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Abstract

We study the problem of sketch image recognition. This prob-
lem is plagued with two major challenges: 1) sketch images
are often scarce in contrast to the abundance of natural im-
ages, rendering the training task difficult, and 2) the signifi-
cant domain gap between sketch image and its natural image
counterpart makes the task of bridging the two domains chal-
lenging. In order to overcome these challenges, in this paper
we propose to transfer the knowledge of a network learned
from natural images to a sketch network - a new deep net
architecture which we term as cousin network. This network
guides a sketch-recognition network to extract more relevant
features that are close to those of natural images, via adver-
sarial training. Moreover, to enhance the transfer ability of the
classification model, a sketch-to-image attribute warehouse
is constructed to approximate the transformation between the
sketch domain and the real image domain. Extensive experi-
ments conducted on the TU-Berlin dataset show that the pro-
posed model is able to efficiently distill knowledge from natu-
ral images and achieves superior performance than the current
state of the art.

Introduction

Automatic hand-drawn sketch recognition is an important
task in computer vision, and has found many real-world ap-
plications. For example, sketch can be used as a convenient
user query input for content based image retrieval. This be-
comes a popular user interface thanks to the wide use of dig-
ital pen. However, sketch recognition remains a very chal-
lenging problem, due to multi-fold reasons: (1) Sketches of-
ten exhibit high abstraction and intra-class variance. Differ-
ent person may draw the same object very differently. (2)
The amount of available sketch data is very scarce, and can
be expensive to obtain. Therefore it is unable to meet the re-
quirement of training data needed by most deep neural net-
works.

In this paper, we notice that the amount of available nat-
ural images is enormous and keeps growing. We intend to
bridge the domain of natural images with that of sketches
by the idea of transfer learning, to boost the performance of
sketch recognition. However, as show in Fig. 1, compared
with natural images, sketches are typically absent of many
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Figure 1: The relationship between natural images and
sketches. Compared with natural images, sketches are absent
of many visual attributes. These different attributes increase
the differences of features captured from two kinds of im-
ages, thus it is difficult for models trained from natural im-
ages to recognize sketch images. Meanwhile, it is also diffi-
cult for sketch recognition model to learn under the guidance
of model pre-trained on natural image datasets. To address
this issue, we propose a Latent Sketch-to-Image Warehouse
Network, which can learn the domain gap between two kinds
of images.

visual attributes like color, textures etc, which makes the do-
main transfer task difficult. To address this issue, we pro-
pose to exploit models trained solely on natural images (Im-
ageNet) to guide the model aimed for sketch classification.
This is achieved by using Adversarial Learning. In order to
cope with the loss of discriminative power due to the ab-
sence of visual attributes in sketch images, we develop a
new mechanism called the “attribute warehouse”. Specifi-
cally, we adopt a neural network of ResNet structure as our
basis, which learns feature representation for classification
in different levels from the ImageNet dataset. With the nat-
ural images from the TU-Berlin-extend (Zhang et al. 2016)
and TU-Berlin (Eitz, Hays, and Alexa 2012) datasets, this
pre-trained network is fine-tuned to adapt to the categories
of sketches, i.e., from 1000 classes of natural images to 250
classes of sketch images. This fine-tuned network is termed
as a cousin network to guide the target network of sketch
classification to learn the latent representation commonly
shared by both real images and sketch images. The target
network is then initialized as the cousin network. A two-
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stream structure is derived for training the target network
specifically for sketch classification. As shown in Fig. 2, the
parallel cousin network and the target network are provided
with natural images and sketch images, respectively. Fixing
the cousin network, the target network is updated with three
terms of losses. Firstly, we enforce that the high-level fea-
tures from these two streams are close in the latent feature
space. This loss guides the target network to learn from the
cousin network directly. Secondly, the features from these
two streams are discriminated by a discriminator network in
an adversarial manner. Different from the discriminator in a
traditional generative adversarial network which takes sam-
ples in the visual space as input, we conduct discrimination
between the abstract features from higher levels. By doing
so, the target network is taught implicitly. Both these terms
are helpful to inherit knowledge from the network trained on
natural images. Thirdly, a cross-entropy loss is minimized
for the sketch classification task.

