CERN LIBRARIES, GENEVA

A

CM-P00058512

Ref.TH.1598-CERN

COUPLINGS OF THREE EXCITED PARTICLES IN THE DUATL RESONANCE MODEL

M. Ademollo .
Istituto 43 Fisica Teorica dell! Universita di Firenze
Iatituto Nazionale di Fisica Hucleare, Sezione di Firensze

E. Del Giudice .
Istituto di Pisica Teorica dell! Universita di Napoli
Istituto Nazionale di Fisica Nucleare, Sezione di Napolil

P. Di Vecchia
CEEN - Geneva

*)
3. Fubini
Lakoratory for Wuclear Science
Department of Physies, MIT, Cambridge, Mass.

ABISTRACT

The vertex operators associated witn
the transverse states of DEM are explicitly
written. As an application of this result
the couplings of three excited "transverse"

gtates are explicitly computed.

*
) On leave of absence from Istituto di Pisica
dell! Jniversita, Torino.

Ref TH.1598-CERN
15 December 1972



INTRODUCTICR

In the framework of particle physics, the dual resonance
model (DRM) appears a8 a highly unconventional theory. Actually it is a
get of rules for comstructing scattering amplitudes for any number of
external particles, without reference tc any Lagrangian or equation of
motion. After some ingquiry into the structure of these ruleg, a fremendous
amount of symmetry and group thecretical structure shows up, as for
ingtance, the infinite number of gauge identities which follow from the

requirement of duality 1).

This gave the hope that a fully algebraic tregﬁﬁgnt of
DEM may be possible, indeed. The program would be then that of getting the
spectrum and the couplings, i.e., all the relevant things, in a completely

group thecoretical way.

Up to now, this program has been only partially success-
ful. 4 complete algebraization of the spectrum problem was achieved at least
for the critical value of the space-time dimension D=26; its structure

has heen graSped and the presence of ghosts excluded 2). A class of positive

norm states ("transverse states") has been introduced 3)

and they have been
recognized to be a complete basis in the physical subspace for the critical

dimension D=26.

The problem of couplings remained still unsolved. One
could dream that a generalized Wigner-Eckart theorem holds, where the
couplings are the "Clebsch-Gordan" coefficients of .some group. However, no
explicit formula for such couplings was yet derived, so it was very difficult
to carry out the task of finding the group one dreamed of!

Actually, the operator form derived by Sciuto 4) was
available for the three excited particles vertex, but the actusl coupling

constants between on-mass-shell states were never computed.

In this paper we move a first step in the direction out-
lined above and we give the explicit couplings among any three transverse
states. That solves completely the problem for the eritical number of

space-time dimensions.
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The formula for the couplings between three transverse
states characterized by the internal numbers { (1 5(1 } { (2) E(Q{}
ﬂ§3>, Egz) and belonging to the levels 11, _2, N3 is given by
Eq. (5. 14) where x; are parameters depending on the masses and M is the

ith excited particle.

The coupling is the product of two factors: an invariant
factor and a covariant factor. The first one is built up by a product of
terms, one for each photon entering in the definition of the excited state.
Each term is esgentially & binomial coefficient which depends upon. the
Yphoton gquantized momentum" ngh) and the tachyon momenta p(h . The
covariant factor is a sum over all the combinations of photons; each term
takes inte account the two-photon interactions ky a product of simple terms
and the single-photon contributions by a product of other terms conteining
the transverse components of the momenta. A group theoretical structure

can be suspected, but we are still unable to elaborate on that matter.

This paper is organized as follows. Section 2 contains

a review of the properties of the spectrum of DRM. The main properties of

the vertex operators assoclated with the transverse states are discussed
in Section 3. The formula for the couplings is explicitly derived in
Section 4 for the collinegr case and extended in Section 5 te the general
case. BSection & is devoted to few examples. In the Appendix we derive

gome useful relations,

REVIEY OF THE PROPERTIES CONCERNING THE SPECTRUM OF LRM

In this Section, for the sake of completeness we will
sketeh some general properties of DEM in the most symmetric case with
o{{0)=1. Let us start with the scattering amplitude for n ground state

particless

n-2 | -\
M) = fm, § T80, 22) <o m|TT /U(F"*"" o>

whefe .
oz pQD .
Vilrr) = 2 : (2.2)
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is the vertex operator associated with the ground state particle and Q}L(z)

is given in terms of the harmonic cscillators:

Q}L(z) = cro)a.+ LP(;‘,,‘Q” _32'1‘“" V— J:awufgz + Q& /&l J (2.3)

The vertex operator Qf;(p,z) associated with the ground particle is
related to the tachyon state |O,p:> through the "asymptotic" conditicns

Pm. <o} 4_)_-‘3(_53.) = <9,~p| bim 2 @(p,a)]o) =]o, 4> (2.4)
250 2 23w
In addition IQJ;(p,z) satisfies the following important properties

(2.5}

U () = Vilh, 4

Az

)
(L., %] < d (o %(n@) e

¢ - 2
Wl Uil )= Va2 Witz R Fee

where € (x)=%/|x| and L, are the well-known gauge operators which

satisfy the following infinite algebra:

[LM/ L ] (““ M’)me« ;)_ '“ i) Mim .o (2.0)

where D 1is the number of space-time dimensions.

