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Abstract 

We present the geomagnetic field model COV-OBS.x2 that covers the period 1840–2020. It is primarily constrained 

by observatory series, satellite data, plus older surveys. Over the past two decades, we consider annual differences of 

4-monthly means at ground-based stations (since 1996), and virtual observatory series derived from magnetic data 

of the satellite missions CHAMP (over 2001–2010) and Swarm (since 2013). A priori information is needed to comple-

ment the constraints carried by geomagnetic records and solve the ill-posed geomagnetic inverse problem. We use 

for this purpose temporal cross-covariances associated with auto-regressive stochastic processes of order 2, whose 

parameters are chosen so as to mimic the temporal power spectral density observed in paleomagnetic and observa-

tory series. We aim this way to obtain as far as possible realistic posterior model uncertainties. These can be used to 

infer for instance the core dynamics through data assimilation algorithms, or an envelope for short-term magnetic 

field forecasts. We show that because of the projection onto splines, one needs to inflate the formal model error vari-

ances at the most recent epochs, in order to account for unmodeled high frequency core field changes. As a by-prod-

uct of the core field model, we co-estimate the external magnetospheric dipole evolution on periods longer than 2 

years. It is efficiently summarized as the sum of a damped oscillator (of period 10.5 years and decay rate 55 years), plus 

a short-memory (6 years) damped random walk.
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Introduction
Two crucial characteristic time-scales of the geodynamo 

are the Alfvén time ( τA ≈ 4 years based on the propa-

gation of torsional waves, see Gillet et al. 2010) and the 

turn-over time ( τU ≈ 200 years based on the amplitude 

of core flow motions, e.g., Finlay et  al. 2010). �e ratio 

of these two (the Alfvén number A = τA/τU ≃ 10
−2 ) is 

very difficult to reach with direct numerical simulations 

of the geodynamo (Schaeffer et al. 2017), due to the wide 

separation of length and time-scales in the Earth’s outer 

core. Standard simulations typically reach A = O(1) . 

�is motivates the development of parameterizations 

for small-scale turbulent processes (Nataf and Schaef-

fer 2015), which makes it possible to numerically simu-

late the geodynamo at conditions closer to Earth-like 

(Aubert et  al. 2017), reducing the Alfvén number down 

to A ≈ 0.15 (Aubert and Finlay 2019).

In this context, there is a need for geomagnetic field 

models capable of covering both interannual and dec-

adal to centennial changes, while the era of almost con-

tinuous satellite records is only two decades long. �ere 

is also a need for uncertainty estimates on field model 

coefficients, if these are to be used as ‘observations’ in 

geomagnetic data assimilation algorithms (e.g., Fournier 

et  al. 2010; Gillet 2019). �e COV-OBS.x2 model pre-

sented in this study has been derived in this spirit. It 

builds upon the earlier COV-OBS models (Gillet et  al. 

2013, 2015). In practice it is less severely tied to magnetic 
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observations than alternative models covering the recent 

era such as the comprehensive (Sabaka et al. 2004, 2015) 

or the CHAOS (Olsen et  al. 2014; Finlay et  al. 2016) 

model series. COV-OBS.x2 is a compromise constructed 

in order to fill a gap between models that focus on the 

satellite era, and models that cover longer periods such 

as the historical (Jackson et al. 2000) or archeomagnetic 

(e.g., Constable and Korte 2015) eras.

We first describe the data used to build the COV-OBS.

x2 model and the employed parameterization. We then 

present how we derive the stochastic a priori informa-

tion (temporal cross-covariances) used for the model 

construction, and some distinctions compared with pre-

vious generations of COV-OBS models concerning the 

field induced in the outer core by magnetospheric field 

changes. Next we show how the COV-OBS.x2 model 

uncertainties can be used to estimate the probability 

density function (PDF) of magnetic forecasts within the 

employed stochastic framework. �e predictions for the 

main field (MF) and its secular variation (SV, the rate of 

change of the field) result from a best linear unbiased 

estimate (BLUE) on COV-OBS-x2 Gauss coefficient data.

�e obtained model and its associated uncertainties are 

analyzed, with statistics of the residuals between obser-

vation and model predictions, and characteristics in the 

spectral domain (Lowes spectra and time evolution of 

Gauss coefficients). We estimate the relative importance 

of unmodeled core signals at high frequencies in the SV 

error budget, due to the projection on spline coefficients. 

We next propose PDFs for 5-year forecasts based on the 

employed stochastic properties. It is from this method 

that we derived ISTerre’s candidates models to IGRF-13 

(Alken et al. 2020). Finally, we propose a stochastic analy-

sis of external dipole field changes.

Methods
Geomagnetic data

We consider below the spherical coordinates (r, θ ,φ) . 

Apart from modern satellite data, our data selection pro-

cess follows closely the one used to construct the COV-

OBS.x1 field model. Full details can be found in Gillet 

et al. (2013, 2015). Here, we only briefly describe the new 

or updated aspects of the datasets. �is only concerns 

satellite and observatory records over the past two dec-

ades or so:

• Satellite data are incorporated by means of virtual 

observatories (VO) built from the low Earth orbit-

ing CHAMP and Swarm missions. �ey consist in 

4-monthly means, and replace pointwise records 

from CHAMP and Swarm used in previous COV-

OBS models.

• Ground observatory (GO) data are considered 

through annual differences of 4-monthly revised 

means after June 1997 (instead of annual means in 

previous COV-OBS models). We do not consider 

such revised means at earlier epochs, because some 

external field corrections are not yet available outside 

the era of continuous satellite field models.

�e choice of 4 months for the binning is motivated by 

our wish to use, for the inverse problem, an amount of 

data as much as possible constant through time over the 

recent era (and 4 months is already significantly less than 

the time resolution of COV-OBS internal field models). 

Using higher (e.g., monthly) sampling rates would gener-

ate epochs with a smaller number of available VO data, in 

relation with data selection criteria (see below).

Ground observatories data

Up to June 1996 (included), we use the same dataset of 

ground observatories data as that used in COV-OBS.x1 

(annual difference of annual means, with no ionospheric 

correction). For more recent epochs, we consider instead 

annual differences of 4-monthly means spanning August 

1997 to March 2019. �ese revised means are computed 

from hourly mean values provided by the BGS database 

(Macmillan and Olsen 2013), as described in Olsen et al. 

(2014). Being constructed upon data that sample all local 

times, the 4-monthly GO data are corrected for the ion-

ospheric field contribution (and its associated induced 

counterpart) using the CM4 model (Sabaka et al. 2004). 

�ey are not corrected for the magnetospheric contribu-

tion as this latter (and its induced counterpart) is co-esti-

mated within the COV-OBS framework throughout the 

model time-span [ts, te] = [1840, 2020] (see below).

