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Abstract 

This article applies a theorem of Nash equilibrium under uncertainty (Dow 
& Werlang, 1994) to the classic Gournot model of oligopolistic competition. It 
shows, in particular, how one caD map all Cournot�Nash equilibria (which in­
cludes the cartel and the null solutions) to only a function of the uncertainty 
aversion coefficients of the producers. The effects of these parameters on the 
symmetric equilibrium quantities and output are examined in a comparative 
statics analysis, under two alternative assumptions: a closed market with an ex­
ogenous number of firms and a free-entry/exit regime. In both cases , a collusive 
effect of the uncertainty aversion on the production is obtained. Under rather 
few restrictive assumptions, there is a symmetric uncertainty aversion level for 
the producers at which their optimal quantities and the industry output become 
equal to the optimal counterpart cartel's outcomes. These results improve upon 
the literature on collusion since, in contrast to other analogous findings, they 
enhance that a cooperative cartel may be endogenously generated in a one-shot 
(noncooperative) game played by uncertainty averse producers. For the compet­
itive case (under free-entry/exit) the paper shows that Gournotian competition 
among weakely or moderately uncertainty averse producers entails a higher in­
dustry output (if the market is large and/or entry is easy) and surely entails 
lower optimal quantities for the firms than those achieved under uncertainty 
neutrality . Thus, competition under free-entry/exit in a Knightian uncertainty 
environment should act to prevent monopoly power for the individual firms. 
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Resumo 

Neste artigo aplica-se 0 conceito de equilibrio de Nash sob incerteza (Dow 
& Werlang, 1994) ao modelo c1assico de Cournot para competic;ao oligopolistica. 
Este conceito e estendido para 0 casa de urn numero finite de jogadores. Em 
particular) mostra-se como todos os equilfbrios Caurnot-Nash resultantes (que 
incluem as soluc;6es de cartel e 0 bloqueio da produc;ao) podem ser mapeados em 
fungao, unicamente, dos coeficientes de aversao a incerteza dos produtores. A 
estatica comparativa dos efeitos destes parametros sabre a produc;ao das firmas 
e da industria e realizada sob dais regimes: 0 de uma industria fechada com urn 
m1mero de firmas endogenamente determinado. Em ambos os casos, as efeitos 
colusivos da aversao a. incerteza sao explicitados. Sob hipoteses pOlleD restriti­
vas mostra-se, em cada caso, que existe urn coeficiente de aversao a incerteza 
simetrico que iguala 0 produto industrial com aquele que maximiza 0 lucro da 
coalisao formada pelos mesmos produtores. Tais resultados implementam a lite­
ratura existente sobre a performance das coalis6es pois que, diferentemente dos 
resultados anteriores, evidenciam como 0 resultado 6timo de urn cartel coopera­
tivo pode ser endogenamente gerado por uma economia nao-cooperativa protago­
nizada por decisores individualmente avessos-a.-incerteza. Sob 0 regime de livre 
entrada/saida, a competi�ao de Cournot entre produtores fracamente (ou mode­
radamente) avessos a. incerteza abre a possibilidade para urn aumento no produto 
industrial (e, consequentemente, no bem-estar gerado pela industria), sempre que 
o mercado for suficientemente amplo e/ou a entrada das firroas no mercado for 
facilitada. Entretanto, a aversao-a.-incerteza gera ociosidade crescente na escala 
de produ�ao das firroas, com rela�§.o ao comportaroento neutro face a incerteza. 
Deste modo, 0 artigo sublinha que 0 regime de livre entrada/ safda em urn ambi­
ente de aversao a incerteza (no sentido de Knight), atua no sentido de obstar 0 
poder de monopolizac;ao das firmas individuais. Uma aplicac;ao ilustrativa destes 
e de outros resultados apresentados no trabalho e oferecida com os parametros 
de uma economia com demanda linear e tecnologia exibindo retornos de escala 
decrescentes na produ�a.o. Outras extens6es e aplica�6es do presente modele sao 
tambem sugeridas. 

Key words: Knightian uncertainty aversion, Cournot-Nash equilibrium. 
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1. Introduction. 

In the rational model of choice under Knightian uncertainty' as 
proposed in Schmeidler (1989), agents e valuate the consequences of 
their actions by nonadditive probability functions defined on a given 
space (states of nature) , and maximize their expected utility, using 
Choquet's integral.' When the nonadditive distributions (say, P) 
are convex (i.e. exhibit uncertainty aversion) this model is equiva­
lent to the maximin model (Schmeidler & Gilboa, 1989) where the 
relevant distribution is built up as the infimum probability among 
e very additive distribution belonging to the core of P, for each choice 
in the alternative set. 

For e very pairwise choice A, E in the alternative set, convexity 
of P requires P(A) + P(E) � P(P n E) + P(A U E), which implies 
P(A) + P(AC) � 1 (E = AC). In Schmeidler and Gilboa axiomatic 
approach, the difference c(P, A) = 1 - P(A) - P(AC) is interpreted 
as an uncertainty aversion coefficient associated to e vent A, and 
more recently Dow & Werlang (1994) extended to this framework the 
notion of Nash Equilibrium for a one-shot game with 2 agents. Under 
uniform squeezes of additive mixed strategies assumption (leading 
to constant uncertainty aversion coefficients) ,  they demonstrate the 
existence of Nash equilibrium under uncertainty (NEU) for each pair 
(Cl, C2) of uncertainty aversion of players. 

In this article, we first state the definition and then the exis­
tence theorem for NEU as it is presented in the Dow & Werlang 
paper (Section 2). Section 3 initially presents the decision under 
uncertainty model enabling one to extend the definition of a NEU 

IF.H. Knight(1921): Agents do not know the objective probability distribution functions (pdf) 
of the states of the nature affecting the control variables they face and are unable to formulate a 
unique subjective pdf. 

2For an exposition on nonadditive probabilities and the applications of this model in finance, 
see Simonsen & Werlang (1991) and Dow & Werlang (1992a,b). 
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for a Cournot game with N producers, when quantities (the control 
variable) are chosen over compact and convex sets. We will show, in 
a general case, how the equilibrium output that results responds to 
exogenous variations in the uncertainty aversion parameters (propo­
sition 1 and corollary 1) . Also, such reactions are examined when 
the number N of competitors exogenously increase (Section 3.3). In 
the following subsection we made a theoretical identification of the 
producers uncertainty aversion parameters (which depend on their 
preferences' systems) with the price-cost Lerner index. In a compar­
ative statics viewpoint, the paper main results are obtained under 
symmetric assumptions: firms are identical and producers equally 
uncertainty averse (Section 4). The effects of small variations of the 
aversion parameters on the industry output, on the firms's quanti­
ties and on the industry size (under free-entry/exit) could be signed 
in this case. Particularly, it shows that the uncertainty aversion 
exerts a depressive effect on industry output (and then, an inflation­
ary effect on price) for closed industries only (Section 4.2). This 
result (incidentally also confirmed in risk aversion approaches) no 
longer holds when producers are allowed to enter or to exit from 
the industry (Section 4.3). In this case, the industry output with 
weakly or moderately uncertainty averse producers could be higher 
than its counterpart under uncertainty neutrality, whenever the mar­
ket is larye and/or the entry conditions into the industry are easy 
(in terms of the fixed costs and the elasticity parameters) . The com­
parative statics for the competitive industry also shows that the op­
timal firms' quantities are lower in almost all admissible ranges for 
the uncertainty aversion parameter. In contrast with the ambigu­
ous findings met in analysis of the industry equilibrium from a risk 
framework (Appelbaum & Katz,1986) our result suggests that, at 
the equilibrium under uncertainty aversion, firms operate with "un­
dercapacit,!/' . Also, our paper sets up an innovative application from 
a game theoretical point-of-view, since it enables us to show how 
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a cooperative (cartel) outcome may be endogenously generated in a 
one-shot game played by self-seeking and uncertainty averse players. 
Without uncertainty, such a result is only obtained in sequential 
or repeated games, with exogenous coalitional structures. Propo­
sition 2 establishes our result for an exogenous number of players 
whereas proposition 3 sets the equivalent result for an open industry 
by using the fact that, for each symmetric uncertainty aversion pa­
rameter c (in the admissible range) there is a theoretical symmetric 
game for [ Nw (c)] players where Nash optimal strategies under uncer­
tainty give zero payoff for all them. The analysis of the effects of the 
uncertainty aversion on the market structure under free-entry j exit 
shows a decreasing market share for the firms (rw(c) = Ij[ Nw (c)]) 
up to the collusive uncertainty level cw . Thus, another finding of 
our model states that Cournotian competition among uncertainty 
averse producers inside an open industry may endogenously prevent 
the monopoly power of the individual firms. Neverthless, this result 
hinges strongly on symmetric assumptions and the example given in 
the last section (Section 5) for a duopoly (N = 2) enhances explic­
itly the role of the asymmetries in which Cournotian equilibria under 
uncertainty will emerge. The last section makes also mention of pos­
sible extensions of the present analysis and summarizes the principal 
findings of the paper. The present results offer interesting sugges­
tions for market regulatory policies aimed to preserve a reasonable 
degree of competitiveness among the firms in order to protect con­
sumers from overpricing due to market power (like the Clayton Act in 
USA). In the first place, even for noncompetitive (closed) industries 
the collusive effects obtained here tell that the current anti-trust laws 
based on the market share profile of the industry may be powerless 
to protect the consumers from monopolistic conduct. Secondly, dif­
ferences in the results obtained for competitive industries stress the 
importance of implementing actions directed to guarantee that the 
proponent firms meet easy conditions to enter the market. 

