
DOCUMENT RESUME

ED 088 424 IR 000 235

AUTHOR Schneider, E. W.
TITLE Course Modularization Applied: The Interface System

and Its Implications For Sequence Control and Data
Analysis.

INSTITUTION Human Resources Research Organization, Alexandria,
Va.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO HumBRO-PP-10-73
PUB DATE Nov 73
NOTE 21p.; Paper presented at the Association for the

Development of Instructional Systems (Chicago,
Illinois, April 1972)

EDRS PRICE MF-$0.75 HC-$1.50
DESCRIPTORS Behavioral Objectives; *Computer Assisted

Instruction; Computer Programs; *Instructional
Design; *Instructional Systems; *Management Systems;
Program Descriptions; Systems Analysis; *Systems
Approach

IDENTIFIERS Assembly Language; COURSEWRITER; Instructional
Modules; *Interface System

ABSTRACT
The Interface System is a comprehensive method for

developing and managing computer-assisted instructional courses or
computer-managed instructional courses composed of sets of
instructional modules. Each module is defined by one or more
behavioral objectives and by a list of prerequisite modules that must
be completed successfully before the specific module can be
attempted. The system's key components are: 1) a standari general
structure for all modules; 2) a consistent methcd of labeling logic
and text elements; and 3) computer programs (presently written in
COURSEWRITER with Assembly Language functions) to regulate
inter-module student traffic and to execute system-controlled and
student-controlled instructional decisions. (PB)

Professional
Paper
10-73

HumRRO-PP-10.73

iffumFIFICS

Course Modularization Applied:
The Interface System and Its Implications
For Sequence Control and Data Analysis

E. W. Schneider

Presented at the meeting of the
Association for the Development of

. Instructional System_ s LAOIS)
Chicago, Illinois April 1972

HUMAN RESOURCES RESEARCH ORGANIZATION
300 North Washington Street Alexandria, Virginia 22314

National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550

The Human Resources Research Organization (HumRRO) is, a
non-profit corporation established in 1969 to conduct research in the
field of training and education. It is a continuation of The George
Washington University Human Resources Research Office. HumRRO's
general purpose is to improve human performance, partiCularly in
organizational settings, through behavioral social science research,
development, and consultation.

The findings of this repert are not to be construed as

an official position, unless so designated, by other

authorized documents.

Published,
November 1973

by

HUMAN RESOURCES RESEARCH ORGANIZATION
300,North Washington Street

Alexandria, Virginia' 22314

8181.10GRAPHIC DATA
SHEET

1. Report No.
HumRRO-PP-10-73

2. 3. Recipient's Accession No.

4. Title and Subtitle
COURSE MODULARIZATION APPLIED: THE INTERFACE SYSTEM AND ITS
IMPLICATIONS FOR SEQUENCE CONTROL AND DATA ANALYSIS

5. Report Date

November 1973
6.

7. Author(s)
E.W. Schneider

8. Petforrning_Organization Rept. No.
PP 10-73

9. Performing Organization Name and Address

Human Resources Research Organization (HumRRO)
300 North Washington Street
Alexandria, Virginia 22314

10, Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Address

National Science Foundation
1800 G Street, N.W.
Washington, D.C.

13. Type of Report & Period
Covered

Professional Paper

14.

15. Supplementary Notes
Presented at the meeting of the Association for the Development of Instructional
Systems (ADIS), April 1972

16. Abstracts

The Interface System is a comprehensive method for developing and managing CAI or CMI
courses composed of sets of instructional modules. Each module is defined by one
or more behavioral objectives, and by a list of prerequisite modules that must be
completed successfully before the specific module can be attempted. The System's
key components are (a) a standard general structure for all modules, (b) a
consistent method of labeling logic and text elements, and (c) computer programs
(presently written in Coursewriter with Assembly La:tguage functions) to regulate
ilter-module student traffic, and execute system-controlled, and student-
controlled instructional decisions.

17. Key Words and Document Analysis. 17a. Descriptors

Computer programs
Diagnostic routines
Instruction
Systems analysis

17b. Identifiers/Open-Ended Terms

Behavioral objectives
Computer-administered instruction
Course modularization
Instructional decision models

[17e. COSATI Field/Group

18. Availability Statement

Distribution of this paper is unlimited.