To solve the geomagnetic inverse problem, we need 

to assess uncertainty estimates on 4-monthly GO data. 

We consider as ‘observation’ errors ( σ obs
GO

 ) the uncertain-

ties provided with the three components of GO dataset. 

For each site, they are estimated as the magnitude of the 

residuals between GO SV time series and the CHAOS-6 

internal plus external predictions (Finlay et  al. 2016). 

Since neither CHAOS-6 nor COV-OBS.x2 parameter-

ize ionospheric sources, we consider here the variance of 

residuals to GO SV series cleaned for ionospheric contri-

butions. Errors σ obs
GO

 , shown in Fig. 1, are typically of the 

order of a few nT/year (ranging from a fraction of nT/

year to above 10 nT/year). Note that ‘observation’ errors 

constructed this way partly account for our current ina-

bility to model all magnetic sources. We still inflate these 

errors by an extra modeling error of variance σmod

GO

2
= (2 

nT/year)2 , in order to account for 
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 i. �e inability of COV-OBS.x2 to fit SV changes at 

periods shorter than 2–3 years (see Pick et al. 2019) 

due to the projection in time onto cubic B-splines 

with 2 years knot spacing;

 ii. �e imperfect correction and/or parameteriza-

tion of external sources. �ese could lead to biases, 

especially at high latitudes where slow external 

changes are difficult to accurately determine. Alter-

native models could be used as for instance the 

AMPS model by Laundal et  al. (2018), but this is 

out of the scope of the present work.

Considering that modeling and observation errors 

are independent, the resulting error budget is then 

σGO
2

= σ
mod

GO

2
+ σ

obs
GO

2
.

Virtual observatories satellite data

Instead of the pointwise dataset used for COV-OBS.x1, 

we use No = 300 VOs derived from the CHAMP and 

Swarm measurements. VOs consist of processed MF vec-

tor data distributed on an equal area grid at the altitude 

of 370 km for CHAMP and 490 km for Swarm. �ese are 

estimated every 4 months from March 2001 to Novem-

ber 2010 for CHAMP, and from November 2013 to July 

2019 for Swarm. �ey are built from selected data (Sun 

at maximum 10◦ below the horizon and geomagneti-

cally quiet conditions, see details in Barrois et  al. 2018; 

Hammer 2018). In constructing the VO estimates we use 

the magnetic data in the (r, θ ,φ) frame, rotated from the 

magnetometer frame using the Euler angles estimates 

provided by the CHAOS field model (version 6x9), which 

takes into account star camera attitude errors within its 

data error budget. Note that each VO datum is derived 

from hundreds of satellite data within 4 month bins.

�ese data are cleaned from the lithospheric field con-

tribution, as estimated with the LCS model (Olsen et al. 

2017), and from the ionospheric contributions as esti-

mated from the CM4 model (Sabaka et al. 2004). As for 

GO data, and contrary to what was done in Barrois et al. 

(2018), they are not corrected for the magnetospheric 

contribution. Furthermore, in order to reduce the poten-

tial impact of field aligned currents, we transform the 

three-component data ( Br ,Bθ and Bφ ) at dipole latitudes 

higher than 55◦ into intensity data F =

√

B2
r + B

2
θ + B

2
φ  . 

As for GO data, we consider two sources of VO data 

error: 

 (i) ‘Observation’ uncertainties, of variance σ
obs
VO

2
 . 

�ese are estimated for each VO time series 

separately, based on the variance of the residu-

als between each series and the predictions of the 

CHAOS field model after detrending as described 

in Barrois et al. (2018). In practice σ obs
VO

 are gener-

ally less than 2 nT for CHAMP, and slightly less for 

Swarm, as illustrated in Fig. 1.

 (ii) An extra error budget that covers unmodeled error 

sources, of variance fixed to σmod

VO

2
= (2 nT)2.

Considering these two error sources as independent, 

data error variances associated with VO data are thus 

σVO
2

= σ
obs
VO

2
+ σ

mod

VO

2
 . At each VO of dipole latitude 

higher than 55◦ , errors on F data are deduced from the 

propagation of errors on ( Br ,Bθ ,Bφ ) as

We finally acknowledge the fact that unmodeled error 

sources certainly arise from spatially coherent structures, 

but accounting for spatial cross-covariances in unmod-

eled external field sources is out of the scope of the pre-

sent study.

Parameterization of the COV-OBS.x2 model

�e construction of the COV-OBS.x2 field model 

is largely based on the procedure described in Gil-

let et  al. (2013). We recall here the main common 

points. In the absence of electrical currents between 

observation points and the sources (here the Earth’s 

outer core, of radius c = 3485 km, and the magneto-

sphere), the MF derives from a magnetic potential, 

i.e., B = −∇(Vi + Ve) , with Vi and Ve , respectively, the 

internal and external potentials.

�e internal potential Vi is expanded on a spherical 

harmonic basis up to degree Ni = 14,

with ( gmn , hmn  ) the internal Gauss coefficients of degree n 

and order m, Pm
n  the Schmidt semi-normalized Legendre 

polynomials, and a = 6371.2 km the Earth’s radius. Gauss 

coefficients are used to define the MF and SV Lowes 

spectra:

�e external potential Ve accounts for an external axial 

dipole field in dipole coordinates (plus its induced coun-

ter part):

(1)σVOF =
|Br |

F
σVOr +

|Bθ |

F
σVOθ +

|Bφ |

F
σVOφ .

(2)
Vi(r, θ ,φ, t) = a

Ni
∑

n=1

(a

r

)n+1
n

∑

m=0

(

gmn (t) cos(mφ)

+ hmn (t) sin(mφ)
)

Pm
n (cos θ),

(3)























R(n, t) = (n + 1)

n
�

m=0

gmn (t)2 + hmn (t)2

S(n, t) = (n + 1)

n
�

m=0

ġmn (t)2 + ḣmn (t)2
.
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We use the notations

with the external ( qmn , s
m
n  ) and induced ( gm†

n , hm†
n  ) Gauss 

coefficients, and

A single coefficient, q0
1d(t) , which describes the external 

axial dipole in the internal dipole coordinates, is thus 

used to describe the evolution of the external field. At 

each iteration k of the algorithm (see below), the deriv-

atives involving the forward operator in Eq.  (6) are lin-

earized around internal coefficients gm
1

 of the previous 

step k − 1 : we neglect the nonlinearities associated with 

m(t) when calculating the gradient and Hessian opera-

tors (for details, see Gillet et al. 2013). �e relation link-

ing ( gm†
n , hm†

n  ) to ( qmn , s
m
n  ) is detailed below.