Revista de Econometria 18 (2) Novembro 1998 269 



Cournot Competition under Knightian Uncertainty 

2. Nash Equilibrium under Uncertainty (NEU). 

Let r : (AI , A2, U1, U2) a 2-person game where Al and A2 are 
their alternative sets and U1, U2, their utility functions. A NED 
for the game r is defined by a pair of mixed nonadditive strategies 
(R1' R2) for which there exist supports Supp (R1), Supp (R2)3 such 
that for each ai E supp(Ri), ai maximizes the expected utility of 
player i, given that Rj represents the conjecture of player i about 
the choices of player j over Aj: 

ai E supp(Ri) ¢=} ai E arg max ERjUi (a, ') 
aEAi 

(i , j  = 1, 2) .  

Notice that this definition includes the standard Nash equilib­
rium (81 , 82), where (81, 82) are some proper additive probability 
functions. In the application of the above definition we have to keep 
in mind two important aspects, which were both emphasized by Dow 
& Werlang in their paper (p. 307): 

1. All action in the support of the conjecture of a player j must 
be optimal for player i when he assess his utility w.r.t. his own 
conjecture on the actions of his opponent j. So, NED requires 
a perfect match between conjectures and optimal actions taken 
by players; 

2. The rationality which is implicit in the NED definition does not 
imply logical omniscience, meaning that agents may not rightly 
deduct all implications of some action previously known by them. 

The following theorem allows one to map NED's through the un­
certainty aversion coefficients (C1' C2) of players, under the hypothesis 

3Define Rj:u(Aj)-+[O,l] the nonadditive probability function (a capacity) giving the 
probability Rj(B) for each event BEa-(Aj), where u(Aj) is the CT�a1gebra of subsets of 
Aj. The function Rj has the following properties: (i) Rj(Aj)=l and Rj(0)=O; (ii) 
B�D=>Rj(B):::;Rj(D) (monotonicity). The support B�Aj of a nonadditive probability 
Rj is a set verifying R(BC)=O and VDCB(D¢B), R(DC»O. B may not be unique. 
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that they are constants and (Rl, R2) are uniform squeezes of additive 
Nash strategies (81 , 82) for a transformed game r* : (AI, A2, ui, ui) ,  
Le., Ri = ( 1  - Cj )8i for all events different of the entire set and 
Ri = 8i = 1 otherwise, and where ui is defined in such a way that 
ERjUi = ESjui for i, j = 1, 2. 

Theorem: [Dow & Werlang, 1 994]. Let r : (AI ' A2, Ul, U2) be a finite 
2 person game. For all (Cl, C2) E [0 , 1]2 there exists a NEU (Rl, R2) , 
such that Cl is the uncertainty aversion coefficient associated to R2 
and C2 the uncertainty aversion coefficient associated to Rl.4 

Proof: Dow & Werlang (1994, p. 313, 314). 

3. Cournot Competition under Knightian Uncertainty. 

3.1. The model. 

Consider a Cournot competitive oligopoly producing a unique 
homogenous and perfectly divisible good and composed of N firms 
(N 2': 2) having production techonologies, each one described by 
stable cost function rPj (qj) (Le., with constant input prices; j = 
1, 2,···, N) and facing an inverse market demand P = P(Q) if 
o ::; Q ::; a(a > 0) and P = 0 if Q > a, where Q = 2:f=l qj is 
the industry output (qj 2': 0) . In order to make the analysis easy, 
suppose (without loss of generality) that functions rPj and P are 
C2 (two times continuously differentiable) and assume that with­
out uncertainty all marginal costs and marginal revenues are non­
decreasing and non-increasing Le., rP'J 2': 0 and (Rqj)" ::; 0 respec­
tively (j = 1 , 2,··· , N) .5 Firms bear nonsunken fixed costs (if any): 

4The proof o f  the theorem relies on the definition o f  the Choquet's expected utility and may 
be understood from the description of the decision under uncertainty model, next Section 3.l. 

5These properties ensure the existence of Cournot·Nash equilibrium in the game r" for each 
N. The restrictions that these assumptions impose on preferences and technologies are analysed 
in Sonnenschein & Roberts (1977). 

Revista de Econometria 18 (2) Novembro 1998 271 



Cournot Competition under Knightian Uncertainty 

cPj(O) = 0 (j = 1, 2,··· , N) and each one can produce at the maximal 
production level aj :::: a/(N - 1), in such a way that any group or 
N - 1 of them may reduce price to zero. Under these assumptions, 
and given the supply of the N - 1  other producers Q(j) = Q - qj , if 
producer j chooses to produce qj, his profit function will be: 

which is a concave function for qj E [0, aj] given Q(j). C on­
sider now the noncooperative (C ournot) game for N producers 
r : ([0, a1] ,  [0, a2] · . .  [0, aN], Ill, Ih, . . . , IlN) where each producer 
j have to choose a production plan qj on Aj = [0, aj] in oder to 
maximize its payoff function II under a K nightian uncertainty envi­
ronment. 

Decision under uncertainy. 

Let nj be the set of states of nature affecting the supply of rivals 
Q(j)(qj) which is conjectured by a producer j, when he is taking the 
action qj over his set of choices Aj = [0, aj]. Let O"(nj) be the 0" ­
algebra o f  the events B <;; nj. Instead of defining conjectures directly 
over Aj ( as in D ow & Werlang) we prefer to define nonadditive prob­
abilities over sets nj, which can be different for two different produc­
ers. D efine Rj : O"(nj) --t [0, 1] the nonadditive probability function 
( a  capacity) giving the probability Rj(B) for each event B E O"(nj) . 

D efine now the reaction function conjectured by a producer j as: 
Q(j)(. ; qj) : nj --t R+ : W --t Q(j)(w; qj) . Given the action qj E Aj, 
producer j conjectures that rivals jointly supply output Q(j) (w ; qj) 
if the elementary event {w} occurs. Assume Q(j)(. ; %) is O"(nj)­
measurable and let Ilj (qj; Q(j)(w; qj) )  be the profit function when 
the producer takes the action qj and the event {w} occurs. The 
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nonadditive expected profit will be: 

ERj[ITj(qj;Q(j)(.;qj))] = r ITj(qj;Q(j)(w;qj))Rj(dw). lnj 

Notice that this expected value is a function of the action qj 
taken by the producer j .  According to G. C hoquet (1955), the in­
tegration of a real-valued function w.r.t. a capacity, under some 
conditions (mesurability and boundedness) , may be performed sim­
ply by the R iemann integration of the capacity over R, along the 
usual formula which allows to calculate the expectation of a random 
variable from its distribution function. In the present case, this gives: 

ERjITj(qj;Q(j)(-;qj)) =f�oo[Rj(ITj � x)-l]dx+!ooo Rj(ITj � x)dx.6 
For this paper, and for all events different to OJ, we use the uni­

form squeeze assumption (D ow & Werlang, 1994): Rj = (1 - Cj)Sj, 
where Sj is an additive measure over OJ and Cj (0 :S Cj :S 1) is 
the constant uncertainty aversion of the producer j .  Notice that 
Rj(B) :S Sj(B) :S Cj + Rj(B) for all B # OJ (see note 6 be­
low) and Rj(Oj) = Sj(Oj) = 1. Under this assumption, the 
above C hoquet' s expected profit becomes: ERjITj(qj;Q(jl;qj)) = 
f� IIj[Rj(ITj � x) - l]dx + f!n II [Rj(ITj � x) - l]dx + J 

fooo Rj(ITj � x)dx = 0 + f!in II (-l)dx + f:n II Rj(ITj � x)dx = 
J J 

minwEnj ITj(qj; Q(j)(w; qj)) + (1 - Cj) f:n II Sj(ITj � x)dx. Now, J 

6If the capacity is convex, i.e. Rj (BUD)+Rj (BnD)�Rj (B)+Rj (D); 'IB,Dr:;,nj, then 
producer j is uncertainty-averse, and the above nonadditive expected utility may be alterna­
tively calculated as the infimum of additive expected utilities taken from probability measures 
belonging to the core of Rj:Gore(Rj)={S:nj-+[O,lJadditive: S(B);::Rj (B); 'IBr:;,nj} 
�see Schmeidler, 1989). In the present case we would deal with, ERjIIj(Q(j) (.jqj)jqj)= 
mi SECor,(Rj) {Es IIj [(Q (j) (. ;qj );qj)]). 
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Thus, by substituting the lhs in the last term of the former equation 
we obtain: 

ERIIj (qj ; Q(j)(-; qj) )  = Cj min IIj (qj ; Q(j)(w; qj) )  J wEn;i 

+(1- cj)Es;IIj (qj; Q(j)(-, qj) ) .  

In order to  give the minimum value for the first term on the rhs 
of this equation, producer j conjectures that the subset {w E nj : 
Q(j)(w; qj) = Q; 'Vqj E Aj} is nonempty (the N - 1 competitors, 
acting as a coalition or not, should reduce his residual demand to 
zero). In this case, the first term on the rhs of (3.0) anulls and, 
from that equation, producer J. must endure a loss -rPj(qj) .  Thus, 
noting II; (qj , Q(j) (w, qj) )  = (1- cj)IIj (qj , Q(j)(w; qj) )  - CjrPj (qj) and 
by using (3.0) we arrive to the following payoff function: 

Mixed strategies, pure strategies and NEV. 

