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Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline 
of science. It has remolded the fate of the whole world by providing diverse horizons 
in different fields. Nanomaterials are appealing because of their incredibly small size 
and large surface area. Apart from the naturally occurring nanomaterials, synthetic 
nanomaterials are being prepared on large scales with different sizes and properties. 
Such nanomaterials are being utilized as an innovative and green approach in multi-
ple fields. To expand the applications and enhance the properties of the nanomateri-
als, their functionalization and engineering are being performed on a massive scale. 
The functionalization helps to add to the existing useful properties of the nanoma-
terials, hence broadening the scope of their utilization. A large class of covalent and 
non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, 
quantum dots, and composites of these materials with other organic or inorganic 
materials are being synthesized and used for environmental remediation applications 
including wastewater treatment. This review summarizes recent advances in the syn-
thesis, reporting techniques, and applications of FNMs in adsorptive and photocat-
alytic removal of pollutants from wastewater. Future prospects are also examined, 
along with suggestions for attaining massive benefits in the areas of FNMs.
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1 Introduction

Water, which covers 70% of the earth’s surface, is a basic necessity for the life 
of every individual on earth. Nevertheless, extreme ecological contamination 
jeopardizes human well-being [1, 2]. Environmental contamination has become 
a major issue in industrialized and developing nations as a consequence of indus-
trialization [3]. Remediation of water, air, and soil contamination is of great con-
cern, especially for developing nations [4]. The fundamental contaminants in 
water (including surface water, groundwater, and tap water) include heavy metal 
ions, inorganic compounds (nitrates, chlorides, phosphates, etc.), dyes (synthetic 
as well as natural), surfactants, pharmaceuticals, pesticides, and numerous other 
complex compounds [5, 6]. The major sources of heavy metals include industrial 
effluents, agricultural operations, mining, and metallurgical processes. A prime 
source of lead release is automobile discharge [7]. Other metals such as copper, 
zinc, and arsenic [8] are obtained from the smelting process. Burning of fossil 
fuels is the main source of mercury, tin, and selenium, while the use of pesticides 
is a source of arsenic production [9].

A crucial category of emerging contaminants is the dyes whose production is 
also directly related to the industrial processes. The major sectors employing dyes 
include the textile industries for the coloring of fabrics, staining of biological 
and biochemical substances, food industries using dyes for enhancing the texture 
of their food products, cosmetics, leather goods, paint, and pigments [10, 11]. 
Another breakthrough in the industrial sector is the pharmaceutical industry pro-
duction of an enormous stock of medicines for various conditions [12]. However, 
in contrast to the health benefits obtained through the production of such medi-
cines, the disposal of various antibiotics into the environment is putting the lives 
of humans at risk. Additionally, expired medicines are also disposed of, which 
is causing contamination and ill effects [13]. The same logic applies to the use 
of pesticides and surfactants, which, once used to the degree of demand, are left 
unchecked in the environment, causing toxic effects. The different types of pesti-
cides, herbicides, and insecticides sprayed on crops for better yields typically do 
not completely vanish, thus making their way to the food chain and causing det-
rimental health issues [14–16]. These pollutants have recently been categorized 
as emerging contaminants that can cause devastating ecological effects directly 
influencing human health [17]. Humans are the primary targets for such contami-
nants, directly by water consumption or indirectly through the food chain. The 
environmental deterioration caused by such toxic contaminants ultimately causes 
health-related issues for individuals. These contaminants are known to be carci-
nogenic and mutagenic substances in most cases [18].

Heavy metal pollutants are very harmful. For example, cadmium, which is a 
human carcinogen, causes destructive effects on the lungs, possible kidney dis-
eases, and bone fragility [19, 20]. Chromium in the form of chromium(III) is 
an essential nutrient, while chromium (VI) is highly toxic. The common health-
related issues associated with chromium include asthma, cough, shortness of 
breath, or wheezing [21]. Lead has proved to be the cause of various ailments 
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including damage to brain and kidney cells ultimately leading to death [22]. 
Another harmful metal is mercury which may permanently damage critical body 
organs. This causes malfunctioning of the brain, resulting in irritability, behavio-
ral changes, tremors, and reduced vision or hearing [23, 24].

Dyes are another form of toxic contaminants causing harmful effects due to their 
excessive usage. The toxicity of the dye is associated with the azo group present in 
its structure, making it a complex system. The azo group is defined as possessing 
a central nitrogen–nitrogen double bond and is hence electron-deficient [25]. The 
presence of such azoic dyes in wastewater is highly visible, affecting the transpar-
ency of water and causing aesthetic disadvantages. The more important aspect of the 
presence of such compounds in wastewater is their harmful effects on human health, 
causing several disorders including allergies, cramps, kidney failure, liver damage, 
and genetic mutations [26, 27]. Pharmaceuticals come under the category of bio-
logically active compounds that have been developed for disease control in living 
organisms [28].

Apart from the beneficial effects of these pharmaceutical compounds, their bio-
logical activity may also affect non-target organisms in adverse ways, thereby harm-
ing the ecosystem function and associated ecosystem services. Also, unsupervised 
disposal of unused or expired pharmaceuticals into the environment may have seri-
ous health effects. The most common health-related issues caused by pharmaceu-
tical contaminants include hormonal disruptions, infertility, and colorectal tumors 
[29–32].

Other contaminants include phosphates and nitrates, which also have serious 
health and environmental impacts. Although nitrate itself is nontoxic, its conver-
sion into nitrite causes a condition called methemoglobinemia by interfering with 
the ability of hemoglobin to take up  O2, which causes cancers of the digestive tract 
[33–35]. The environmental effects of phosphates and nitrates in wastewater contrib-
ute to the phenomenon of eutrophication, leading to harmful algal blooms [36–38]. 
These issues demand the development of safety measures against these harmful con-
taminants. Thus, the need for contaminant removal has become critical. Researchers 
have been focusing on developing such strategies for the removal of toxic contami-
nants with minimal labor and cost while achieving effective results.

Different techniques applied to abolish pollutants in water bodies include ion-
exchange [39], reverse osmosis [40], chemical precipitation [41], membrane filtra-
tion [42], coagulation and flocculation [43], irradiation [44], electrochemical treat-
ment techniques [45], and advanced oxidation processes [46, 47]. These strategies 
are being exploited extensively in the context of toxic contaminant removal against 
wastewater bodies, but their activity is limited for one reason or another. The appli-
cations of these strategies may be affected by numerous factors, for example, han-
dling productivity, operational strategy, vitality necessities, and monetary advantage 
[48–54]. The quest for the development of such a technique offering better removal 
of contaminants has turned the attention of researchers towards sorptive and photo-
catalytic techniques. Both sorption [55] and photocatalytic techniques [56–58] have 
enabled the complete removal of contaminants, and many studies in the literature 
confirm the contaminant removal efficiency of these techniques (Scheme 1).
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The classical materials which have been used to date for the sorption and pho-
tocatalysis of contaminants are now being replaced by nanomaterials (NMs) due to 
their innovative and efficient approach. The review presented herein compiles the 
most recent and innovative utilization of functionalized nanomaterials (FNMs) in 
environmental remediation, highlighting the importance of FNMs in the present era.

2  Functionalized Nanomaterials, an Innovative Approach Towards 
Environment Remediation

Recent advancements in nanotechnology have provided good alternatives for 
upgrading wastewater treatment processes. The robustness of nanoscience has taken 
over the globe due to its remarkable features relying mainly upon the particle size 
and surface-to-volume ratios [59]. NMs, which feature nanoscale dimensions (less 
than 100 nm), have garnered considerable attention because of their extraordinary 
magnetic, synergist, and electronic properties [60, 61]. Because of these unique 
properties, many efforts have focused on the potential use of NMs for environmental 
remediation [62]. In this way, NMs have revolutionized the environmental remedia-
tion and sensing fields, offering better efficiency in wastewater contamination. Fig-
ure 1 outlines some of the well-known FNMs.

Scheme 1  Possible applications of covalent/non-covalent functionalized nanomaterials
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NMs of different shapes/morphology—for example, nanoparticles [63], nano-
tubes [64], nanowires [65], and nanofibers [66]—provide a choice for environmen-
tal restoration mainly through the removal of toxic contaminants [67]. NMs play a 
huge role in contaminant removal due to the high surface area (surface-to-volume 
ratio) and related high reactivity [68, 69]. As NMs additionally offer extraordinary 
dependability, effectiveness, and size-dependent optical features, their utility in mul-
tiple fields, including sensing, [70], drug delivery frameworks [71], catalysis [72], 
gas/energy storage [73], and sorption [74–77], is huge (Fig.  2). As a result, NMs 
have proved to be an important aspect of environmental remediation strategies.

Many NMs have been utilized in the context of contaminant removal from waste-
water bodies. In some instances, the activity of the NMs may be inhibited due to 
various factors including their insolubility in physiological buffers, instability, and 
low efficiency, recovery, and recyclability [78, 79]. These issues can be resolved 
through functionalization of NM van der Waals forces, π–π stacking, charge trans-
fer, and/or hydrophobic interactions of the NMs with functionalizing agents [80]. 
Important advantages associated with the functionalization of NMs include corro-
sion control, molecular electronic junctions, and complexing layers for the removal 
of contaminants [81]. Hence, FNMs have proved to be an excellent choice for con-
taminant removal based on their properties. The most common limitation of NMs 
is their strong van der Waals forces; they tend to aggregate, thereby reducing the 
surface availability for better functioning.

Fig. 1  Covalent/non-covalent functionalized nanomaterials
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Also, the recovery of inorganic NMs is a difficult task that limits the usage 
and recyclability of the sorbents or photocatalysts [82]. Stability and high poros-
ity are important factors that need to be considered to improve efficiency. To 
meet the stated standards and achieve better dispersion of NMs, they are often 
further functionalized to improve their activity. Fabrication or functionalization 
offers additional sites for the removal of contaminants, thereby enhancing their 
efficiency. Functionalization of NMs improves their coupling ability towards 
the analyte, hence enhancing their activity as sorbents or photocatalysts. Such 
advancement is ideal for the removal of contamination at an ultra-efficient and 
robust level [83, 84]. Furthermore, functionalized fluorescent NMs tend to have 
utility for various applications because of their permeability, huge surface area, 
high stacking limit, and explicit association against toxins such as lead (Pb), cad-
mium (Cd), copper (Cu), and mercury (Hg) [85]. Also, functionalization of NMs 
may significantly strengthen them in aqueous solutions by wrapping them super-
ficially with stabilizing agents, for example, biomolecules, surfactants (cationic/
anionic), or natural particles [86, 87].

Functionalized magnetic NMs, comprising both natural and inorganic com-
ponents, have recently been recognized as highly promising agents for different 

Fig. 2  Illustration of photodegradation and adsorption process for wastewater treatment. Reproduced 
with permission [74]  Copyright 2020, Elsevier
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applications, specifically for serving as sorbents or photocatalysts for the removal 
of contaminants from wastewater bodies. Due to their superparamagnetic proper-
ties, huge explicit surface area, and specific sorption limit, this exceptional class 
of NMs displays a phenomenal capacity for separating and enhancing various 
analytes of interest [88].

Previously, smaller molecules were used for the functionalization of the NMs, 
which have now been replaced by large polymeric and biopolymeric molecules [89]. 
The most commonly utilized techniques for polymer and biopolymer functionaliza-
tion of NMs include the “grafting-to” and “grafting-from” approaches [90] (Fig. 3). 
The grafting-from approach allows high-molecular-weight chains of the polymers to 
be grafted onto the surface of the NMs, minimizing the chances of steric hindrance 
and resulting in higher-molecular-weight polymer-functionalized NMs. The whole 
process is completed in three steps: first, the suitable functional group approaches 
the material, then a covalent interaction is created with the initiator element, and 
finally the grafting of the polymer onto the surface of the NMs occurs through any 
of the available techniques.

The techniques used for polymerization onto the NM surface through grafting-
from polymerization include atom transfer radical polymerization (ATRP) [91, 
92], reversible addition-fragmentation chain-transfer polymerization (RAFT) [93, 
94], plasma and UV/O3 (UVO)-induced grafting [95, 96], distillation–precipita-
tion–polymerization (DPP) [97, 98], and surface-initiated polymerization (SIP) 
[99, 100] (Fig.  4). The second concept is the grafting-to approach, which works 
contrary to the grafting-from approach. According to this, the polymer chains are 
manufactured first before their linkage to the functional groups of the NMs through 
amidation, esterification, click chemistry, etc. The grafting-from approach is more 
frequently used than the grafting onto approach. The most commonly used tech-
niques based on the grafting-to notion include molecular bottle-brush modification 
[101], Piers–Rubinsztajn (PR) reaction [102], atom transfer radical addition (ATRA) 
[103], and radical addition. The common feature in these techniques is that they 

Fig. 3  Illustration of the grafting-to reaction. Reproduced with permission [90]  Copyright 2018, Ameri-
can Chemical Society
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incorporate the polymeric chains with the NMs, introducing additional functionali-
ties inside the NMs, eventually increasing their activity, stability, and efficiency for 
environmental restoration.