19. Security Class (This
ReP"t)UNCLASSIFIED

21. No. of Pages

18
20. Security Class (This

Page) UNCLASSIFIED
22. Price

FORM NTIS35 (10.70) USCOMM-DC 40325.P71

Prefatory Note

The work described in this paper was performed while
Dr. Schnider was a research scientist with HumRRO
Division No. 1 (System Operations), under Dr. Robert J.
Seidel as Project Director. The work was performed
primarily in connection with a Research Grant from The
National Science Foundation, but it also drew upon earlier
work performed for the Department of the Army under
Work Unit IMPACT.

COURSE MODULARIZATION APPLIED:
THE INTERFACE SYSTEM AND ITS IMPLICATIONS
FOR SEQUENCE CONTROL AND DATA ANALYSIS

E.W. Schneider

ANALYSIS OF THE INSTRUCTIONAL SITUATION

Systems analysis of the instructional situation', 2 usually starts from a representation
similar to the one shown in Figure 1. There are two black boxes, one labeled
"Instructor," the other labeled "Student," and two lines, one representing the flow of
communication from the instructor to the student, and the other representing the flow
from the student back to the instructor. The instructor-student path caries information
to be learned, questions to be answered, and so forth. The student-instructor link carries
questions for the instructor to answer and answers to the instructor's questions.

The Instructional Situation in Simplest Terms

Instructor
information to be

learned

Student

information about
what has been learned

Figure 1

Now suppose that we sketch in some of the contents of the Instructor box. One
essential element is represented by the amorphous blob in Figure 2. This represents the
body of knowledge to be learned. The structure of this body of knowledge can be
represented by a graph' where each node is a concept and each arc is an association. The

Robert J. Seidel, Judy G. Compton, Felix F. Kopstein, Richard D. Rosenblatt, and Sally See.
Project Impact: Description of Learning and Prescription for Instruction, HumRRO Professional Paper
22-69, June 1969.

2 Felix F. Kopstein and Robert J. Seidel. The Computer as Adaptive Instructional Decision Maker,
HumRRO Professional Paper 1-70, January, 1970.

3Edward Kingsley, Felix F. Kopstein, and Robert J. Seidel. Graph Theory as a Metalanguage of
Communicable Knowledge, HumR11.0 Professional Paper 29-69, September 1969.

number of nodes is finite and the number of arcs is generally much larger than the
number of nodes. The complete graph is essentially time-invariant; that is, the concepts
and their relationships remain constant throughout the instructional interaction. Now,
consider these properties of the body of knowledge in relation to the instructor's task,
which is to transfer the informational content of the body of knowledge to the student.
All the information in the body of knowledge exists in parallel, simultaneously, but the
instructor-student link is not ti-,e-invariant. It transfers information in a serial fashion.
This task of parallel to serial ;:onversion is represented by the box in Figure 2 labeled
Instructional Decision Maker. The term is deliberately vague as the content of this box is,
in effect, the terra incognita of scientific pedagogics. At one time, the box was labeled
simply Sequencer, but there is a falacious implication of automaticity in that term. The
actual sequence depends upon what the instructor knows about the student (represented
in Figure 2 by the Student Image box), and by the general rules for the instruction
situation (represented by the Instructional Rules box). By instructional rules I mean,
among other things, the protocol for the use of the communication link.

The Instructor Converts Parallel Information
to Serial Information

nstructor

Figure 2

To
Student

In a nutshell, the instructor-process consists of converting the parallel structure of
the body of knowledge into a serial flow of information based upon the structure of the
body of knowledge itself, what is known about the student, and the rules for the
instructional situation.

Figure 3 diagrams the student process. Here the body of knowledge is not time-
invariant. It is growing as the serial information from the instructor is stored in an
associative, parallel form. The student uses the instructional rules and his knowledge of
the already-constructed body of knowledge to decide whether a new piece of information
can be added, and, if so, how it should be added. If the student is unable to encode a
given piece of information, he can use the return path to the instructor to question him.
Similarly, the instructor can ask questions of the student to confirm that the student can,
in fact, correctly retrieve information from his newly constructed body of knowledge.

2

The Student Converts Serial Information
to Parallel Information

To
Instructor

Student

Figure 3

Surely, the reader can elaborate and refine the contents of both the instructor and
the student processes, but the above models are sufficiently detailed to demonstrate
(below) the effect of introducing a computer into this instructional situation.