For any producer j who takes the action qj, and does as­
sess his conjecture QU) (., q) through a superadditive probabil­
ity Rj that is an uniform squeeze of an additive probabil­
ity Sj, the identity ER;IIj(qj;Q(j)(·;qj) )  = Es;IIj(IJ.i;Q(j)(-'IJ.i·) )  
means that he should find equivalent the two games, fN 
(AI, A2, ··· , AN, III, II2, ·· · , IIN) (under uncertainty) and fi\r : 
(AI, A2, ···, AN, IIi, IIi, · ··, IIi\r) (with certainty), where II; is given 
with (3.1).7 Of course, capacities Rj and probabilities Sj are not 
strategies because they are not defined over the production sets 

7In the prospect of incentive eqUilibrium models of mara I hazard type, one might think of that 
coefficient Cj in the objective function II; could measure the inability assigned by the principal. 
(the owner j) to the agent (the manager) for implementing the profit maximization of the firm 
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Aj . However, since Q(j)(-; qj) are real valued and are assumed to 
be u(llj )-measurable, they will induce probability functions over 
the sets [ 0, L,i¢j ail, say L:(j), such that for all B <; [ 0, L,i¢j ail, 

L:(j)(B; qj) = JQ<:l(B;q;) Sj (dw) . Then the uniform squeeze assump­

tion applies on L:(j) and the capacity P(j) is defined accordingly: 
P(j) - (1 - Cj )I:(j) ( for any set different of the entire set and 
Prj) = L:(j) otherwise) . Now P(j) and L:(j) may be viewed respec­
tively, as mixed strategies for games fN and fiv . Notice that L:(j) 
( and P(j)) depend on qj, that is to say that there is one mixed strategy 
for each choice qj of the producer. If one wants to consider C ournot­
Nash equilibrium in mixed strategies, the application of the D ow & 
Werlang's definition for NEU and the existence theorem described 
in Section 2 for a game with N = 3, 4, . . . players would require some 
adaptations. 

Firstly, for the game fN : (A1 , A2, · · · , AN, Ih, Ih, · ·· , IIN) we 
say that the sequence of mixed nonadditive strategies 
P(l), P(2)'· · · ,  P(N) is a Nash equilibrium under uncertainty ( NEU) if 
there are supports sUPP (P(l)) ' sUpp(P(2)) ' · · · ' supp( P(N)) such that 
if each producer j assigns to the conjecture Q(j)(w; qj) = L,�¢j qi 
a positive probability (P(j) > 0, j = 1, 2,···, N ), then quantities 
qi(i = 1, 2, ·· · ,  N, i f= j) maximizes the expected utility of the pro­
ducer i given that P(i) is the nonadditive probability function for 
assessing the joint supply of rivals conjectured by the producer z 
( the converse must also be true) . Formally: 

(Cournot strategy) instead of the maximin strategy (inactivity). According such models) (see 
Fershtman & Judd, 1987; Sklivas, 1987) Cj should then be a parameter to be chosen by the 
principal in a two-stage game where in the second stage the agent chooses quantitites. However, 
in our model the coefficient is a given feature of the agent (the manager in place) and only the 
second stage oecum. Therefore, it does not conform with such an interpretation and there is 

no reason to distinguish here the producer from the manager. 
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n 

Vj, { w E nj: Q(j)(w; qj )  = Lqi} E supp(P(j)) -¢=} 
i#j 

As we can realize, this definition is a straightforward extension for 
more than two players of the D ow & Werlang's definition. Here, 
mixed strategies are optimal if each one can support all aggregate 
rival's supplies which are competitive (in the sens that individual 
quantities are optima0 ; 

Secondly, from the above definition it is clear that NEU's ex­
istence theorem of D ow & Werlang applies for the game fN. In­
deed, the uniform squeeze assumption ensures that if the sequence 
of joint mixed strategies :1:(1) , :1:(2)' · · · ' :1:(N) is a Nash equilibrium 
for the standard game fiV: (A1,A2,···,AN,IIi,II;,···,IIiV), then 
P(1),P(2), · · · ,P(N), will be a NEU for fN, because P(j) = (1 -
Cj):1:(j), and the identity Ep(j)IIj (qj ; Q(j)) = EI:(j) IIj (qj ;  Q(j)) holds. 
Since NEU requires personal conjectures Q(j) must match ( in prob­
ability) actual aggregate sup lies L�;loj qi which are competitive, the 
equilibrium hinges on a rational expectation hypothesis.8 

The above definition of NEU implies that each player j is taking 
pure strategies in the game f N. Pure strategies in this context are 
credible." Furthermore, by the definition of NEU, Ep(j)IIj (qj ; Q(j)) 
is constant over any set { w  E nj : Q(j)(w; qj) = L�#jq;(qj)} E 

8 A more complete account of the rational. expectation hypotheses used in general eqUilibrium 
theory can be found in Grossman (1981) and Radner (1989). 

9 An alternative approach would be to assume that producers randomize their individual choices 
to implement mixed strategies. However, as note Dow & Werlang (1994, p. 312) models of Knigh­
tian uncertainty are not suitable for describing this interpretation. Notice that in the Anscombe. 
Aumann framework (a two stage approach) it is shown that agents with Choquet Expected Util. 
ity (CEU) preferences have strict preference for randomized (mixed) strategies (Sarin & Wakker, 
1992j Eichberger & Kelsey, 1996) . However, the dominance of randomized strategies is not im� 
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supp[p(j)(qj)] where each Ij;(qj) is the best response (in pure strat­
egy) of a rival i -I j in the game fN' given the choice qj of the 
producer j. Therefore, the best individual responses riI ,1i2, . . . , qN 
are obtained by the maximization of EE{jJlj(qj; Q(j)(· , qj) , Cj) w.r.t. 
qj from the equation system (2.1) for j = 1 , 2, · · ·, N. Finally, the op­
timal quantities ql, q2, ···, qN define implicitly optimal mixed strate­
gies consistent with the previous beliefs, which are the NEU for the 
game fN say, P(1),l'(2), ··· ' P(N). 

The dependence of conjectured rival' s supply Q (j) on the pro­
ducer quantities qj in the present model provides a basis for the 
static theory of the conjectural variations dQ(j)/ dqj firstly used by 
A.L. B owley (1924) and named by R .  Frisch (1933) . According to 
the C ournot assumption of independent behavior, conjectural vari­
ations are zero. So, in the sequel it is assumed that the com­
petitive equilibrium ql, q2, . . .  , qN occurs when each optimal strat­
egy Prj )  for a player j supports the set {w E nj; Q(j )(w) = 
Lf';,j qi(qj) ;  Vqj E Aj}. Under the C ournot assumption the additive 
distributions �(j) no longer depend on qj. Therefore, the maximum 
of EE(j)II; (qj; Q(j)(. , qj) ,  Cj) w.r.t. qj is obtained by maximizing the 
rhs of (3.1) under the restriction Q(j) = Li(i#j) qi.' o 

Cournot-Nash equilibrium for fN' 

Functions IIj(qj; Li(i#j) qi; Cj) are continuous transformations 
of IIj and preserve their properties (C2 class, bounded and concave 
w.r.t. qj and Cj) .  The production sets [0, aj] are compact and convex 

plied for CEU preferences in a Savage framework (a one stage approach)j see Eichberger & Kelsey 
(1996). The unifoTIIl squeeze of an additive distribution hypothesis made in the Dow & Werlang 
approach allows one to calculate CEU over the ambiguous events in one stage through additive 
strategies in the game r· (with payoff given by equation (3.l)). Hence, the pure strategies 
obtained here may be the best response of the producers. 

lOFor the present model, Boff (1998) shows that producers are dealing with consistent (and 
collusive) conjectural variations (i.e. , which are implicitly fullfilled and positive). 
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sets of R, and then a fixed point theorem applies on the first order 
conditions system of the maximization problem (at any vector c E 
[0, l)N) in oder to ensure the existence of a Cournot-Nash equilibrium 
for the game fiv. Thus, for a firm j(j = 1 , 2, ···, N) which chooses 
quantities qj that maximizes its payoff function (3.1) given the supply 

L:i(i#j) qi of its competitors we have the first order condition: 

��J - (1 - Cj) [qjP'(qj+ :E qi) + P(qj + :E qi)) - rPj(qj) = O. 
i(i#j) i(i#j) 

(3.2) 
The solution for this system is the pair of vectors say, (q, c) and 

equations (3.2) are necessary and sufficient to provide a maximum 
for II;, j = 1 , 2, ·· · , N. 

The implicit function theorem is then fully assumed to apply 
at (q, c) in such way that the solution can be implicitly solved for 
each j by functions qj (c) , which are continuously differentiable in the 
whole range c E [O, l) N. Note Q(c) = L:f=l qj (c) for the equilibrium 
industry output (we delete the hat' to simplify notations). If Cj = 1 
the optimal solution for producer j is qj (c) = O. In the sequel the 
set [O, l)N is restricted for the uncertainty aversion vectors where 
optimal positive productions {qj(c) > O} yields nonnegative profits 
for every producer: 

CN = {c E [0, l)N: IIj·(c) = %·(c)P(Q(c)) - rPj (qj (c)) 2: 0, 
j = 1 , 2, . . .  , N} . 

As far as section 4.3, we assume that for a given N, IIj(O) > 0, 
j = 1 , 2, ·· · ,  N that is to say, without uncertainty, all firms make 
positive profits. Hence, CN is non empty (0 E CN) and since price P 
and costs rPj are functions belonging to the C 2 class, we may assume 
CN is a connected open subset of [0, l)N. Given N, if the regularity 
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condition on the Jacobian matrices associated to each one equation 
(3.2) holds, the C ournotian equilibrium quantities qj(c) are functions 
belonging to the class e1 over eN. Of course, the set eN will depend 
on N and on the technological and demand parameters as well. 

