ratio.
In Fig. 3 we show the two wave function components

for the problem solved in [13] with only two channels
and the binding energy for D0D̄∗0 of 0.1 MeV. The os-
cillations are caused by the sharp cut-off Λ introduced to
regularize the Lippmann-Schwinger equation. Eqs. (97)
and (98) and the asymptotic behavior of the wave func-
tions given by Eqs. (95) and (96) clearly show that, in
the limit of zero binding energy of the D0D̄∗0 compo-
nent, this wave function extends up to infinity while the
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D+D∗− component is restricted in space because of the 8
MeV binding. The probability to have the D0D̄∗0 com-
ponent becomes much larger than that of the D+D∗−

component (see Eq. (92)) and we could think of the
X(3872) as a D0D̄∗0 molecule. While technically correct
from the point of view of probabilities, this interpretation
is misleading concerning physical processes, like decays,
because these require Hamiltonians of short range, zero
range ordinarily in effective field theory, such that what
matters in these processes is the wave function at the
origin. For instance, what will determine the I = 0 char-
acter of the wave function will be the ψ1(~0) and ψ2(~0)
magnitudes, not the probability integrated in all coordi-
nate space. Hence, Eqs. (97) and (98) indicate an isospin
breaking, with respect to the I = 0 combination, given
by the differences between Gα11 and Gα22 (see Fig. 2).
Eq. (11), related to the decay process depicted in

Fig. 1, has now an intuitive representation to the light of
Eqs. (97) and (98). The amplitude for

X(3872) → J/ψρ(ω) (101)

is given by

M = g1G
α
11F1 + g2G

α
22F2

= (2π)3/2(ψ1(~0 )F1 + ψ2(~0 )F2) (102)

where F1 and F2 are isospin factors for the vertices
D0D̄∗0 → J/ψρ(ω) and D+D∗− → J/ψρ(ω), F2/F1 =
−1 for the ρ and F2/F1 = 1 for the ω. Certainly this
should be the case for many channels and we shall see
the generalization in the next section.
Eq. (102) can alternatively be interpreted as

M =

∫

d3p 〈~p |ψ1〉tD0D̄∗0→J/ψρ(ω)

+

∫

d3p 〈~p |ψ2〉tD+D∗−→J/ψρ(ω) (103)

assuming that the range of the t amplitudes is very short
compared to the extension of the wave functions, essen-
tially that the t are constant functions in momentum
space, as one has in field theory vertices stemming from
a contact Lagrangian.

V. GENERALIZATION TO MANY CHANNELS

We have now

〈~p ′|V |~p 〉 ≡ vΘ(Λ − ~p )Θ(Λ− ~p ′) (104)

where v is aN×N matrix withN the number of channels.
The expressions that we have obtained can be gener-

alized to many channels and we derive here some useful
expressions.

A. The couplings

We can write for the T matrix

T =
Av

det(1− vG)
(105)

where A is defined as

A = [ det(1 − vG)] (1 − vG)−1 (106)

This matrix is introduced to single out the source of the
pole in all channels which is given by the condition

det(1 − vG) = 0 (107)

We have now

gigj = lim
E→Eα

(E − Eα)Tij

=
(Av)ij

d
dE det(1 − vG)

∣

∣

∣

∣

∣

E=Eα

(108)

gj
gi

=
(Av)ij
(Av)ii

∣

∣

∣

∣

E=Eα

(109)

We can see that gj/gi is a ratio of two matrix elements of
matrices without singularities. This means that if gi → 0
as a consequence of having the binding in channel i go-
ing to zero, then all the couplings to the other channels
coupled to channel i will also go to zero. This is also
obvious from Eq. (108) since g2j → 0 because the denom-

inator contains
dGα

ii

dE and, one has
dGα

ii

dE → ∞ for all cases.