To bridge the domain gap between sketches and real im-
ages, we learn a module of transformation from sketch to
image to compensate the lost distinctive cues leading to a
performance degradation. This module learns a latent at-
tribute warehouse from sketch to real image, which trans-
forms sketch to real image crossing a latent space. With the
latent attributes, the target network learns more discrimina-
tive features which make the sketches to be conceptually
closer to real images, further improving the performance
of sketch classification. Note that this latent attribute ware-
house is learned in low levels. After that, a fine-tuning step
considering the recognition task is carried out. During infer-
ence, the target network is chained with the latent attribute
warehouse. An input sketch image is forwarded through the
learned transformation module in the low levels in the net-
work, approaching the samples located in the latent space
shared by sketch and real images. A classification layer out-
puts the prediction of class labels.

We have conducted extensive experiments on the public
dataset of TU-Berlin. Both ablation study and comparison
with other state-of-the-art methods verify the effectiveness
of the guidance from cousin network and the power from
the latent attribute warehouse.

Related Work
Sketch recognition/retrieval (Eitz et al. 2011) has been stud-
ied for years. Roughly, existing approaches can be classified
by whether it employs deep learning or not. Classical (non-
deep-learning) sketch recognition methods often use hand-
crafted features. For example, local features along with the
bag-of-words model (Sivic and Zisserman 2003) are used
to represent sketch images and both SVM and the nearest-
neighbor classification are applied (Eitz, Hays, and Alexa
2012). SVM is a popular choice of classifier (Li, Song,
and Gong 2013). Schneider et al. (Schneider and Tuytelaars
2014) use Fisher vector to encode sketch images for recog-
nition. Li et al. (Li et al. 2015) use multi-kernel learning to
learn useful feature representation from various local fea-
tures. To alleviate annotation cost in sketch recognition, ac-
tive learning is introduced in (Yanık and Sezgin 2015). Cao
et al. (Cao et al. 2013) propose a novel descriptor named

Symmetric-aware Flip Invariant Sketch Histogram (SYM-
FISH) to describe sketches inspired by the shape context.

Recent years have witnessed the success of deep learn-
ing in various tasks of computer vision, such as object de-
tection (Ren et al. 2015), image recognition (Krizhevsky,
Sutskever, and Hinton 2012; Szegedy et al. 2015; He et
al. 2016), object tracking (Luo et al. 2018), facial recogni-
tion (Sun, Wang, and Tang 2013; Zhang et al. 2015; 2017)
and multimedia analysis (Simonyan and Zisserman 2014;
Ledig et al. 2017; Xiong et al. 2018; Zhang et al. 2019).
For sketch recognition, a variant of Siamese CNN is pro-
posed in (Wang, Kang, and Li 2015) to match sketch and
photo without special process of sketch images. Different
network structures are designed according to statistics from
sketch images rather than natural images in (Yu et al. 2015;
2017). With two novel techniques of data augmentation, per-
formance is improved. Yu et al. (Yu et al. 2016) address the
task of image retrieval given a sketch image. They propose
a model of triplet ranking along with data augmentation.
Specific problem of forensic sketch recognition is dealt in
(Ouyang et al. 2016). To handle the sketch-photo modality
gap due to the forgetting process, a model is trained to re-
verse the forgetting process and it is proved to recover fa-
cial details. Inspired by the idea of Hashing in natural im-
age retrieval, deep sketch hashing is proposed in (Liu et al.
2017) to encode sketch images with a semi-heterogeneous
deep architecture. It handles the gap between natural image
and sketch image well. For 3D cases, Xie et al. (Xie et al.
2017) and Dai et al. (Dai et al. 2017) propose deep mod-
els to address sketch-based 3D shape retrieval. In this pa-
per, we build a latent attribute warehouse for this purpose.
A similar idea of employing natural image for sketch recog-
nition is proposed in (Zhang et al. 2016). Specifically, this
method divides sketch classification into three steps. Firstly,
a CNN is trained to output top-5 predictions given a sketch
image. Then natural images corresponding to the returned
top sketches are paired with the given sketch and input to
a fine network trained with positive and negative pairs of
sketch and natural images. Finally, the predictions from a
fine network are fused to give final results based on metric
SVM. Though this method achieves the state-of-the-art re-
sults, it has two problems: 1) multiple networks are used to
make final decision, which poses a large amount of compu-
tation cost, 2) its performance heavily depends on the top-5
predictions in the first step. In order to alleviate their prob-
lems, we build a cousin network guided learning method,
which uses an end-to-end model in the testing stage and ob-
tains better performance.