INSERTING A COMPUTER INTO THE INSTRUCTIONAL SITUATION

Figare 4 shows our instructor conversing with a computer instead of a student. We
have already discussed the instructor's task, but what is the computer's task? The
computer has to extract from the instructor all the information that it will need to teach
a large number of students with different abilities and interests. To do this, the computer
needs to know a good deal more than what any one student would know. On the other
hand, the computer isn't another instructor, a peer of our human instructor, because the
computer knows nothing about the topic to be taught.

One alternative is to have the computer assume the collective role of a class of
students, systematically constructing and presenting possible student responses to the
human instructor, and then storing his rejoinders for use with future students. Another
approach is to have the computer play two distinct rolesthat of student and that of
editor. One machine with two roles may confuse authors, but it should take less time to
collect the needed information with this approach than with the first method.

In any case, the most immediate problem is not what role the computer should
play, as opposed to the instructor, but what the computer should do with the infor-
mation that it gleans from the instructor-computer interaction. Obviously, the infor-
mation has to be stored until a student needs it. But how? At the present state of the
art, in both instructional and computer technology, it is not feasible to store a veridical
representation of the instructor's body of knowledge into the computer. There are too
many relationships between concepts (too many arcs between nodes), and probably too
many concepts to be stored in a reasonable amount of the computer's memory. But it is
possible to store a greatly simplified version of the knowledge graph, if we develop
behavioral objectives for each concept or set of concepts and replace the associative arcs

3

The Computer as an Instructional Interface:
Instructor Link

Instructor Computer

Memory

Instructional
Decision
Model

Map

Modules

Figure 4

of the original graph with arcs representing only the precedence (or prerequisite) relation-
ship. These arcs are determined when the question: "What objectives must the student
meet before he can be expected to master this objective?" is answered.

These arcs can be stored in the computer as a set of bit masks and the nodes, the
behavioral objectives, can be the teaching objectives of an instructional module and tested
for mastery when the student completes the module. So, our computer memory in Figure
4 contains a map showing the prerequisite structure of a set of instructional modules and
the modules themselves, each with a quiz to test mastery of its behavioral objectives.

WHAT DOES AN INSTRUCTIONAL MODULE LOOK LIKE?

We have talked about the use of the prerequisite relationship to produce a module
structure. Now, let's look at the internal structure of a module (Figure 5). Each module
consists of a set of instructional sections called T/P Sections, and a set of testing sections
called Q Sections. The Telling subsection explains the basic concept or concepts, and the
Practice subsection allows the student to apply the concepts to tasks similar to those in
the Q Sections, receiving feedback and remediation, as necessary.

Why the alternate versions for the different sections? Alternate versions can serve a
number of different purposes. Having alternate versions of the same material, which
differ, for example, in reading level or reliance on graphical exposition, allows the system
to better match the course material to each student's abilities. Some versions can be
written for remedial use by students who fail the quiz on their first attempt. These
versions can be keyed to the specific types of error made in the Q Sections. Another use
for alternate versions is in writing the divergent experimental materials necessary for
research in computer-administered instruction.

Similarly, alternate forms of Q Sections provide for alternate test forms and
alternate scoring methods. When a student first enters a module, he is assigned one
version of the T/P Section and one version of the Q Section. When he completes those, a
new assignment is made and so on until he successfully completes the module.

4

Internal Structure of a Module

Module

T/P Sections

Telling I Practice

Alternate T/P

r--

Alternate TIP

0 Sections

Quiz

Alternate Q

I-)
Alternate Q

Figure 5

HOW TO LABEL INSTRUCTIONAL ELEMENTS

In order to keep track of these bits and pieces of instruction, there must be a
consistent labeling scheme to identify and access them. Figure 6 shows the Interface
labeling scheme. Each element of a course is assigned a 6- character Coursewriter4 label
structured in the following manner:

Coursewriter Labels as Access Keys
to a Structured Course

Module Page

uDivietentsion Version k El

T/P section: A C A 1 0 A I

0 section: EL D 2 02 Di
I. Every T/P section starts with element A of page 00.

II. Every Q section starts with element A of page 02.

Ill. The sequence of labels conforms to the standard EBCDIC
colleting sequence.