At some extent, coefficients Ci shall be viewed either as indi­
cators for the behavioral attitude of the agents facing uncertainty, 
or as signs of their lack of information since the uncertainty may 
be partially caused by missinformation. In the former sense, the 
parameters relies closely on the preferences of the producers. 

3.2. Comparative statics. 

Now we will exam more closely the effects of uncertainty 
aversion variations on the equilibrium quantities qj (Cl, '''' CN) ,  
q(j)(Cl" ", CN) and output Q(c). R ecall that qj (Cl ,"', CN) must 
be interpreted as conjectural ( or virtual) equilibriums only, since the 
actual calculations presuppose omniscience among producers, which 
is not likely in the real world.ll Of course, quantities and output are 
also function of N ( see section 4) that is not presently made explicit 
to avoid overloading notations. 

The differentiation on both sides of the equation system (3.2) 
w.r.t. Cl, C2, ' . .  , CN enables to state the following proposition: 

Proposition 1: Take the Coumot competition model under Knigh­
tian uncertainty as presented in section 3.1. Let Ci, cj (i # j) be 

"Notice that [Q(CloC2,,,·,CN),P(Q(c))]=[(Q,(C,,,,·,CN),,,·,qN(Clo,,·,CN),P(Q(c))] is a 
pooled information equilibrium! meaning it only can be calculated if the (private) information 
vector (not related with the production), cl =(Cl ""leN) is known by all producers. Producers 
observe actual equilibrium production vector q. and the market price p ... If the system q(c)=q"' 

is invertible, Le., if there exists C·=q-l (q.), and if p·=P(Q(c· )), and if p·=P(Q(c·)), then 
q( c) is a fully revealing equilibrium since the market itself reveals to agents all non-productive 
private information (held before by individual producers). In this case, q(c) can be viewed as a 
rational expectation equilibrium. See Mas-Colell & alii (1995, p. 721) and Radner (1989). 
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the projections on the zth and yth axis of the vector c E eN. The 
uncertainty aversion effects on the Cournot-Nash equilibrium quan­
tities (qj) for a firm j matching the game fN and on the equilibrium 
industry output (Q) , are given by the following equations: 

( ) aj[(I-cj)P'-¢"]+P'[qj(e)P'+PJ O"j C = P"[QP'(1 ej) Q(;)¢"J+P'[(1 ej)(N+l)P' N¢"J 
0li. _ q; P' +P-(I-e; )[qj p" +P]"j(e) 
aCi - (1 ci )Pl 4/1 J 

h ( )  BQ(e) d " 1 d,1I ( ) §!b. w ere O"j C = Bej an ClOj = L.,i(i#j) l-ej 'Pi qi Bej· 

Proof: See Appendix. 

(3.3) 

(3.4) 

(3.5) 

Here and later on we omit the arguments Q(c) and qi(C) in the 
notation of P and ¢j functions and their derivatives (respectively) . 
Equations (3.3)-(3.5), show that uncertainty aversion effects on pro­
duction at equilibrium depend directly only on the returns to scale of 
factors (¢'j) disregarding whether there is fixed costs (sunken or not) 
in the firm. 12 Without any further additional hypotheses, nothing 
can be said about the signs of the above derivative. 

Under constant return to scale technologies assumption (¢'j = 
0; j = 1 , 2, . . .  , N) the marginal effect of the uncertainty aversion on 
the output (3.3) becames: 

(3.6) 

12Recall that, in the case of nonsunken fixed costs, the nonnegative profit restriction bounds the 
size of the industry to a number af firms Nw which will depend on fixed costs (negatively) . How­
ever, the game r with Nil.> players have a unique pure strategy equilibrium; hence, it doesn't 
support any uncertainty. 
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Thr oughout the paper, we will refer to the inequality ��i 
pl! (Q(c)) + PI(Q(C)) < 0 as the "modified decreasing marginal rev­
enue" condition ( noted MDMR ) .  Notice that this condition is similar 
to the familiar requirement qj pI! + pI < 0 for the stability of the equi­
librium, ( an increase in rivals' output lowers firm j' s marginal rev­
enue) . The MDMR condition is endogenous. However, it is allways 
fulfilled for ( i) concave or linear market demand; ( ii) convex market 
demand with constant price-elasticity ( e.g., P(Q) = Q-"; O < 0 < 1 
as below) or any other function with a smooth curvature. Therefore, 
the results presented in this paper are covered by a large family of 
market demand functions exhibiting the MDMR property for any 
c E  CN. 

Corollary 1: Under constant returns to scale technologies, for vec­
tors c E CN verifying the MDMR condition the derivatives (3.3)­
(3.5) of proposition 1 have the following signs: 

. 0% (c) . Q O"j < 0; szgn( ac . ) = szgn[N (1 - rj)pl! + PI) ;  
J 

= -sign [qipl! + PI) 
where rj = qj/Q is the market share of firm j. 

Proof: See Appendix. 

Notes: 
i) With concave market demand ( i.e., pI! :::; 0) we have abide) > 0, 

J 
(i i- j) and ab�(e ) < 0; 

J 

ii) In the convex market demand case (pI! 2:: 0)13 a nonincreasing 

13Recall that the convexity condition for the aggregate demand is not directly related to the 
convexity property of the consumers' preferences, since the condition depends on the sign of the 
third derivative of the utility function only (see Mas-Colle! et alii, 1995, section lOe). However, 
this might restraint the set where the MDMR condition holds, as we mentionned above. 
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marginal revenue hypothesis (Pqj),1 :s 0 can also be w ritten 
as (! max qj ) pI! + pi :S O. Hence, the nonincreasing marginal 
revenue assumption implies the MDMR condition if max rj > i::;j::;N 
2/N + 1 and the assumption is implyied by MDMR otherw ise. 
In this case, under the conditions of the corollary 1, the sign 
of 8b��c) is alw ays negative for firms j that are not too small 
(rj � l/N + 1 ) ; 

iii) Under a symmetric variation in the uncertainty coeffi cients for 
all producers, the total effect on the optimal quantities of a firm 
j is given by (using (3.4)-(3.5)): 

. ( ) _ '" 8qj(c) _ 8qjP'+P-(I-Cj)[qjP"+P')2:,<i<N'7;(C) 
XJ C - L.., 8c; - (l-cj )P' -<p" l::;i::;N 

Then, under the conditions of the corollary 1, w e  obtain Xj < 
o w hen qj P" + pi � 0 and the sign is ambiguous otherw ise 
(qjpll + pi < 0) ; 

iv) When P(Q) = Q-ii (0 < [) :S 1 )  w ith constant price-elasticity, 
the MDMR condition is fulfilled for all c E [ 0,1 ) .  Then, under 
constant returns to scale assumptions (¢;I = ¢'j = 0),  corollary 1 
applies and a proper substitution of P, pi and pI! in (3.6) and 
(3.4)-(3.5) gives: 
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So, since r j ::; ! w e  have, successively: O"j ::; 0, � ::; 0 and 
, 

. (!!.9.i.) . ( 1 ) si gn 8ej - si gn rj - 1+0 . 

3.3. Large number of firms. 

Consider now a sequence of games f N (and fiv) for integers 
N 2': 2. We are looking for the effects of uncertainty parameter vari­
ations on the equilibrium quantities qj as the number of firms match ­
ing the one-shot game r N increases. For this reason w e  w ill assume 
that the games fiv are independent and that for each N (given ex­
ogenously) ,  there is no free entry. In the case there is fixed costs 
(nonsunken) for operating in the industry, w e  assume the entry of a 
new firm in the game follow s an increase in the market size, in such 

a w ay that, at equilibrium the inequalities P(Q )  2': max {<pj(qj)} 
25,J5,N qj 

always holds for N = 1 , 2,··· , N and c E eN. 
Consider the case of nonidentical fi rms (<Pi #- <pj) w ith asym­

metric uncertainty aversion parameters for the producers (e; #- Cj), 
j = 1 ,  2, . " .  Assume first, that the uncertainty parameters e; do not 
change as the number N of players playing fiv increases. Assume 
also a finite market size, as N -+ 00. In this case, the industry out­
put (Q ) w ill be bounded. If the sums aj(c) = I:i(¢j)(I�C') <P:' 8"a�jC) 
are also bounded (\:Ij = 1 , 2,·· .) ,14 then a quick inspection of ( 3.5) 
show s that O"j -+ 0 as N -+ oo(\:Ij). Therefore, from ( 3.4) and ( 3.5) 

'11 h !!'li. qjR'+R 0 d 8q,(e) 0 w e  WI ave: 8 . -+ (1 .)R
' ",,, < an 8 . -+ . c) c) 'f'j cJ 

Comment: For high industry sizes, i ncreases in the uncertainty 
aversion parameter for any producer only reduces his ow n equilib­
rium quantities. So, an increasing number of firms tends to reduce 

14The assumption is trivially verified when technologies exhibit constant returns to scale 
(4)'1=0). 
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virtual depressive effects on aggregate production of a rise in compet­
itive uncertainty (henceforth, on the rise of the equilibrium market 
price). At the same time, the externality effect of a marginal rise in 
the uncertainty aversion of an individual producer on the quantities 
produced by any other producer vanishes: as N increases the market 
share of firms becomes smaller and the external effect of additional 
uncertainty aversion among a greater number of producers becomes 
negligible. How ever, one might argue that the uncertainty aversion 
coefficients Ci should decrease as the number N of the matching firms 
increases. In this case, under a finite market size assumption, for se­
quences {c(N)} converging to zero as N -+ +00, the derivatives ��; 
given in (3.4) also vanish." 