All internal and external coefficients are expanded 

in time using order 4 cubic B-splines, with knots every 

2 years, spanning the period 1838–2022. A L2 measure 

of the data misfit is employed, together with a 3σ data 

(4)

Ve(r, θ ,φ, t) =r

1
∑

m=0

(

q̂m1 (t) cos(mφ) + ŝm1 (t) sin(mφ)
)

Pm
1 (cos θ) .

(5)











q̂m
1

(t) = qm1 (t) +

�a

r

�3

gm†
1

(t)

ŝm
1

(t) = sm1 (t) +

�a

r

�3

hm†
1

(t)
,

(6)





q01
q11
s11



 (t) = q01d(t)m(t) , with m =
1

�

g01
2
+ g11

2
+ h11

2





g01
g11
h11



 .

rejection criterion. As a priori information in the inverse 

problem, we use temporal cross-covariances associ-

ated with auto-regressive processes of order 2 (AR-2), 

as detailed below. Since historical datasets contain some 

nonlinear data, and because of the relation (6), the model 

must be sought iteratively. �is is done through a New-

ton–Raphson algorithm, with explicit estimation of 

the Hessian matrix, starting from the background axial 

dipole model (see below).

Nevertheless, the parameterization of the COV-OBS.x2 

model differs from that of its predecessors:

• We consider an alternative AR-2 type prior for the 

axial dipole.

• We remove the contribution from the 20  nT back-

ground external dipole when estimating the field 

induced in the core.

• Finally, the prediction over the period 2020–2025, 

where no data are available, is performed using a 

BLUE (Best Linear Unbiased Estimate), consider-

ing as data sampled realizations of the COV-OBS.x2 

Gauss coefficients.

We now further discuss these differences and their 

motivations.

Stochastic prior for the axial dipole

In previous COV-OBS models, all internal field Gauss 

coefficients are considered as realizations of AR-2 

Fig. 1 Histogram of observation errors σ obs
GO

 and σ obs
VO

 for GO and VO datasets, separated by spatial components. The dashed line represents the 

value of modeling error σmod
VO

 (see text for details). The observation errors for F were derived from these observation errors (see text)



Page 5 of 18Huder et al. Earth, Planets and Space          (2020) 72:160  

processes ϕ governed by a stochastic differential equation 

of the form (e.g., Yaglom 1962):

with ζ a Wiener process. Such two-parameter processes 

are characterized by auto-covariance functions of the 

form

with σ 2
= E

(

(ϕ − ϕ)2
)

 the variance, ϕ = E(ϕ) the statis-

tical expectation, and ω2
= E

(

(∂tϕ)2
)

/σ 2 . We consider 

that all Gauss coefficients apart from the axial dipole (see 

below) result from zero-mean AR-2 processes (i.e., their 

background value is 0).

For the sake of simplicity, we consider a variance of 

Gauss coefficients, σ
2
n = E

(

gmn
2

)

 , and a parameter 

ω2
n = E

(

(∂tg
m
n )2

)

/σ 2
n  that depend only on the degree n. 

We use here this formalism for all coefficients of 

degrees n ≥ 2 : for these we set parameters σ 2
n  and ω2

n to 

the same values as in previous COV-OBS models (esti-

mated from the MF and SV Lowes spectra obtained for 

a satellite field model in 2005, see Gillet et  al. 2013). 

�is description was found convenient as it is consist-

ent with the −4 slope of the power spectral density 

obtained for observatory series at periods from 5 to 70 

years (De Santis et  al. 2003), a feature confirmed later 

for Gauss coefficient series down to annual periods 

(Lesur et  al. 2017). Indeed, the frequency spectrum of 

processes defined by Eq. (7),

shows f 0 dependence for low frequencies and f −4 

dependence for frequencies f ≫ ω/(2π) . �is concise 

description, based on only two parameters per harmonic 

degree, was validated by the analysis of geodynamo simu-

lations for all coefficients but the axial dipole g0
1
 (Bouli-

gand et al. 2016).

Investigations on the frequency spectrum of this lat-

ter coefficient instead show a f −2 dependence for inter-

mediate frequencies from about 10−5 to 10−2 years−1 . 

�is was observed from both paleomagnetic records 

(Constable and Johnson 2005; Panovska et  al. 2013) 

and dynamo calculations (Olson et al. 2012; Buffett and 

Matsui 2015; Bouligand et al. 2016). To account for this 

effect, we modify the AR-2 prior for the axial dipole g0
1
 

in COV-OBS.x2, in comparison with previous COV-

OBS models.

Following Hellio and Gillet (2018), we consider that 

the fluctuations of g0
1
 (that is g̃0

1
(t) = g0

1
(t) − ḡ0

1
 with ḡ0

1
 

(7)d
dϕ

dt
+ 2ωdϕ + ω2ϕdt = dζ(t) ,

(8)C(τ ) = σ 2(1 + ω|τ |) exp (−ω|τ |) ,

(9)P(f ) =
4ω3σ 2

[

ω2 + (2π f )2
]2

,

the background axial dipole value) are governed by a 

more general AR-2 process that obeys a three-parame-

ter stochastic equation of the form

where χ and ω are positive frequencies ( ω ≤ χ ). �e auto-

covariance function for such a process is

with ξ2 = χ2
− ω2 . �e associated frequency spectrum, 

given by

indeed shows a f −2 dependence for frequencies in the 

range (Bouligand et al. 2016)

�e f 0 and f −4 dependencies at, respectively, low 

( f ≪ fs ) and high ( f ≫ ff  ) frequencies are still present. 

In the limit ω ≪ χ , the transition periods between the 

spectrum ranges showing f −4 , f −2 and f 0 trends are 

then (Hellio and Gillet 2018):

Our choice for the values of the three parameters that 

enter Eq. (11) slightly departs from that made by Hellio 

and Gillet (2018) for the construction of the archeomag-

netic field models COV-ARCH and COV-LAKE (see 

Table  1). �e background value ḡ0
1

= −24, 000 nT and 

the r.m.s. σg0
1

= 7700 nT are estimated from the average 

and standard deviation of the axial dipole moment over 

the past 2 Myr, as estimated with the SINT2000 model 

(Valet et  al. 2005). As described in Additional file  1, 

alternative estimates are possible (see also Buffett et al. 

2013), and our choice of parameters for the axial dipole, 

relatively conservative, is a compromise between ensur-

ing stability for the axial dipole model and under-esti-

mating rapid dipole changes. We fix σ 2

ġ0
1

= E
(

(

∂tg
0

1

)2
)

= 

(10 nT/year)2 , which associated with the above choice 

for σg0
1

 comes down to ω−1

g0
1

= 770 years. As in Hellio and 

Gillet (2018) we consider Ts = 100 kyr ( τs = 16 kyr), 

which fixes the remaining parameter for the axial dipole 

(10)d
dϕ

dt
+ 2χdϕ + ω2ϕdt = dζ(t) ,

(11)

C(τ ) =
σ 2

2ξ

(

(χ + ξ)e−(χ−ξ)|τ | − (χ − ξ)e−(χ+ξ)|τ |
)

,

(12)P(f ) =
4χω2σ 2

[

ω2 − (2π f )2
]2

+ (4πχ f )2
,

(13)
[

fs, ff
]

=
1

2π

[

1

τs
,
1

τf

]

=
ω2

2π

[

1

χ + ξ
,

1

χ − ξ

]

.