Figure 6

4Coursewriter as referred to in this paper is a modification of the standard IBM computer-
administered instruction program Coursewriter.

5

The first character is a letter representing the course division. A division is contained
within a Coursewriter course segment and represents a major part of the overall course
objectives. The next character position contains a letter referring to the module. Our
present system can support 24 modules in each division. As mentioned before, a module
teaches one or more c:osely related behavioral objective.;. The next character position
denotes the version within the module. T/P Section versions are denoted by alphabetic
characters, Q Section versions are denoted by numerical characters. The fourth and fifth
positions denote the page within the version and the sixth position denotes an element
on the page.

There are a few other necessary codicils to the labeling protocol. For example, every
T/P Section starts with element A of page 00. Similarly, every Q Section starts with
element A of page 02. These two conventions allow the Interface System to synthesize
the entry point to any division/module/version/section that may be required.

Another convention that greatly facilitates data analysis is that the sequence of
labels within the course follows the standard EBCDIC collating sequence.

STRUCTURE OF THE INTERFACE SYSTEM ITSELF

Now that we've seen how the Interface can access the instructional elements, we can
look at the relationship of the system to Coursewriter. Figure 7 shows the block diagram
of a multi-segment Coursewriter course using the Interface System. The first segment,
Segment 0, contains the Interface System and the next N segments contain the course
divisions. To implement this course, the Interface System is copied into Segment 0, and
then the course structure (i.e., the module map) is either copied into auxiliary storage
blocks, one block in each segment being reserved for the purpose, or else the course
administrator constructs the map by signing onto Segment 0 with a given student's
number, and interacting with a map building routine.

Structure of the Interface System

Segment 0 Segment A A Segment N 4

Source code Source code Source code

Interface Communications Communications
student monitor Module A Module A
Branch builder 0.41.- Module B my Module B
Menu builder Module C
Course structure

Aux. storage Auxiliary storage Auxiliary storage

Save area Module map Module map

Figure 7

6

When an actual student signs on to the course, he starts out in Segment A. If the
course has several "starting points," he is shown a menu and given a choice among them.
If there is only one starting point, he automatically branches to the first display of that
module. When the student completes his first module, the Coursewriter code branches
him to a communications routine that, in turn, branches him back Lo Segment 0. The
system then marks that module as completed in the module map. By comparing the
prerequisite masks for each new module with the student's completion mask, Interface is
then able to find all the modules that the student is now eligihle to take, and it builds a
menu showing the names of these modules and allows him to choose one. The System
then builds an appropriate label and branches him to that module. When he has
completed all the assigned modules in Segment A, he goes on to the next segment, and
so forth, each segment communicating back to Segment 0 at the end of each module, or
when the student invokes a student control option.

EN1 ER THE STUDENT

Let us now look at the corresponding computer-student link shown in Figure 8. The
computer is now interacting with the student, but it still has an identity problem in that
it knows more than the student, but less than the instructor. It knows less than the
instructor, not only because of its inability to process "natural" language, but also
because it has only the relatively crude representation of the body of knowledge that we
discussed before. Fortunately, this problem has a better solution than the one caused by
the instructor-computer link: the student can be encouraged to assume functions that are
normally the prerogative of the instructor and to view the computer as part instructor,
part access tool to the stored representation of the body of knowledge.

The Interface System: Student Link

Computer Student

Figure 8

7

Figure 9 shows the student control options and their relationship to the systems
control. The central blocks in the figure depict the sections of a module. If the student is
anywhere within the T/P Section, there is a 40-character block at the bottom of his CRT
display. (Our CAI system uses CRT terminals.) The first five positions of this block
contain the characters: INFO-. If the student types a word after the dash, followed by an
EOB (EOB = end-of-block character), a definition is retrieved from the on-line glossary
and displayed directly above this block.

Student Control Options

Figure 9

STUDENT CONTROL OPTIONS

Some words do not produce definitions. They have special meanings for sequence
control. For example, if he types the word: PRACTICE, the system will position him at
the beginning of the practice section. Similarly, if he types REVIEW, he will be
positioned at the beginning of the module; if he types QUIZ, he will be positioned at the
beginning of the quiz. If the student types RECAP, Interface constructs a menu listing all
the modules that he has completed in that division, and positions him at the beginning of
the T Section of the module he selects. If he has completed one or more divisions, the
System first asks him which division he wishes to recap, and then builds a men .1 for ju st
that division.