B. Wave functions

Eqs. (81) and (82) can be generalized as

〈~p |ψi〉 = Θ(Λ− p)
1

E −Mi − ~p 2

2µi

×
∑

j

vij

∫

k<Λ

d3k〈~k|ψj〉 (110)

which upon integration leads to

∫

p<Λ

d3p〈~p |ψi〉 = Gii
∑

j

vij

×
∫

k<Λ

d3k〈~k|ψj〉 (111)

which in the language of Eq. (97) and Eq. (98) reads

ψ̂i = Gii
∑

j

vij ψ̂j

ψ̂ = Gvψ̂ (112)

where Eq. (112) is written in matrix form and it requires
that det(1−vG) = 0 for its solution, which is guaranteed
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for the bound eigenstate. Eq. (112) can also be written
as (G−1

α = G−1(Eα))

G−1
α ψ̂ = vψ̂ (113)

which allows to rewrite the equation for the wave func-
tions Eq. (110) as

〈~p |ψ〉 = diag

(

Θ(Λ− p)

Eα −Mi − ~p 2

2µi

)

G−1
α ψ̂ (114)

which gives the wave function in momentum space in
terms of the wave function in coordinate space at the
origin. These equations are the generalization of Eq. (86)
and Eq. (87) together with Eq. (85).
Let us now use the normalization condition

∑

i

〈ψi|ψi〉 =
∫

d3p
∑

i

|〈~p |ψi〉|2

= −
∑

i

dGii
dE

1

G2
ii

∣

∣

∣

∣

∣

E=Eα

ψ̂i
2
= 1 (115)

We can now take advantage of Eq. (114) to define the

couplings in terms of the ψ̂i. For this we use the ver-
sion of Eq. (14) for the Lippmann Schwinger equation,
recalling that close to the pole of the eigenfunction of
the Hamiltonian, |ψ〉, associated to the energy Eα, only
this state contributes in the sum over eigenstates of H ,
and we find

Tij = vij +
∑

mn

vim

∫

k<Λ

d3k〈~k|ψm〉

× 1

E − Eα

∫

k′<Λ

d3k′〈~k ′|ψn〉vnj (116)

which means that

gigj =
∑

mn

vimψ̂mvnjψ̂n

= G−1
ii ψ̂iG

−1
jj ψ̂j

∣

∣

∣

E=Eα

(117)

from where we conclude that

gi = ψ̂i/G
α
ii

giG
α
ii = ψ̂i (118)

as we found in Eq. (97) and Eq. (98) in the two channel
problem. This allows to reinterpret Eq. (115) in terms of
the couplings and we find

∑

i

g2i
dGii
dE

∣

∣

∣

∣

E=Eα

= −1 (119)

which is the generalization of Eq. (74).
Eq. (119) is interesting because when one channel be-

comes loosely bound then the loop derivative for this
channel goes to infinity while the other derivatives re-
main finite. In this limit we get, if channel 1 is loosely
bound

lim
EB→0

g21
dG11

dE

∣

∣

∣

∣

E=Eα

= −1

g21 = −
(

dG11

dE

)−1

E=Eα

(120)

which is the same result obtained for one channel in
Eq. (41). Thus, in this limit the coupling of the loosely
bound state goes to zero as the binding energy goes to
zero. On the other hand, Eq. (109) guarantees that all
the other couplings will also go to zero since the matrix
Av is not singular. This result was also found in [42]
although derived in a different way.

VI. DECAY WIDTH OF THE X(3872)

After these clarifications we would like to go back to
the ratio of the decay width of the X(3872) to J/ψρ and
J/ψω of Eq. (11). As discussed in [13], the ratio of widths
was given by the square of Eq. (11) times the factor to
correct for the phase space of ρ decaying to two pions
and the ω decaying to three pions:

B(X → J/ψππ)

B(X → J/ψπππ)
=

(

Gα11 −Gα22
Gα11 +Gα22

)2 ∫∞

0 qS (s,mρ,Γρ) Θ
(

mX −mJ/ψ −√
s
)

ds
∫∞

0 qS (s,mω,Γω)Θ
(

mX −mJ/ψ −√
s
)

ds

Bρ
Bω

(121)

where Bρ and Bρ are the branching fractions of ρ decay-
ing into two pions (∼ 100 %) and ω decaying into three
pions (∼ 89 %), q is the center of mass momentum of the
outgoing meson pair in each channel and value of s, and
S (s,m,Γ) is the spectral function of the mesons given
by:

S (s,m,Γ) = − 1

π
Im

(

1

s−m2 + iΓm

)

(122)

In [13] it was found, using dimensional regularization for
the loops,

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.4 (123)

which is compatible with the experimental value 1.0±0.4
from [34].
Now let us assume that we take seriously that there

is only one channel, the D0D̄∗0. Then the ratio of the
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widths is