3  Trends in the Techniques for the Removal of Contaminants

The functioning of FNMs involves certain pathways depending upon their applica-
tions. The NMs that are specifically used for environmental remediation purposes 
also follow a certain route to remove contaminants. A variety of procedures have 
been reported to date that make use of the FNMs, but two of these procedures have 
been highly exploited due to their greater simplicity and efficiency. These methods 
involve the sorption [104] or photocatalytic [105, 106] pathway for the removal of 
contaminants. This review will cover the importance of FNMs in environmental res-
toration with regard to the sorptive and photocatalytic mechanisms.

3.1  Sorptive Removal of Contaminants

Sorption is preferred over other methods of contaminant removal based on its 
comparatively straightforward operation, cost-effectiveness, and energy-effi-
ciency. [107]. The constituency of the sorbent material is the prime factor for 

Fig. 4  Different techniques used for the synthesis and functionalization of nanomaterials
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determining the capacity of the sorption process. Sorption as a common practice 
for the removal of contaminants, has been widely exploited due to its useful fea-
tures, particularly its cost-effectiveness, coherence, and feasibility [108]. Because 
of its one-step process, it can be considered as a simple and facile strategy. The 
lower costs of the sorption process have made it an appealing choice in under-
developed and developing countries. Sorption has emerged as a versatile tech-
nique for the removal of contaminants and is being widely studied by researchers 
[109]. Sorption has become a successful one-unit operation for the treatment of 
industrial waste in recent years (Fig.  5). Although sorption is a commonly uti-
lized technique for the removal of contaminants, its novelty depends on the type 
of materials used as sorbent. A variety of materials have been introduced that can 
be used as sorbents at multiple scales [110]. These materials include naturally 
occurring substances as well as synthetic materials [111].

These materials include low-cost recycled materials such as fruit extracts 
[112], coconut shells [113], scrap tires [114], fly ash [115–117], sawdust [118], 
peat moss [119], rice husk [120], red mud [121, 122], minerals [123], blast fur-
nace slag [124] and sludge [125], black liquor lignin [126], waste slurry [127], 
chitin [128], chitosan [129], and alginate [130]. The synthetic materials used as 
sorbents include activated carbon [131], zeolites [132], metal oxides/hydroxides 
[133], metal sulfides [134], and metal selenides [135]. Figure 6 shows some bio-
char and mineral-derived NMs for effective wastewater treatment.

FNMs have recently proved to be a productive choice for the removal of con-
taminants. The use of FNMs as sorbents offers more novelty, high efficiency, and 
simplicity, which increases the interest of researchers in this discipline. A variety 
of reports are available that use FNMs as sorbents for the removal of contami-
nants, including thiol-functionalized magnetite nanoparticles [136], carboxyl- 
and amine-functionalized nanoparticles [137], polyrhodanine-functionalized 
aluminum oxide [138],  TiO2 fabricated on mesoporous MCM-4 [139], silica-
functionalized magnetic nanoparticles [140], and polymer-functionalized mag-
netic nanoparticles [141].

Fig. 5  Explanation of the sorption process on a fixed bed for effective removal of pharmaceutical con-
taminants. Reproduced with permission [109],  Copyright 2018, Elsevier
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3.2  Photocatalytic Removal of Contaminants

Another strategy for the removal of contaminants using FNMs is photocatalysis 
[142]. A photocatalyst works on the principle of absorbing energy and producing a 
photon by activation and acceleration of the chemical reaction without undergoing 
denaturation itself. The photocatalytic phenomenon has been frequently employed 
by researchers for its useful properties including its efficiency, advanced equip-
ment, and highly efficacious follow-up [143]. The photocatalytic process normally 
requires an energy source for its initiation, mainly sunlight irradiation. As sunlight 

Fig. 6  a Sawdust-derived biochar and its applications for the removal of copper and tetracycline [118], 
and b explanation of mineral materials for removal of water pollutants released from different sectors. 
Reproduced with permission [123],  Copyright 2017, International Water Association
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is a natural and abundant source of energy, it reduces the energy-related costs for the 
process. In some instances, UV light is used instead of sunlight as an energy source 
depending upon the range of the contaminants being studied.

The notion of photocatalysis is to utilize a semiconductor material with a dually 
functional surface that can act as both cathode and anode performing the activity 
of a photochemical cell, applicable in various domains including photodegradation 
[144], photocatalytic  CO2 reduction [49, 50, 145], photocatalytic synthesis [146], 
photocatalytic gas-phase oxidation [147], and photocatalytic removal of contami-
nants [148]. Each of these fields utilizes the concept of photocatalysis at its best. 
The idea of photocatalysis in the field of contaminant removal eventually leading to 
the restoration of the environment is growing by leaps and bounds, offering a much 
broader horizon for its usage [149]. In the case of photocatalysis, the prime factor 
for choosing the photocatalytic material (photocatalyst) is its semiconductor nature. 
A semiconductor photocatalyst possesses necessary properties including excellent 
energy position and bandgap, lower probability of electron–hole recombination, 
and non-toxicity. The most commonly used materials for photocatalytic purposes 
include metal oxides [150–152], metal sulfides [153, 154],  Fe2O3 [155],  SnO2 [156], 
 WO3 [157], metal selenides [158], CuO [159], and  Nb2O5 [160].

The advantages of the properties of FNMs have been used in the fabrication of 
photocatalysts [161]. Several FNMs are available which have been used as potent 
photocatalysts for the removal of contaminants including azole-functionalized  TiO2 
[162, 163], Ag-modified metal oxide [164], carboxyl-functionalized metal sulfides 
[165, 166], and sodium-functionalized quantum dots [167, 168].

4  Functionalized Carbon Nanomaterials Robustness in Contaminant 
Removal

When considering a variety of NMs, carbon-based NMs cannot be overlooked, for 
they are considered as next-generation materials in multifarious fields [169]. Among 
the fields utilizing carbon NMs biosensors, drug delivery, biomedical applica-
tions, superconductors, and electrically conductive materials are worth mentioning. 
Because of the useful properties of carbon NMs, for instance, high electrical con-
ductivity and well-defined thermal and mechanical properties, they are used exten-
sively in wastewater treatment [170]. They have proved to be excellent sorbents and 
photocatalysts on account of their higher surface-to-volume ratio, uniform pore dis-
tribution, and highly porous structure. However, despite the very useful properties 
associated with carbon NMs, their application is sometimes constrained by certain 
limitations. Carbon NMs have the tendency to agglomerate when they come in con-
tact with the solvent system, which is attributed to their weak van der Waals forces 
and lower solubility. During synthesis of carbon NMs, some impurities are also 
formed which may hinder the activity of carbon-based sorbent or photocatalysts. 
Hence, functionalization of carbon NMs is performed to strengthen their properties 
and enhance their activity. The functionalized carbon NMs are available in many 
forms, including carbon nanotubes (CNTs), graphene and its derivatives, and fuller-
enes. [171].
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4.1  Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are the most commonly used form of carbon NMs, and 
can be pictured as graphene sheets rolled up as tubular cylinders having nanoscale 
diameters. CNTs are further categorized as single-walled CNTs (SWCNTs), and 
multi-walled CNTs (MWCNTs). The SWCNTs consist of a single layer of graphene 
sheet rolled to form a single cylinder, while the MWCNTs consist of multiple gra-
phene sheets arranged as concentric cylindrical sheets [172]. Various methods are 
available for the synthesis of CNTs including laser ablation, discharge, and chemical 
vapor deposition. Because of their unique physicochemical properties and structural 
features, CNTs have been utilized extensively as sorbents and photocatalysts for the 
removal of various contaminants [173]. The activity of the CNTs can be further 
enhanced by functionalization with other groups, enhancing their properties such as 
porosity, hydrophilicity, solubility, and mechanical strength. Alkahlawy et al. [174] 
performed the photocatalytic degradation of Congo red (CR) dye utilizing MWC-
NTs modified with zinc oxide and copper oxide nanoparticles. The Zn/CNT photo-
catalyst possessed excellent activity towards the degradation of CR dye, with deg-
radation efficiency of 97.7% in 70 min under visible light irradiation. The studies 
showed that the photocatalytic efficiency of Zn/CNTs is directly related to the high 
dislocation density (δ) value of 55.4. This value represents the number of vacancies 
and defects present in the crystal lattice. The lattice deficiency is the result of the 
route of synthesis. These intrinsic point defects present in the lattice as atomic impu-
rities, vacancies, and interstices can be detected in doping materials. These defects 
may function as holes when exposed to active centers, which confirms the depend-
ence of photocatalytic efficiency on the chemical structure rather than texture. The 
study of the mechanism of photocatalytic activity showed that in a surface defect 
state, holes/electrons can be trapped, preventing recombination and increasing 
the oxidation–reduction rate. Structural analysis showed that a number of surface 
defects were found in the ZnO/CNT sample [175]. These defects mainly consisted 
of bandgap acceptor states which trap the holes, preventing recombination. Hence, 
the increased photocatalytic efficiency of the prepared photocatalyst was attributable 
to the large number of acceptor states caused by the ZnO defects. In addition to the 
expansion of the light absorption edge of visible light, the acceptor states also cause 
a delay in the recombination of electron–hole pairs. Hence, the highly defined pho-
tocatalytic efficiency can be attributed to the presence of a large number of defects 
and acceptor states. The ZnO defects act as electron acceptors or hole donors, pro-
moting the position of carrier charges and thus prolonging the separation via trap-
ping at energy levels closer to the conduction band (CB) or valence band (VB), 
respectively [176]. The photogenerated electrons  (eCB

−) may also interact with the 
electron acceptors, such as oxygen sorbed on the surface of the nanocomposite or 
dissolved in water, forming radical anions  (O2

− superoxide). The photogenerated 
holes will also react to form hydroxyl radicals. As result, the highly reactive spe-
cies produced,  OH·,  HO2

·, and  O2
·, will eventually cause the degradation of CR dye. 

Li et al. [177] explored the sorption ability of functionalized MWCNTs (f-MWC-
NTs) using crystal violet (CV) and rhodamine B (RB) dye. The sorption of each dye 
was performed individually and then in a binary system. Individually, the sorption 
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capacity of f-MWCNT for the CR was in the range of 0.57–0.86 mmol/g, while the 
sorption capacity of RB was 0.75–0.88  mmol/g. The study of individual sorption 
capacity was related to the physical interaction forces between the f-MWCNT and 
the dye molecules irrespective of the size, thus resulting in almost equal sorption 
capacity for both. The mechanistic studies focused on the sorption of both dyes due 
to the interaction with hydrogen, thus forming associations with COOH or C–H 
groups of the sorbent molecule [178]. But in the case of a binary system, the sorp-
tion capacity of CV was 0.90–1.64 mmol/g, while the sorption capacity for RB was 
0.51–0.84 mmol/g. The results clearly showed increased (almost double) sorption of 
the CV dye, while the sorption of RB was decreased. This trend in sorption capacity 
in a binary system for both dyes was explained based on synergistic and antagonistic 
sorption mechanisms. The sorption models applied to the sorption of both dyes in 
a binary system indicated that the sorption of CV was enhanced in the presence of 
RB dye, while the opposite was the case for RB dye in the presence of CV dye. The 
sorption energy also directly affected the sorption process, which seemed to increase 
in the binary system, hence causing an increase in CV sorption Fig.  7 shows the 
adsorption of methylene blue (MB) dye on vitamin C-MWCNT nanocomposites.

Fig. 7  Preparation of vitamin C-MWCNT nanocomposites and their digital pictures and their application 
for MB dye adsorption. Reproduced with permission [178],  Copyright 2019, Elsevier
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Shao et al. [179] performed decontamination of polychlorinated biphenyls (PCBs) 
in aqueous solutions on the surface of MWCNTs grafted with β-cyclodextrin (β-CD) 
through a plasma technique to enhance the chemical functionality. The maximum 
sorption capacity achieved by MWCNT-g-CD for 4,4′-DCB (4,4′-dichlorobiphe-
nyl) and 2,3,3′-TCB (2,3,3′-trichlorobiphenyl) was 261 mg/g and 235 mg/g, respec-
tively. A comparison of the sorption capacity of the MWCNTs and MWCNT-g-CD 
was also performed to evaluate 4,4′-DCB (4,4′-dichlorobiphenyl) and 2,3,3′-TCB 
(2,3,3′-trichlorobiphenyl) sorption efficiency, and a greater percentage was sorbed 
by the grafted MWCNT-g-CD than the non-FNMs. This higher sorption capacity 
possessed by the MWCNT-g-CD depends on the van der Waals and hydrophobic 
interactions of the sorbates with the surface of the MWCNT-g-CD. The sorption 
process is a surface phenomenon and is related to the surface sites available for the 
sorbate molecules [180]. The interstitial surface and grooves of the sorbent molecule 
may not be available for the sorption process. The plasma grafting of MWCNTs 
with β-cyclodextrin provided complex formation with the 4,4′-DCB and 2,3,3′-TCB, 
which enabled the entrance of the sorbate molecules inside the inclusions of the 
MWCNT-g-CD, thus enhancing the sorption process.

The functionalized CNTs used for the sorption and photocatalysis of contami-
nants are shown in Table 1.