The transformation properties of fl}o(p,z) under the
subgroup 0{2,1) formed by the cperators Lysy Ly» L_y &ive rise to the
invariance of the integrand function in (2.1) under simultaneous projective

transformations on the variahles zi:



2. —> 7. = ATrp i1 .. m (2.9)
X2 + §

As a consequence of this projective invariance and of the relation (2.7)

it is easy to prove the invariance of the scattering amplitude {2.1) unger
cyclic and anticyclic permutations of the external particles. The covariance
of Q;; under the more general conformal itransformations allows one o con-

nect amplitudes related by non-cyclic permutations of the external particles.

Starting from the amplitude (2.1) the factorization
properties of DEM can be easily studied. The spectrum of the intermediate
states which factorize the n point amplitude at = certain level
Q((MZJ =1+M2==N, can be explicitly given in the space of the infinite
harmonic oscillators. The manifest Lorentz covariance of DEM forces the
presence in the spectrum of negative norm states which may give rise to neg-—
ative cross—-sections violating basic prineciples. However, the gauge group
of Ln provides a mechanism for the elimination of those negative norm
states by requiring that the intermediate on-mass shell states which are

5)

effectively coupled, must satisfy the following conditions

(Lo+) ¥ =0
LM l\P> =0 /M=1’z"."

Using the vertex operator asscciated with the "photon”

(2.10)

state appearing at the level K=1 it has been possible to construct a new

get of harmonic oscillators Ai n which satisfy the conditions (2.10) once

1 . .
they are applied to a physical state 3):

Ao = o7 § 2 Ry ™0 o
M M4 %r i .

with the regstriction

{2.12}

ApkKs= m



-5 -

where n is an integer number and

B‘(i): z j{; Ru@) = LP%-\- % ﬂ[ﬁl«,}*i - 0:.”“ E"ﬂ (§.13)

The integral is evaluated along a small circle centered
in the origin. The four-vector k 1is lightlike and it has teen chosen to
be moving along the axis (D-1). The index i is then running from 1 to

(D-2) salong the subspace orthogonal to the vector X.

The transverse operators A, - satisfy the algebra

6}

of the non-relativistie harmonic oscillators

[Am,i, /Awf}-] = M 5;/3’ SM-I-M!;D (2.14)

and they commute with the gauge operators Lm

[.L“" , P"'hi =0  (2.15)

From the transverse harmonic oscillators it is possible to construct an

infinite set of states

<OMThj Zug = <iwujl oo

where ny; can assume all the positive integer values end ’0,p> is the
ground particle state whose momentum is constrained fto satisfy the condition

{2.12). The normalization factor Z {n-} is given by
- i

Z = —_ L (2.17)

A
oy = 1 ™ T

whare >W1 is the multipliecity of the operator Ai n in the product (2.16).
. H
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The states (2.15) are orthogonal to each other:

<i"“'!“},i”‘"«- ’513> = gf"‘i;fij;&;,g:j(“s}

and gatisfy the gauge conditions

L. ] {mi, 2;3 >

1
O

Nﬂ':‘j_-’ 2,3,__. (2'19)

The transverse states (2.16) form a complete and orthogonal bagis in the sub-
space of the physical states in the case D=26; hence, for D=26, =81l the
negative norm states required by the manifest Lorentz covariance are
decoupled from the physical subgpace 2 . When D<26 the transverse states
span a subset of the physical subspace and additlonal states must be

included to recover the entire physical subspace. However, if D<26, the

physical subspace is also ghosit free.

We conclude this section by recalling that the conditions
(2.10) are satisfied also by zero norm states which are at the same time also
decoupled from the physical subspace. As in the case of quantum electro-
dynamics they are important to emsure the required properties of the spectrum

under Lorentz transformations.

VERTEYX OPERATORS RELATED TO THE TRANSVERSE STATES

As we have seen in the previous section, the properties
of the spectrum of DEM are gquite well known. However, to recover the full
content of DEM and have an understanding of its possible deeper implications,
one must also study those features of DEM connected with the couplings
among excited states or more generally of the n point amplitudes where

the external partiecles are any physical state of the spectrum.

Following the general approach of Ref. 7) we will
construct in this section the vértex operators assoeiated'with the
transverse states. Using these operators which have the same properties

as TI;(z,p), the n point amplitude for excited particles is constructed
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in exactly the same way as in the case of ground particles. This way of .
proceeding is very interesting because it shows explicitly how the DRM
satisfies the bootstrap requirement of a complete "democracy" within the

physical particles.