R
(D0D̄∗0)
ρ/ω =

(

ψ̂1tD0D̄∗0→J/ψρ

ψ̂1tD0D̄∗0→J/ψω

)2

= 1 (124)

which is about 30 times bigger than the value obtained
for this ratio (0.032) in [13]8 . When we take into account
the phase space for the decay into ρ and ω and the ρ and
ω branching ratios into two and three pions, with the
ratio in Eq. (124) we find

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 0.05 (126)

which is about a factor 20 times smaller than experiment.
It is thus clear that the charged components of the

wave function have played an essential role bringing this
branching ratio close to experiment and this stresses that
the wave functions at the origin for each channel, and not
the probabilities of finding the state in a single channel
alone, is what determines the isospin nature of the state
in coupled channels. Indeed, the X(3872) wave function
would read

〈~r |ψ〉 = ψ1(~r ) + ψ2(~r )√
2

χI=0

+
ψ1(~r )− ψ2(~r )√

2
χI=1 (127)

with χI=0,1 scalar and vector isospin wave function
spinors. In the charge basis used in Section IV, the
isospin wave functions are

χI=0 =
1√
2

(

1
1

)

, χI=1 =
1√
2

(

1
−1

)

. (128)

As mentioned in the introduction, the X(3872) does
not have well defined isospin because the free Hamil-
tonian (including masses) of the D0D̄∗0 and D+D∗−

system does not commute with isospin. The mixing
depends on the relative distance ~r between the pseu-
doscalar and vector mesons. Thus with transition op-
erators of zero range, one easily understands that the
ratio of branching fractions of Eq. (1) is determined by

the ratio
[(

1− ψ̂2/ψ̂1

)

/
(

1 + ψ̂2/ψ̂1

)]2

, which in turn

gives the ratio of isospin 1 to isospin 0 probabilities at
~r = 0. As we shall see in the next section (see Rρ/ω of
Table I), this ratio is of the order of 2%.

8 Note that

(

Gα
11 −Gα

22

Gα
11 +Gα

22

)2

=

(

1− ψ̂2/ψ̂1

1 + ψ̂2/ψ̂1

)2

(125)

and thanks to Eq. (100) the ratio of wave functions at the origin
depends little on the ultraviolet cutoff Λ.

VII. RESULTS FOR OTHER FORMS OF THE

POTENTIAL

One might think that the results obtained are specific
of the type of the potential chosen in Eq. (60), but the
results are actually very general. To show that this is the
case, we use other potentials. Let us consider a separable
potential where we substitute the sharp cut off by a form
factor

〈~p ′|V |~p 〉 ≡ vf(~p )f(~p ′) (129)

where v is aN×N matrix withN the number of channels.
The results of Sect. V follow nearly identically substitut-
ing the Θ(Λ − p) by f(~p ). Eq. (105)-Eq. (109) are the
same, but G is now given by

Gii =

∫

d3pf2(~p )
1

E −Mi − ~p 2

2µi

(130)

and the wave functions are now given by

〈~p |ψi〉 = f(~p )
1

Eα −Mi − ~p 2

2µi

∑

j

vij

×
∫

d3kf(~k)〈~k|ψj〉 (131)

Eq. (111)-Eq. (113) follow, but now

ψ̂i =

∫

d3kf(~k)〈~k|ψi〉 (132)

which allows to write Eq. (131) as

〈~p |ψ〉 = diag

(

f(~p )

Eα −Mi − ~p 2

2µi

)

G−1
α ψ̂ (133)

and again we find Eq. (118)

gi = ψ̂i/G
α
ii

giG
α
ii = ψ̂i (134)

and Eq. (119)-Eq. (120) also follow.

Everything is identical as before, but now ψ̂ is not, up
to a factor (2π)

3
2 , the wave function at the origin (it

would be if we removed f(~p ) from Eq. (132)). To see

the meaning of ψ̂ we write f(~p ) in terms of its Fourier
Transform

f(~p ) =
1

(2π)3/2

∫

d3xf̂(~x)ei~p.~x (135)

and the wave function of Eq. (133) also in terms of its
Fourier Transform

ψi(~p ) =
1

(2π)3/2

∫

d3xe−i~p.~xψi(~x) (136)

Then upon integrating explicitly over ~k in Eq. (132) we
find

ψ̂i =

∫

d3xψi(~x)f̂(~x) (137)
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We performed explicit calculations using a gaussian form
for f(~p)

f(~p ) = e−
1
2
~p 2/Λ2

f̂(~x) = Λ3e−
1
2
~x2Λ2

(138)

and a Lorentz form

f(~p) =
Λ2

Λ2 + ~p 2

f̂(~x) =

√

π

2
Λ2 e

−|~x|Λ

|~x| (139)