4.2  Graphene and Its Derivatives

As an important topic in any in-depth discussion of carbon-based NMs, graphene 
is considered to be the simplest form of carbon and is also the thinnest material 
known. Graphene is unquestionably an extraordinary material that has been used 
extensively in various fields [239]. The structural assay of graphene shows that it 
consists of a two-dimensional single-layer sheet of carbon atoms that are arranged 
into an  sp2-bonded honeycomb-like lattice structure. The properties associated with 
graphene, including thermal stability, larger surface area, mechanical strength, elec-
trical conductivity, and flexibility, make it a highly promising candidates for use 
in wastewater treatment processes [240, 241]. The specific properties of high sur-
face area, delocalized π-electron system, and abundantly present active sites indi-
cates excellent sorption capacity inhibited by the graphene-based NMs. Not only 
has pristine graphene been used massively in the removal of contaminants, but the 
derivatives of graphene have also been utilized [242]. Many reports are available on 
the utilization of graphene oxide, reduced graphene oxide, graphene platelets, and 
graphene-based composites as potent sorbents as well as photocatalysts. The proper-
ties of graphene NMs can be further enhanced by performing the functionalization 
procedure through groups such as thiol moieties or carboxylic groups [243].

Zamani and Salem [244] studied the photocatalytic behavior of graphene oxide 
sheets coupled with carbon nanotubes. In the first step, functionalization of carbon 
nanotubes was performed using acid reflux conditions, and they were then coupled 
with graphene oxide and decorated with anatase using the sol–gel method [245]. 
The obtained nanocomposite showed 96.5% efficiency for the degradation of MB 
dye. The hybrid nanocomposite facilitated the degradation of the contaminants 
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under solar irradiation by providing numerous active sites for the photoreactions. 
The hybrid nanocomposite had reduced bandgap energy of 2.2 eV, facilitating elec-
tron/hole pair separation. A detailed analysis of the photocatalytic degradation of 
the MB dye shows that the connection of graphene oxide with anatase nanoparticles 
further improves the photocatalytic efficiency by prolonging the electron recombina-
tion. It is observed that the high graphene oxide loading may cause agglomeration 
which affects the electron transfer [246]. Hence, the incorporation of CNTs creates 
spaces between the sheets of GO, facilitating a connection between carbon-based 
materials and anatase particles. This improved connection between the carbon-based 
materials and  TiO2 then reduces the bandgap and enhances the photocatalytic activ-
ity. When the nanocomposite is exposed to solar light irradiation, the  es− are excited 
from the VB to the CB of  TiO2. When a satisfactory connection is formed between 
anatase and the CNTs or GO, the  es− can be easily transferred to both parts, causing 
electron–hole pair separation, generating highly active radicals for the degradation 
of dyes [247]. The MB degradation occurs through the following equations:

Wang et  al. [248] exploited the efficiency of a novel biosorbent based on gra-
phene oxide modified with persimmon tannin (PT-GO) fabricated with glutaralde-
hyde cross-linking, for the removal of MB dye. The PT provides a large number of 
active sites due to the presence of phenolic hydroxyl groups, while GO has abundant 
hydrophilic groups and also provides a large specific surface area. The modification 
of GO with PT therefore enhances its sorption capacity by providing stability and 
additional functionality. The highest sorption capacity obtained was 256.58 mg/g at 
optimal conditions of pH 8 and temperature of 323 K. The sorbent is rich in phenolic 
hydroxyl groups due to the presence of persimmon tannin and numerous hydrophilic 
groups associated with the graphene oxide portion of the sorbent. The mechanistic 
pathway for the sorption was attributed to electrostatic interactions, redox reactions, 
and π–π interactions. The analysis of the sorption process shows that the phenolic-
hydroxyl groups of the biosorbent adhere to the cationic MB dye through electro-
static interactions. The second step involves the sorption process through a redox 
reaction between the sorbent and the dye, while a π–π interaction is created between 
the benzene rings of the dye and the biosorbent.

Firdaus et  al. [249] functionalized graphene nano-platelets (GNPs) with 
oxygen-containing functional groups (acid oxidation). The functionaliza-
tion of GNPs was performed using a 1:1 mixture of  H2SO4 and  HNO3. The 

Nanocomposite + h� → e− + h+ + Nanocomposite

h
+ + H

2
O → 2OH∙

h+ + OH−
→ OH∙

MB + h+ → CO
2
+ H

2
O

MB + OH∙
→ CO

2
+ H

2
O
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functionalized GNPs showed higher sorption capacity (225  mg/g) for MB dye 
from an aqueous solution (Fig. 8). The higher sorption capacity of the function-
alized GNPs was attributed to the enhanced surface area, pore size, and pore 
volume of the material due to the functionalization of the GNPs. Also, the func-
tionalized GNPs showed stable dispersion in aqueous solution and better hydro-
philicity. These properties induced by functionalization enhanced the sorptive 
capacity of the material towards contaminants.

Karimi-Maleh et  al. [250] also studied the preparation of a magnetic nano-
composite sorbent based on reduced graphene oxide (rGO–Fe3O4) and used it 
for the removal of phenazopyridine, an azo dye having pharmaceutical attrib-
utes, and exhibited sorption capacity of 14.06 mg/g at the optimized conditions. 
The sorption of the contaminant over the surface of the sorbent was attributed 
to the presence of hydronium ions  (H3O+) in the spaces between the graphene 
layers in the acidic conditions, leading to better sorption chances. The aromatic 
ring of the prepared sorbent and the amino group of the sorbate tend to interact, 
hence leading to better sorption capacity (Table 2).

Fig. 8  Schematic presentation of the MB adsorption on the f-GNP1 surface. Reproduced with permis-
sion [249],  Copyright 2019, Springer Nature
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4.3   Fullerenes

Another important form of carbon-based NMs is fullerenes. The fullerenes are com-
posed entirely of carbon atoms, considered as allotropes of carbon. Compared with 
graphite and diamond, fullerenes are found to be spherical molecules [311, 312]. 
They show solubility in various organic solvents. The structural elucidation of 
fullerenes shows that they consist of a carbon cage with a fused ring system mainly 
comprising hexagons and pentagons. The most generally accessible members of 
the fullerenes are the  C60 and  C70. The most important property of the fullerenes is 
their high symmetry [313]. Wu et  al. [314] performed photocatalytic degradation 
of RB dye using fullerene-cored star-shaped polyporphyrin-incorporated  TiO2. The 
ZnCPP-fullerol@TiO2 photocatalyst was prepared by immobilizing fullerene-cored 
star-shaped polyporphyrin nanospheres, obtained from the esterification of carboxyl 
porphyrin with fullerols, of the  TiO2 surface through excess hydroxyl groups of ful-
lerols. The results showed that 94.7% efficiency was obtained for the degradation 
of RB dye. The good efficiency of the prepared catalyst is attributed to the pres-
ence of fullerol, which is a derivative of fullerene and is extensively hydroxylated. 
The properties of fullerol including its high specific surface area, unique electronic 
properties, and conjugated aromatic system are the reasons for its use as a charge 
carrier and photocatalyst. The polyhydroxy groups present on the surface of the 
fullerene provide high-density active sites. Also, multiple functional groups can be 
introduced on the surface of fullerenes by the esterification reaction of the hydroxy 
groups. This synthetic procedure of a molecular-level heterojunction NM accelerates 
the electron transfer between porphyrin molecules, promoting charge separation. 
The combined properties of heterogeneous and homogeneous catalysts will enhance 
photocatalytic degradation efficiency. Elessawy et al. [315] prepared functionalized 
magnetic fullerene nanocomposites (FMFN) through the catalytic thermal decom-
position method. The prepared FMFN was used as a sorbent for the removal of the 
ciprofloxacin contaminant. FMFN had a high surface area of 336.84   m2/g typical 
of mesoporous and microporous volumes. The saturation magnetization property of 
FMFN was 7.002 emu/g, confirming its high superparamagnetism. These properties 
obtained through the functionalization provided a better sorption efficiency (Fig. 9). 
The highest sorption capacity obtained for the removal of ciprofloxacin was found to 
be 65 mg/L, which is in complete agreement with the magnificent sorptive ability of 
FMFN.

Mahdavian [316] analyzed the removal efficiency of heavy metals (nickel and 
cadmium) by filtration of modified nano-fullerene  (C60) with tetrahydrofuran. The 
heavy metal ion sorption was optimized and the results showed that about 91% effi-
ciency was obtained for the removal of ions. A sorption efficiency of 1261 mg/g was 
obtained for cadmium removal, while sorption capacity of 3704 mg/g was obtained 
for nickel removal (Table 3).
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5  Functionalized Metal Oxide Nanomaterials as Potential Sorbents 
for Contaminant Removal

Metal oxides have remained in the spotlight for researchers working in areas such 
as chemistry, physics, and polymer sciences. Metal oxides can inhibit the nano-
sized structural geometry exhibiting metallic, semiconductor, or insulating charac-
teristics. These metal-based nanoparticles are exceptionally mobile in permeable 
media because of their small size and high reactivity due to the very high surface-
to-volume ratio [330–332]. The high surface area to mass significantly enhances 
the sorption limits of nanosorbent materials. Because of their facile synthesis, high 
efficiency, and simplicity of characterization, nanoparticles have been increasingly 
explored in recent years [333]. Metal nanoparticles have magnificent electrical and 
optical properties, reactivity, and solid mechanical quality, and thus offer an incred-
ible opportunity to create NM-based sensors and devices for observing environmen-
tal contamination in air, water, and soil [334]. These include iron [335], aluminum 
[336], titanium [337], and zinc [338].

5.1  Single Metal Oxide Nanomaterials

The most frequently utilized form of metal oxide nanoparticles comprises a single 
kind of metal in its oxide form. Some of the single metal oxides that can serve as 
potent agents for environmental remediation purposes are discussed in detail below.

5.1.1  Iron Oxide Nanoparticles

Among the various metal oxides, iron oxide nanoparticles are widely used in pollut-
ant remediation process [339]. Iron oxide-based NMs are further divided into three 

Fig. 9  One-step polyethylene terephthalate catalytic dissociation for the synthesis of functionalized mag-
netic fullerene nanocomposites (FMFN) and different kinds of interactions for the sorption of ciprofloxa-
cin. Reproduced with permission [315],  Copyright 2020, Elsevier
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forms: magnetite  (Fe3O4), maghemite  (Fe2O3), and hematite  (Fe2O3) nanoparticles. 
These nanoparticles possess unique features such as high saturation magnetization, 
vast surface area, and a large number of active sites for the sorption of metals. Also, 
the magnetic properties facilitate the isolation of the magnetic nanoparticles from an 
aqueous medium [340, 341].

5.1.2  Magnetite  (Fe3O4) Nanoparticles

Iron oxide/magnetite nanoparticles possess an opposite spinel structure, with oxy-
gen having a cubic cluster, with half of Fe(III) cations having tetrahedral sites and 
others having octahedral sites [342]. The magnetite is ferrimagnetic in nature and 
possesses superexchange oxygen-mediated coupling, thus allowing the iron particles 
to have inverse magnetic moment directions. In magnetite, the Fe(III) quantity is 
similar in all cross-sectional sites; hence their magnetic moment cancels each other. 
As a result, the net polarization is attributed to Fe(II) cations [343]. The features of 
these magnetic NMs change drastically from mass to nanometer size. As the size 
decreases, the attractive material changes from a multi-domain structure to a solitary 
area structure, with novel magnetic properties. These magnetic nanoparticles show 
amphoteric surface action, simple scattering capacity, and a high surface-to-volume 
ratio, affording high metal ion sorption capacity [344]. Magnetite nanoparticles are 
further stabilized by various organic/inorganic supports and then used in the sorp-
tion and photocatalytic degradation of environmental contaminants [345] (Fig. 10).

Song et  al. [346] exploited an iron oxide-activated persulfate system for the 
simultaneous removal of Cr(VI) and triclosan (TCS). The operation was based on 
the utilization the sulfate radicals  (SO4

·−) as efficient substances for the degradation 
of triclosan along with the removal of Cr(VI). At optimized conditions, the removal 

Fig. 10  Illustration of 2D magnetic iron oxide nanoparticles for heavy metal removal. Reproduced with 
permission [345],  Copyright 2019, Elsevier
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efficiency obtained for Cr(VI) removal was 99.5%, while 87.5% degradation of TCS 
was achieved. The possible mechanism was that Fe(II) from iron oxide activation 
of persulfate produces  SO4

·− radicals that react with water, producing  OH·. This 
hydroxyl radical will cause the degradation of triclosan. At the same time, Cr(VI) 
is sorbed on the surface of iron oxide, causing the reduction reaction of both Cr(VI) 
and Fe(II), resulting in the oxidation of iron to Fe(III) and reduction of chromium 
to Cr(III) [347]. The final forms of both Fe(III) and Cr(III) will co-precipitate on 
the iron oxide surface, forming Cr–Fe (oxy) hydroxide. This indicates the successful 
removal of both contaminants.

D’Cruz et al. [348] prepared iron oxide nanoparticles coated with activated car-
bon (AC-Fe3O4composite) as a potential sorbent for the removal of an antipsychotic 
drug, promazine, from wastewater. The results revealed complete removal of proma-
zine, wit sorption capacity of 101.1  mg/g, within a period of 6  min. This fastest 
and highest removal efficiency (99.9%) was attributed to the electrostatic interactive 
forces created between the sorbent and the sorbate. This mechanism was determined 
by optimizing the pH and creating a range of isoelectric points for the nanocompos-
ite and promazine. The studies revealed that below pH 9.3, the sorbent is positively 
charged, hence promoting attractive forces for the negatively charged promazine 
particles, exhibiting better sorption ability.