Starting from QI;(p,Z} and the "photon™ vertex operators

we can construct the following expression

VTR Q(24)
r) SCRY

1w - A2 D

(]Lig - EE Mg ,LE(ti)‘szg-—- cu(?u)

3 2w
2
The integrals over g  are evaluated slong a curve of

the complex pleme 2z containing the point z. The singularity of the
integrand function for =z =z 1is a pole of crder n which arises
from the procedure of bringing all the operators with positive frequency
on the right-hand side and all the operators with negative frequency on

the left-hand side, provided that the following relations are gatisfied:

QF kK, = - m; | (3.2)

The previous conditions make the integrals in (3.1) unambiguously defined.
The light-like vectors ki are taken to be aligned along a common direction
which, for example, can be chosen to be along the axis (D—1). The

momentum 7T of the operators (3.1) is related to p and ki by the

conservation egquation

[

M=+ 2k (3.3)

We discuss now scme properties of the expression {(3.1). It is easy to

check the validity of the following limits:

Liva, <0| {DEW,ELS (Tf, 2)

230
z

= <l -T| (3.4)



fim 2 @i_m'ﬁ}(n,a)h) = [$m, ), T> (5.3)

They follow immediately from the definition of the transverse states.

The covariance under the group of Lm's

L. ’U%%&.}(may} d "™y | |
[ / > -O-\_E- 2 Q){Mr‘,icj(n:2>> (3.6)

follows immediately from the covariance of {ZEKP’Z) under the gauge

operators and from the fact that the Lm's commute with the integrals in

(3.1) because of the commutation relations

[L«m } Pi(2) SFRAD | _ 4 (E_M R.(z)ec’lfikai)) (3.7)
3 o2 '

Firally, the following two other properties can be lmmediately checked

N 1 .
fm. £ S(TF‘%) ("") 4){1;’?;} (—Tf, ";_1) (3.8)

(’- %) ,D- (Trz,iz) U (TTz,Zz) 4){;- (Ta,2,) - (3.9)

(&)

EZMTI&_-"{T,_ ) 4+ other ferms

where N is the level of the ztate {rﬁf Ei} . The presence of the factor

(-1)N in the case of the excited particles is a consequence of the fact

ifn.,e‘

that the physicsl states are eigenstates of the twisting operator with

eigenvalue equal 0 (—T)N.
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The first term in (3.9) comes out from the commutation
between only the exponentisl factors which appear in the expression {3.1).
The other terms involving S' functions or derivatives of S functions,
db not need to be evaluated explicitly because the expression (3.9) is
used only in expressions of the type (2.1) where these additional terms do
not give any contribution. Following the analogy with the case of the
i€ i (.2} with

tachyon vertex 1t is natural now to identify vi
state | fni,£ij >,

the vertex operator associated with the transvers

In fact, on the one hand, these vertex operators give
back the transverse states in the "asymptotic" limits -0 or z—m
and 811 the properties of the spectrum can be easily recovered. On the
other hand using those operators QJEnisa 3 (M,z) it is possible to
evaluate the scattering amplitude with any trensverse state as an external

particle.

In fact, using the general properties (3.5), (3.6),
(%.7) and {3.9) of the vertex operators it is straightforward to show that
P

the scattering amplitude among transverse states is given by

(3.10)
n2 M- (T
. . A P QRN (D-() G) J% .
B )T, de00au-2<e 3 £ T fm;:g ')|"~i'5-3£’j .
7

" which is the obvious generalization of the n point amplitude for ground

particles.

As a consequence of the above general properties of the
vertex operators it is easy to show the invariance of (3.11) under cyelic

and antieyclic permutations of the external particles.

To conclude this section let us evaluate the two and
three-point functions between excited particles. Using the invariance

under translations and dilatations the two-point function can be written

, /U:ti(zt) /U;,_(z:.) 10> = oy oz (3.11)

Lo N
24 2, (24~ 22)
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The dependence on the variables zZ; of the three-point
function is also determined by the projective invariance. In fact, using
the invariance under dilatations,'translationa and inversions it is easy to

evaluate

(3.12)

Nag(22) Moy (z2) sy (25) - Wy oty
| = b o> =
w n B e (e %)

The numbers WOL1 oo *3 which are the couplings smong the three transverse

states, will be explicitly evaluated in the next sections.