3.4. Lerner index. 

From the first order condition for the maximization of II; in 
(3.2) w e  have: rj = C:[Aj - cjJ!(l - Cj) w here Aj - (P - rf;j)/P is the 
price-cost Lerner index and c: = -Q(0P' is the price-elasticity of the 
market demand (in modulus) . For high values of N and uncertainty 
aversion vectors c, the quantities produced by an individual firm 
j are negligible w ith respect to the industry output; in such cases 
rj ::0 0 w ould imply Cj ::0 Aj(C) . So, w hen the competing firms are 
small, the price-cost margins they obtain are each one closer to the 
uncertainty aversion parameters of the producers. In the symmetric 
case, r = l/N and therefore, C = (NC:A - l)/(Nc: - 1 ). For high 
values of N, w hen identical firms operate all w ith a constant returns 
to scale, the common parameter C defines a market prize rate for the 
uncertainty that the producers w ould add to the competitive price. 

15Por instance, let cj=c.fCO<Cj<l) and q;Ccj,cCi) be the corresponding Cournot equilib­

rium for each N, j =l,2, ... ,N. ':hen N-++oo, as qi are 01, we have q;(cj ,c(j»)--+qj(O,O) 
d f th d ' t' aqi ( • •  ) 5..( • •  ))N N-l 1 ' h (N N-l d an ,0 course, e enva lveS � Cj ,c(j) = aCj cj '(j) cj a so Yams cj ten s 

to 0 as N-+oo), 
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Indeed, if Po stands for the competitive price a Po = ¢' constant 
leads to a coefficient implicitly defined by c"" AO(C) = PE';o, where 
P = P(Q(c)). 

4. Identical Firms. 

The conspicuous results of the present model are obtained under 
symmetric assumptions. Suppose then the producers have access to 
and actually employ the same production technology (¢i = ¢). A 
Knightian uncertainty environment can also be viewed as a situation 
where agents do not have enough information to proceed to a proper 
description of the states of nature affecting rival's decisions. Hence, 
they cannot asses their guesses about all possible joint supply ofrivals 
by an unique (subjective) probability distribution function. IS As it 
was noticed above, the uncertainty aversion Cj can therefore be taken 
as an indicator for the missing information of the agent j regarding 
the supply of his N - 1 competitors. Suppose then producers are 
all symmetrically uncertainty averse (or, assume they use the same 
information amount) that is, Cj = c(j = 1 , 2" " ,  N) . In order to 
enrich the analysis of the symmetric case, we assume that the firms 
bear a fixed cost k (k > 0) eventually nonsunken. The existence of 
this fixed cost imposes a limit for the number N of firms which are 
able to operate with nonnegative profits. Let Nw be an industry 
size annulating the profit of firms without uncertainty, that is, such 
that Nw E max{N : Il(O, N) 2: O} and note [NwJ for its integer part 
(w stands for the parameters of the model). 

Under these assumptions, we will principally show in this sec­
tion: (a) how Cournotian competition among a fixed number N of 
uncertainty averse producers may generate a cooperative (collusive) 

160n the conditions for setting the equivalence between the (present) nonadditive approach and 
this (so·called) maximin approach, see Schmeidler (1989), Gilboa & Schmeidler (1989) and for an 
introdUctory exposition, Simonsen & Werlang (1991). 
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outcome for the industry; and (b) under a free-entry regime, how 
uncertainty aversion of the producers acts preventing market power 
for the individual firms. 

4.1. Closed industry. 

Hereafter, the industry size N is made explicit in the notations 
for the equilibrium quantities (qi) and output (Q) functions (as well 
as in the other functions related to them) and we assume that they 
are continuously differentiable with respect to this argument when­
ever N is treated as a continuous variable. Thus, under the courrent 
assumptions, all equilibrium firms' quantities are identical to q(c, N) 
and the industry output is N q(c, N). We have also (Jj = (J and 
Xj = X for all j. 

a) The admissible uncertainty aversion set eN 

We may assume that without uncertainty all firms make positive 
profits, so we get integers N bounded by 1 and [NwJ, and the set 
eN introduced in Section 3.1 becomes here: eN = {c E [ 0, 1) : 
II(O, N) > O}; N = 2, 3"" ,  [NwJ. The existence of positive fixed 
costs and the increasing marginal costs assumption imply that the 
mean cost is U-shaped. It means that for each N, there must be an 
uncertainty aversion level c(N) such that II(c(N), N) = O. So, c(N) 
is the maximum aversion level supporting nonnegative profits in the 
industry. 

By analysing the profit function II( c, N) under the current as­
sumptions, Boff (1 998) shows that c( N) is a continuous decreasing 
function of N as long as the Cournotian quantities q( c, N) are smaller 
than the collusive equilibrium quantities, say q(N) for a cartel with 
size N. In this paper we take this result for granted. So, the set eN 
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here assumes the form: CN = [0, c(N)) for N = 2, 3" " [NwJ.17 

b) Comparative statics 

In the symmetric case, the expression for aj (c) given with propo­
sition 1 becomes 

a(c, N) = (N -1)4>" (qP"+P')C7 
(1-c)(N+1)(]fff P"+P')-4>'" 

The substitution of this value in (3.3) gives: 

a(c N) - qP'+P 
, - (l-c)(N+1)("lJff P"+P')-¢" (4.0) 

Now the substitution of cr(c, N) above in X(c, N) given in note (iii) 
of Section 3.2, leads to: 

cr(c, N) = X(c, N) (4.1) 

Equations (4.0) and (4.1) allow to make explicit the following 
corollary: 

Corollary 2: Under identical firms and identical uncertainty aver­
sion coefficients assumptions, whenever the MDMR condition holds, 
(i) a marginal increase in the uncertainty aversion coefficient for 
any producer reduces the aggregate output; (ii) the marginal effect of 
the uncertainty aversion on the aggregate industry output equals the 
full effect of the uncertainty aversion on the individual quantities of 
firms. 

Proof: Appendix. 

17Notice that if fixed costs are sunken allowing to have II(O,Nw)<O we obtain two points 
annullating profits, say CI (N), C2 (N). Here we deal with the greater value of them. 
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Notice that the above results are set without the constant returns 
to scale assumption (as did in corollary 1). By direct derivation of 
the profit function the symmetric assumptions, it is not hard to show 
that the full effect on the firms' profit of a symmetric variation in the 
uncertainty aversion coefficient for all producers will be given by: 

N 
L aTIJ�;N) = [P + QPI - .p/Jcr(C, N) (4.2) 
j=l 

The equation P + Q pI - .pI = 0 gives the first order condition for the 
joint profit maximization without uncertainty (carteD. Then, for an 
uncertainty coefficient c E CN verifying the MDMR condition the 
derivative in (4.2) is positive as long as P + QPI - .pI < 0 that is 
to say, as long as the Cournotian quantities q( c, N) are larger than 
the cartel quantities q(N). The derivative in (4.2) is negative for 
P + Q pI _ .pI > 0, that is whenever q( c, N) < q(N) and it is null for 
q(c, N) = q(N). 

With these results we are now able to establish the following 
proposition: 

Proposition 2: In a symmetric Cournotian market with barriers to 
entry, if the MDMR condition is verified at any c E CN, for each 
N = 2, 3 ,··· [NwJ there is an admissible aversion coefficient c(N) 
equating the Cournotian output with the output of a cartel with size 
N : Q(c(N), N) = Q(N). Moreover, for c > c(N) -t Q(c, N) < 
Q(N). 

Proof: Appendix. 

Under the above assumptions point c(N) is unique. According 
to the result of the corollary 2, uncertainty aversion leads agents to 
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produce lower quantities than they would do under uncertainty neu­
trality. The collusive effect is obtained because up to the level c(N) , 
their behavior allows them to capturate higher profits by making fur­
ther cuts in the amount supplied. Proposition 2 formally shows how 
a collusive outcome can be achieved through competition among self­
seeking and uncertainty averse players. It gives a new result: a non­
cooperative cartel may be endogenously generated in a one-shot game 
without any formal commitment among the producers whenever they 
are symmetrically uncertainty averse in a specific way.18 When all 
prod ucers are (relatively) strong uncertainty averse (c > c( N)) and 
maximize independently their own profit function, they would be led 
to obtain a joint output smaller than what they could obtain under 
perfect collusion. The result of the proposition guarantees also that 
the derivative given in (4.2) is cancealed at c = c(N). As a function 
of c the profit of an individual firm II( C; N) achieves a maximum at 
this point (with value identical to the cartel profit) .  In most cases, 
c(N) increases with N within (1, Nw) . 19 

In order to provide a proper illustration for the present result, 
if we consider a linear demand with quadratic costs model (from 
now on referred as LD-QC mode0 P(Q) = 0: - Q, (0: > Q) with 
r/>(q) = k + q2, (k > 0) for q > 0 and r/>(O) = 0 (nonsunken fixed 
costs) we obtain the critical uncertainty level c(N) = �+i. 

l8The game literature we know up to now obtain collusive outcomes from noncooperative set­
tings only for repeated games where the optimal responses of the players are contingent and the 
strategies are drawn from precommitted actions (like trigger strategies). 

19The use of the chain 
.£U

le in the �erivatio� of both sides of the the equation 
-- ........ oc(N) BQ(e N) eQ(N) ....... Q(c(N),N)=Q(N) yields: -%N-=-[ aN ---aN" J/NuV:.,N). From the Corollary 2(i), 

the sign of the denominator is negative. Then the derivative a�(:) is positive (negative) as 
long as, at the collusive outcome, the elasticity of the Cournotian output with respect to the 
industry size is greater (smaller) than that for the cartel output. 
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4.3. Free-Entry. 