Cousin Network Guided Feature Learning
In this section, we firstly introduce feature learning by trans-
ferring knowledge from natural images. Then, a two-stream
architecture of the sketch recognition network will be devel-
oped.

Guided Feature Learning

To train deep networks, it is often necessary to have a large
amount of training data. Unfortunately, for the task of free-
hand sketch recognition there is not sufficient training data
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Figure 2: The proposed Cousin Network Guided Sketch Classification Network (CNG-SCN). Our model consists of a cousin
network (top), a target network (bottom), a discriminator, a classifier, and a warehouse module. The cousin network is pre-
trained on the ImageNet dataset and has a strong power of learning features of natural images. We fine-tune it and fix it in
advance. The target network, the discriminator, and the classifier are trained jointly in our CNG-SCN architecture. The features
of natural and sketch images extracted from the two networks are fed into the discriminator, while the classifier only takes as
input the features from the target network. All modules except warehouse network are introduced in Section: Cousin Network
Guided Feature Learning. The latent attribute warehouse is learned via the nonlinear relationship between sketch and real
images, which is discussed in Section: Latent Sketch-to-Image Warehouse.

available. In contrast, natural/real images are relatively easy
to obtain (such as ImageNet). It is natural to transfer knowl-
edge learned from the natural image domain to the target
domain, i.e., sketches.

Deep convolutional neural networks are strong at extract-
ing multi-scale feature representation from low-level edges
to high-level abstractions. The learned feature representation
is effective for the task of classification. High-level abstrac-
tions like shapes are similar in both domains despite of the
absence of color and texture. Thus, to take the advantage of
the well learned features, we employ a model trained with
sufficient natural images to guide the training of the target
network for sketch recognition.

Specifically, in our method, a neural network of ResNet-
18 structure (He et al. 2016) trained on the dataset of Im-
ageNet is adopted. As this model is originally trained on
the 1000 classes of objects and the class number for sketch
recognition is 250, this model is fine-tuned for the adap-
tion of sketch recognition. The additional data in the dataset
of TU-Berlin-extend is suitable for the adaption. Compared
with the dataset of TU-Berlin, each class of sketch is ex-
tended with real images of the same category from the Im-
ageNet dataset. We replace the classification layer of 1000
classes with a new 250-class layer and use the additional
real images of the same categories to fine tune the original
ResNet-18 network. This fine-tuned network is termed as a
Cousin Network to guide the following training of the target
network.

With the availability of the cousin network, a two-stream
architecture is composed of the cousin network and the tar-
get network as shown in Fig. 2. Natural images and sketch
images are input to the cousin network and the target net-
work individually and features are extracted. To accomplish

the guidance, we enforce these two instances of feature to
be close in terms of not only a predefined distance met-
ric in feature space but also a learned metric by adversarial
learning. The former predefined distance metric is accom-
plished as a layer of MSE loss. The latter metric is learned
as adversarial learning by discriminating feature instances
from real images and sketch images. Adversarial learning
has been popular since the seminal work GAN by (Goodfel-
low et al. 2014). The discriminator in conventional GAN is
trained to distinguish samples in visual space. On the con-
trary, in this work we train a discriminator to tell feature
instances of sketch images from those of natural images, un-
til it is fooled. The insight behind is, discrimination between
sketch image and real image is easy in the visual space, thus
training a discriminator by doing so is not helpful in sketch
classification. While the discrimination between high-level
abstract features from sketch image and real image is dif-
ficult, so training such a discriminator towards fooling it is
beneficial in teaching the target network to learn powerful
feature representation.