(14)

{

Ts = f −1
s = 2πτs ≃ 4πχ/ω2

Tf = f −1

f = 2πτf ≃ π/χ
.
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prior to χ−1

g0
1

= 4π/(Tsω
2) ≃ 75 years, or Tf ≃ 235 years. 

We thus satisfy the condition ω ≪ χ . For the two 

parameters that define the equatorial dipole statistics, 

governed by Eq.  (7), we choose σ1 = 4500 nT, a value 

consistent with equatorial dipole series in archeomag-

netic field models (e.g., Hellio and Gillet 2018, Fig.  6), 

and σ 2

ġ1
1

= E
(

(

∂tg
1

1

)2
)

= (10 nT/year)2 (with similar val-

ues for h1
1
 ), so that ω−1

1
= 450 years. Our choice σġ1

1

 simi-

lar to σġ0
1

 is in agreement with what is observed in the 

low viscosity geodynamo simulation by Aubert et  al. 

(2017) or Schaeffer et al. (2017).

In contrast with previous editions of the COV-OBS 

model, the prior variance and characteristic time for the 

equatorial dipole now depart from those used for the axial 

dipole parameters (see Table 1). In this more realistic con-

figuration, the a priori power authorized for axial dipole 

fluctuations at decadal and shorter periods is larger than 

that used for COV-OBS.x1, but weaker than that consid-

ered for the construction of the COV-ARCH and COV-

LAKE models (see Fig.  2). �is is the consequence of 

decreasing σ 2

ġ0
1

 (and increasing σ 2

g0
1

 ), as from Eqs. (12) and 

(14) one has P(f ) ∝ Tsσ
4

ġ0
1

/(σ 2

g0
1

f 4) towards high frequen-

cies. We discuss further these issues in Additional file 1.

Parameterization of the induced �eld

�e induced field is anchored to the external field. We 

consider the core as a perfect conductor, an approxi-

mation reasonable since we model only field changes at 

periods longer than ≈ 2 years (see Fig. 1 in Olsen et al. 

2005). In this framework, the induced field is simply 

computed by considering that the radial component 

of the induced field cancels that of the time-dependent 

inducing field at r = c . By differentiating Eq.  (4) with 

respect to r, we obtain from Eq. (5)

(15)





g0†
1

g1†
1

h1†
1



 (t) = Q0





q̃0
1

q̃1
1

q̃1
1



 (t) = Q0q̃
0
1dm(t) ,

with Q0 =

1

2

( c

a

)3

≃ 0.082 . q̃0
1d = q0

1d(t) − q0
1d is the 

external field perturbation to the background value 

q0
1d = 20 nT. �is latter approximately corresponds to the 

sum of Geocentric Solar Magnetospheric (GSM) and 

Solar Magnetic (SM) average contributions to the mag-

netospheric dipole (see Maus and Lühr 2005; Lühr and 

Maus 2010; Olsen et al. 2014).

�e above parameterization slightly differs from that 

of previous COV-OBS models, where in Eq.  (15) q̃0
1d 

was replaced by q0
1d (i.e., the inducing field contained 

the entire external dipole, even the stationary back-

ground). By reducing the core response to only the 

transient magnetospheric field, we shift in particu-

lar the induced axial dipole g0†
1

 by ≈ Q0q
0

1d ≃ 1.6 nT 

(considering a dominant axial with respect to equato-

rial dipole), and consequently the core dipole g0
1
 by the 

opposite value.

Table 1 Parameters used for  the  AR-2 processes describing the  statistics of  axial and  equatorial dipoles 

in  the  construction of  COV-OBS.x2, compared with  those used for  the  COV-ARCH model of  Hellio and  Gillet (2018), 

and the earlier editions COV-OBS.x1 (Gillet et al. 2015)

In italic font the three (resp. two) free parameters for the axial (resp. equatorial) dipole prior. We use the same parameters for h1
1
 and g1

1

Field model σg0
1

 (nT) σġ0
1

 (nT/year) ω
−1

g0
1

 (year) χ
−1

g0
1

 (year) Ts (year) Tf  (year) σ1 (nT) σġ1
1

 (nT/year) ω−1

1
(year)

COV-ARCH 6000 15 400 20 100,000 63 3800 19 200

COV-OBS.x2 7700 10 770 75 100,000 235 4500 10 450

COV-OBS.x1 17300 17 1014 1014 6370 6370 17300 17 1014

Fig. 2 PSD associated with the stochastic processes that define the 

a priori information used for the construction of COV-OBS.x2 for the 

axial dipole (blue) and the equatorial dipole (orange) coefficients. 

Comparison with the corresponding PSD for the axial dipole in 

COV-ARCH ( Hellio and Gillet 2018, dashed black), and for all dipole 

coefficients in previous COV-OBS models (Gillet et al. 2013, 2015, 

dashed green)
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A shift of ≈ 4 nT was observed between g0
1
 in COV-

OBS.x1 and most other IGRF candidates (�ébault et al. 

2015a, b). �e above change to the parameterization of 

induced fields for the present model COV-OBS.x2 should 

reduce this shift down to ≈ 2.4 nT. Our investigations sug-

gest that the remaining difference is most likely associated 

with the data selection embedded with the satellite data 

in the COV-OBS framework. In models like CHAOS-6 

(Finlay et  al. 2016), the SM external field is anchored to 

indices (such as the Ring Current index RC, see Olsen 

et al. 2014) that include both calm and disturbed magnetic 

conditions. �e induced field is related to the external 

field through complex Q-factors (that depend on a mantle 

conductivity profile). It is thus estimated in the frequency 

domain before it is transformed back to the time-domain 

(Maus and Weidelt 2004; Olsen et al. 2005). Constructed 

as such, it has a zero mean when averaged over all epochs 

(as it should be if the external signal has stationary proper-

ties, but see Velímskỳ and Finlay 2011). Our present exter-

nal model being computed only from data selected over 

quiet periods, the above 2.4 nT shift cannot be reduced 

within the COV-OBS framework.

Spline-free stochastic forecast of the geomagnetic �eld

�e stochastic 5-year forecast from COV-OBS.x1, candi-

date model to IGRF-12, was performed by expanding the 

model time-span (and the support B-spline functions) 

up to 2020, that is 5 years after the last available data at 

that time. We see several drawbacks to this procedure. 