THE THREE-POINT FPUNCTION IN {HE COLLLNEAR CASE

In this Section we want to find an explicit expression
for the vertex of three physical excited states. The physical states we
shall consider are the transverse states discussed in the preceding Section,
which, for critical space time dimensions D=26 span the whole physical
space. For D<26 we shall only consider a subset of all the physical
vertex functions. TFor simplicity we shall also restrict ourselves to the
collinear case, in which the momenta of the three excited states and also
the momenta of all thelr constituent tachyon and photon operators are _
allgned along the game space direction. In this configuration, in fact, the
vertex takes a very simple form. The restriction of parallel momenta will
be released in the next Section, where we shall find the couplings in the
general case. Thus, we consider the three-point function for the exeited
states |°(1,Tl-1>, |°(2,Tr2> and |d3,-rr3> where 771, Tr2 and
7]'3 are the incoming momenta, satisfying 7T1+TE+7TB=O’ and 0(1, 0(2
and & 3 label the internal guantum numbers and the polarization states in

the following way

% IR (&) .
T fmy, My Mo By 8y aM;} JAT4,2,3 ()

as discussed in the preceding Section.
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The occupation numbers ngi) are such that
RS .
. z %t - N"' : i—Tr‘-' . . ((,:i'z‘ 3) (4:.2)
™= ) o ) .

We also need, as auxiliary varisbles, the moments and the Koba-Nielsen
variables associated with the tachyon and the photon operators, constituents
of each excited state and we call p - and 8, the tachyon varisbles and
k(i) . and -zr:L the photon variables of the i%M excited particle es
shown in Fig. 1. They satisfy '

)PG)Z = 4

kmz (4.3}

O ONE (<)
29K zom]

In the collinear configuration we take all the photon momenta proinortional

to the vector e, such that 92=0, e, =1, e_=e=0 =0 that we have

+ -

() f.&) )

k,,' - M P, € |

KM- k(") =0 . | _ (4.4)

(4 h)
P+ P. = 1. _
where we have used the light cone wvariables p-ﬂ_='1/‘/ QEPD-‘I :I:po)', with the

photon momenta along the (D-1) axis.

The symmetric¢ three-point function is given by

N*dz-ﬂs = (“2‘ a_,_) (“3‘ a:-) (“3‘ az)

'.0'<o\ 4);1.(“1!0'*) (m,az) 4);3(”5/03)' o> =

ay T a, (4:5)

= &) U (B, 4) [T b

where the vertex operators for the excited particles have the expression
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o {t) M o\ ). " (“Q (2m
U000 = 2 U0 [ 4 45 p on™ 0
a.

Putting this into {4.5) we gbserve that the transverse components of the
_.operators Pj-(zr) commute with all the tachyon vertices and with the
expounentials of the photon vertices so that we can factorize the vacuum
expectation value of the product of the Pj(zl;) operators. What is left
is essentially the integrand of the n point funetion for ground states

and we obtain

.
? + 4
Vepiga, = 20Z 25 H (a —a)

La), :
M . . #ﬂ kk (4.7)
T (-—§ <o|7T’P (a)|o>TTr|a i
r= a“-" Lzd =i .
=l . a-
Where I&E::M1+M2+M3 and we have used the compact notation
e _ g ) ' _ .
klr k'. , ELr.. 2._ , X = qu , r= 1? = hdi;
@ ey (e A
Kﬂmr'kr, znﬁ-r'zr ;) & =% , TF L. M (4.8)
3) (M.L*Hg_ﬂ') .
kM1+rﬂl+r'k Mﬁ.nh— '2;- 2 G =03 r=4,,. MS

The vacuum expectation value in (4.7) is obvicusly zero for edd M. Since
gach transverse photon carries a helicity =1, the vanishing of the
collinear vertex for an odd number of photons is a consequence of he%icity
conservation. For even M that factor can be expressed by means of the
Wick theorem as a sum of products of factors like <O|P z )P |O>

for sach couple of photdns, summed over the independent photon permutatlons.

Each of these factors is

<o R (&) Bladlo> = ol [Pf?gt)}?:(‘fsﬂjojz 'Si} 2 2, (4.9

(22- ‘35)2_
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and therefore we have

< o] ﬁ: P (@)lod

1

Mom
(--l) _U'— 2,

H/z . (4.10)
™ S -

=q, Fau.q )"1_*
Tre--m)

(Erzk-1 - Erzk—

where the sum 1s extended over the (M-1)!1 permutations of the indices

.

{1,2,...,M } corresponding to different photon pairings. We see that
- the couplings between photon variables only arise from the above factors,
so that for each term of the sum in (4.10) the multiple integral in (4.7)
factorizes into M/2 double integrals, one for each couple of photons.
Furthermore, since the expression {(4.7) is projective invariant, we may
arrange things in such a way that each factor ie individuelly projective

invariant. In conclusion, we can rewrite (4.7) in the following form

hf&_ (2
5_2‘ 23 (- 2_-”_ Jr ((U IPm]( k 4.11)

%ra,, Ili i zti

W

d{dz&

ez 2P P(k k)
() (;) _ . r? Ks reKg
D(p 2%y x,,k,)-(az ag) (9-4,) G

2P (kr+K : "
(QB'Q ,)\édé §d2:(2 &,) ﬁ E &tlzr}‘i;s' a.ifzpb}' K (4.12)

a'tf) U =t

The D functions defined above are the basic ingredients for the vertex
and are essentially the discontinuities of the five-point functions

corregponding to the three tac?y§ns(a?d two photons. Using momentum con-
1 2), . (3)

(p +p 7 )k, =0

that {4.12) is invariant under simultaneous projective transformations of

servation and the property +Pp it is easily verified

the variables 2y 2., and 2. As a consequence the D Tunctions are
individually independent of the valuee of ag; 2, and a3 which can be

chosen in the most convenient way.