We now cancel the requirement of the exogeneity of N and allow 
firms to entry into the market. So, the industry size will be endoge­
nously determined and we shall assume now the number of firms N 
is a real variable (we neglect again the so-called "integer problem" ) .  
Then, given the uncertainty aversion parameter c of the producers, 
consider an industry size such that Nw(c) E max{N : II(c,N) :::: O} 
and assume further that there is Nw(c) which causes the profit of 
firms to vanish i.e., making II(c, Nw(c)) = 0, with Nw (c) > 1 (where 
w stands again for the relevant parameters of the model). Of course, 
Nw (O) = Nw , as defined in the previous section. We will also assume 
Nw (c) is a continuous function on the domain of c. We introduce 
now the following notations for the competitive equilibrium quanti­
ties and output qw (c) = q(c,Nw (c) ) ,  Qw (c) = Q(c,Nw(c)) respec­
tively. Similarly, we note Pw , rPw for prices, costs and P�, rP� for 
their derivatives, where the subscript w indicates that functions are 
evaluated at N = Nw (c). Analogously, we write uw(c) and Xw (c) for 
the derivatives obtained along (4.0) and the equality (4.1). Lastly, 
a�!Jc) and a�Jc) are the derivatives of Q(c, N) and q(c, N) evalu­

ated at N -Nw(c), e. g. a�!Jc) = aQ(c;/:/(c)) . 

At the competitive industry size, the admissible uncertainty 
aversion set, say Cw , must be defined as: Cw = { c  E [0, 1) : Nw(c) 
> I}. Under some conditions that would appear more clearly ahead, 
Cw may assume the form of a demi-open interval [0, cw) ,  where Cw is 
obtained from the equation Nw (cw ) = 1. 

a) Comparative Statics20 

When there is [N] firms participating the Cournot game un­
der uncertainty (r[Nj) the value of the profit function for a firm 

20 Details of the calculations made in this section are available with the authors upon request. 
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whose producer has uncertainty aversion c at the symmetric equi­
librium, is given by: II(c, N) = q(c, N)P(Nq(c, N)) - ¢(q(c, N)) .  
Given a common uncertainty aversion c, at the competitive equilib­
rium qw(c), firms are maximizing profits. Thus, we take the full 
differential on both sides of the equation II( c, N) = const. and eval­
uate the derivatives of this differential at Ci = Cj = c. For obtaining 
the derivatives in the sequel we adopt the following approximations: 

L aqiJ�,N) I�:� (e) � Xw(c) and [Nw(c)]qw(c) � Qw(c) l:5j:5[Nw(e)] J w 
which are necessary for defining summation over integer indices. De­
fine now 'Yw(c) - a�tJe) �:f�l for the elasticity of the competitive 
output w.r.t. the industry size and the values of the Lerner index 
and the price-elasticity of the market demand Aw(C) and cw(c) (re­
spectively) at the competitive symmetric equilibrium. Therefore, by 
using the equations (4.0) and identifying dNw(c)jdc with the deriva­
tive we arrive to: 

(4.3) 

where Dw(c) = 'Yw{Awcw - I} - Awcw . 
Note now (JW(c) = ii��;e) le '=e for the marginal effect on the 

competitive equilibrium output or
' 
a variation in the uncertainty aver­

sion of any producer. By using the definition Qw(c) = Q(c, Nw(c)) 
and the equation (4.0) (at N = Nw(c)) along with (4.3) , we obtain 
for this derivative the following expression: 

Turning now to the competitive equilibrium quantities of the 
firms say, qw (c) = q(c, Nw(c) ) ,  we define XW(c) == 'L aq��(e) 

l:5j:5[Nw(e)] J 

for the full effect of a symmetric variation in the uncertainty aversion 
of all producers on the symmetric equilibrium quantities produced by 
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the firms. Then, in order to obtain XW (c) we use the identity (4.1) 
again and we take into account the identity Qw (c) = Nw(c)qw(c) 
along with (4.3) . By doing so, after some algebric manipulations we 
arrive to: 

XW (c) = Xw[{(1-'Yw)[Nw(c))+jJl{Aw<w-1l-Aw<w ] (4.5) w 

Note now q(n) and Q(n) = nq(n) for the optimal quantities and 
output (respectively) for a symmetric cartel with n firms. Let n be 
a maximum cartel size supporting nonnegative profits, that is, n E 
arg max{ n : IT(n) 2: O}. Without loss of generality, assume that n is 
an integer number. The equation (P�Qw+Pw -¢�) = �[AwC:w -1] = 
o is the first order condition for a joint profit maximization of the 
symmetric cartel with size n = [Nw (c)]. So, as long as Aw (C)C:w (c) < 
1 ,  the competitive Cournotian quantities (and output) are larger than 
the cartel quantities (and output): qw(c) > q(Nw(c)) (and Q w (c) > 
Q(Nw(c)) ) .  Whenever Aw(C)C:w(c) > 1,  Cournotian quantities (and 
output) are smaller than the cartel quantities (and output) and when 
Aw(C)C:w(c) = 1 they are identical. 

b) Effects of the uncertainty aversion on production 

For examining the collusive effects of the uncertainty aversion 
on the optimal production choices under the free-entry regime one 
should be aware that, for some uncertainty aversion level c, the 
Cournotian quantities and output for an industry with size [Nw (c)] 

could only be identical with the quantities and the output of a cartel 
with the same size if [Nw(c)] = n. This is so because of the zero 
profit condition. In the sequell we prove a proposition ensuring that 
the functional equation [Nw(c)] = n has (at least) one solution under 
the MDMR condition. 

Proposition 3: Under the symmetric and free entry assumptions, 
if the MD MR condition is verified for all c E Cw, then there is 
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some symmetric uncertainty aversion level cw(cw E Cw) equating 
the competitive Coumotian quantities and output with the quantities 
and the output of a cartel with size n that is, qw (cw) = q(n) and 
Qw(cw) = Q(n) 

Proof: See Appendix. 

Of course, at c = Cw we have [Nw(cw)] = n and the following 
sequence of equalities hold: aW(cw) = XW(cw) = Xw(cw) = aw(cw). 
As we mentionned above, the point c;., need not be unique. Propo­
sition 3 is the free-entry counterpart of the proposition 2, giving 
the collusive effect of the uncertainty when the industry size N is 
exogenous. The coefficient Cw is a structural parameter. Its magni­
tude signals how unlikely it is for the competitive industry to achieve 
a cooperative outcome in a self-enforcing way, that is, without any 
formal agreement among the producers. In the LD - QC model, 
the value of cw(cw = 1 - 8/w; w = a? /k > 8) is increasing in the 
market size a and decreasing in the fixed cost k. We obtain also 

Nw (c) = 1:)y1 w(l - c) - 1] = 1 and n = � w - 1. 
Now we are going to examine how the functionals Qw(c) and 

qw(c) behave locally for small variations in the (symmetric) uncer­
tainty aversion parameters of the producers. For this aim we use 
the derivatives aW(c) and XW(c) given in (4.4) and (4.5) respectively. 
In order to make the analysis easy, we will assume that the collu­
sive uncertainty aversion level Cw obtained in the proposition 3 is 
unique. Under this hipothesis, the term Aw (c )cw ( c) - 1 annulates 
only once (at c = cw) . Since for c = 0 the competitive Cournotian 
quantities (and output) are larger than those corresponding to the 
cartel with size Nw, we must have Aw(O)cw(O) < 1. So, for c < Cw 
we get Aw(C)cw(c) < 1 and the competitive Cournotian quantities 
(and output) are larger than the cartel quantities (and output): 
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qw(c) > q(Nw(c)) (and Qw(c) > Q(Nw(c)) ) .  For c > Cw we get 
Aw (c)C:w (c) > 1 and the Cournotian quantities (and output) are 
smaller than the cartel quantities (and output) . Define now the 
following functional: Ew(c) = [Aw (C)<w(c) - 1]-1 . 

Thus, for c < cw, Ew (c) > 0 and the denominator of the equa­
tions (4.3)-(4-5) say, Dw(c) == 'Yw(c) [Aw (C)C:w(c) - 1] - Aw (c)C:w (c) is 
negative. For c >  cw, -Ew(c) > 0 and Dw(c) is negative (positive) 
according to 'Yw(c) < (» - Ew(c). Assume further that the MDMR 
condition holds on Cw, and recall that when the uncertainty aversion 
of the producers is c, at the symmetric equilibrium the market share 
of any firm is given by rw(c) = Nw\c) . 

Then, looking at (4.4) we find out that crW(c) is positive (nega­
tive) according to ')'w(c) > « )  /��c(C) Ew(c) whenever c < Cw and 
crW(c) is positive (negative) acording to 'Yw(c) > « )-Ew(c) whenever 
C > cW• Of course, .since crW (cw) < 0 there is an uncertainty aversion 
level f. E arg infcEGw Qw(c) such that Cw < f. ::; CWo Notice that the 
effect of uncertainty aversion on the competitive Cournotian output 
is ambiguous,21 particularly when the optimal quantities produced 
by the firms are larger than those produced optimally under perfect 
collusion (c < cw) .  When c < cw, the condition for the positivity 
(negativity) of crW(c) is favored with a low (high) market share for 
the firms that is, with an unconcentmted (concentrated) structure 
for the industry. Also, a price-inelastic market demand ( low C:w(c)) 
helps the positivity. The sign of crW(c) may also depend on the mar­
ket size. When c < cw, the condition for the positivity (negativity) 
of crW(c) is favored with a low (high) market share for the firms that 
is, with an unconcentmted (concentrated) structure for the industry. 