Magnaccaet al. [349] examined the efficiency of  Fe3O4 nanoparticles (NPs) 
coated with soluble bio-based products (SBO) as prospective sorbents for the 
removal of pollutants in wastewater. The biosorbent was prepared following the 
co-precipitation method [350], and the prepared particles had a diameter of 10 nm. 
CV dye was used as a target to check the sorption efficiency of the prepared SBO-
coated nanoparticles. The results showed greater efficiency, as the useful properties 
of both nanoparticles and a bio-based product were incorporated. NPs with different 
amounts of SBO were tested, and NP/0.5 demonstrated the highest sorption capacity 
of 85%. This was attributed to the fact that higher negative charges on the surface 
of NP/0.5 exhibited greater attraction towards the cationic CV dye, leading to better 
sorption at neutral pH.

Giri et  al. [351] prepared magnetic nanoparticles from waste iron ore tailings 
by co-precipitation of its aqueous acidic solution along with ferrous iron under an 
inert atmosphere. The prepared magnetic nanoparticles (MNPs) were utilized for 
the sorption of MB and Congo red (CR) dyes to evaluate the removal efficiency of 
the prepared MNPs. The MNPs showed greater sorption capacity of 70.4 mg/g and 
172.4 mg/g for MB and CR, and hence proved to be an excellent sorbent. The fast 
rate of sorption was ascribed to the absence of any internal diffusion, with the sorp-
tion occurring only on the surface of the MNPs. The sorption ability had a consider-
able influence on the pH of the medium, which followed different trends for the two 
dyes. The increase in pH results in a negative charge on the surface of the NPs, lead-
ing to enhanced sorption of the cationic dye (MB) and decreased sorption of anionic 
dye (CR). In contrast, increased sorption was observed at low pH for anionic dye 
due to the development of a positive charge at lower pH.
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5.1.3  Maghemite (γ‑Fe2O3) Nanoparticles

There are many reports of organic polymer-supported maghemite nanoparticles. 
Nanosized iron oxide particles are widely used in different industrial processes 
including the manufacture of semiconductors, recording materials, catalysts, and 
gas sensor materials [252]. Afkhami and Moosavi [352] prepared maghemite 
nanoparticles by a co-precipitation method and assessed the efficiency of the pre-
pared nanoparticles for the removal of CR dye. The highest sorption capacity was 
208.33 mg/g (pH ~ 5.9). The mechanism of greater sorption efficiency of the dye 
was explained based on the pH of zero-point charge,  pHzpc, where below  pHzpc, 
the surface of the sorbent is positively charged, making it available for the sorp-
tion of anionic dye. Additionally, CR and metal oxides develop a coordination 
effect, leading to sorption.

Behera et al. [353] studied the removal of hexavalent chromium based on sodium 
dodecyl sulfate (SDS)-modified maghemite nanoparticles. The highest removal effi-
ciency of 95.8% was obtained for chromium at a pH of 2.6. The study of the sorp-
tion of chromium at lower pH showed that, at lower pH, chromium exists in vari-
ous oxyanion forms including  H2CrO4,  HCrO4

−,  CrO4
2−, and  Cr2O7

2−. At lower pH 
values, the  H+ could be sorbed to  SO4

− ions of the SDS and form complexes with 
 Cr2O7

2− and  HCrO4
− through electrostatic interactions, indicating the removal of 

hexavalent chromium ions. Minisy et al. [354] prepared poly(p-phenylenediamine)/
maghemite (PPDA/γ-Fe2O3) composites by oxidative polymerization. The prepared 
sorbent exhibited excellent sorption capacity towards Reactive Black 5, an anionic 
dye. The highest sorption capacity obtained was 223 mg/g at the optimized work-
ing conditions. The positively charged PPDA-doped maghemite tends to attract the 
anionic Reactive Black 5 dye, promoting efficient sorption. The sorption mechanism 
tends to follow the electrostatic interaction along with the π-π stacking of the aro-
matic rings.

5.1.4  Hematite (α‑Fe2O3) Nanoparticles

Hematite nanoparticles can also be used as sorbents for the removal of various envi-
ronmental pollutants because of their properties such as stability at ambient con-
ditions and environmentally friendly n-type functional material and semiconductor 
[355]. Kefeniet al. [356] studied the synthesis of hematite nanoparticles and utilized 
them as sorbents for the removal of various metal ions from acid mine drainage 
(AMD) confirming the efficiency of these nanoparticles for wastewater remediation. 
The highest efficiency of up to 80% was achieved for the removal of various metal 
ions. The possible pathway for the removal of metal ions in the sorption and the for-
mation of various metal oxides on the surface of the hematite resulted in its removal. 
Saadet al. [357] reported a novel hematite@chitosan core/organic shell nanocom-
posite (HCS) to remove Pb(II), Cu(II), and Cd(II) ions from industrial wastewater. 
Both hematite nanoparticles and chitosan have unique sorption properties. Hema-
tite nanoparticles have a high surface area and high saturation magnetization, while 
chitosan is a naturally occurring polysaccharide and has excellent properties for the 
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sorption of metal ions by ion exchange as well as by coordination linkage mainly due 
to the presence of the –NH2 group in the chitosan matrix [358]. The highest sorption 
capacity obtained for Pb(II), Cu(II), and Cd(II) was 476.1 mg/g, 117.6 mg/g, and 
135.1 mg/g, respectively.

5.1.5  Titanium dioxide  (TiO2) Nanoparticles

Titanium dioxide  (TiO2) and zinc oxide (ZnO) are widely used for photocatalytic 
activity. Titanium dioxide is a photocatalyst that has been used in solar cells, paints, 
and coatings.  TiO2 in the anatase phase has been of particular interest due to its high 
oxidization power for organic contaminants, chemical stability, and low cost [359]. 
It is commercially used as a photocatalyst [360]. Supporting elements such as sand, 
glass, or zeolite enhance the separation efficiency of nanocrystalline  TiO2. Magnetic 
separation provides a very convenient approach for removing and recycling mag-
netic particles such as magnetite, ferrite, and barium ferrite by applying external 
magnetic fields. The incorporation of magnetic components into  TiO2 nanoparticle-
based catalysts may therefore enhance the separation and recovery of nanosized 
 TiO2 [361]. Photocatalysis appears to be a very efficient pretreatment process for 
wastewater streams containing organic matter.

Malakootian et  al. [362] analyzed the photocatalytic degradation efficiency of 
 TiO2 immobilized on the surface of a glass plate for ciprofloxacin. The benefit of 
using glass as a supporting agent for  TiO2 is to enhance the life span as well as the 
reusability of the catalyst. The degradation of ciprofloxacin begins with the produc-
tion of  e−/h+ pairs when an illumination source is provided (Fig. 11). These pairs 
of  e−/h+ cause the generation of hydroxyl radicals or other radicals by reaction 
with  H2O. These produced radicals act as oxidizing agents for the degradation of 
ciprofloxacin. Another possibility for the degradation of ciprofloxacin is the direct 
reaction of the produced holes with the ciprofloxacin. Additionally, the  e− tends to 
reduce ciprofloxacin or produce superoxide radicals  (O2

−·) that can mineralize the 
contaminants [363].

Fig. 11  A schematic explanation of UV irradiation for ciprofloxacin degradation on  TiO2 immobilized 
on the surface of a glass plate. Reproduced with permission [362]  Copyright 2020, Informa UK Limited
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5.2  Binary Metal Oxide Nanomaterials

One process that has drawn attention is the consumption of more than one metal 
in a combinational form to utilize the useful properties associated with each one of 
them promoting better results. Two or more metals incorporated as one compound 
are widely used for wastewater decontamination purposes due to the increased sur-
face area, parallel redox reactions/ion-exchange reactions, and reduced agglomera-
tion probability, eventually enhancing the sorption rate as well as the degradation 
rate as sorbents or photocatalysts, respectively [364]. Binary metal oxides generally 
represented as  M1/M2O are a continuation of this approach.

Mohanta et al. [365] studied the preparation of iron-zirconium binary oxide (IZO) 
as an efficient sorbent through the co-precipitation method. The prepared material 
had a surface area of 200.307  m2/g, which is sufficient for maximum sorption. The 
prepared sorbent was utilized for the removal of CR, an anionic dye, and showed 
greater efficiency, with sorption capacity of 171 mg/g. The removal of the dye was 
attributed to the electrostatic interactions and hydrogen bonding between the sorbate 
and sorbent molecules. Once the pH of the solution is decreased, the surface of the 
sorbent becomes positively charged and the  H+ concentration in the solution is quite 
high. This enables the convenient removal of the anionic dye, CR in this case.

Du et al. [366] performed phosphate ion removal by preparing a bimetallic nano-
composite, incorporating a binary metal oxide (La-Zr) into the porous structure of a 
polymeric anion exchanger (D201). The obtained La-Zr-D201 offers specific sorp-
tion of the phosphate ions through a ligand exchange strategy. The highest sorption 
capacity obtained by the prepared ion-exchanger was noted as 61.31  mg/g, while 
phosphate treatment capacity of 1350 BV was also obtained.

5.3  Ternary Metal Oxide Nanomaterials

Ternary metal oxide nanoparticles comprising three metals are also trending for 
the removal of the contaminants. Ghasemipour et al. [367] prepared ternary nano-
composites for the photocatalytic degradation of aniline by doping ZnO onto  MoS2, 
followed by grafting on reduced graphene oxide and carbon nanotubes. The cou-
pling of the transition metal sulfide inhibits the recombination of the charges, hence 
enhancing the photocatalytic activity. The incorporation of rGO and CNTs further 
enhances the catalytic activity. The results showed that at the optimized conditions, 
the photocatalytic activity of rGO10%/ZnO20%/MoS2 and CNT10%/ZnO20%/
MoS2 was 84% and 76%, respectively. The difference in the photocatalytic efficiency 
between the catalysts was attributed to the sorption efficiency of the prepared pho-
tocatalyst, which is greater for the rGO-modified photocatalyst than the modified 
CNTs due to their larger SBET values.

Eniola et  al. [368] also prepared binary and ternary metal hydroxides and uti-
lized them for the removal of an antibiotic, oxytetracycline. The binary and ter-
nary hydroxides were made using copper, aluminum, and manganese metals 
as binary CuAl-hydroxide, MnAl-hydroxide, and ternary CuMnAl-hydroxide. 
The sorption capacity of the prepared sorbents was in the decreasing order of 
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CuMnAl-hydroxide > CuAl-hydroxide > MnAl-hydroxide. The mechanism for the 
sorption of the antibiotic drug was attributed to the electrostatic interaction, hydro-
gen bonding, and anion exchange. FTIR studies were performed to confirm the sorp-
tion of OTC onto the surface of metal hydroxides and predicting the mechanism 
of sorption. The results showed a decrease in the band intensities and a change in 
position of the bands of the metal hydroxide after sorption as compared with before 
sorption material, predicting the electrostatic interaction between the OTC and MH. 
The OH band sharpness was considerably reduced indicating the presence of hydro-
gen bonding after sorption, while peaks of exchangeable ions such as  SO4

2− disap-
peared, indicating the anion exchange between the sorbent and the sorbate, confirm-
ing the sorption efficiency of the prepared materials. The highest sorption capacity 
possessed by the ternary hydroxide was found to be 250.07 mg/g.

5.4  Other Metal Oxide Nanoparticles

Apart from iron and titanium oxides, several other metal oxides have been exploited 
to date for the removal of various contaminants [369, 370]. These metal oxides 
exhibited greater contaminant removal properties based on the small size and higher 
surface-to-volume ratios. These metal oxides include ZnO [371], CuO [372],  Al2O3 
[373],  CeO2 [374],  SiO2 [375],PbO [376], and  SnO2 [377], to name a few.

Debnath and Mondal [378] followed a green approach for the synthesis of zinc 
oxide nanoparticles using leaf extracts of Hibiscus rosa-sinensis with the aim 
of reducing the cost and complexity associated with the commercial methods of 
nanoparticles preparation. ZnO has been frequently utilized as a potent photocata-
lyst based on its wide bandgap of 3.37  eV; hence, it could be used in UV [379]. 
At present, its sorptive properties have also been explored against various contami-
nants. Here, the prepared ZnO nanoparticles were used for the removal of CR dye. 
Removal efficiency of 95.5% was exhibited by the prepared ZnO nanoparticles for 
the removal of CR dye in 20 min contact time at a pH of 4. The possible mechanism 
of the sorption was explained based on electrostatic interaction forces between the 
ZnO and the azo group of the dye. The amine group of dye molecules may exhibit 
some attraction towards the ZnO nanoparticles, leading to efficient removal of the 
dye.

Rafique et al. [380] investigated the green synthesis of copper oxide nanoparticles 
by utilizing leaf extract of Citrofortunella microcarpa (Calamondin) for the efficient 
removal of RB. CuO exhibits a bandgap of 1.35 and 3.5 eV and has proved to be 
efficient semiconductors suitable for performing the photocatalytic degradation of 
wastewater contaminants [381]. The prepared CuO nanoparticles exhibited excellent 
efficiency, with photocatalytic degradation of RB dye up to 98% at the optimized 
conditions. The mechanism for the removal of dye through photocatalytic degrada-
tion is shown in Eqs. (1–8):

(1)CuO + h� → e−(CBCuO) + h+(VBCuO)

(2)2CuO + H
2
O + e− → 2Cu + 2OH−
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The radicals produced in the above reactions are mainly responsible for the 
degradation of the dye.