When a student is in a Q Section, all student-control options are turned off. Another
system feature that can be especially useful with the recap option is the ability to mark
certain modules as already completed when they are intiially registered as part of the
structure. This provides an easy method of advanced placement. Students who already
know some of the course material can have the corresponding modules marked as
completed, and yet have them available for review by using the recap option. Using the
same technique, division summary or overview modules can be written and registered as
completed. The student is not required to go through these modules, but they are
available when he uses the RECAP option.

8

If a student does not use the control options, but just keeps slogging almig, the
system will automatically take him from the end of the P Section to the beginning of the
Q Section, and from the end of the Q Section to the Instructional Decision Model (IDM)
in the Interface System. Generally, if the student's performance is satisfactory, Interface
will build a menu of the modules that are presently available, or if only one module is
available, it will just branch the student to that module automatically. If the student's
performance on the quiz is not satisfactory, the system can stack any desired modules,
including the one just completed, in the remediation stack. The remediation stack must
be emptied before students can go on to new material. So, we see that the student has
control over sequence within his present module and modules that he has already
completed, while the system has control over access to new material.

IMPROVED DATA ANALYSIS

Another major advantage of the structured modular course is the potential for more
compact, comprehensive, and systematic data analysis. In our system, we do not use the
regular Coursewriter recording options. Instead, we have written a function, function
RECORD, which writes the data indicated in Figure 10 each time that it is invoked. The
196 bytes of information tell us who, where, when, r.rid what happened. One such
recording is made for every student response processed by Coursewriter.

Our recordings have three special features: the recording time is recorded in tenths
of seconds to provide unambiguous time sequences; a two-byte occasion code is added to
the record to indicate the nature of the student's response (i.e., answer to question,
glossary request, comment, etc.); and the record labels are of the structured type
discussed earlier. We rely heavily upon the standard IBM SORT utility program, so it
should be evident why the structured record labels must follow the EBCDIC collating
sequence. Although they are a mixture of letters and numbers, the SORT utility puts
them in the correci, order as if they were entirely numeric.

Layout of Student Recordings

(Every student response produces a recording.)

record
label

student
no.

time in
seconds

date

counters

response student
latency response

I I I

I I II II
course
name

year basic
skills

occasion reco ding flags swi ches
code time

Figure 10

9

EXAMPLES OF DATA ANALYSIS OUTPUT

Here are a few examples of data analysis using these recordings. Figure 11 shows a
summary student response matrix. Each column represents a student, each row represents
a question that the student is expected to answer. A 0 in a cell indicates that the student
attempted the question and answered it correctly. A 1 indicates that the student
attempted the question and answered it incorrectly. A 9 means that the student sent a
blank line as his answer. If the cell is empty, it means the question was not attempted. In
our system, this is perfectly normal, because the students can skip to the quiz whenever
they wish. A column with a preponderance of 1s or 9s indicates a student in trouble. A
row with many is or 9s indicates the question in trouble. For example, the 4th column,
student 131, contains five 1s and one 9. The lower margin shows that his percent correct
for the T/P Section was 71% and his percentage for the Q Section was also 71%. The last
row of the matrix, question AC124A, contains seven ls, giving a percent correct of 36%
as indicated in the right-hand margin. This type of summary matrix gives a quick reading
of the module's performance, the student's performance, and their interaction.

Summary Student Response Matrix GroupDE05 Topic AC

S S S S S S S S S SS S% Correct
1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 3 3 3 3 3 3 3 3 3
8 9 0 1 2 3 4 5 6 7 8 9

ACA11A 0 0 1 0 0 0 0 0 0 0 0 90.9
ACA14A 0 0 0 0 0 0 0 0 0 0 0 100.0
ACA16A 0 9 0 0 0 0 0 0 0 0 0 90.9
ACA18A 0 0 0 0 0 0 0 0 0 9 0 90.9
ACA20A 0 0 0 0 0 0 0 0 0 0 0 100.0
ACA36A 1 9 0 25.0
ACA38A 0 1 1 25.0
ACA42A 0 0 0 100.0
ACA44A 0 1 0 66.7
ACA46A 0 0 0 100.0
ACA50A 0 0 0 100.0
ACA5013 1 0 0 66.7
ACA50C 1 0 0 66.7
ACA5OD 1 0 0 66.7
AC 108A 0 0 0 0 0 0 0 0 0 0 0 100.0
AC 112A 0 0 0 0 0 0 0 0 0 0 0 100.0
AC 114A 0 0 0 0 0 0 0 0 0 0 0 100.0
AC 116A 0 0 0 0 0 0 0 0 0 0 0 100.0
AC 1 18A 0 0 0 0 0 0 0 0 0 0 0 100.0
AC 120A 0 0 0 9 0 0 0 0 0 0 0 90.9
AC 124A 0 1 1 1 1 1 0 1 0 1 0 36.4