First, there exists a potential for instabilities close to end-

points, associated with the use of splines together with 

an uneven data coverage (e.g., Gillet et  al. 2010). Sec-

ond, it involves generating a new continuous model for 

each 5-year prediction. �is would imply a rather large 

computational load when validating our predictions over 

past periods where the behavior of the field is (to some 

extent) known. �ird, it likely leads to under-estimate 

the SV error budget, associated with the unmodeled core 

evolution on short periods, filtered out by the projection 

onto splines, as discussed in the Results section. We pro-

ceed differently, by calculating the BLUE and using

• As data the Gauss coefficients of the COV-OBS.x2 

model sampled at a set of epochs,

• As data errors the posterior uncertainties as pro-

vided with this model (see Gillet et al. 2013, for the 

method),

• As prior information, cross-covariances associated 

with the stochastic processes of each Gauss coeffi-

cient.

�e prior information in the COV-OBS framework is 

independent from one coefficient to the other. For the 

sake of simplicity, we neglect spatial cross-covariances 

between Gauss coefficient data errors, and predictions 

are thus operated separately for all Gauss coefficients. 

In detail, the procedure is the following. For each (n, m) 

we generate from the COV-OBS.x2 spline model coef-

ficients a vector yo that contains gmn  values at N o epochs 

toj  spanning [tos , t
o
e ] every �t

o . Observation error vari-

ances σ o2
gmn

(toj ) for each coefficient are extracted from the 

COV-OBS.x2 posterior covariance matrix, and stored 

into a diagonal matrix Ryy.

We wish to estimate a vector x that contains analyzed 

Gauss coefficients gma
n  at Na epochs taj  spanning [tas , t

a
e ] 

every �t
a

= 1 years (so that Na
= (tae − t

a
s )/�t

a
+ 1 ), 

together with its associated uncertainties. To this pur-

pose, we construct cross-covariance matrices Cxy , Cxx 

and Cyy , of sizes, respectively, Na
× N

o , Na
× N

a and 

N
o
× N

o , whose elements are

In the above definitions, the background value, denoted 

by overlines, is non-zero for the axial dipole g0
1
 only.

�e model x thus results from the BLUE as

where Kxy is the Kalman gain matrix, and x̄ (resp. ȳ ) is 

a vector of size Na (resp. N o ) filled with the background 

value ḡmn  . Cross-covariances of the uncertainties on the 

analyzed vector x are then given by the posterior covari-

ance matrix

For details about the above estimation procedure (also 

known as kriging method, Optimal Interpolation, Gauss-

ian interpolation, or Least-Squares Collocation) we refer 

for instance to Rasmussen and Williams (2006). To sam-

ple the dispersion of x , an ensemble of k realizations is 

generated from the Cholesky decomposition of Rxx (see 

Gillet et  al. 2013). �e ISTerre candidate models for 

IGRF-13, together with their associated uncertainties, 

have been derived based on the methodology described 

above

Results and discussion
The COV-OBS.x2 �eld model

Statistics on prediction errors

We provide in Table  2 some statistics concerning the 

COV-OBS.x2 misfits and biases to the new (GO and VO) 

(16)



















Cxy(i, j) = E
�

�

gmn (tai ) − ḡmn
�

�

gmn (toj ) − ḡmn

��

Cxx(i, j) = E
�

�

gmn (tai ) − ḡmn
�

�

gmn (taj ) − ḡmn

��

Cyy(i, j) = E
�

�

gmn (toi ) − ḡmn
�

�

gmn (toj ) − ḡmn

��

.

(17)

x = x̄ + Cxy(Cyy + Ryy)
−1(yo − ȳ) = x̄ + Kxy(y

o
− ȳ) ,

(18)Rxx = Cxx − KxyCxy
T
.
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data sets, separately for all three components. Our algo-

rithm rejects only a small part of the dataset ( ≈ 5% in 

average). We consider the normalized L2 data misfit and 

bias,

for e∗
k
 the normalized prediction error for the kth datum 

(we also consider the dimensional L2 data misfit M 

and bias µ ). For all three datasets and all components, 

no significant bias is found, as all normalized biases µ∗ 

remain close to zero. Normalized L2 misfits are reason-

ably close to unity (in average slightly weaker on Y for 

GO and Swarm data, and bit larger on X for all three data 

sources). Dimensional misfits, typically a few nT (or nT/

year) on all three components, are a bit larger on X (and 

on Z for GO). Dimensional averaged biases are for all 

(19)M
∗

=

√

1

No

∑

k

e
∗

k

2
and µ

∗
=

1

No

∑

k

e
∗

k ,

components of all datasets less than ≈ 0.3 nT. We present 

in Fig. 3 the distribution of the normalized residuals (VO 

and GO) for all three components. �ese are reason-

ably close to Gaussian, although sometimes slightly more 

peaked (see for instance on Y for the GO SV data). We 

also notice some slight asymmetry in the shape of some 

residuals distributions (e.g., the X component on Swarm 

and GO data). In this context where normalized misfits 

(resp. biases) are close to 1 (resp. 0) and where the PDF 

of normalized residuals is close to a N (0, 1) Gaussian dis-

tribution, we consider that the obtained posterior model 

uncertainties (based upon the inverse Hessian matrix, see 

Gillet et al. 2013) constitute reasonable errors estimates. 

In order to further illustrate the fit to GO and VO series, 

we give in Fig. 4 two examples of our average model SV 

predictions on ground, and MF predictions at Swarm’s 

altitude.

Table 2 Errors statistics for  the  GO and VO (CHAMP and  Swarm) datasets integrated in  COV-OBS.x2: accepted number 

of data No , fraction of rejected data ( N∗

o , in %), dimensionless L2 data mis�t M∗ and bias µ∗ , and dimensional L2 data 

mis�t M and bias µ

Dimensional mis�ts and biases are in units of nT for VOs, and nT/year for GO

Dataset No N
∗

o (%) M∗
µ

∗ M µ

X Y Z F X Y Z F X Y Z F X Y Z F

GO 21056 5.57 1.27 0.79 1.11 − −0.01 0.00 −0.04 − 4.55 2.87 4.22 − −0.01 −0.01 −0.15 −

CHAMP 17525 5.17 1.28 1.02 1.04 0.99 0.01 0.04 0.10 0.05 3.42 2.59 2.57 3.04 0.04 0.11 0.28 0.15

Swarm 13354 3.77 1.31 0.85 0.94 0.92 0.10 −0.04 0.11 0.08 3.14 2.11 2.10 2.69 0.28 −0.05 0.25 0.23

Total 51935 4.98 1.29 0.89 1.04 0.96 0.02 0.01 0.04 0.06 3.88 2.61 3.28 2.89 0.08 0.02 0.09 0.19