Zhang et  al. [382] studied the preparation of γ-Al2O3 nanoparticles through 
a hydrothermal process for the successful removal of anionic CR dye. The high-
est sorption capacity exhibited by the prepared sorbent for the removal of the CR 
dye was 465.82 mg/g. A comparison was made to evaluate the sorption capacity of 
the γ-Al2O3 nanoparticles by evaluating the sorption of other cationic dyes such as 
MB and malachite green. The results indicated that the sorbent demonstrated poor 
sorption capacity for the cationic dyes as compared to the CR. This was explained 
based on the presence of sulfonate groups on the surface of the CR dye in the form 
of  SO3

−, which gave rise to electrostatic interactions with the surface of the sorb-
ent dye, leading to efficient removal. Another factor involved in the removal of the 
dye is the presence of an amino group that promotes the hydrogen bonding with the 
hydroxyl group, leading to their strong interaction. Additionally, the azo bonds pre-
sent on the surface of the CR dye leads to the development of a hydrogen bond with 
the hydroxyl group. Hence, the sorption of dye is attributed to both the electrostatic 
and hydrogen bonding forces between the dye and the sorbent particles.

Liu et  al. [383] also synthesized cerium oxide nanoparticles laminated with 
lignin for the efficient removal of phosphate. The prepared L-NH2@Ce exhib-
ited a surface area of 89.8   m2/g and a pore volume of 0.23   cm3/g. The sorption 
capacity exhibited by the prepared sorbent was 27.86  mg/g. The exceptionally 
high sorption capacity was attained at mildly acidic conditions with pH 5. This 
might be because, in alkaline conditions, there is competition between  OH− and 
 PO4

3− ions for attaching to the surface of the sorbent, leading to reduced sorption 
of phosphate. Li et al. [384] fabricated an anion exchange resin D201, with nano-
sized hydrous zirconium oxide (HZrO) for successful removal of vanadium(V). 
Favorable sorption capacity of 118.1 mg/g was achieved for the removal of V(V), 
confirming the excellent capability of the prepared HZrO@D201HZrO@D201 
sorbent. The removal of the contaminant was attributed to the nonspecific ion 
exchange and electrostatic interactions between the resin and the V(V). The resin 
incorporated in the prepared sorbent is a macroporous anionic resin that can 
attract negatively charged ions, while the zirconium lamination exhibits a positive 

(3)2CuO + 2OH−
→ 2CuO + H

2
O + 2e−

(4)e−(CBCuO) + h+(VBCuO) → recombination

(5)e− + O
2
→ O−

2
+ H

2
O → OH

2∙ + OH−

(6)h
+ + OH−

→ OH⋅

(7)OH⋅ + RhBdye → degradation products

(8)h+ + dye → dyeoxidation → degradation
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charge, which also promotes the negative charge attraction through electrostatic 
interaction at high pH, thus promoting the sorption of V(V) (Table 4).

6  Functionalized Metal Selenide Nanomaterials

Metal selenides belong to a class of semiconductor nanostructures called chal-
cogenides. Over the past decade, metal selenide nanostructures have taken nano-
technology to the next level [452]. The remarkable features of metal selenide 
nanoparticles include their surface-to-volume ratios, optical and field emission 
properties, and photocatalytic activity. Based on these properties, metal sele-
nides are being exploited in various fields including field-effect transistors [453], 
light-emitting diodes (LED) [454], solar cells [455], and wastewater remediation 
[456]. The commonly utilized metal selenides include ZnSe [457], CdSe [458], 
SnSe [459], PbSe [460],  FeSe2 [461], CuSe [462], and CdTe [463].

Ghaedi et  al. [464] explored the preparation of cadmium selenide nano-
particles loaded on activated carbon (CdSe-NP-AC), utilized for the success-
ful removal of muroxide (MO) from aqueous solution. Sorption capacity of 
333  mg/g was achieved at the optimized experimental conditions. Sharifpour 
et al. [465] studied the preparation of starch-capped zinc selenide nanoparticles 
loaded on an activated carbon (ST-Zn-Se-NPs-AC) composite, which was used 
for the removal of basic fuchsin (BF) dye. The prepared composite demonstrated 
high removal efficiency, with sorption capacity of 222.72 mg/g at the optimized 
operating conditions.

6.1  Binary Metal Selenide Nanomaterials

The binary metal selenides incorporate two metals in the form of selenides, pro-
viding a composite suitable for water remediation applications. Ali et al. [466] 
studied the photocatalytic performance of prepared chitosan-bismuth cobalt 
selenide hybrid microspheres for the removal of CR dye. The prepared selenide 
tri-composite had a narrow bandgap of 2.48  eV, while the average size of the 
microspheres was found to be 734 µm.

The prepared BCSN-CM photocatalyst showed an excellent removal percent-
age of 85% for the CR dye at the optimized conditions and was successfully 
reused for up to five successive cycles. The idea of utilizing chitosan as a cap-
ping agent for the metal selenides nanoparticles was to avoid the leaching of 
the catalyst. The mechanism of the degradation of the CR dye was based on the 
redox reactions taking place on the surface of the catalyst, and most of the deg-
radation was associated with the production of ·OH and  O2

·− radicals according 
to the typical photocatalytic mechanism. Altaf et al. [467] explored binary tran-
sition metal selenide  (V3Se4),  (Nb2Se3,  Nb2Se9), and  (TaSe3,  Ta2Se3) preparation 
through the hydrothermal method. The prepared catalyst was used for the pho-
tocatalytic degradation of MB. The prepared photocatalyst had wider bandgap 
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energy of 3.87, 3.82, and 3.95 eV, respectively, for each semiconductor photo-
catalyst. Degradation efficiency of up to 90% was obtained. Figure 12 explains 
both the synthesis and photocatalytic activity of binary transition metal sele-
nides  (V3Se4),  (Nb2Se3,  Nb2Se9), and  (TaSe3,  Ta2Se3).

6.2  Ternary Metal Selenides

Attention has recently been focused on the incorporation of multiple metals for the 
design of ternary metal selenides. The idea of designing ternary metal selenides pro-
vided the opportunity to incorporate different metals for achieving better and refined 
results. Nisar et  al. [468] prepared ternary metal selenide/chitosan microspheres and 
utilized them for evacuating Alizarin Red S dye. The prepared TMS-CMs were mor-
phologically found to have an average diameter of 33 nm. The prepared photocatalyst 
had a bandgap of 1.8 eV and presented excellent photocatalytic degradation with effi-
ciency of up to 95.4%. The reaction followed a first-order kinetics model (Table 5).

Fig. 12  Schematic illustration of the metal selenide and their photocatalytic activity. Reproduced with 
permission [467],  Copyright 2020, Springer Nature
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7  Functionalized Metal Sulfides Nanomaterials

Another diverse class of NMs consists of metal sulfides, which exist in nature in the 
form of minerals. They are cheap, abundant, and easily available entities, and hence 
are widely used by researchers in the various fields. Functionalization of the metal 
sulfides further enhances their ability, making them suitable for use in the field of 
environmental remediation [487].

7.1  Single Metal Sulfide Nanoparticles

The majority of metal sulfides have been used to date based on their useful proper-
ties. Some of the commonly utilized ones include  FeS2 [488], CoS [489], CuS [490], 
 Ag2S [491], ZnS [492], and  Bi2S3 [493].Wang et al. [494] prepared tin sulfide using 
 Sn2+ as a tin source, an oxidizer  (H2O2), a sulfur source (l-cysteine) to form  SnS2 
nanosheets with a 10 nm thickness. The prepared nanosheets were used for the sorp-
tive removal of RB dye and showed excellent efficiency with a sorption capacity of 
200 mg/g. The greater sorption rate was achieved for the removal of RB dye through 
electrostatic interactions formed between the cationic dye and the negatively charged 
surface of the sorbent. The decreased sorption with time was attributed to the cover-
ing of the active sites by the dye molecules resulting in repulsion instead of attrac-
tion leading to decreased sorption.

Mishra et al. [495] developed ferrous sulfide (FeS) and carboxyl-functionalized 
ferroferric oxide (CFFO) nanoparticles, which were introduced into the polyvi-
nylidene fluoride (PVDF) matrix (individually/mixed in an optimal ratio) follow-
ing the phase inversion technique. The morphological evidence showed that both 
FeS and CFFO nanoparticles had a surface area of 7.22 and 89.2m2/g respectively, 
while the pore volume was recorded to be 0.382 and 0.031cm3/g. The prepared FeS/
CFFO/PVDF membrane was then utilized for the removal of heavy metal ions par-
ticularly Pb, Cd, Cr, and As the obtained removal efficiency for the said metal ions 
was 88% for Cr(VI), 99% for  Cd2+, 99% for  Pb2+ and 95% for As(Fig. 13).

Sun et al. [496] prepared nanoscale FeS-Fe3O4 nanocomposites using chitosan as 
a stabilizer (CTO-MFeS). The as-synthesized nanocomposite had a size of 20 nm, 
while the specific surface area was recorded to be 21.3m2/g. The CTO-MFeS were 
used for the removal of  Hg2+ ions based on the sorption as well as the precipitation 
phenomena. The highest sorption capacity obtained for the removal of mercury ions 
was noted to be 72.34 ± 3.18 mg/g.

7.2  Binary Metal Sulfide Nanomaterials

Binary metal sulfides are also trending based on the idea of fusing the properties 
of both the metals being used, enhancing the activity of the tailored material. 
Yu et al. [497] prepared strontium titanate/binary metal sulfide  (SrTiO3/SnCoS4) 
heterostructure through a two-step hydrothermal method. The efficiency of the 
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prepared nanocomposite was checked by performing the photocatalytic degrada-
tion of methyl orange dye under visible light. The results showed 95% degrada-
tion confirming the potential of the photocatalyst for environmental remediation 
purposes.

Kalpana and Selvaraj [498] developed novel ZnS/SnS/A-FA nanorods by provid-
ing pristine reactants(fly ash as supporting material, zinc nitrate hexahydrate, stan-
nous chloride dihydrate, and sodium sulfide) at ambient temperature. According to 
the Brunauer–Emmett–Teller (BET) analysis, the ZnS/SnS/A-FA nanorods have a 
specific surface area of 93.73  m2/g. The prepared ZnS/SnS/A-FA nanorods were 
used for the photocatalytic degradation of CR dye. The results obtained confirmed 
the removal efficiency of about 90% by the prepared nanorods (Table 6).

8  Functionalized Zero‑Valent Metal Nanomaterials

The oxidation state of the metal in the nanoparticles is a key factor for predicting 
the efficiency of the material. Apart from the oxides and hydroxides of the met-
als, lower-oxidation-state metal nanoparticles in their pristine state have also been 
proved to be efficient scavengers of wastewater contaminants. Such metals are gen-
erally found in their zero-valent states and are represented as zero-valent nanometals 
(ZVNMs). Nanoscale elemental metals have been massively utilized for their unique 
properties. One such example is zero-valent iron nanoparticles. The zero-valent iron 
nanoparticles tend to be more powerful reducing agents and have been exploited for 
the removal of various contaminants to date [523].

Fig. 13  Schematic explanation of the removal of toxic heavy metal from wastewater through PVDF-
based nanocomposite membranes. Reproduced with permission [495],  Copyright 2020, Elsevier
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8.1  Transition Metal/d‑Block Nanomaterials

Among the NMs, transition metal nanoparticles have emerged as a promising choice 
based on their superlative properties. The availability of literature on the utiliza-
tion of transition metal nanoparticles confirms their efficiency as catalysts. Shi et al. 
[524] prepared bentonite-supported zero-valent iron nanoparticles by the liquid-
phase reduction method. The prepared material was used for the efficient removal 
of Cr(VI) with sorption efficiency of 90%. Increased sorption of chromium was 
observed at pH 2, which was explained based on the fact that nZVI corrosion is 
enhanced at lower pH, diminishing the precipitation of Cr(III) and Fe(III) hydrox-
ides on the iron surface and thus accelerating the sorption process.

Ali and Khan [525] focused on exploiting multiple zero-valent metals including 
Ni, Cu, and Ag MNPs, loaded onto the surface of sodium polyacrylate (water ball) 
for catalytic degradation of contaminants. The idea of preparation was to first sorb 
the metal particles on polymer support and then convert them into their zero-valent 
state by a reducing agent. The water ball is considered a superabsorbent; i.e., it has 
the capacity for absorbing material greater than its weight. The prepared substance 
was used for the removal of 4-nitrophenol (4-NP), 4-aminophenol (4-AP), methyl 
orange (MO), CR, and MB dyes. The 4-NP was reduced with the addition of  NaBH4 
along with the addition of the catalyst. A redshift in the peak from 318 to 400 nm 
of 4-nitrophenol was observed with the addition of  NaBH4. This was attributed to 
the conjugation when the OH proton of phenol forms the phenolate anion by the 
activity of  NaBH4 and the negative charge needs a more electronegative atom to 
reside on. This is the reason the negative charge is delocalized on the oxygen atom 
more than the lone pair of electrons of OH and the wavelength shift towards a longer 
side. The same is the case for 4-AP, which is also reduced by the addition of both 
 NaBH4 and the catalyst. The removal of anionic dyes up to 98% was observed by the 
addition of the catalysts. The results showed that the catalyst is the necessary coun-
terpart of  NaBH4 for better removal of the contaminants, leading to environmental 
remediation.