There are two different kinds of D functions: the

first one, that we call D1, when the integrals are around the same point
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and the second one, that we call D2, when the integrals asre around twe
different points. In the first case let a(r):a(s)::ai1 and we shall

caleulate {(4.72) in the limit aj;~0, ajp,~1, ajz~ o, where (11,

12,13) is a cyclic permutation of (1,2,3%). We then have

. ] - /

2p'k o d
(1-2)" (1-2
i iop i i
where p=p(1)a P'=P( >, k=k£1), k'=k(1) gndweLmedtheCMh
ditions (4.3) with n=-2p-k=nr( 11) n' =-=2p.k'’ =ngl1). If we suppose the
integral over =z to be carried first, we may take |z|<1|z'] and use the
eXpansion
2 O
' ) - A Z 2
(2‘ 2) R (—) (4.14)
22 2= A
to obiain

m'ed

m-m apik\ / 2Pk’ (4.15)

We now observe that in virtue of (4.4) we have

ZPtk = -ZM«P.’- P+ = —M_tt_ = - M (4.16)

P+

and similarly 2p'.k!'=-n'x. In this case the sum in (4.15) can be

explicitly performed as shown in the Appendix and we get

r
""‘z)<“’““— ma' L tx (4.17)

" nfmrm
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Since D1 ig clearly symmetric in (n,n'), it is also independent of the
order of the integrations in (4.13), as it was t¢ be sxpected. In the

previous genmeral notations the above result reads

j) (ijr Fffi F“); {+) k(-ﬂ)

O N ' () : . (4.18)
+ M 1 mr:: P+‘ U |9 dia mm P + ch
= () pED I
. + -+ . .
i () 7] <)

We now consider the case of D2, where the two photons belong to different
excited states. With reference to (4.12) let a(r) =ajqy & 8 =aj, and
we consider as before the limit a;,-0, aj,-1, ajz—®. We then obtain

o 1) = o B G ) e
4

zp’k Jsz; _m_’ (4.19)

- (1-2) =2 (2-4) =
i (.') 2; k) zpk‘—.é )

£x3
(i1) (i1) (i2) (i1)

where we set ;EJ: s p':p , k=k - k'=k, ’ n=-2p-k=nr )
2}

n'=-2pl+kli=n If we now consider that 2p'+k=-np /p' = -nx and
P P A

8
similarly P2pk'=-n'/x, the sum in (4.19) can again be explicitly

performed {see the Appendix)} and we obtain

¢

- _y )
D, - (’,)mﬂ 'n‘x.)( =~ | ma (14 %) (4.20)

" m' max +m.’

which in the general notation for the D function reads

X () C£+1)
(% ¢, P“’ e ks ) =
a) (‘) 1 fI-H ;' '4. lil i 1) .

= (_| P(L'rf) P ) ( )
f\ Covr) o Gt
o m m; L
s
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We may put (4.18) and (4.21) in a more symmetric form. We first observe

that momentum conservation along the - and the + directions gives, by

(4.2) and (4.4)

p— . 2
+ F-l' +
2 m ) ( (4.23)
D _
WS A 2 Py * s =0
where mf:-—ﬂi are the squarsd masses of the excited particles (integer

numbers). We next introduce the parameters

¢e)
P-!- (4.24)

<Pf‘) F(z) P(B) 3

These satisfy the relations

Zrm x, ::O

L=
and they can therefore bhe expressed as functions of the external masses.

(4.25)

After some algebraic manipulations'and uzing the

relation
. 2.
zc. M et
M= ey D K
M. Xiog . (4.26)

we can write the D functions in the form
o Mg})
M, - + 4
o (D AN t 5
:D(]; »‘P F(i) + k(} ) - (..;) .