T-SECT. % Correct 100 80 80 71 100 79 100 71 0 93 80 100

Q-SECT. % Correct 100 86 86 71 86 86 100 86 0 100 86 100

Figure 11

Because our students can control their path thro
difficult and more important to keep track of where
there. Figure 12 shows another computer-produced
transition matrixes used to define stochastic processes.

10

ugh the course, it becomes more
they went and when they went
matrix, derived from the state-
Each column represents the Nth

label recorded for a student, and each row represents the (N+1) label. Each cell records the
number of times that the students went from the corresponding column label to the corre-
sponding row label. This particular matrix represents about half the T/P Section for one
fairly large module. If the internal structure of this T/P Section were completely linear (i.e.,
every student saw everything that every other student saw in exactly the same order), then
all the transitions would occur along the diagc;a1; one cell below the major diagonal of the
matrix. Entries above this diagonal represent the branch-back to earlier material, and entries
below the diagonal represent the branch-forward. Where students are branched to different
materials as a consequence of their performance, the transitions appear in a column below
this diagonal. For example, AEA16A is a question. Eighty attempts at this question were
made. (Eighty people were branched to this label.) Of these 80 attempts, 39 resulted in a
presentation of feedback AEA16B, 31 resulted in the message associated with the label
AEA16G, and 10 attempts saw label AEA16H. Each of these feedbacks deals with a specific
type of error. It is very simple in this case to see the relative prevalence of various types of
error. When a student uses the REVIEW option, that means he will be branched to label
AEA00A, so the corresponding row of the matrix indicates the use of this option and where
it occurred. In like manner, the QUIZ option will produce a branch to label AE102A, and
the corresponding row of the matrix indicates the use of this option. The data on this one
page represent the combined paths of 43 students through this piece of instruction.

Summary Intra-Modular Path Matrix

A
E
A
0
0
A

A
E
A
0
1

A

A
E
A
0
4
A

A
E
A
1

0
A

A
E
A
1

2
A

A
E
A
1

4
A

A
E
A
1

6
A

A
E
A
1

6
B

A
E
A
1

6
C

A
E
A
1

6
D

ADA00A 1 0 0 0 0 0 0 0 0 0
AEA00A 9 0 1 0 1 0 0 1 0 0
AEA01A 4 1 0 0 0 0 0 0 0 0
AEA04A 1 0 0 0 0 0 0 0
AEA10A 0 ,0 4I4 0 0 0 0 0 0 0
AEA12A 0 0 8# 1 0 0 0 0 0
AEA14A 0 0 0' 8t;: 1 0 0 0 0
AEA16A 0 0 0 0 .4 80 0 0 0
AEA16B 0 0 0 0 3%. 0 0
AEA16C 0 0 0 0 0 0 0 0
AEA16D 0 0 0 0 0 0 0 .0
AEA16G 0 0 0 0 0 0
AEA16H 0 0 0 0 0 0 0
AEA18A 0 0 0 0 0 0 0 0 0 38--,
AEA18G 0 0 0 0 0 0 0 0 0 0
AEA18H 0 0 0 0 0 0 0 0 0 0
AEA19A 0 0 0 0 0 0 0 0 0 0
AEA19B 0 0 0 0 0 0 0 0 0 0
AEA20A 0 0 0 0 0 0 0 0 0 0
AEA22A 0 0 0 0 0 0 0 0 0 0
AEA24A. 1 0 4 0 0 0 0 0 0 0
AEA26A 0 0 0 0 0 0 0 0 0 0
AEA26G 0 0 0 0 0 0 0 0 0 0
AEA26H 0 0 0 0 0 0 0 0 0 0
AEA28A 0 0 0 0 0 0 0 0 0 ,0
AEA28G 0 0 0 0 0 0 0 0 0 0
AEA28H 0 0 0 0 0 0 0 0 0 0
AEA30A 0 0 0 0 0 0 0 0 0 0
AEA3OG 0 0 0 0 0 0 0 0 0 0
AEA3OH 0 0 0 0 0 0 0 0 0 0
AEA32A 0 0 0 0 0 0 0 0 0 0
AE102A 12 3 2 0 2 1 0 0 0 0
BGA00A 0 0 0 C 0 0 0 0 0 0