Devi et al. [526] studied the efficiency of plasmonic metal nanoparticles includ-
ing Ag and Au nanoparticles for the photocatalytic degradation of harmful dyes 
malachite green (MG) and MB (Fig. 14). The noble metal nanoparticles were pre-
pared using a green approach with extracts of Hydrocotyle asiatica as a reducing 
and stabilizing agent. Firstly, the degradation of MB was performed in the dark 
using the catalyst followed by solar irradiation in the presence of the catalyst. The 
results showed that 57% degradation was obtained with no light, and no prominent 
shift in the wavelength was observed. However, the solar irradiation enhanced the 
degradation rate to 94%, with a blueshift in wavelength from 617 to 570 nm. No 
additional peaks were observed, which confirmed that no leuco forms of the dye 
were formed [527]. In the case of MG, a different behavior was observed due to the 
different nature of the dye. It is known that MG exists in multiple forms at different 
pH including chromatic  MG+ at pH 3–5, protonated  MGH+ at pH 2, and a colorless 
carbinol base at pH above 8, all forms having different lambda max. By considering 
the effect of pH, the reaction was carried out at different pH and the results indicated 
a shift of wavelength from 617 to 570 nm with the removal of the dye under solar 
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irradiation [528]. The mechanism of the degradation process was explained based on 
hot electron production on the surface of the Ag nanoparticles by the intraband tran-
sition of electrons [529]. The green synthesis of Ag nanoparticles leads to the pro-
duction of negatively charged surface nanoparticles with zeta potential −34.9 mV. 
Thus, the cationic dyes can sorb onto its surface through electrostatic interaction, 
while the electrons may degrade the dyes into simpler products. The blueshift in 
the lambda max is rendered to the N-demethylated intermediates formed during the 
degradation of dyes. The auxochromic groups are removed, decreasing the intensity 
of the peaks. It was concluded that the whole mechanism of degradation of dyes fol-
lows the demethylation pathway [530].

Shojaei et al. [531] exploited the sorption capacity of zero-valent iron nanopar-
ticles for the removal of Direct Red 81. The results were analyzed by applying the 
statistical analysis and the effect of various factors on the removal of the dye was 
considered. It was found that the highest removal was achieved at weakly acidic pH, 
because, in the weakly acidic range, the zero-valent iron performs well. Lin et al. 
[532] prepared Fe nanoparticles by a green in situ synthesis method. The prepared 
iron nanoparticles were utilized for the concurrent removal of  Pb2+ and rifampicin 
and the results showed that removal efficiency of the prepared nanoparticles was 
obtained to be 100% and 91.6% for  Pb2+ and rifampicin, respectively. The Fe nano-
particles were prepared to utilize the Euphorbia cochinchinensis leaf extract. The 
polyphenols and caffeine present in the leaf extracts assisted as a reducing agent 
as well as a capping agent for the prepared Fe nanoparticles thus inhibiting the 
agglomeration probability. Two possible strategies were build-up for explaining the 

Fig. 14  The synthesis and application of sludge-based new adsorbents for the decontamination of waste-
water. Reproduced with permission [526],  Copyright 2016, Springer Nature
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simultaneous removal of  Pb2+ and rifampicin.  Pb2+ ions tend to sorb onto the sur-
face of the Fe nanoparticles based solely on the sorption activity of the Fe nanopar-
ticles, while the rifampicin interacted positively with the functional groups present 
on the surface of the nanoparticles.

8.2  Normal/p‑Block, s‑Block Nanomaterials

In addition to the great variety of transition metal-based ZVNMs, those of s- and 
p-block elements in particular have also been utilized for their applicability as 
ZVNMs for the removal of contaminants from wastewater bodies. The greater uti-
lization of ZVNMs is because they offer more advantages than the limitations of 
their use [533]. Lin and Lin [534] designed zero-valent aluminum (ZVAl) nano-
particles via washing of the Al with acids. The finally obtained ZVAl was used for 
the removal of bromate ions from the water. The removal was partially based on 
the reduction of bromate to bromide and partial sorption of the bromated ions on 
the surface of the ZVAl. The results showed complete removal of bromated from 
78.1 μmol/L solutions at the optimized operating conditions.

Fu et  al. [535] prepared a bimetallic material based on aluminum and iron as 
(Fe/Al) bimetallic particles for the removal of Cr(VI). The morphological studies 
showed that in the bimetallic particles, iron was deposited onto the surface of the 
aluminum. The removal efficiency for Cr(VI) was noted as 93.5%, and it was attrib-
uted to the high surface area of the bimetallic nanoparticles. Pouretedal et al. [536] 
prepared zero-valent tin nanoparticles using a reducing agent and utilized them for 
the photocatalytic degradation of MB dye. The obtained zero-valent tin (ZVT) nano-
particles presented the highest degradation of > 95% of MB at the optimized condi-
tions of operation. The zero-valent Sn is a strong reducing agent in basic solutions 
with Eo = −0.91 and −0.93 V. Furthermore, the most important factor influencing 
kapp is the surface area of the zero-valent metal, which acts as a strong reducing 
agent in the basic solutions, thereby reducing the MB dye (Table 7).

9  Functionalized Metal Hydroxide Nanomaterials

Metal hydroxides can be categorized as strong bases composed of hydroxide ions 
and the respective metal ions. The metal hydroxides have recently captured the 
attention of researchers for their exceptionally attractive properties including high 
conductivity, thermal and mechanical stability, and flammability [560]. Advanced 
innovation in this respect is the layered double hydroxides, which offer more refined 
properties including negligible toxicity, high anionic exchange capacity, and pH-
dependent solubility, making them a good choice for environmental restoration pur-
poses [561, 562].

Nie et  al. [563] designed a photocatalyst by the combination of Ca(OH)2 and 
peroxymonosulfate (PMS). The prepared Ca(OH)2/PMS catalyst was used for the 
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photocatalytic degradation of bisphenol A and phosphate ions simultaneously. The 
proposed pathway given for the removal of BPA and P showed that superoxide rad-
ical  (O2

−) and singlet oxygen (1O2) rather than sulfate  (SO4
·−) or hydroxyl  (HO·) 

were the predominant ROS responsible for the degradation of contaminants. The 
results showed 89.5% BPA and 98.9% P degradation.

Lee et  al. [564] developed rice husk (RH)-derived biochar functionalized with 
Mg/Al-calcined layered double hydroxides (RHB/MgAl-CLDHs) via the co-pyrol-
ysis of MgAl-LDH preloaded RH. The designed RHB/MgAl-CLDHs were used as 
a sorbent for the successful removal of phosphate from an aqueous solution. The 
results showed phosphate removal efficiency of up to 97.6% by the prepared sorbent. 
The obtained results were achieved with the pseudo-second-order model and Sips 
model, respectively, revealing chemisorption. Koilraj et al. [565] attempted to pre-
pare arginine/lysine-functionalized MgAl LDHs through a one-pot synthesis strat-
egy. The prepared material was used as a sorbent for the removal of  Co2+ ions. The 
results presented the highest sorption capacity of 1.159 and 1.170 mmol/g for the 
LDHs functionalized with lysine and arginine, respectively. The  Co2+ ions sorption 
was justified based on the fact that the amino functionalization of the layered double 
hydroxides tends to form a chelation complex, thereby enhancing the ability for take-
up of  Co2+ ions. The fact that  Co2+ ions form diamine-like coordination increases its 
sorption capacity compared with other metal ions. Sadeghalvad et al. [566] tailored 
a sorbent by loading metal double hydroxides onto the surface of waste rock of iron 
ore mine (metasomatic rocks) for the removal of sulfate ions. The mechanistic stud-
ies confirmed the monolayered chemisorption with the combination of the film-mass 
transfer and internal diffusion. The maximum sorption capacity obtained was 41.43 
and 53.07 mg/g for Mg–Al and Ni–Al metasomatic, respectively (Table 8).

10  Functionalized Silsesquioxane‑Based (Silica‑Based) 
Nanomaterials as Sorbents for Contaminant Removal

Other NMs worth mentioning are silica-based NMs (SNMs), also termed silsesqui-
oxane-based NMs with respect to the siloxane rings incorporated in the framework 
of the NMs. SNMs are obtained by applying high temperature to the silica, accumu-
lating the siloxane rings in the multiple-structured NMs [590]. These NMs are used 
in various fields due to their extraordinary properties including cytotoxicity, high 
porosity, high mechanical strength, cost-effectiveness, and biocompatibility [591]. 
The fabrication of SNMs with additional functionalities resulting in one-, two-, and 
three-dimensional structures governs its mechanical strength, enhancing the activity 
of the FSNMs.

Araghi and Entezari [592] designed amino-functionalized silica magnetite nano-
particles (A-S-MNPs) by the coating of sono-synthesized magnetite nanoparticles 
(MNPs) in a basic medium by  SiO2. The obtained silica MNPs were then further 
modified with 3-aminpropyltriethoxysilane (APTES). The estimated particle size 
of the prepared nanocomposite was 25  nm. The prepared material was then used 
for the sorptive removal of Reactive Black 5 (RB5) and sodium dodecylbenzenesul-
fonate (SDBS). The results showed sorption efficiency of 83.33 and 62.5 mg/g for 
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RB5 and SDBS, respectively. Mahmudi et al. [593] prepared dendritic fibrous nano-
silica-grafted d-penicillamine. The prepared dPA-DFNS-NH2 had a surface area of 
78.2m2/g, pore volume of 0.13cm3/g, and average pore size of 6.7 nm. The prepared 
material was used as an efficient sorbent for the removal of heavy metals  Co2+,  Ni2+, 
 Ag+, and  Pb2+from water samples, with complete removal efficiency. Wang et  al. 
[594] prepared silica nanotubes through an electrospinning and calcination process 
followed by their modification by sym-diphenylcarbazide (SD-SNTs). The prepared 
composite was used as an effective sorbent for the removal of Pb(II). The surface 
functionalization conspicuously enhanced the sorptive efficiency of the material due 
to the increased possibility for chelation between the imino groups and lead ions 
(Table 9).

11  Quantum Dots, a New‑Fashioned Approach for Utilizing 
Nanomaterials in Wastewater Contamination

Quantum dots (QDs) can be described as semiconductor nanoparticles having size- 
and composition-dependent electronic and optical properties (optoelectronic proper-
ties). The quantum dots are manmade nanoscale crystals that have the tendency to 
transport electrons [611]. The QDs, nanoparticles of semiconductor materials, are 
ultra-small, with a size range of 1.5–10 nm. When the size of semiconductors is this 
small, quantum effects are initiated, limiting the energies at which the electrons and 
holes (in the absence of  e−) can exist in particles. As there is a relationship between 
energy and wavelength, the optical properties of the particle can be tuned depend-
ing on its size [612, 613]. Thus the particles can emit or absorb certain wavelengths 
of light by controlling their size. QDs have been found to possess unique properties 
including high extinction coefficient and brightness, photo-stability, size-dependent 
optical properties, and large Stokes shift. Based on the unique chemistry and proper-
ties of QDs, they have been used extensively in the fields of electronics, catalysis, 
medicine, imaging, sensing, and information storage, among others [614]. In this 
section of the paper, we will discuss QDs of different materials and their applicabil-
ity with respect to environmental remediation.

11.1  Graphene QDs

Graphene QDs can be described as small fragments of graphene in which electronic 
transport is observed in all three spatial dimensions. Graphene semiconductor mate-
rial has a zero bandgap and possesses an infinite exciton Bohr diameter. The con-
finement can be seen in any of the fragments, but the GQDs possess dimensions 
in the size range below 20 nm [615]. The GQDs are usually prepared by the cut-
ting or fragmentation of the graphene sheets through the top-down approach. The 
most attractive properties of the GQDs include their abundant presence, low tox-
icity, solubility in a variety of solvents, and capacity for further functionalization. 
These properties enhance the applicability of the GQDs in various fields [616]. Kaur 
et al. [617] prepared nitrogen-doped graphene quantum dots through a cost-effective 
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thermal pyrolysis process [618]. The N-GQDs exhibited excellent fluorescence with 
a maximum fluorescence at 440 nm. The prepared chemosensor was analyzed for 
its selectivity towards the analyte of interest (TNT) by treating it with a mixture of 
nitro-substituted phenols, metal ions, and other aromatics. The results showed that 
the fluorescence spectrum of the N-GQDs was greatly quenched as trinitrotoluene 
was added to the system, while the rest of the aromatics had little or no effect at all 
on the fluorescence spectrum. These results confirmed the specificity and the sen-
sitivity of the prepared QDs for the detection of TNT. The mechanistic pathway for 
the quenching between N-GQDs and TNT was explained based on the fact that a 
spectral overlap was developed between the emission spectrum of N-GQDs and the 
absorption spectrum of TNT, according to the fluorescence resonance energy trans-
fer (FRET) mechanism, leading to quenching. Another possibility is that an elec-
trostatic interactive force was developed between the OH end of TNT,  NH2-group, 
and pyridinic nitrogen of the N-GQDs, eventually resulting in quenching [619]. The 
excessive presence of TNT led to a redshift in the emission peak due to the high 
acidity of TNT relative to other contaminants, leading to the formation of a non-flu-
orescent complex, thus resulting in quenching [620]. These prepared N-GQDs were 
used as a probe sensor for the detection of an explosive, trinitrotoluene (TNT), and 
showed excellent efficiency.