Network Architecture

The network architecture is shown in Fig. 2. In general, it is
a two-stream structure, one stream (cousin network) for real
images while the other one (target network) for sketch im-
ages. As mentioned above, the cousin network is a finetuned
ResNet-18 structure. The target network is initialized as the
cousin network trained in the two-stream structure with the
cousin network being fixed. There are three output branches
of this two-stream structure. 1) The first branch takes feature
instances from the two streams and computes the distance
between them. The cousin network guides the target net-
work to learn similar features in the high dimension feature
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Figure 3: The illustration of learning the latent Sketch-to-Image warehouse. The feature extractors are components of CGN-
SCN. The warehouse networks are stacks of convolutional layers and all of them do not change the size of input. In the first step,
we train the warehouse network based on the feature maps of sketches and natural images. Then we integrate the warehouse
network into the CNG-SCN to improve the performance in the second step.

space. 2) The second branch is a discriminator which tries
to distinguish feature of the cousin network from that of the
target network. This discriminator consists of several con-
volutional layers, fully-connected layers and a binary classi-
fication layer. 3) The third one carries out the classification
task taking the feature from the target network as input. It
is composed of a few fully-connected layers and a soft-max
layer for multi-class classification.
Loss Function. The loss corresponding to the first branch is
the MSE between features from sketch and real image. It is
formulated as,

Ldis =
∥

∥

∥
T (z)− T̃ (x)

∥

∥

∥

2

2
, (1)

where z and x are real image and sketch image, T and T̃ are
the feature extraction of the cousin network and the target
network respectively.

The loss term of the discriminator D is,

Ladv = min
T̃

max
D

E

[

logD
(

T̃ (x)
)]

+ E [log (1−D (T (z)))] .

(2)

The loss term of the classification branch is the cross en-
tropy as follows,

Lcla =
∑

P (x) logQ (x) , (3)

where P (·) and Q (·) are prediction and ground truth re-
spectively.

The overall loss is a weighted summation of the above
loss terms with weights α and β,

L = Ldis + α · Ladv + β · Lcla . (4)

Learning and Optimization. The three branches along with
the target network are tuned jointly with the loss function
above. We use the stochastic gradient descent method for
optimization.

Latent Sketch-to-Image Warehouse

Knowledge Transfer

The lost attributes like color and textures lead to ambigu-
ity in recognizing sketch images compared with natural im-
age recognition. Though we have guided the target network
to learn similar high-level features while the domain gap is
still the obstacle in transferring as there lacks straightfor-
ward connection between these two domains. We here pro-
pose to learn the connection between sketch and image as
a transformation. The argument is that, direct learning the
transformation can compensate the lost attributes, termed
as latent attribute warehouse, which are discriminative for
sketch recognition.

To learn such a transformative attribute warehouse, we
link the target network to the cousin network with module
networks in low layers. Our warehouse does not include high
level features, because they are too semantic (Hariharan et
al. 2015). The module network in each level is of the similar
structure. The warehouse path is expected to learn the latent
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attributes. Along with the short-cut path for identical trans-
fer, the sketch domain S is transformed to the real-image
domain I.

The goal of the warehouse is to discover the latent differ-
ence between I and S and learn the transformation from S to
I. The transformation process can be described as

z = Φ(x;w) , (5)

where x and z are the instances from S and I, respectively,
w is the latent sketch-to-image warehouse, Φ is the approxi-
mation function that controls the transfer from S to I.

Due to the high diversity of attributes between S and I, it
is difficult for Φ to conduct the transfer directly. In order to
learn the warehouse, we try to learn the latent warehouse via
a deep structure, and therefore Φ can be represented as

Ψ(z) = Φ̂ (Ψ(x);w) , (6)

where Φ̂ denotes the learning process via deep module. If
Ψ(z) and Ψ(x) learn sufficiently semantic knowledge, then
the transfer can be represented as linear shifting in the latent
space (Li et al. 2017), and thus the above equation can be
reformulated as

Ψ(z) = Ψ (x) + ∆w , (7)

where ∆w denotes the sketch-to-image warehouse in latent
space.