Figure 12

11

A
E
A
1

6
G

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0

The above examples were developed to answer research questions about the instruc-
tion. There are operational questions that are just as important, such as: "How many
students showed up?" or "Was student 146 absent again?" or "Which one is the slowest
student?" These kinds of questions are answered by our course management system (CMS).
It produces daily status repc.rts as well as module reports and class reports.

USING THE INTERFACE .$,YSTEM

Suppose that E course of instruction is being "systems-engineered" using the pro-
cedures described in CONARC Regulation 350-100-1, Systems Engineering of Training.'
Further assume that the first three steps, through the training analysis, have been com-
pleted. Referring to Section IV, "Course Structure" of the training analysis, we can
"package" each of the training objectives as an Interface instructional module. Each cluster
of training objectives can be treated as an Interface division, which can contain up to 24
modules in the present implementation.

The training objectives can then be sequenced to produce the usual hierarachical
structure. In a paper-and-pencil course, the hierarchy would have to be further reduced to
a linear sequence. With the Interface System, the hierarchy can be preserved, allowing the
instructor or the student the prerogative of selecting an individual path through the
cluster.

For example, suppose a cluster in our course has the structure shown in Figure 13.
If each module has one T Section and one Q Section version, the commands that the
course registrar will use to build this structure in the computer are:

ADD A/A1//
ADD B/A1//
ADD C/A1//
ADD D/A1//
ADD E/Al/A/
ADD F/Al/ABC/
ADD G/A1/DEF/

The first field after the verb ADD is the module designator. The next field specifies
the order of T Section and Q Section versions. Because there is only one version of each
for each module in the example, all the T Sections are designated version A and all Q
sections are version 1. The third field lists prerequisite modules. Modules A through D
have no prerequisites, so the field is blank.

A more elaborate example is shown in Appendix A of this paper. It shqws the
structure and the registration from HumRRO's COBOL2 CAI course.

In the existing implementation, Interface supports only a linear sequence of clusters,
because the initial application did not require anything more refined. A nominal amount
of additional development could extend the method of hierarchically sequencing modules
to hierarchical sequencing of divisions (clusters).

Section V of CONARC Regulation 350-100-1 discusses the identification of evalua-
tion points in the course sequence. Interface provides for an evaluation point (Q Section)
at the end of every module. If some of these quizzes are not needed, a trivial Q Section
consisting of just a string of labels in the course logic can be used.

When the training analysis is complete, the next major step in the systems engi-
neering of our course is the preparation for training (Appendix D, CONARC Regulation

'Systems Engineering of Training (Course Design). Headquarters, U.S. Continental Army
Command, Fort Monroe, Va., Regulation 350-100-1, February 1968.

12

A Cluster of Training Objectives

Each objective is an Interface Module.

Figure 13

350-100-1). The availability of a computer adds a dimension to the choice of methods of
instruction. Any given module could be any mixture of the following:

A lecture or a demonstration, followed by a computer-administered and
scored test. (Use a trivial T Section on-line.)
A programmed-instruction booklet with an integral quiz, scored by the
instructor. (In this case, the instructor inputs the student's score and the
computer draws the appropriate conclusion.)

A tutorial CAI lesson with an off-line GONO GO practical exercise as the
quiz. (Here, the on-line Q Section is a loop with a code word, typed in by
the instructor, that will branch the student forward. The code word is typed
when the exercise is completed to the instructor's satisfication.)

A training pamphlet, followed by an on-line quiz. If the student fails the
quiz, he takes a CAI lesson to pick up what he missed the first time. Then
he takes the quiz again.

A large number of similar permutations and variations exist. The basic point is that the
Interface System does not require all the instructional material on-line to manage
individualized instruction. When developing a new course, all the instruction might be
off-line initially, essentially using the Interface System to support computer-managed
instruction (CMI). As student needs and development resources dictate, on-line instruc-
tion can be developed and used module by module.