Fig. 3 Histograms of the normalized data misfit e∗ for the GO and VO datasets (separated all three components). In black is the normalized 

Gaussian curve N (µ, σ) with µ the mean and σ the standard deviation of the normalized misfits (see Table 2)
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COV-OBS.x2 over the satellite era

We illustrate in Fig. 5 the time evolution of MF and SV 

Gauss coefficients for COV-OBS.x2 over the era covered 

by VOs. As observed by Gillet et  al. (2015) with COV-

OBS.x1, their evolutions are overall coherent with that 

of the CHAOS-7 model (Finlay et al. 2020), put aside an 

≈ 2 nT shift on g0
1
 in link with the differences of induced 

model. However, we notice that 

Fig. 4 Predictions from COV-OBS.x2 for the three geocentric components. Left: SV at the Niemegk (NGK, top) and Honolulu (HON, bottom) 

observatories. Right: MF at two examples of Swarm VO in the Northern (top) and Southern (bottom) hemispheres
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 i. We do not capture some of the rapid changes (of 

period less than ≈ 2 years) for the larger length-

scales, due to the use of 2 years knot spacing for the 

splines basis;

 ii. Consequence of the employed stochastic prior, 

our solutions tend to be less smooth towards small 

length-scales.

�e COV-OBS.x2 uncertainty estimates most often 

encompass the difference with CHAOS-7 towards small 

length-scales (except towards the beginning of the time-

span covered by CHAOS-7).

Unmodeled rapid �eld changes

We have seen that the use of a cubic B-splines basis 

with knots separated by 2 years does not permit the 

capture of short time-scales features. As a consequence, 

COV-OBS.x2 uncertainties only represent errors on 

Gauss coefficients low-pass filtered (at periods longer 

than ≈ 2 years). If used for comparison with instanta-

neous pictures of the core dynamics, these should be 

complemented by an error estimate that accounts for 

unmodeled rapid field changes. �is latter will supple-

ment COV-OBS.x2 formal errors, especially at the larg-

est length-scales.

To illustrate this issue, we estimate the magnitude 

of signals unable to be represented by the B-splines 

basis. To do so, we generate a set of synthetic Gauss 

coefficient series with spectral properties defined by 

the AR-2 stochastic prior considered in this study. We 

then fit cubic B-splines, with knots 2 years apart, to 

each of these coefficient series, and consider the residu-

als between the original synthetics and the fitted series 

as the unmodeled high frequency signal. We show in 

Fig.  6 the time average MF and SV Lowes spectra for 

these residuals, compared with COV-OBS.x2 formal 

uncertainties derived from the spline coefficients pos-

terior covariance matrix. �e contribution of unmod-

eled rapid field changes appears negligible towards high 

harmonic degrees. At large length-scales however, its 

power is larger than that of the COV-OBS.x2 formal 

errors, in particular during the satellite era. It is for 

instance of the order of 1  nT/year for SV dipole coef-

ficients, comparable to the differences observed on ∂tg
0

1
 

between CHAOS-7 and COV-OBS.x2 in Fig. 5.

Fig. 5 MF (left) and SV (right) time series of g0
1
 (top), g4

7
 (middle) and g4

12
 (bottom) for COV-OBS.x2 (black), compared with CHAOS-7 (orange) 

between 1998 and 2020. The gray-shaded areas represent the ±σ dispersion within the ensemble of COV-OBS.x2 models
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Extracting IGRF candidate models from COV-OBS.x2 and its 

uncertainties

Validation of 5-year forecast from the BLUE

We now apply our stochastic approach (the BLUE, see 

Methods) to the generation of 5-year predictions. We 

first test the effect of the observation period [tos , t
o
e ] on the 

Gauss coefficient forecast over [tas , t
a
e ] = [2015, 2025] , by 

varying tos − t
o
e  from 6 to 75 years, with �t

o
= 1 years and 

t
o
e = 2019.5 . �e SV forecast is obtained by first differen-

tiating MF prediction series. We give in Fig. 7 the MF and 

SV forecasts of g0
1
 and g4

7
 , together with their associated 

dispersion. Our investigations show that the length of 

the observation period has a relative little impact on the 

resulting forecast and its associated spread. �is is cer-

tainly due to the nature of the employed AR-2 stochas-

tic processes: discrete AR-2 processes have memory over 

only two successive dates: the correlation functions that 

enter matrices Cxy and Cyy play a major role on the dis-

persion within the ensemble of MF forecasts, which then 

evolves ∝ (t − t
o
e )

2.

To assess the ability of the forecast spread to encap-

sulate the ‘true’ model trajectory, we test it over ancient 

periods covered by COV-OBS.x2 datasets, and perform 

5-year forecasts. Drawing upon the above conclusion, 

N
o

= 17 observation epochs are used, sampled every 

�t
o

= 1 year. We show in Fig. 8 the obtained MF and SV 

predictions for Gauss coefficients g0
1
 and g4

7
 , and for three 

observation periods ending at toe = t
a
s = 2000, 1931 and 

1913, periods characterized by different behaviors in par-

ticular of the axial dipole (in all three cases tae = t
a
s + 5 

year). Again, the SV forecast is obtained by first differ-

entiating MF prediction series. For all Gauss coefficients 

but the axial dipole, MF and SV COV-OBS.x2 average 

model stay within ±σ of the forecast spread whatever 

the observation period chosen. For g0
1
 the forecast spread 

must sometimes be extended to about ±2σ , especially at 

epochs showing intense and monotonous trends in the 

dipole SV (see also Additional file 1). We overall consider 

that the stochastic forecasts are consistent with the COV-

OBS.x2 past evolution, which validates the prediction 

using the BLUE method.

Application to �eld model predictions over 2015–2020

We now apply the spline-free BLUE (see Methods) for 

the production of IGRF-13 candidate models, using 

[tas , t
a
e ] = [2015, 2025] . We present in Fig.  9 the MF and 

SV Lowes spectra obtained at the three epochs 2015, 

2020, and 2025 of interest for the IGRF and DGRF model 

candidates. �e MF dispersion spectrum is weaker in 

2015 than in 2020 (at this latter epoch, data constraints 

are only from past epochs). It significantly increases for 

the prediction after 5 years without observations, to 

reach values only slightly above those documented for the 

IGRF-12 candidate model based on COV-OBS.x1 (Gillet 

et al. 2015). �e MF spectrum is noticeably less in 2025 

for the highest degrees: after the last available observa-

tion, the AR-2 stochastic prior brings the ensemble aver-

age MF estimate back to the background, in a time-scale 

faster for shorter wave-lengths – as expected given the 

Fig. 6 In black: MF (left) and SV (right) Lowes spectra (Eq. (3)) of our estimate of the unmodeled internal field at high frequencies due to the 

projection onto splines 2 years apart. It is constructed from the residuals to a spline fit to synthetic AR-2 series (see text for details). In color (dotted 

lines) are shown the spectra for the COV-OBS.x2 formal posterior uncertainty at epochs 1855, 1895, 1935, 1975, and 2015. These latter are obtained 

from the ±σ spread within an ensemble of COV-OBS.x2 realizations (i.e., projected onto splines)
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shorter cut-off frequencies ωn for large harmonic degrees 

n, see Eq. (8) and Gillet et al. (2013).