Learning Warehouse

The overall procedure in Fig. 3 to learn the latent warehouse
includes two steps. In the first step, we extract features of
sketches and photo images and use a CNN network to learn
the lost information of sketches relatively to photos. In the
second step, we add the lost information contained in the
warehouse into the extractor of the network in the previous
section to derive a new feature extractor.

As shown in Fig. 3, feature maps of sketch are passed
to the short-cut path and the warehouse path individually.
Output feature maps are concatenated and forwarded to the
following convolutional layers for the purpose of deriving
the same number of feature maps comparable with those in
the cousin network.

The process of learning warehouse ∆w focuses on at-
tribute factors such as color and appearance. A straight
method is to learn the average difference between S and I,
which is represented as

∆w =
1

m

m
∑

i=1

Ψ(zi)−
1

n

n
∑

j=1

Ψ(xj) (8)

where m and n are the numbers of input samples from I and
S, respectively. We can use this equation to learn the ware-
house if, 1) there are sufficient training samples to alleviate
the issue of intra-class variation, or 2) samples from S and I
are of similar attributes (ignorable intra-class variation) even
the data is not sufficient. However, the training samples are
hardly sufficient and we cannot make sure samples from S
and I have similar attributes even they come from an identi-
cal class.

Generating Training Sets. In order to satisfy the second
assumption above, we search K-nearest neighbors of each
training sample to construct the training set. Specially, for an
input sketch x, the latent attribute warehouse ∆w is learned
as

∆w (x) =
1

K

∑

zi∈NK
I

(x)

Ψ(zi)−
1

K

∑

xj∈NK
S

(x)

Ψ(xj) (9)

where NK
I (x) and NK

S (x) denote the K-nearest neighbors
in I and S, respectively. To search the K-nearest neighbors,
instances are forwarded in a pre-trained ResNet which is
trained on both photos and sketch images.

Note that, transformation networks in different levels are
tuned individually. After they are tuned, we disconnect the
link from the transformation network to the cousin network,
and redirect it to the subsequent layers following the current
layer in the target network. This network is finetuned regard-
ing the sole task of sketch classification. This finetune step
will enhance the connections across layers on different lev-
els of depth and the result network is used as the classifier
for evaluation.
Network Design. In order to learn the latent attribute ware-
house, we stack three groups of CNN network to capture the
non-linearity transfer. Each group stacks Conv-BN-ReLU-
Conv-BN-ReLU-Conv layers. In addition, a residual layer is
adopted between the input and output of each group.

Experiments

Datasets & Evaluation Metrics

TU-Berlin Dataset. This dataset is proposed in (Eitz, Hays,
and Alexa 2012) for sketch recognition, which contains 250
classes of objects. Each class has 80 sketches.
TU-Berlin-extend Dataset. The TU-Berlin dataset is ex-
tended by adding real images (Zhang et al. 2016). Images
from ImageNet of the corresponding classes are employed
as extension. There are 764 natural images extended for each
category on average, and 191,067 natural images for all cat-
egories.
Evaluation Metrics. Following (Eitz, Hays, and Alexa
2012), we set up 8 kinds of training-testing protocols. For
each protocol, a number of t sketch instances in each cate-
gory is used for training and the rest sketches in the category
are used for testing. Values of t are 16, 24, 32, 40, 48, 56, 64
and 72 for these protocols. We use mean Average Precision
(mAP) throughout our experiments.