@ %/ » z; (0 (8, (
2 4,27)
~M fx‘.i '"’ My K Kirg Mg %) %)y

’ . J’* A
5 [‘“ Y e, + M %,
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which is valid both for i=j and for i#j. 4As a result, the D func-
tiong factorize very nicely in the following way: to each photon with

i . ,
momerntum k£ is associated a factor

w) ) .
Moy (D) -m, %
("‘l) M«, 94‘ ’)C‘-q_‘ Kivg : (4.28)
¢
X
and to each couple of photons with momenta kgl) and kgj) is associlated
a factor
-4
....( (‘)qg +4L (4.29)
)

Following these rules we can finally write the vertex (4.11) in the very

compact form

U)otukzoks Z 2 2 ()N4+N1+N3 Tr -M‘H

t=4
M. m -1
) r 24 Z -ﬂ- g (4.30)
[| '2 -
. M? ¥l . Jr Mr z“ 1)
rei M P $r Tak 24
where under the sum we used for the indices of n and x(r) a notation

r
analogous to (4.8) for k., and a T/ respectively.

The formula {(4.30) is manifestly symmetric under cyclic
permutatlons of the three excited particles. Under anticyclic permutatlons

the three-point function changes into the three-point function for the

i )N1+N2+N3'

twisted states, so it must take a factor (- This property is

satisfied by (4.30), as it can be easily seen by changing in each photon

)

factor (4.28) the variables (xi,xi+1) into the variables (x. %y

and using the relation (4.26).
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THE THREE-POINT FUNCTION IN THE GENERAT. CASE

We want now to extend the result of the preceding
gection to the general case of non~collinear momenta. We can devise two
different ways to represent the physical states of the excited particles.
The first way consists in taking the tachyon momentum and the photon
momenta a1l parallel +to the momentum ?F of the particle and the polari-
zation vectors of the photons orthogonal to this direction. This gives
an intrinsic representation for the transverse states of the particle of
momenum . The second way makes reference, for any excited particle,
to a fixed reference frame. In this frame the photon momenta are all taken
in the same direction, say the (D—1) axis, and the polarization wvectors
span the D=2 dimensional space orthogonal to this direction, independent
of the direction of i?.. For D=26 these two descriptions are complete
end equivalent, the states of one type belng related to the states of the
other type by a suitable rotation operator & , apart from the contribution
of zero norm spurious states, which, however, do nct contribute to the

amplitude.

In our case, and more generally for the n point func-
tion, the second type of description i1s much more convenient since in this
case the scalar product of any two-photon momenta is zero and many factors
in the Koba-§¥ielsen integrand are absent. With the same notations as in
Section 4, the kinematics is now the following. ETquations (4.4) are

replaced by

. (o
k(ﬂ _ M.,.) 2
L >
2P,

. K(:)' k_:é) - o

(W () ()%
Ay P+ P =2

while Bygs. (4.22) and (4.23) become

3 .
(+)
2. P =0
i*)
3 2wt _ (5.2)
T_".:_P—J"—- = 0
1S Pff)
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We shall also use the parameters

i
()] (& 3
(p P p®

®, = (5.3)
£e)

which reduce to those of (4.24) in the collinear case (p(i)==0). The new

b
parameters satisfy the relations

Ry Ry Ky = 4

2 . .
w + %y = - (z.;u)') p (q‘.f).) (5.4)
31
%_(mf+n;:_)¢,; = 0

by which they result_in being functions of the longitudinal masses
mi-;?TE only. By means of these parameters the scalar products of the

tachyon and photon momenta can be expressed as follows:

@ &) G) =y
2p kK, = -mz) ;g
&

which is formally identical to the collinear case.

(5.5}

We are now ready to calculate the three-point functicn
(4.5) corresponding to Fig. 1. 1In the present case the operators Pjr(zr)
do not commute with the tachyon vertex operators. However, by carrying the
destruction operator parts of the tachyon vertices tc the right and the
creation operator parts fto the left we can still put the amplitude
wd"! ,(2 ,{3 in the form (4.7) where the vacuum expectation value is

replaced by

M ' 3 )
. V3 Pin .
<ol T [P (aysinie, 2 = az]{°> (5.6)

A generel term in the expansion of {5.6) will contain the vacuum expectation
value of 2K Pj operators times the product of M-2K +erms containing

the transverse momenta. Accordingly, the multiple integral (4.7)

factorizes into the product of K double integrals, leading to the D
functions of the collinear case, and M-2K single integrals. We now

consider these last factors.
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To take into account the momentum conservation of the
exeited particles in a symmetric way, we 1ntroduce the "quark" momentsg
(1) (2) and q(B) such that

(i-1) L+
M, = ‘f‘ - C]@ “ , (¢:=1,2,3) (5.7)

4

with the cyclic notation for the indices, as shown in Fig. 2.