Qu et al. [621] also prepared a composite of  TiO2 nanotubes decorated with gra-
phene quantum dots (GQDs/TiO2 NT composites) that exhibits greater photolumi-
nescence quantum yield, leading to excellent optical properties and thus making it 
a useful photocatalyst. The prepared photocatalyst was used for exploiting its photo-
catalytic activity for the degradation of MO dye under a UV–Vis irradiation source. 
The greatest efficiency of 94.64% in 20 min was obtained, which was attributed to 
the broadened visible light absorption and enhanced photocatalytic activity of the 
prepared composite. The mechanism for the degradation of MO was explained by 
the fact that incorporation of GQDs with  TiO2 led to enhanced absorption ability of 
 TiO2 in the visible range, due to the π-state combination of the GQDs and the CB 
of  TiO2. Upon photogeneration of electrons from the  TiO2, the GQDs come forward 
to capture these electrons, ensuring the separation of  e−/h+ pairs [622]. The up-con-
version photoluminescence properties of GQDs cause the conversion of longer irra-
diation wavelength into a shorter one, and the presence of oxygen on the surface of 
GQDs captures electrons and oxygen radicals, which then eventually cause the oxi-
dation of MO dye. In addition, holes on the surface of  TiO2 cause the production of 
hydroxyl radicals, which completes the degradation of MO into simpler compounds 
[623].

11.2  Carbon QDs

Another huge class of QDs is carbon quantum dots (CQDs) or fluorescent carbon 
nanoparticles. CQDs generally exist in quasi-spherical nanoparticle form. They 
consist of an amorphous to nanocrystalline core of graphitic or turbostratic carbon 
 (sp2 carbon) [624]. Another possibility is the presence of graphene and graphene 
oxide sheets fused together by diamond-like  sp3-hybridized carbon insertions. The 
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oxidized form of CQDs contains many carboxyl moieties on its surface. The car-
boxyl moieties may impart a solubility factor to the CQDs and also provide suit-
able chemically reactive groups which help in further functionalization and surface 
passivation. Surface passivation using groups such as inorganic, organic, or poly-
mer materials will further enhance the fluorescence properties and solubility of the 
CQDs [625]. Saud et al. [626] prepared carbon quantum dot/titanium dioxide nano-
composite (CQD/TiO2) nanofibers by a hydrothermal method [627]. The prepared 
nanocomposite was utilized to evaluate its efficiency for the photocatalytic degrada-
tion of MB under visible light irradiation and antibacterial activity against Escheri-
chia coli.  TiO2 is known to have excellent photocatalytic properties under UV-irra-
diation, and the incorporation of CQDs will enhance its photocatalytic efficiency by 
decreasing the wavelength, promoting the production of electrons in a wider range 
of visible irradiation. The CQDs act as a sink for capturing the produced electrons 
and their mobilization. The CQD/TiO2exhibited complete degradation of the MB 
dye in 20 min with an additional property of the reusability of the photocatalyst for 
up to three cycles. The efficiency was slightly reduced for the third run due to the 
covering of the active sites of the catalyst, hence minimizing their availability for the 
photocatalytic operation.

Muthulingam et  al. [628] prepared carbon quantum dots/nitrogen-doped ZnO 
composites by a simple one-step method, which were utilized for the photocatalytic 
degradation of commercial dyes including malachite green, MB, and fluorescein. 
The obtained results showed that the CQD/N-ZnO photocatalyst exhibited 100% 
removal efficiency for the malachite green in 30 min irradiation under visible light 
(Fig. 15). For MB, it took 45 min to completely degrade the dye, while in the case 

Fig. 15  Schematic explanation, experimental setup, and mechanism of CQD/N-ZnO on dyes under natu-
ral daylight irradiation. Reproduced with permission [628],  Copyright 2015, Elsevier
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of fluorescein, 95% was obtained in 15 min of daylight exposure. The excellent deg-
radation efficiency exhibited by CQD/N-ZnO was attributed to the combined fea-
tures of the CQDs and ZnO, and inhibition of the recombination of photogenerated 
electron/hole pairs due to the CQD and nitrogen doping of the ZnO [629]. Once 
the energy equal to or higher than the bandgap of the photocatalyst is achieved, the 
photogeneration of electron/hole pairs indicates the beginning of the process. The 
π-electronic interaction of the carbon with the CB of the ZnO photocatalyst leads to 
the up-converting property of the QDs, leading to the high absorption of light in a 
wider wavelength range. A larger number of holes created near the VB of the ZnO 
may cause the production of radicals, eventually leading to maximal degradation 
efficiency. The electrons trapped in the CQDs initiate the production of superox-
ide radicals, while the combination of holes with water molecules tends to produce 
hydroxyl radicals. These powerful radicals lead to a combinational approach towards 
the degradation of dye into simpler and less toxic compounds [630].

11.3  Metal Oxide QDs

Many metal oxide-based quantum dots have been prepared to date to take advan-
tage of their useful properties including optical activity, stability, and conductiv-
ity. One significant example is titanium oxide QDs.  TiO2 has been widely studied 
since the discovery of its photocatalytic water-splitting ability, owing to its desir-
able properties such as nonhazardous nature, stability, ease of availability, wider 
bandgap(Ebg = 3.2  eV for anatase phase), and cost-effectiveness [631]. Gnana-
sekaranet al. [632] prepared  TiO2 quantum dots by the sol–gel method [633], and 
the efficiency of the prepared material was checked by photocatalytic degradation 
of MO and MB. The bandgap obtained for the prepared  TiO2 QDs was 3.79 eV in 
the UV region. Degradation efficiency of 97% was obtained for both MO and MB in 
80 min. The UV light irradiation to the mixture of dye and photocatalyst produces 
electrons in the CB and in the VB of the photocatalyst. The electrons react with 
oxygen, producing(oxidation) radicals, while the holes react with water(reduction) 
producing radicals [634]. The combined radicals cause the degradation of dyes into 
simpler nontoxic compounds completing the process. Kaur et  al. [635] prepared 
a composite of  Ag2O/TiO2 quantum dots (QDs)thus enhancing the photocatalytic 
efficiency of the bare  TiO2 QDs. The prepared QDs had a spherical shape with a 
size of 2–9 nm. The prepared photocatalyst was utilized for the degradation of the 
fluoroquinolone levofloxacin drug. The excellent photocatalytic efficiency is attrib-
uted to the separation of the produced electron/hole pairs due to the enhanced light 
absorption property due to the incorporation of  Ag2O with  TiO2 QDs. The results 
showed 81% removal of levofloxacin drug utilizing the QDs in 90 min. The removal 
efficiency was attained based on the sorption as well as the photocatalytic activity of 
the QDs. The main photocatalytic species involved are the holes, electrons, 1O2, and 
·OH. Soodet al. [636] also prepared  TiO2 quantum dots using the sol–gel method 
[633] and performed photocatalytic degradation of indigo carmine dye. The unique 
characteristics properties of  TiO2 led to the maximum degradation of the said dye 
making it an attractive process for the removal of the contaminants. The results 
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indicated that 95% of dye degradation was obtained in 60 min of the photocatalytic 
process in acidic pH at 25 °C (Table 10).

11.4  Metal Sulfide QDs

Metal sulfides constitute a distinct class of quantum dots. Upgraded metal sulfide 
QDs have proved to be more effective in their respective activity based on their 
advanced properties than their simple sums. Rajabi et al. [637] performed a com-
parative study to evaluate the photocatalytic efficiency of functionalized ZnS QDs 
and iron oxide  (Fe3O4) MNPs for the removal of Victoria blue R dye. Both pho-
tocatalysts were prepared by a simple chemical precipitation method, while the 
surface modification was performed using 2-mercaptoethanol and sodium dodecyl 
sulfate. The particle size calculated for the ZnS QDs and the MNPs was 1–3  nm 
and 50–80  nm, respectively. The results obtained showed 95% and 65% removal 
efficiency for MNPs and QDs, respectively. Zinc sulfide quantum dots doped with 
Fe(III) were prepared for the removal of methyl violet [638]. The bandgap calcu-
lated for the prepared photocatalyst was > 4.58. About 98.8% decolorization was 
obtained using the prepared photocatalyst, showing the extraordinary activity of the 
doped photocatalyst.

12  Miscellaneous Functionalized Nanomaterials

Apart from the FNMs discussed above, several other NMs have demonstrated attrac-
tive properties, such as dendrimers [697], nanoclays [698], ceramics [699], and 
mesoporous materials [700]. Sohail et al. [701] studied the preparation of polyam-
idoamine (PAMAM) dendrimers for the removal of nickel ions. Dendrimers have 
special qualities including radial symmetry and homogeneity, having a monodis-
perse and well-defined structure, with tree-like branches characterized by terminal 
poly-functionality. The dendrimers were synthesized using the divergent method, by 
initiating at the core, leading towards the periphery following two basic operations. 
The first one is the coupling of the monomer, while in the second step the de-pro-
tection/transformation of the monomer end group occurs. It creates a new reactive 
surface functionality that couples a new monomer in a similar way as that of the 
solid-phase synthesis of peptides or oligonucleotides. A particle size of 827 nm was 
found for the prepared zero-generation dendrimer, and the sorption capacity for the 
prepared material was 98.6 mg/g.

Hayati et al. [702] studied the efficiency of a poly(propylene imine) (PPI) den-
drimer against the decantation of Direct Red 80 (DR80) and Acid Green 25 (AG25) 
dyes. Maximum removal efficiency was obtained for the removal of both dyes. Anal-
ysis of the data showed that the sorption results best fitted the Langmuir isotherm, 
which predicts the monolayer sorption of the dyes onto the dendrimer surface.

Almasri et  al. [703] studied the preparation of hydroxyl iron-modified mont-
morillonite (HyFe-MMT) nanoclay through the wet chemical synthesis method. 
The prepared HyFe-MMT nanoclay was used for the removal of arsenite(III). The 



 Topics in Current Chemistry (2022) 380: 44

1 3

44 Page 70 of 113

Ta
bl

e 
10

  
Q

ua
nt

um
 d

ot
-b

as
ed

 n
an

om
at

er
ia

l i
n 

w
as

te
w

at
er

 re
m

ed
ia

tio
n

N
an

om
at

er
ia

l
C

on
ta

m
in

an
t

M
ec

ha
ni

sm
So

rp
tio

n/
ca

ta
ly

tic
 

ca
pa

ci
ty

C
on

di
tio

ns
 st

ud
ie

d
C

yc
le

s
Re

fe
re

nc
es

pH
Ti

m
e

Te
m

p 
°C

C
ar

bo
n 

qu
an

tu
m

 d
ot

s a
nd

 re
du

ce
d 

gr
ap

he
ne

 
ox

id
e 

la
ye

rs
-m

od
ifi

ed
 S

@
g-

C
3N

4/B
@

g-
C

3N
4 (

C
R

SB
) p

ho
to

ca
ta

ly
st

C
hl

or
am

ph
en

ic
ol

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
92

.4
%

6
12

0
30

5
[6

39
]

G
ra

ph
en

e 
qu

an
tu

m
 d

ot
s-

Zn
O

 n
an

oc
om

po
si

te
s

M
et

hy
le

ne
 b

lu
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
18

0
[6

40
]

M
et

hy
l o

ra
ng

e
N

itr
og

en
-d

op
ed

 c
ar

bo
n 

qu
an

tu
m

 d
ot

s m
od

i-
fie

d 
w

ith
 g

-C
3N

4
N

C
D

s/
D

C
N

O
flo

xa
ci

n
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

75
.2

%
3.

5–
7.