Implementation Details

In the training stage, the input sketch and images are both
resized to 256× 256. We crop 224× 224× 3 patches from
the resized images and flip them horizontally at random. All
weights are initialized as a Gaussian distribution (mean=0
and standard deviation = 0.02). Momentum is set at 0.9. α
and β are set to 0.3. The whole training procedure is as fol-
lows. Firstly, The CNG-SCN model is trained without ware-
house module. Then we fix the above pre-trained model and
train the warehouse individually. After that, the CNG-SCN
model is combined with warehouse module and fine-turned
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Figure 4: (a) and (b) show the two-dimensional sketch features extracted from eight categories, which are outputs of the
last convolutional layers of the CNG-SCN and the ResNet model, respectively. It is not difficult to observe that, samples
are separated more clearly by CNG-SCN than the plain ResNet model. (c) is the visualization of filters in the first layer of the
proposed CNG-SCN.

to obtain a new model. We combine the two kinds of CNG-
SCN models to make final prediction.

The Effectiveness of Cousin Network Guided
Learning

The CNG-SCN has the advantage of learning better sketch
feature representation aided by the cousin network than di-
rect training a single CNN. To demonstrate the effectiveness
of this model, we conduct experiments with the last proto-
col, i.e., 72 training samples in each class. Table 2 shows
the accuracies of different models. Our CNG-SCN model
improves the ResNet by varying degrees in terms of differ-
ent rank-n accuracies, thanks to the guided feature learning
from the cousin network. It proves that the improvement is
due to our contribution of distilling knowledge from natural
images, rather than the capacity of ResNet. It is worthy to
note that, the model of ResNet (mixed) means utilizing the
mixture data of both sketch images and real images, and its
performance is even worse than the model ResNet trained
with sole sketch images. It suggests that, naive using natural
images with sketch images cannot guarantee a more power-
ful model.

We also carry out an ablation study to investigate how ef-
fective of features learned in the ResNet and the CGN-SCN.
Fig. 4(a) and 4(b) show the features learned with CNG-SCN
and baseline ResNet. Features of eight classes are extracted
by the last convolutional layer. We conduct PCA to reduce
the dimension to 2 and plot them in the figures. These figures
suggest that, clusters corresponding to the baseline ResNet
overlap with each other significantly, making it difficult to
distinguish different sketch images. While feature samples
are better separated by the CNG-SCN. To show what the
CNG-SCN has learned, we visualize the filters in the low-
level layer, shown in Fig. 4(c). Evident edge and color pat-
terns can be observed in this figure.

The Effectiveness of Sketch-to-Image Warehouse

To verify the effectiveness of the learned attribute ware-
house, we further conduct comparison between CGN-SCN
and CGN-SCN plus the attribute warehouse. Table 2 shows
the advantage of latent warehouse for sketch classification.
Our CNG-SCN model plus warehouse can further improve
the ResNet across different rank-k accuracy metrics, show-
ing its additional benefit due to that the gap between natural
image domain and sketch domain is bridged by the learned
attribute warehouse.

We are also curious about what the warehouse has
learned, thus we analyze the feature maps resulted from the
network input. The final 512-dimensional feature maps of
the proposed warehouse-based model and non-warehouse
model are visualized and shown in Fig. 5, respectively. In
order to alleviate the effect of absolute values like Fig. 4, fea-
tures are normalized to a range of 0∼1.0. We calculate dif-
ference of pairs and light correspond locations if their values
are larger than a fixed threshold value. Thus the more simi-
lar features of sketch images correspond to fewer light posi-
tions. These figures show features of identical class captured
by model with warehouse network have more common ac-
tivated neurons than the features captured by model without
warehouse network. This is because our model with ware-
house network concatenates the features with latent attribute
information, which is beneficial in learning features implied
in sketch images and thus improves the performance.

Comparison with State-of-The-Art Methods

We compare the proposed method with the state-of-the-art
methods in Table 1. The results of other methods are re-
ported by (Zhang et al. 2016) . (Eitz, Hays, and Alexa
2012) and (Schneider and Tuytelaars 2014) are two typical
methods based on hand-crafted features. Popular deep con-
volutional neural networks like NIN (Lin, Chen, and Yan
2013), AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
VGGNet (Simonyan and Zisserman 2015), GoogLeNet
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Table 1: The rank-1 accuracies [%] of different models on the TU-Berlin sketch dataset. The best results are shown in bold,
which also applies in the following tables.