The fifth step of the system-engineering process is testing. The computer offers two
significant advantages: immediately available scoring and feedback from the test, and
sequential, diagnostic testing. The use of sequential test methods in CAI has been
demonstrated by Ferguson' . The idea is to ask just enough questions to decide whether
the student knows the material or not, and no more. The diagnostic testing commences

6R.L. Ferguson. Computer Assistance for Individualizing Measurement, Technical Report, Learning
Research and Development Center, University of Pittsburgh, March 1971.

13

when a negative decision is reached, and continues until what he doesn't know and why
he doesn't know it have been satisfactorily explicated. This type of testing may sound
like a lot of trouble, but it is worthwhile to the bright student who isn't slowed down by
unnecessary testing, and worthwhile to the unsuccessful student whose attention can be
focused on specific weaknesses.

The sixth step in systems engineering, quality control, is a tailor-made computer
application. The data matrixes discussed above demonstrate some of the possibilities in
this area. Especially appealing is the possibility of a Course Management Information
System (CMIS) that produces summary and exception reports upon completion of each
instructional module. .

In summary, the Interface System is a package of software routines and course-
element labeling methods that provides computer support for the development and
operation of modularized courses of instruction. The actual instructional material may be
presented by the computer (on-line instructionCAI) or may use traditional media
(off-line instructionCMI). In either case (or for any mixture), the Interface System
provides:

(1) Individualized, self-paced instruction (where individual learning materials
are provided).

(2) Records of student performance and speed, stored in the computer, and
ready to analyze. These data can be used to evaluate student learning
capabilities, instructional module teaching abilities, and the utility of
various instructional strategies.

(3) Compatibility with Systems Engineering of Training regulations.
(4) Student control of path through the course, to the extent desired by the

instructor.
(5) Flexibility in improving or expanding a course without inconveniencing the

existing group of students.
(6) Generality in that the system makes no assumptions about the instructional

content of the course.

74

Appendix A

STRUCTURE AND REGISTRATION NOTATION
FOR HumRRO COBOL2 CAI COURSE

Cobol Course

Division A Division B
rMN OM MID 1MMI MD OW .4 r. OM =0 =PO M.

I :

Modules j
I

__ Division D
I f"

t.

1
1

1

1

1

1

1

I

r-- dm.. NM 1

L JL MO ,1=11, MAD AMIIM -. .J L ... -. ..., - - J

Division C

Figure A-1

15

DIVISION -I- STRUCTURE FOR STUDENT 999

A/A1//
B/Al/A/
C/Al/B/
D/Al/C/
G/Al/F/
H/Al/G/
I/Al/H/
J/Al/I/
K /A1 /J/
L /A1 /K/
M /A1 /L/
F/Al/D/
P/Al/M/

DIVISION -A- STRUCTURE FOR STUDENT 999

B/B2B2XX/A/
C/A1A1XX/B/
D/A1A1XX/C/
E/A1A1XX/D/
H/A1A1XX/E/
G/A1A1XX/E/
F/A1A1XX/E/
I/A1A1XX/FGH/
J/A1A1XX/I/
K/A1A1XX/J/
L/A1A1XX/K/
M/A1//
A/A1B1/M/

DIVISION -B- STRUCTURE FOR STUDENT 999

C/A1A1XX//
B/A1A1XX//
A/A1A1XX//
D/A1A1XX/C/
E/A1A1XX/BD/
F/A1A1XX/D/
G/A1A1XX/E/
H/A1A1XX/AFG/
I/A1A1XX/H/

ENTER REGISTRAR COMMAND-DIVISION B

DIVISION STRUCTURE FOR STUDENT 999

A/A1A1XX//
C/A1A1XX/A/
B/A1A1XX/A/
DIA1A1XX/BC/
E/A1A1XX/P/
F/A1A1XX/E/

16

ENTER REGISTRAR COMMAND-DIVISION C

DIVISION -0- STRUCTURE FOR STUDENT 999

B/A1A1XX//
A/A1A.1XX//
C/A1A1XX/AB/
D/A1A1XX/B/
E/A1A1XX/CD/
F/A1A1XX/E/
C/A1A1XX/F/

17