We can see that f̂(~x) has a range of 1/Λ ∼ 0.2 − 0.3
fm, a range much smaller than the extension of the wave

function. Thus ψ̂i gives the average of the wave function
in the vicinity of the origin, while in the case of the sharp
cut off one finds exactly the wave function at the origin.
One sees again that this average value of the wave func-

tion at the origin is what governs the decay process of the
resonance. Indeed, if we go to Eq. (103) to get the am-
plitudes for the decay mechanism of Fig. 1 we would
find:

M =

∫

d3p 〈~p |ψ1〉f(~p ) tD0D̄∗0→J/ψρ(ω)

+

∫

d3p 〈~p |ψ2〉f(~p ) tD+D∗−→J/ψρ(ω) (140)

where we have taken for the DD̄∗ → J/ψρ(ω) transition
amplitude, for consistency, f(~p)tDD̄∗→J/ψρ(ω) with t a

constant. Eq. (140) reads

M = g1G
α
11tD0D̄∗0→J/ψρ(ω)

+ g2G
α
22tD+D∗−→J/ψρ(ω) (141)

as we obtained before, and according to Eq. (134) now

giGii = ψ̂i.
It is interesting to compare the results with the form

factor with those we had before. We proceed as follows,
we take the same strength for the potential as before and
determine Λ to get the neutral channel bound D0D̄∗0 at
the same energy. In Table I we show the values of g,

ψ̂ and Λ for the three approaches: the sharp cut off, a
gaussian form factor and a lorentzian form factor. We

see that the differences for g and ψ̂i, the relevant mag-
nitudes in the X(3872) decay, are small. Note that the
value of the Rρ/ω of [13] was obtained using dimensional

regularization and zero binding energy for the D0D̄∗0

channel. If the calculation is made in the same scheme
but with EB=0.1 MeV one obtains Rρ/ω=0.025, which
differs from the values on Table I. The bulk of this dif-
ference can be attributed to differences between using
hard cut off in momentum space or dimensional regular-
ization. Indeed, using the relativistic treatment of [13],
but using a hard cut off, provides a value for Rρ/ω=0.020
at EB =0.1 MeV.
We also plot in Fig. 4 the wave functions obtained with

the three approaches and, as we see, they hardly differ

above 0.5−0.6 fm. The differences at the origin cancel in

ψ̂i, where a smearing around the origin is involved, and

particularly in the ratios ψ̂1/ψ̂2.
The robustness of the results against changes in the

form factor suggests that a large cut-off approximation
should work fairly well. Indeed, in this limit all cut-
off procedures merge into a single one, and taking into
account that Gii(Eα)−Gii(Mi) is finite we get

Gii(Eα) = −8πµi

[ ∫ ∞

0

dp[f(~p )]2 − π

2
γi

+ O(Λ−1)

]

(142)

which shows that what matters is the integrated strength
of [f(~p)]2 and corresponds to using a common subtraction
constant with a different cut-off interpretation,
∫ ∞

0

dp[f(~p )]2 = ΛSharp =

√
π

2
ΛGauss =

π

4
ΛLorentz

(143)

This identification provides a simple rule relating the dif-
ferent cut-offs ΛSharp, ΛGauss and ΛLorentz which works
very well as can be checked from Table I. Keeping the
leading terms in Eq. (142) and taking µ1 = µ2 = µ̄ we
obtain the following remarkably simple analytical results
by using the bound state condition, Eq. (84),

∫ ∞

0

dp[f(~p)]2 =
π

4
(γ1 + γ2) +

2π2f2
D

µ̄
(144)

Rρ/ω =
(γ1 − γ2)

2µ̄2

64f4
Dπ

2
(145)

which yields
∫ ∞

0

dp[f(~p)]2 = 665MeV , Rρ/ω = 0.025 (146)

Next we want to connect the present results with those
obtained in [12, 13] in the relativistic approach. Actually,
by matching the relativistic one-loop integral calculated
within dimensional regularization with scale ν (called µ
in [12]) with the non-relativistic propagator in the heavy
meson limit mD,mD∗ ≫ γ1, γ2 (see Eqs. (20), (21) and
(142)), we get9

∫ ∞

0

dp[f(~p)]2 = −1

4

[

(mD +mD∗)αH

+ mD log(
m2
D

ν2
) +mD∗ log(

m2
D∗

ν2
)
]

(147)

where αH is a dimensionless subtraction constant which
depends on the scale ν. For ν = 1.5 GeV the subtraction

9 We are using averaged values of masses for D and D∗ in this
formula. This is appropriate since no differences of masses appear
in the formula. This allows the matching between relativistic and
non-relativistic expressions.
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TABLE I. Comparative results for different potentials for a
D0D̄∗0 binding energy of 0.1 MeV.