�e SV spectrum for the ensemble average fore-

cast decreases over time when no data is available. �is 

reflects the fact that on average the stochastic prior drives 

the model back to the prior expectation (the ensemble 

average SV coefficients decay exponentially, over time-

scales governed by the stochastic process parameters). 

�e spectrum of the SV spread gradually increases over 

time from the last observation date toe  (it behaves on 

short period as that of a random walk, i.e., ∝
√

t − toe  ). 

Our present estimate of SV uncertainties is significantly 

larger than that documented in Gillet et  al. (2015), in 

particular during the period with observations. �is is 

primarily related with the spline-free estimate in the pre-

sent study, which avoids under-estimating the effect of 

high-frequency SV changes (see also above the discus-

sion of Fig. 6). Indeed we have checked that the inflation 

of data errors (see ‘Geomagnetic data’ section) only has a 

minor impact on the posterior model uncertainties. After 

5 years without observations, the magnitude of spread 

within the ensemble of models is similar to that of the 

average model for degrees n ≥ 4 , illustrating the inability 

of the stochastic model (by construction) to deterministi-

cally predict the magnetic field evolution.

Fig. 7 5-years forecasts using and �t
o

= 1 year, for different observation periods, compared with COV-OBS.x2 in black (with in gray-shaded area the 

associated ±σ uncertainties), for the MF (top) and the associated SV (bottom) of Gauss coefficients g0
1
 (left) and g4

7
 (right). Errorbars represent the 

dispersion ( ±σ ) with the ensemble of forecasts
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Fig. 8 5-years forecasts using �t
o

= 1 year, for different observation periods, compared with COV-OBS.x2 in black (and in shaded gray its ±σ 

dispersion), for the MF (top panels) and the associated SV (bottom panels) of Gauss coefficients g0
1
 (left) and g4

7
 (right). Errorbars represent the 

dispersion ( ±σ ) within the ensemble of forecasts
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Long-period variations in the external dipole �eld

We now analyze the time evolution of the co-estimated 

parameter q0
1d , the external axial dipole coefficient in 

internal dipole coordinates. As shown in Fig.  10 (top 

left), it agrees well with the CHAOS-7 estimate over the 

past two decades. We consider here low-pass filtered 

CHAOS-7 series, selecting only quiet geomagnetic times 

based on Kp ≤ 30 and |dRC/dt| ≤ 2.1 nT/hr. As such, if 

our model for q0
1d(t) under-estimates slow changes in q0

1d 

when averaged over all magnetic conditions (Fig. 10, top 

Fig. 9 MF (left) and SV (right) Lowes spectra (Eq. (3)) at the Earth’s surface for epochs 2015, 2020 and 2025, estimated with the spline-free BLUE (see 

Methods). In dashed lines the respective spectra for the ±σ spread within the ensemble of models

Fig. 10 Time evolution of the external dipole field coefficient in dipole coordinates (top: q0
1d ) and induced dipole field coefficient in geocentric 

coordinates (bottom: g0†
1

 ) for COV-OBS.x2 (black), compared with the previous edition COV-OBS.x1 (dashed blue), superimposed with the 

corresponding estimate from CHAOS-7 (gray, selected over calm magnetic times on the left column (see text for details) and for all times in the 

right column) and its projection onto splines with knots 2-year apart (orange)
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right), it is representative of the calm magnetosphere at 

periods longer than ≈ 2 years. It is also very similar to the 

previous estimates from the COV-OBS.x1 model, despite 

a different processing of satellite observations (VO versus 

pointwise data in previous editions).

�e associated induced field g0†
1d in geocentric coordi-

nates presents a long period off-set in comparison with the 

corresponding coefficient for CHAOS-7, low-pass filtered 

and selected under quiet magnetic conditions (Fig. 10, bot-

tom left). �is is because an aliasing effect comes with the 

selection of calm periods. Indeed, the induced perturbation 

in CHAOS-7 presents by construction a zero-mean once 

averaged over all times, as seen in Fig. 10 (bottom right). 

�is is also the case in COV-OBS.x2: as a consequence, 

g0†
1d is closer to the long-period induced field over all mag-

netic conditions (though with smaller fluctuations than 

in CHAOS-7). Contrary to what is done within the COV-

OBS.x2 set-up (see section Methods), the background 

external field q0
1d was accounted for when calculating the 

gm†
1

 in COV-OBS.x1 (see Eq. (15)). �is results in the shift 

observed for g0†
1

 between these two models. All in all, the 

set-up for the induced field used for constructing COV-

OBS.x2, even imperfect, reduces the shift to models dedi-

cated to satellite observations such as CHAOS-7.

We present in Fig.  11 the auto-correlation function 

Cq0
1d

(τ ) = E
(

q̃0
1d(t)q̃

0

1d(t + τ )
)

 . It shows obvious oscilla-

tions of period ≈ 11 years, in relation with the solar cycle. 

We fit (with the SciPy function curve_fit that uses a Leven-

berg–Marquardt method) Cq0
1d

(τ ) with the three-parame-

ter correlation function of a damped oscillator AR-2 

process (Yaglom 1962):

Within this formalism, 2π/β2 is the period of the oscilla-

tor, while 1/α2 corresponds to a damping time. We use as 

‘data’ annual values of Cq0
1d

(τ ) over the period 1910–2020 

(equivalent to ≈ 10 solar cycles). �ese are weighted as 

w(τ ) = γ (T − τ)/T  , in order to down-weight the ill-

constrained auto-correlations at long lags τ , with 

T = 110 year the maximum considered lag (a rather close 

fit is obtained using equal weights). We estimate 

w(0)−1
= γ −1

= E

(

σ 2

q0
1d

− E

(

σ 2

q0
1d

))

 from an ensemble 

of the COV-OBS.x2 realizations, in order to have the 

uncertainty on the ‘data’ Cq0
1d

(0) equal to the dispersion 

within the realizations of σ 2

q0
1d

= E
(

q̃0
1d(t)

2
)

.

�e fit by C2 recovers well an oscillation of period 

2π/β2 ≃ 10.5 years, with a decay rate 1/α2 ≈ 40 years. 