21In a model with symmetric firms where (risk averse) producers face a stochastic market de­
mand Appelbaum & Katz (1986) found a negative relationship between the competitive industry 
output and the price-uncertaintypararoeter of the (indirect) demand. Howeverl the result is inde­
pendent of the measure of risk. Neverthless, their paper suggests a lower output under risk 
aversion than under risk neutrality. 

294 Revista de Econometria 18 (2) Novembro 1998 



Hugo Pedro Boff and Sergio Ribeiro da Costa WerJang 

Also, a price-inelastic market demand (low cw(c)) helps the positiv­
ity. The sign of o-W(c) may also depend on the market size. The 
bounding values calculated from the functionals /w(c) and Ew(c) in 
the LD -QC model when c < cw, show a positive o-W(c) for w > 14.23 
(at c = 0) or for w > 23.04 at c = 1/2 (o-W(c) is negative otherwise for 
those values of c) . So, when all producers are weakely or moderately 
uncertainy averse, an increase in the uncertainty aversion parameter 
of any one of them may increase (reduce) the competitive output of 
the industry if the market size is relatively large (small) with respect 
to the fixed costs. As it will appear clearly afterwards, an higher com­
petitive output (w.r.t. certainty) means that the aggregate quantities 
of the newly entering firms more than offset the aggregate amount of 
the quantities cut off by the incumbent firms. The following figures 
depict these features. 

�(o) Q,(O)r---_ 

Q(n) _ . . . . . .  _ . .  . 0,«) tic; - . . . . . .  - . . . �('; 
, 

o c C 2 Il! C o c 

Fig.l(a): Large market size Fig. I (b): Small market size 

Figure 1: Competitive output Qw(c) under symmetric uncertainty 

aversion (presumed shape under the MDMR condition) 
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These features suggest an important issue for this paper:" if 
there is free entry into an industry, where all the Cournotian pro­
ducers are weakely or moderately uncertainty averse and supply for 
a relatively large market (w.r.t. to the fixed costs), then the equi­
librium price achieved under uncertainty (Pw = ¢;w / qw mean cost) 
should presumably be lower than that which is achieved if all the pro­
ducers were uncertainty neutral (c = 0). By looking now at the 
equation (4.5) , we find out that XW(c) is positive (negative) acording 
to IW > « )  l�rw [1 + TwEwl whenever c < cwo For c > cw , XW(c) is 
positive if 

or if 

XW(c) is negative otherwise (the case IW(C) = -Ew (c) being ex­
cluded). Of course, since XW (cw) < 0 there is uncertainty aversion 
level C E arg infcEcw qw(c) such that cw < c :::; CWo Here, for c < cw 
the condition for the negativity of XW (c) is relatively easy.23 For the 
values obtained in the LD-QC model, whenever the producers are 
not too strong uncertainty averse (whenever c < C), a symmetric in­
crease in the uncertainty parameter for all of them will likely reduce 
the optimal quantities produced by each firm. 

22We are not aware of any other equivalent result to the present ours available in the literature. 
23No unambiguous effect of the "price-uncertainty' On the firms' quantities is obtained in Ap­

pelbaum & Katz's paper. It leads them to conclude that at the equilibrium under uncertainty 
(risk), firms could operate either with "excess capacity!! or with "undercapacitY' . The present 
model shows that under Knightian uncertainty aversion, only undercapacity tipically occurs. 
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The following picture depicts in a stylized way the optimal be­
havior of the firm: 

Cfo(o) 

q(fi) _ _ _ _  . _  . _ _ _  qiC) 

o 

Figure 2: Firms' quantities qw(c) under symmetric uncertainty 

aversion (presumed shape under the MDMR condition) 

c) Uncertainty and the market structure 

The analysis made in the previous section shows that the sym­
metry property of the marginal effect and the full effect of uncer­
tainty aversion variations on the output and the firm's quantities 
that have been obtained before (Section 4.1) does not hold under 
free-entry. Indeed equations (4.4)-(4.5) embody this divergence, 
since aW (c) oF XW (c). In order to explain this, let us start from 
the symmetric competitive equilibrium. If the uncertainty aversion 
of all identical producers varies symmetrically, the full effect on the 
industry output is given by [Nw(c)]aW(c), while [Nw(c)]xW(c) gives 
this effect on the aggregate quantities of the individual firms. Then, 

I1w(c) - [Nw(c)] {aW(c) - XW(c)} may be interpreted as a structural 
component of the uncertainty aversion effect on production, which is 
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due to the free-entry assumption. By using (4.4)-(4.5) , we obtain 

(by using 4.3) . 

From the equation (4.3) and the assumptions made in the previ­
ous section (the MDMR condition and the unicity of cw), as long as 
e < cw , the number of firms Nw (e) is increasing and then J.Lw (c) > 0; 
by facing a symmetric increase in the uncertainty aversion for all pro­
ducers (de > 0) ,  the incumbent producers are cutting off their firm's 
optimal quantities. The reduction in the current output raises the 
market price. Then, the prospect to collect positive profits makes 
room for new outsider producers (with higher uncertainty aversion 
coefficient = e + de) to come into the market. This is why we have 
J.Lw(e) > O. At e = cw, the size of the industry reaches its maximum 
value supporting nonnegative profits (n) under the technological and 
the market constraints and then we have J.Lw(cw) = O. Beyond that 
level, for some neighborhood in the rhs of cw , J.Lw(e) becomes neg­
ative. Indeed, a symmetric increase in the uncertainty aversion on 
this neighborhood (de > 0) induce the incumbent firms to diminish 
once again their current optimal quantities. However, the result­
ing increase in the mean costs now overweighs the increase in the 
mean revenue, so profits decline. Therefore, negative profits induce 
[Nw (e) - Nw(e + de)] firms to leave the industry and J.Lw(c) < o. 

It is worthwhile to note that for e < cw, a higher number of 
firms operating into the market reduces the market power of each 
of them in such a way that the aggregate (negative) effect on the 
individual quantities overides the gross marginal effect on the output. 
The figure drawn below illustrates typical changes in the Cournotian 
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market structure caused by the uncertainty aversion of the producers. 

1 

yo) 

lin _ _ _ _ _ _ _ _ _  �_�-'" 

o 

r.,(c) 

c • w C 

Figure 3: Firms' market shares r w( c) under symmetric uncertainty 

aversion (presumed shape under the MDMR condition) 

As the figure above emphasizes, inside an open industry, when 

the Coumotian producers are all weakely or moderately uncertainty 

averse (c < cw) competition among them acts in preventing market 
power for the individual firms. From the point-of-view of market 

regulatory policies designed to preserve competition among the firms 

and to protect consumers from overpricing due to market power, 
these features stress (i) the importance for the regulatory agency to 

implement actions guaranteeing the proponent firms will meet easy 

conditions to enter the market; (ii) the current anti-trust laws based 

on the market share profile of the firms become powerless to protect 

consumers from the monopoly power if the producers are uncertainty 

averse. 
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5. Further Issues and Summary of the Results. 

a) Uncertainty aversion asymmetries 

We focus here on a simple Cournotian duopoly game in order to 
bring out the role of asymmetric behavior of the producers towards 
uncertainty in providing different industry equilibria with extreme 
market structures (e.g. ri = 0 or ri = 1) .  The corresponding val­
ues are calculated for the following linear demand model with con­
stant returns to scale and fixed (nonsunked) costs: P(Q) = a - f3Q; 
o/i(qi) = k + si qi for qi > 0 and o/i(O) = 0; k >  0, f3 > 1; Q = ql + q2; 
i = 1 , 2. For the standard game f* : (AI, A2, IIi, II2) the use of ri 
given in (3.1) and the first order conditions (3.2) for N = 2 leads to 
the following optimal solutions: 

q · (c ·  c .) - ..L [a - (� - -'!.L)] · l J '  t - 3{3 l-Ci l-Cj , 

Q(Cj, Ci) = 3� [2a - ( l�ic, + l��j )] · 

The profit functions are given by IIi = qi[a - f3Q - Si] - k; i = 1 , 2. 
Make now the parametrization Xi = 1 - Ci; i = 1, 2. It is not hard to 
verfy that the condition IIi (Xi,Xj) 2: 0 requires that the polynomial 
'Pi(Xi) = aix� + biXi + di must be nonpositive, where all coefficients 
are function of Xj as follows a; = -[a( a-3s;) -9f3k]xj - (2a-3s;)sj ;  
bi = Si[Sj + (7a - 6si)xj]; di = 2s�xj. 

Notice that 'Pi(O) = 2s�xj 2: 0; 'Pi(l) = [9f3k - a2 + IOasi -
4srlxj - 2sj(a - 2s;) .  The existence of admissible solutions for 
'Pi (X;) = 0 is assured if 'Pi(l) < o. It is not difficult to check that 
this condition imposes the following upper bound for fixed costs: 

k < ",[",=108;)+4s;+2s;(",-28,) . . . = 1 2 _ 9{3 , t, J , .  
This condition also ensures aI, a2 < o. The solutions of 'Pi (X;) = 

0, (i, j = 1, 2) are: xf(Xj) = -� [1 + ViI - 4,�t ] ; i, j = 1, 2. 
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The maps for the Nash equilibrium under uncertainty (NED) 
of the game r : (AI , A2, Ih, II2) will be depicted by the condition 
IIi (Cl, C2) 2: 0 that is, by the regions Xi 2: xi'(Xj) ,  i, j = 1, 2. Define 
then Ci(Xj) = {Xi E [0, 1) : Xi 2: xf(Xj)}; i, j = 1, 2. 