Form Λ gFT ψ1(~0 )/ψ2(~0 ) ψ̂1/ψ̂2 ψ̂1 ψ̂2 Rρ/ω

Factor [MeV] [MeV]

Sharp 653 3202 1.31 1.31 3.29 2.50 0.018
Gauss 731 3238 1.20 1.29 3.30 2.56 0.016
Lorentz 834 3254 1.17 1.28 3.31 2.58 0.015
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FIG. 4. Wave functions for different form factors in the po-
tential.

constant used in Ref. [13] was αH = −1.185 yielding
∫∞

0 dp[f(~p)]2 = 651MeV in fairly good agreement with
Table I (ΛSharp). Neglecting the finite cut-off corrections
as in Eq. (142) one obtains now Rρ/ω = 0.026.

VIII. CONCLUSIONS

With a view to the structure of the X(3872) as a pos-
sible coupled channel bound state of mostly the D0D̄∗0

and D+D∗− and other minor channels, we have stud-
ied the meaning of the couplings, which one determines
from the residues of the scattering matrix at the poles,
in terms of wave functions for the different channels. We
have done the study in one channel, then in two chan-

nels suited to the X(3872) resonance and then we have
generalized the results to many channels. Interesting re-
lationships are obtained which shed light on the field the-
oretical approaches to reactions from the perspective of
wave functions. Essentially we find that the couplings
are proportional to the value of the wave function at the
origin in coordinate space or the averaged value within
the range of the interaction. They are not sensitive to
the wave function at long distances which is governed by
the binding energy, and we also find that this averaged

value of the wave function at the origin, ψ̂ = gG, is the
only information that is needed when dealing with short
range processes, like those provided in terms of contact
Lagrangians in field theory. We also found that the val-

ues ψ̂i were very stable against assumed shapes of the
potential once the binding energy is fixed fulfilling the
quantization condition det(1− V G) = 0.
We also find that, when one channel becomes loosely

bound, the couplings to all coupled channels go to zero.
Even if in terms of probabilities the loosely bound chan-
nel, whose wave function extends up to infinity, has the
largest probability, what matters in the reactions is the
averaged values of the wave functions at the origin that
determine the dynamics of the processes and the under-
lying symmetries like isospin. The isospin violation in
particular is tied to the ratio of wave functions around

the origin ψ̂1/ψ̂2 (for short range processes), which goes
to a finite limit when the binding of the ψ1 component
goes to zero.
When coming to the X(3872) case, which can corre-

spond to the D0D̄∗0 channel very loosely bound and the
D+D∗− bound by about 8 MeV, we find that the wave
functions at the origin for the two channels are simi-
lar, suggesting that one has a state with I = 0, with
small isospin breaking, even if the probability to find the
D0D̄∗0 component in the full space is much larger than
for the D+D∗− component. A precise measure of the

isospin admixture is given by the ratio ψ̂1/ψ̂2, which is
very stable and has a value around 1.3, the value of 1
corresponding to a pure I = 0 state where the decay
X → J/ψρ would be forbidden.
The consideration of the charged D+D∗− component

to describe physical processes is so important that if it

is neglected one finds a ratio of B(X→J/ψπ+π−)
B(X→J/ψπ+π−π0) twenty

times bigger than experiment.
The work done has also an academical component.

Some useful expressions, as well as exact analytical so-
lutions for the wave functions in coupled channels have
been given. The work also shows a different perspective
on the on-shell approach to the scattering matrix based
on the N/D method used in all modern works of chiral
dynamics in coupled channels, by means of which the cou-
pled Bethe Salpeter integral equations become algebraic
ones. The suitable choice of the potential in momentum
space that we made gives rise to the same equations as
in the field theoretical on-shell approach. The analytical
expressions found can be very useful to give alternative
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interpretations of results found in the chiral unitary ap-
proach, or in general in unitary coupled channels meth-
ods in many physical processes.
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