However, it does not manage to capture the correlation 

observed at short lags (see Fig. 11, top for τ < 10 year). In 

particular, it underfits by a factor of about 2 the variance 

(20)

C2(τ ) = σ 2
2 exp (−α2|τ |)

(

cos(β2τ ) +
α2

β2
sin(β2|τ |)

)

.

Fig. 11 Auto-correlation function for the external dipole field coefficient q0
1d in dipole coordinates, superimposed with the fit obtained with (top) 

the 3-parameter function C2(τ ) , and (bottom) a 5-parameter function C2(τ ) + C1(τ )
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σ 2

q0
1d

= Cq0
1d

(0) (see Fig. 11). In order to reduce this incon-

sistency, we now consider on top of the damped oscillator 

(described by C2 ) an independent auto-regressive process 

of order 1 (a damped random walk), whose two-parameter 

correlation function C1 is

and now fit Cq0
1d

(τ ) with C1(τ ) + C2(τ ) . 1/α1 corresponds 

here to the characteristic memory time of the random 

walk process. �e addition of this independent process 

reduces the inconsistency at short lags (see Fig. 11, bot-

tom), by adding a Laplace correlation with decay time 

1/α1 ≈ 6  year. More quantitatively, it significantly 

reduces the misfit as measured by

and reported in Table  3 for C∗
= C2 or C2 + C1 . �e 

fitted variance of q0
1d is approximately evenly shared 

between the above AR-1 and AR-2 processes (it is, 

respectively, ≈ 17 and 20 nT2 ). �e damped oscillator 

period, 2π/β2 ≃ 10.5 year, is not affected by the addition 

of the AR-1 process. However, its decay time 1/α2 ≈ 55 

years is significantly larger than the value obtained with 

the AR-2 correlation function alone (see Table 3). In this 

latter case, 1/α2 was likely biased towards short value, 

because the damped oscillator model alone is designed 

to accommodate both the large covariance at short lags 

(but in practice fails) and the much smaller values at long 

lags. �is inconsistency is relaxed when adding on top an 

AR-1 process, leading to a larger estimate of the damped 

oscillator decay time.

Such multi-decadal decorrelation may be attributed to 

the natural cycle to cycle variability in duration and 

amplitude (see the reviews by Petrovay 2010; Hathaway 

2015), also possibly involving longer period modulations 

(Usoskin et al. 2007). Interestingly, while double maxima 

appear in some solar cycle indices (as for instance the 

sunspot number, see Petrovay 2010, Fig.  8), and while 

(21)C1(τ ) = σ 2
1 exp (−α1|τ |),

(22)χ2
C =

∫ T

τ=0

w(τ )(Cq0
1d

(τ ) − C∗(τ ))2dτ

∫ T

τ=0

w(τ )dτ

,

higher frequency oscillations show up in our q0
1d series 

(see Fig. 10), we do not recover any harmonic of the 10.5 

years cycle in the correlation function (and fitting Cq0
1d

 

with two AR-2 parameters performs less well than with 

the above function C2 + C1).

Conclusions
We produce the COV-OBS.x2 geomagnetic field model, 

which extends to 2020 previous generations of COV-OBS 

series of models. �e primary data constraints used over 

recent epochs are annual differences of ground-based 

observatories’ series, and virtual observatories series 

from the CHAMP and Swarm satellite missions. �e 

COV-OBS models not only propose the time evolution of 

Gauss coefficients, but as well an estimate of their uncer-

tainties, based on temporal cross-covariances associated 

with stochastic processes.

We show how the COV-OBS approach can be used to 

propose a PDF for predictions of the MF and its SV, and 

illustrate it with 5-year forecasts, in the context of the 

IGRF-13 model. Over past epochs, the ±σ spread over 

5 years encompasses the evolution of Gauss coefficients, 

except for the axial dipole. �is coefficient is associated 

with a specific stochastic prior, characterized in the spec-

tral domain by a range of frequencies where the tempo-

ral PSD of g0
1
 evolves as f −2 (based on statistics from 

paleomagnetic records and observatory series). We con-

sider in this study parameters that conservatively reduce 

this range, and thus limit the power at short periods (see 

Additional file 1). In currently available simulations, even 

in those proposed by Aubert et  al. (2017), this range is 

further reduced (Aubert 2018; Gillet et al. 2019). For this 

reason, a one-to-one comparison of interannual changes 

in computations and geophysical observations cannot 

yet be performed, in link with Alfvén numbers relatively 

larger in geodynamo simulations.

Our model generally agrees well, over the satellite 

era, with regularized models such as CHAOS-7. �e 

dispersion within our ensemble of models most often 

encompasses the difference between this model and 

the ensemble average COV-OBS-x2, at least at periods 

longer than two years. �e use in COV-OBS models of 

Table 3 Parameters of the correlation functions C2(τ) and C2(τ) + C1(τ) �tted to Cq0
1d

(τ)

Parameter σ
2

2
 (nT2) 1/α2 (year) 2π/β2 (year) σ

2

1
 (nT2) 1/α1 (year) χC (nT2)

C2 23.3 ± 1.2 41 ± 4 10.51 ± 0.03 – – 4.93

C2 + C1 19.6 ± 0.8 56 ± 5 10.51 ± 0.02 16.7 ± 1.3 5.9 ± 0.7 3.08
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a basis of cubic B-splines with knots separated by 2 years 

indeed does not allow shorter periods features to be cap-

tured. At first sight, not accounting for the above rapid 

changes in formal MF errors does not look critical. It 

may nevertheless facilitate conditions for instabilities 

when considering MF Gauss coefficients in data assimi-

lation algorithms, such as the ones based on geodynamo 

equations by Sanchez et al. (2019). Considering explicitly 

the effect of unmodeled errors is also potentially impor-

tant when using as data SV Gauss coefficients, as done 

for instance by Aubert (2014) with decorrelated snap-

shot estimates, or by Bärenzung et  al. (2018) or Gillet 

et  al. (2019) with reduced stochastic core flow models. 

�is modification will be implemented in the pygeo-

dyn assimilation tool by Huder et al. (2019). �e fact that 

unmodeled errors are relatively larger for the SV than for 

the MF is due to the difference in their respective tem-

poral spectra that shows a −2 slope for the SV and a −4 

slope for the MF.

We then propose, as the COV-OBS.x2 instantaneous 

error estimate, the sum of (i) the formal error from spline 

coefficients (the one provided in previous versions of the 

COV-OBS model) and (ii) the uncertainty associated 

with the above estimate of unmodeled high-frequency 

signals. In the current work, we estimate the 5-year SV 

predictions from MF realizations obtained from a BLUE 

based on spline-free stochastic cross-covariances. We 

alleviate this way the under-estimation of SV uncer-

tainties (see Fig. 7). �is constitutes an improvement in 

comparison with Gillet et al. (2015), who use the formal 

posterior covariance matrix on spline coefficients.
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