Model 16 24 32 40 48 56 64 72

Eitz et al. (Eitz, Hays, and Alexa 2012) 41 44 46 50 51 54 55 55
FisherVector (Girshick 2015) 52 56 59 62 65 66 67 68

NIN (Lin, Chen, and Yan 2013) 61.90 65.50 68.05 70.61 71.50 72.02 73.82 74.40
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) 62.4 67.6 68.12 69.86 71.65 72.62 74.02 75.02

VGGNet (Simonyan and Zisserman 2015) 60.65 63.05 65.54 67.34 69.54 73.83 75.17 76.53
GoogLeNet (Szegedy et al. 2015) 59.61 62.45 67.48 69.19 70.50 71.50 72.40 75.25

ResNet (He et al. 2016) 57.84 62.51 66.62 69.82 71.65 72.65 74.83 74.46
SketchNet (Zhang et al. 2016) 64.37 66.20 71.19 69.57 73.62 73.43 76.50 77.41

CNG-SCN 64.88 68.67 72.12 73.89 75.27 76.32 77.01 78.71
CNG-SCN (warehouse) 66.43 69.77 73.54 74.60 76.36 76.79 78.36 80.10

Warehouse (W)

Warehouse (O)

Warehouse (W)

Warehouse (O)

Input

Differences

Input

Differences

Figure 5: The differences of the captured 512-dimensional
sketch features between pairs of sketch images. The left im-
ages show test pairs from TU-Berlin dataset. All pairs are
of the same class. We calculate the difference of the last hid-
den layer features, which are shown in the right, and light the
corresponding locations if they are larger than one threshold
value. Thus the fewer light positions, the more similar their
features are. The first and third rows in the right are features
learned based on model with warehouse network, while the
second and fourth rows are features learned based on model
without warehouse network. For the sake of convenient il-
lustration, we rearrange the features as 12 x 32.

(Szegedy et al. 2015) and ResNet (He et al. 2016) are em-
ployed for sketch classification in (Zhang et al. 2016). We
also compare with these networks. SketchNet (Zhang et
al. 2016) is a recent model utilizing web image for sketch
classification, and achieves the state-of-the-art performance.
Note that, the SketchNet we compare with is without the
metric learning module. This module is learned by tradi-
tional metric SVM after the network is trained, not in an
end-to-end manner. It can be optionally added to any net-
work once it is ready. Reader may refer (Zhang et al. 2016)
for more details. Thus, for fair comparison we compare with
SketchNet without metric to focus on effectiveness of sole
networks.

Table 2: The rank-1, rank-2, rank-3, rank-4, and rank-5 ac-
curacies [%] of different models on TU-Berlin.

Model rank-1 rank-2 rank-3 rank-4 rank-5

ResNet 74.46 84.29 88.03 90.47 91.97
ResNet (mixed) 74.11 83.54 87.53 90.22 91.92

CNG-SCN 78.71 86.43 89.88 92.17 93.22
CNG-SCN (warehouse) 80.10 87.08 90.42 92.32 93.57

We report the rank-1 accuracies with regard to all the 8
training-testing protocols. Results show that, 1) deep models
consistently outperform methods based on hand-crafted fea-
tures, which verifies the learning ability by deep models, 2)
the proposed CNG-SCN outperforms other methods and the
model with warehouse further improves the performance.
We believe the improvement originates from the careful de-
sign of network to transfer knowledge from natural image
domain to sketch domain. We also note that, the testing in
SketchNet is composed of two steps, obtaining top-5 predic-
tion by the first network and forwarding five pairs of sketch
and real images in the second network, while the testing step
in our method is in an end-to-end fashion.

Conclusion

We have proposed a deep network for sketch recognition by
transferring knowledge from a cousin network trained on
natural images. The cousin network guides the target net-
work to extract powerful features for recognition in an ad-
versarial manner. A latent attribute warehouse is developed
to improve the transfer ability from sketch to natural image
domain, boosting significantly the performance. Experiment
results demonstrate the effectiveness of the proposed model.
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