According to the model developed in Section 3.1, the admissible 
uncertainty aversion set will be here: 

Let Q be the joint profit maximization output. For the present 
model we obtain: Q = 2"-�� +s,) . The points (Xl, X2) satis-

fying Q(Xl, X2) ::; Q are those satisfying the inequality: Xi ::; 
(1/4)(2"+��)-(Sjl"'j) - f(Xj); i, j = 1, 2, where s = Sl + S2· 

The following figure 4 depicts in the plan (Xj , Xi) 5 regions ac­
cording to which different Cournot-Nash equilibria under uncertainty 
will emerge for presumably shapes of the curves xf (Xj ) .  U : IIj , 
IIi 2: 0 with Q(Xl, X2) > Q; U c : IIj , IIi 2: 0 with 0 < Q(Xl' X2) ::; Q; 
Ui : IIj < 0, IIi > 0: monopoly of firm i; Uj : IIj > 0, IIi < 0: 
monopoly of firm j; Uo : IIj < 0, IIi < 0 with Q(Xl, X2) = 0 (inac­
tivity) . 

Here, the admissible uncertainty aversion set is C2 = U U Uc . 
A corresponding set for collusive outcomes is: Ui U Uj U Uo U Uc. 
Notice that the points x; depicted in the figure 4 are obtained solv­
ing equations xf (xi) = f(xj) ,  where f(xj) is defined above as the 
bounding function for the collusive levels of the uncertainty aversion 
(i, j = 1, 2) .24 Therefore, Dow & Werlang theorem (Section 2) en­
sures the existence of an U-type NED for every coordinated point 

24Jn order to calculate points x;, curves x� (Xj) were approximated by -8(bi/ai} where 8>1 
was treated as a constant. 
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(Cj, Ci) E [0, 1]2 corresponding to the region U where this point is 
located. The market share for the firm i, r i (co, e;) = � � C; ,Ci l can be J Cj ,Ct 
easily calculated from the above expressions. For instance, an ex-
plicit calculation reveals Ti (Cj, Ci) is greater (lower) than � according 
to ci > « )1 - * (1 - e;).  Figure 4 shows ri(Cj ,  Ci) = 1 in the region 
Ui and r i (Cj, e;) = 0 in the region Uj . Thus, asymmetric attitudes 
of producers facing competitive uncertainty affect directly the mar­
ket structure of the industry. The result obtained agree with those 
obtained in Section 4.3c for the open industry case. Indeed, when 
Sj = Si the segment of the line Xi = Xj intersecting the region Uc 
on figure 4 (not depicted) shows that a market price higher than the 
cartel price can be supported by infinitely many equalitarian market 
structures. 

>;= 1' Ci 
1 �----�r---------, 

x. 1 - - -- - - � - -
U 

Ui U, 

Uj 

o 

Figure 4: N ash Equilibria under Uncertainty (NEU) of a Cournot 

duopoly with asymmetric uncertainty aversion parameters for the produc­

ers 
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b) Extensions 

The collusive effects of the uncertainty aversion of the producers 
in the symmetric case may be further analysed by focusing the profit 
function and the strategic behavior of firms when the producers are 
strongly uncertainty averse. Using the first order conditions (3.2) 
for the symmetric case, in connection with (4.2) (and its counter­
part for the free-entry regime), Boff (1998) shows that the producers 
are implicitly dealing with conjectural variations endogenously ful­
filled. The same paper analyses also the welfare aspects of the present 
model. In Boff (1999) horizontal mergers in Cournotian competitive 
industries under uncertainty are focused. Important results on the 
profitability of collusions and the welfare effects of such mergers that 
are usually obtained under the assumptions that they generate pro­
ductive synergies or that the game is repeated, are otherwise repro­
duced in the paper, whenever mergers cause shifts in the uncertainty 
coefficients of the producers in the expected way. Of course, the 
present analysis may be extended in many directions (differentiated 
oligopolies, Bertrand competition, etc) . For instance, cases where 
producers are uncertain about the reaction of competitors to their 
price moves (as in the kinked demand model) or about costs born by 
them could motivate research for similar treatments. Of course, the 
present decision model could be used to solve all decision making 
problem embedded in a Knightian uncertainty environment which 
is modelled as a one-shot game. In order to extend its application 
in game theory an important challenge is to set a theorem for se­
quential games analogous to the Dow & Werlang theorem. Such an 
issue, for instance, could allow one to examine the conditions on the 
uncertainty parameters ensuring the sub-game perfection property 
for the Stacklberg equilibrium. 25 

25The subgame perfection property under uncertainty may be obtained in some specific sequen­
tial games (Werlang, 1997). 
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c) Summary of the Results 

i) Independently of the degree of openess of the industry, 
Cournotian competition among uncertainty averse producers in 
homogeneous industries typically reduce the optimal amount 
produced by the individual firms. Moderate or strong aversion 
parameters generate equilibrium points with large economies of 
scale for the firms; 

ii) In closed industries, the uncertainty aversion always causes to 
raise the market price. In open industries (under "perfect" en­
try, i.e. under instantaneuos adjustments of the quantities and 
the industry size) , the aggregate production of the new entrant 
firms may more than compensate the amount cut off by the in­
cumbent firms if the producers are sufficiently weak averse. It 
should cause the market price to fall. Such a socially desirable 
effect could be easily met if the market is large (e.g. price-elastic 
demand, high reservation price) or fix costs are low; 

iii) Whenever producers are not strongly uncertainty averse and 
there is free-entry, uncertainty aversion acts as preventing 
monopoly power for the individual firms; 

iv) From a game theoretical point-of-view, the collusive effects of 
the uncertainty aversion obtained along proposition 2 (for closed 
industries) and proposition 3 (for open industries) show how a 
cooperative outcome may be endogenously generated in a one­
shot game played by self-seeking and uncertainty averse players. 

Submitted on March, 1998 and revised on June, 1999. 
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Appendix. 

Proof of Proposition 1: By taking the derivatives on both sides of 
the first order condition for the ith firm (3.2) w.r.t. C; and cj(i of j) 
we obtain, respectively: 

{(1 - C;)PI - ¢>;"} ��; + (1 - c;) [q;P" + PI]O"; = [q;P" + Pi] (AI) 

{ (1 - C; )PI - ¢>t} a
aq; 

+ (1 - c;) [q;P" + PI]O"j = O. (A2) 
Cj 
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where CTi _ oQ/oe;. Summing-up both sides of (A2) for i(i f. j) 
gives: 

[Q ( .)pl! + (N - 1)P'] CT' + [CT ' _ Oqj] p' = � _1_ ¢/' Oqi . J J J OC 0 L." 1 - e; ' oc 0 J i=1 J 
ii:-j 

Note aj for the term in the rhs of this equation. After arranjing 
terms in the lhs, we arrive to: 

[Q PI! NP'] 
oqj P' ( 0) + CT o - - - ao J J oCo - J " J 

By putting i = j in (AI) we solve for oqj / OCj and subtitute this 
derivative in the latter equation. The solution in CTj gives: 

0 = 
aj [(1 - Cj)P' - ¢j] + pl! [qjP' + P] CTJ pI! [(1 - Cj)QP' - Q(j)¢j] + P' [(1 - cj) (N + l)P' - N¢j] 

which is equation (3.3). The equations (3.4)-(3.5) are obtained sub­
tituting back in (AI) and (A2) the values of CTi and CTj obtained from 
(3.3) . Notice that without further assumptions, the derivatives in 
(3.3)-(3.5) only can be solved implicitly. 0 

Proof of Corollary 1 :  As we assume positive marginal revenue 
(qiP' + P > 0) , the above sign relations are obtained in a straight­
forward manner by taking into account of (3.6) and by setting 
¢�' = ¢j = 0 in the equations (3.3)-(3.5). 0 

Proof of Corollary 2: The result (i) is trivially obtained from 
equation (4.0): the marginal revenue is positive and, if the MDMR 
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conditions holds, u(c, N) < O. The result (ii) comes from the iden­
tity (4.1), which is obtained by simple substitution (as indicated 
above) . 0 

Proof of Proposition 2: With identical firms, the cartel output 
Q(N) is smaller than the Cournotian output without uncertainty: 
Q(N) < Q(O, N) at each N. Besides, at c = c(N) profits must be de­
creasing since we have assumed at q(O, N) all firms make nonnegative 
profits; thus from equation (4.2) we must have q(c(N) , N) < q(N) . 
From the corollary 2(i), Q(c, N) is a decreasing function of c. There­
fore, given N the continuity property of Q(., N) ensures it intersects 
Q(N) at some uncertainty aversion level c(N) E (0, c(N)). 0 

Proof Proposition 3: 
inf Qw(c) < QCn) ::; Qw(O). 

cECw 

The following inequalities hold: 
Indeed, the rhs inequality is trivial: 

on the zero isoprofit curve, the Cournotian output without uncer­
tainty (c = 0) is never lower than the cartel output. For the lhs one, 
assume that the point Cw exists (cw E Cw) .  Then, Aw(Cw)ew(cw) = 1 
and from (4.4), UW (cw) = uw(cw) which is negative under the MDMR 
condition. This implies the lhs inequality. Now, under the current 
assumptions, Q w (c) = Q (c, N w (c)) is a continuous functional on Cw· 
Hence, the above inequalities and the continuity property of Qw(c) 
together ensure the funcional intercepts Q(n) at some uncertainty 
level Cw E CWo 0 
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