The COI‘l‘tI‘lbuflOIl to Wo“ oo oz in (4.7} coming from a
single photon with momentum kr and polarization along Jj and from the
gecond term in (5.6} is then the follow1ng

) ¢ o), ¢4)

K ZP ‘K
@ ) P r
(P P“) k ) = (VZ (a,- a.) (as -0g) .

zp.k

. (q3-a1> p®

3 2p® 9
-Lﬁ dz 11" |2-a, T
me e {:-1

l:m a3-8s q(-Z) Aq- 43 (.3) Q2- Qa4
b' @y-2)(0e2) ¥ (oy- 2)(013,—2) / (0,-2) (m- 2)

3ince this expression is projective invariant,'it can be evaluated in the

limit a.,—-0, a. .-1, a. ,—@. To be more definite we work out
i i41 i+2

explicitly the case i=1. In this case (5.8) becomes

F( (2) k‘“) - 3 L _M:) -,.,g;: E"
J P FERAY ) - Zﬂi d% 2 (i‘%) | z;
2]

3 () (3 “_
.(qj N ié‘__ ? ):__ 'l'r‘zcr;"_)(")’hz '.

1-2 2(t-2)

('\ (l) () me ) fl)x |
-, 2 m, = . ), M [=) D
TPV RN e S S S B

m‘{’- 4 mt;_) ’ht’
w 0)
Mof-m, L 2
= VE (4 * 7 ( Cf() X2 &+ ‘?J',)-s- .(3)""1
) ~z
qqf: / A P 3
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where in the last step we used the properties of the binomial coefficients

and the first two relations {5.4), for which 1+x2/x1==-x2/x3.

Uging the cyclic symmetry of (5.8) the above result

iz immediately generalized and we have

: mo © 2y
ty (&) (; @y _ . t My
(F ) k'_)._ i D 2y, =90 NV CRL)
mﬁ) & )
T

where we set

3 C?(«&)
z ¢ (5.11)
A=
xR
By (5.4) and (5.7) the vector Q can also be reexpressed in terms of any

two moments of the excited particles:

Q - 771:4.4_ _ _-U_:—_ , (‘;.;1’213) (5.12)

G Zied

We observe that the binomial coefficlents associamted with the single photons

in (5.10) are the same as those associated with the coupled photons

[see Bq. (4.28]].

To conclude our anslysis of the non-collinear vertex, we
remember from the preceding section that each couple of photons with
momenta krl and ksa and polarizations along jr and js’ couplqd
through the factor <O|Py (2. )Py (= ,)]0> in the expansion of (5.6), '

contributes to Wyl 4 o ol3 by a fac‘tor [see 4.9}, {4.11) end (4.12)]

4 b}
:D(Pm Ffz) Pfs) ‘) k.s(&) | (5.13)

where D 1is given by (4.27).
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Finally, we have for the vertex function of three excited

particles the general expression

M ) .
Ny+ Ng-\'N) Lm, X
\\)d‘ldl‘*?p 2 2 23 ( ‘”—’ZUP-L T " :‘,;‘*l *
Pet .
. _ -
[ ('2&-;) (I‘n)
i ;I\T g& & ' ”L,.“q% ”L"z&x (5.14)
K=t fo.nd ™t "o T NCON )
M., k- + Moy, %

’ (LUEi) { I (SQ‘}
2= 2K+ re
where [M/2] is the largest integer < M/2; the second summation is
M
2K
indices {1,2,...,M} ~corresponding to all possible ways of forming K

extended over the {2K-1)11 independent permutations of the photon

‘couples, and the other notations are the same as in Eq. (4.30).

Bq. (5.14) summarizes the following rules: i) the
vertex amplitude is the product of three relevant factors: the proper
'ﬁormalizatipn constants for the three excited states, an invariant factor
and a covariant faetor; ii)} the invariant factor is in turn the product
of M factors, one for each internal guantum number nii) in (4;1),

’in&ependéﬁt'of the polarization states. The factor associated with nrl

is
(+) )
e ~Me
(1) Xivg cerd (5.15)

)
Mo
iii) the covariant factor is a tensor of renk M, each index corre3ponding
to thq transverse component of one polarization vector, and is the sum of
all possible covariants which can be made in terms of Kronecker deltas
and Q com?o§ents.} In each term of the sum each Kronecker delta
L= i), g\ ;
_%g-]-rjs_ (51» Es 2) _.br:.n_gs: a factor
W Q)

5 ) ) ) (5.16)
m;‘ ' 1-’l'L(J z Jf
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and each Q component Qit=( Eih)-Q) brings a factor

LV QJt | | (5.17)

It is immediately seen that (5.14) is symmetric under
cyclic permutations of the excited states. Under anticyclic permutations
it takes the right factor (-1)17°2™3 .o 44 rollows from (4.26) and from
the faet that Q is odd.

The expression for the three-point funection we have
derived above is remarkably simple and is suggestive of some underlying
algebraic structure, from which it cowld perhaps be derived in = more
direct way. In any case, our vertex can be & useful starting point in
the investigmtion of the presence cf.new algebraic structures, like the
existence of conserved quantum numbers, which would be very useful for s

new clasaification ¢f the physical states.

Furthermore; the technique of the transverse states can
be applied to other physical reactions, to find explicit expressions for
the four and n point functions for excited particles.

6. EXAMPLES

_ In this last section we evaluate explicifly some
couplings in the c¢ollinear case..
i) Particles i=1,3 are tachyons Engl)--o, i=1,3] and i=2 1is
an excited state with nin =1 for i=1,...,8 (N is even). The three-

point funciion for these states is given by

N @ N, oo 4 No
(-I) ' +

VN_i Pg) as (:,‘ sila"i'ﬂ}krl 1;!*_1 / d1zt (6.1)




D

The momentum conservabion reads:

4 n * 15) =0 ' (6.2)
_t;) Pt;) r+ _ oo y
CRND (3 _ .
(N'i)F+._ +'- F* =0 (6.3}

Using these two eguations it is easy to show that

Py Py A
.02——“?&) :) - = QCN-:L) (6.4)
Therefore, the three-point function reduces to
A 4 % ke S | (6.5)
! [‘ -5?57)] iz ZT hinos i
20+ n§

The number of terms present in the sum is (N-1)!£. In the case where the

Lorentz indices are all egqual to each other one gets
L 1 6.6

VI—VT | 2(n-1)

which, for N-—om 1is decreasing more than exponentially.

ii) Tet us consider the case where particle 1 is_é tachyon and particles
2 and 3 -are excited states with only one photon with Lorentz indices.

12 and 13 rezspectively.

The three-point function is given in this case by

L0 ' el

oo -'-'N;__-.l';. '-Ns"":' . g (:Q _- |
(’,) 2 JMM Fs_n i.} _ ty, b2 P-I- (6.7)

¢
Nz M3 NQ_ F:J'!"NB ﬂfs)
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with the following conservaetion equations:

1 1 1

— - 4 = QO _
(") 'y '
¢ _;) Pm (6.8)

-F+ +(MA)P+ +(% )P“’

(6.9)
These equations give a simple solution in the case Nj =Né-1:=N-1
4y} € \
Pe _ o R 4
(6.10)

S T = Tttt
P+ N- 4 " ¢ 14+ afn-g

a=%1 is a consequence of the second degree equation which has been s0lved.

In this case the three-poiﬁt function becomes

f5 o Tt T(e0)
YN T(Nea) (02! (- )y)

N_
NN-1) CO

(6.11)
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APPENDIX

_ Here we want to cslculate explicitly the summations which
appear in (4.15) and (4.19) and give the D, and” D, functions respectively.

In the first case we have to caleculate

S R

Let us consider the sum Sr of the last r terms

55,2 () -
; ;zltm-e) () Gat)

We have, in particular

-Mm X =MX) [-mx _fn'(x-i-t) +M-4
. S‘- (mm‘) ( 1 )(mm 1) (mew)x (a.3)

s, = (-M%)(-fo [m’(ﬂz)m;g ,,_,..,-1] =
| 4 /\mea'-t (mim') % R

(A.2)

(a.2)
. _ !
"_'("'Mt ( Mo Q_[m(i-bz)i'm Z]
AR mam- 2 (men)x
Then we can prove by induction that
/ i
S _ femx)amac r[/n(z-r:t)d-'n'z‘?
. r/\omemby (£.5)

(M-f-m’)ﬂ’-
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In fact, we have

S;,.g = S + (m z)( T—)(MM",‘) = e

+M.'¢—

-—
F=

(-’Mﬁ) (-M'zﬁ ) T+4 -a'a-'m.-m'-i-?.d-i

2eg [ {mem-z-t tmx-'t- maen'-2

[ v [“’fu+1)+‘m-ﬂ+ ﬁ-z] , : |

(mem’ Y -

('M)("""‘ | ) (t_ﬁ-)fmif_'ﬂi)w'-’-h"i]

) .
z+1 Mrm -2-4 (M'\"M’)%
ihen, from (A,5) for r=n we have
4 I
S=s.= (0)(0) e -
" m 01.’ (A.7)

ae(m+m')

In a similar way we proceed for the zsecond summation

which isg

T=5c5 )(”'“2 i) e

* We consider the sum Tr of the lagt r terms

= J{Z. C")L(M -¢) ( ) ( ’m*,f iM : ) (1.9)

In perticular for r=1,2 we have:

T - . (_mz)(, A ) M(Zet)tm-4 (4.10)

1 '
m -4 ‘%x*%/

T, = (-M'x)(- :"Ef'“‘*i) 2 [w(4 ‘)"’“'2] (A11)
, =

f
2 m-1 mz +m’
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In general we can prove by induction that we have

T, = Cfr)z' (-M) (_ - oera ) [M’("'é"%"'t] (£.12)

z /
Mmac + 4

Then, for rT=n we get

Te T e () (3792000 2)

! .
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- Coupling between these transverse states

Quark picture of the three-point function