5
12

0
[6

41
]

B
is

ph
en

ol
 A

47
.4

%
C

ip
ro

flo
xa

ci
n

75
.8

%
C

r(
V

I)
92

.6
%

Su
lfu

r-d
op

ed
 c

ar
bo

n 
qu

an
tu

m
 d

ot
s (

S-
C

Q
D

s)
/

ho
llo

w
 tu

bu
la

r g
-C

3N
4 p

ho
to

ca
ta

ly
st 

(H
TC

N
-C

)

Te
tra

cy
cl

in
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
82

.6
7%

40
5

[6
42

]

B
iO

B
r/C

D
s/

g-
C

3N
4 c

om
po

si
te

s
Te

tra
cy

cl
in

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

82
.7

%
60

10
[6

43
]

C
ip

ro
flo

xa
ci

n
81

.3
%

N
itr

og
en

-d
op

ed
 C

D
s/

g-
C

3N
4 

(N
C

D
s)

In
do

m
et

ha
ci

n
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

91
%

90
6

[6
44

]
C

ar
bo

n 
qu

an
tu

m
 d

ot
s w

ith
 p

ol
yd

op
am

in
e 

(P
D

A
/C

Q
D

s)
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

[6
45

]
O

ra
ng

e 
II

G
ra

ph
iti

c 
ca

rb
on

 n
itr

id
e 

na
no

ro
ds

 d
ec

or
at

ed
 

w
ith

 g
ra

ph
en

e 
qu

an
tu

m
 d

ot
s (

G
Q

D
s/

g-
C

N
N

R
)

O
xy

te
tra

cy
cl

in
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
80

%
12

0
5

[6
46

]

Zn
O

 se
ns

iti
ze

d 
by

 c
ar

bo
n 

qu
an

tu
m

 d
ot

s 
(L

-C
Q

D
s/

Zn
O

)
Ph

en
ol

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
10

0%
33

0
10

[6
47

]

Sn
O

2 q
ua

nt
um

 d
ot

s d
ec

or
at

ed
 o

n 
2-

D
 m

at
er

ia
l 

g-
C

3N
4

R
ho

da
m

in
e 

B
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

95
%

60
[6

48
]



1 3

Topics in Current Chemistry (2022) 380: 44 Page 71 of 113 44

Ta
bl

e 
10

  (
co

nt
in

ue
d)

N
an

om
at

er
ia

l
C

on
ta

m
in

an
t

M
ec

ha
ni

sm
So

rp
tio

n/
ca

ta
ly

tic
 

ca
pa

ci
ty

C
on

di
tio

ns
 st

ud
ie

d
C

yc
le

s
Re

fe
re

nc
es

pH
Ti

m
e

Te
m

p 
°C

Sn
S 2

 m
od

ifi
ed

 w
ith

 n
itr

og
en

-d
op

ed
 c

ar
bo

n 
qu

an
tu

m
 d

ot
s (

N
-C

Q
D

s/
Sn

S 2
C

om
po

si
te

)

C
r(

V
I)

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
10

0%
25

6
[6

49
]

M
nO

x q
ua

nt
um

 d
ot

s d
is

pe
rs

ed
 o

n 
N

-d
op

ed
 

po
ro

us
 c

ar
bo

n 
sh

el
ls

 (d
en

ot
ed

 a
s 

 M
nO

x/N
-H

PC
S)

B
is

ph
en

ol
 A

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
99

%
20

25
4

[6
50

]

Ph
en

yl
hy

dr
az

in
e-

m
od

ifi
ed

 c
ar

bo
n 

qu
an

tu
m

 
do

ts
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

94
.3

%
60

[6
51

]

C
D

s-
N

-T
iO

2-
x n

an
oc

om
po

si
te

C
r(

V
I)

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
94

%
5.

36
60

[6
52

]
PV

A
/C

Q
D

s
M

et
hy

le
ne

 b
lu

e
So

rp
tio

n
97

%
12

40
5

[6
53

]
N

itr
og

en
-d

op
ed

 c
ar

bo
n 

qu
an

tu
m

 d
ot

s w
ith

 
g-

C
3N

4 
(N

C
Q

D
/g

-C
3N

4)

M
et

hy
le

ne
 b

lu
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
91

.2
%

18
0

3
[6

54
]

N
itr

og
en

-d
op

ed
 g

ra
ph

en
e 

qu
an

tu
m

 d
ot

s
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

93
%

60
[6

55
]

α-
B

i 2O
3/C

-d
ot

s
In

di
go

 c
ar

m
in

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

86
%

6
12

0
3

[6
56

]
Le

vo
flo

xa
ci

n
79

%
N

itr
og

en
-s

ul
fu

r-d
op

ed
 c

ar
bo

n 
qu

an
tu

m
 d

ot
s

N
,S

-C
Q

D
s/

Ti
O

2 n
an

oc
om

po
si

te
D

ic
lo

fe
na

c
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

62
.3

%
12

0
[6

57
]

C
ar

bo
n 

qu
an

tu
m

 d
ot

s m
od

ifi
ed

 w
ith

 g
ra

ph
iti

c 
ca

rb
on

 n
itr

id
e

C
ar

ba
m

az
ep

in
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
10

0%
7

60
25

4
[6

58
]

B
io

m
as

s-
de

riv
ed

 c
ar

bo
n 

qu
an

tu
m

 d
ot

s
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

99
.5

%
13

0
[6

59
]

Sn
O

2 q
ua

nt
um

 d
ot

 e
nc

ap
su

la
te

d 
ca

rb
on

 n
an

o-
fla

ke
  (S

nO
2–

C
N

F)
B

is
ph

en
ol

 A
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

98
%

6
60

3
[6

60
]

A
g-

do
pe

d 
 Sn

O
2 q

ua
nt

um
 d

ot
s

R
ho

da
m

in
e 

B
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

97
.5

%
12

0
7

[6
61

]
B

is
m

ut
h 

(B
i)-

do
pe

d 
tin

 o
xi

de
  (S

nO
2)

 q
ua

nt
um

 
do

ts
R

ho
da

m
in

e 
B

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
98

.2
%

10
0

5
[6

62
]

C
ip

ro
flo

xa
ci

n 
hy

dr
oc

hl
or

id
e

92
.1

3%
90



 Topics in Current Chemistry (2022) 380: 44

1 3

44 Page 72 of 113

Ta
bl

e 
10

  (
co

nt
in

ue
d)

N
an

om
at

er
ia

l
C

on
ta

m
in

an
t

M
ec

ha
ni

sm
So

rp
tio

n/
ca

ta
ly

tic
 

ca
pa

ci
ty

C
on

di
tio

ns
 st

ud
ie

d
C

yc
le

s
Re

fe
re

nc
es

pH
Ti

m
e

Te
m

p 
°C

N
iF

e 2
O

4/S
Q

D
R

ho
da

m
in

e 
B

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
98

%
10

5
[6

63
]

C
ar

bo
n 

qu
an

tu
m

 d
ot

s i
m

pl
an

te
d 

C
dS

na
-

no
sh

ee
ts

 (C
Q

D
/C

dS
-N

Ss
)

C
r(

V
I)

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
94

%
10

3
[6

64
]

Sn
O

2 q
ua

nt
um

 d
ot

/g
ol

d 
(S

Q
D

/A
u)

 n
an

oc
om

-
po

si
te

s
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

99
%

15
0

3
[6

65
]

R
ho

da
m

in
e 

B
99

%
20

0
M

et
hy

l o
ra

ng
e

93
.5

%
18

0
C

3N
4/A

gI
/Z

nO
/C

Q
D

s (
PG

C
N

)
2,

4-
D

in
itr

op
he

no
l

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
98

%
12

0
10

[6
66

]
Te

rn
ar

y 
ca

rb
on

 q
ua

nt
um

 d
ot

s (
C

D
s)

/B
i 2M

oO
6 

(B
M

O
)/g

ra
ph

iti
c 

ca
rb

on
 n

an
ofi

be
rs

 (G
N

Fs
) 

co
m

po
si

te
s (

C
D

s/
B

M
O

/G
N

Fs
)

R
ho

da
m

in
e 

B
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

99
.4

%
70

[6
67

]

C
eO

2 Q
D

s/
B

iO
X

 (X
 =

 C
l, 

B
r)

 h
et

er
oj

un
ct

io
ns

Te
tra

cy
cl

in
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
97

%
12

0
6

[6
68

]
C

r(
V

I)
A

g-
Sn

O
2 q

ua
nt

um
 d

ot
s(

Q
D

s)
/s

ilv
er

 p
ho

sp
ha

te
 

(A
gS

n/
A

gP
) c

om
po

si
te

s
C

ar
ba

m
az

ep
in

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

63
.6

%
12

0
3

[6
69

]

M
n-

do
pe

d 
Zn

S 
qu

an
tu

m
 d

ot
s c

ap
pe

d 
by

 
L-

cy
ste

in
e 

(M
n@

Zn
S/

L-
cy

st)
4′

,5
′-D

ib
ro

m
ofl

uo
re

sc
ei

n 
dy

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

97
%

5.
5

30
[6

70
]

C
ar

bo
n 

qu
an

tu
m

 d
ot

s m
od

ifi
ed

 w
ith

 c
hi

to
sa

n 
(C

H
-C

Q
D

s)
C

d2+
So

rp
tio

n
11

2.
4 

m
g/

g
8

30
25

[6
71

]

A
m

in
e-

fu
nc

tio
na

liz
ed

 g
ra

ph
en

e 
qu

an
tu

m
 d

ot
s

M
et

hy
l o

ra
ng

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

99
%

12
0

4
[6

72
]

G
ra

ph
en

e 
qu

an
tu

m
 d

ot
s w

ith
 si

lv
er

 N
Ps

 
(G

Q
D

s/
A

g 
N

Ps
)

R
ho

da
m

in
e 

B
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

54
0

[6
73

]

B
la

ck
  T

iO
2−

x/N
-d

op
ed

 g
ra

ph
en

e 
qu

an
tu

m
 

do
ts

 (B
TN

G
)

R
ho

da
m

in
e 

B
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

10
0%

30
[6

74
]



1 3

Topics in Current Chemistry (2022) 380: 44 Page 73 of 113 44

Ta
bl

e 
10

  (
co

nt
in

ue
d)

N
an

om
at

er
ia

l
C

on
ta

m
in

an
t

M
ec

ha
ni

sm
So

rp
tio

n/
ca

ta
ly

tic
 

ca
pa

ci
ty

C
on

di
tio

ns
 st

ud
ie

d
C

yc
le

s
Re

fe
re

nc
es

pH
Ti

m
e

Te
m

p 
°C

N
itr

og
en

-d
op

ed
 g

ra
ph

en
e 

qu
an

tu
m

 d
ot

s 
(N

G
Q

D
s)

-B
iV

O
4/g

-C
3N

4 Z
-s

ch
em

e 
he

te
ro

-
ju

nc
tio

n

Te
tra

cy
cl

in
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
91

.5
%

30
4

[6
75

]

C
ar

bo
n 

qu
an

tu
m

 d
ot

s/
C

dS
 q

ua
nt

um
 d

ot
s/

g-
C

3N
4 

(C
D

s/
C

dS
/G

C
N

) p
ho

to
ca

ta
ly

sts
4-

N
itr

op
he

no
l

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
95

%
12

0
4

[6
76

]

p-
ty

pe
 p

ho
sp

ho
ru

s-
do

pe
d 

gr
ap

he
ne

 q
ua

nt
um

 
do

ts
 (P

-G
Q

D
s)

M
et

hy
l o

ra
ng

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

95
.5

%
14

[6
77

]

N
-d

op
ed

 g
ra

ph
en

e 
qu

an
tu

m
 d

ot
s (

N
G

Q
D

s)
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

98
%

15
0

[6
78

]
B

i(I
II

) c
on

ta
in

in
g 

ox
id

es
 w

ith
 q

ua
nt

um
 d

ot
s 

(Q
D

s)
C

l−
 re

m
ov

al
 in

 le
ac

ha
te

66
.1

%
1

48
0

[6
79

]

C
ar

bo
n 

qu
an

tu
m

 d
ot

s m
od

ifi
ed

 p
ot

as
si

um
 

tit
an

at
e 

na
no

tu
be

s (
C

Q
D

s/
K

2T
i 6O

13
) 

co
m

po
si

te

A
m

ox
ic

ill
in

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
10

0%
6

90
25

[6
80

]

N
itr

og
en

–p
ho

sp
ho

ru
s-

do
pe

d 
flu

or
es

ce
nt

 
ca

rb
on

 d
ot

s (
N

P-
C

D
)

C
r(

V
I)

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
10

0%
11

0
[6

81
]

N
-d

op
ed

 c
ar

bo
n 

qu
an

tu
m

 d
ot

s/
Ti

O
2 (

N
C

Q
D

s/
Ti

O
2)

M
et

hy
le

ne
 b

lu
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
86

.9
%

42
0

[6
82

]

Zn
S 

qu
an

tu
m

 d
ot

s
M

et
hy

l v
io

le
t

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
95

%
12

12
0

[6
83

]
Zi

nc
 o

xi
de

 q
ua

nt
um

 d
ot

s/
C

uO
 N

Ss
Te

ta
nu

s t
ox

in
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

U
p 

to
 9

0%
25

[6
84

]
(C

dS
–C

dS
e)

/T
iO

2-
N

TA
s

M
et

hy
l o

ra
ng

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

95
.1

12
0

3
[6

85
]

Zn
S 

qu
an

tu
m

 d
ot

s i
m

pr
eg

na
te

d-
m

es
op

or
ou

s 
 Ti

O
2 n

an
os

ph
er

es
M

et
hy

le
ne

 b
lu

e
Ph

ot
oc

at
al

yt
ic

 d
eg

ra
da

tio
n

10
0%

32
[6

86
]

C
dT

eS
e 

Q
ua

nt
um

 D
ot

s (
Q

D
s)

R
ho

da
m

in
e 

B
61

%
12

14
40

[6
87

]



 Topics in Current Chemistry (2022) 380: 44

1 3

44 Page 74 of 113

Ta
bl

e 
10

  (
co

nt
in

ue
d)

N
an

om
at

er
ia

l
C

on
ta

m
in

an
t

M
ec

ha
ni

sm
So

rp
tio

n/
ca

ta
ly

tic
 

ca
pa

ci
ty

C
on

di
tio

ns
 st

ud
ie

d
C

yc
le

s
Re

fe
re

nc
es

pH
Ti

m
e

Te
m

p 
°C

G
ra

ph
en

e 
qu

an
tu

m
 d

ot
s (

G
Q

D
s)

 in
fil

le
d 

tit
an

iu
m

 d
io

xi
de

  (T
iO

2)
 n

an
ot

ub
e 

ar
ra

ys
 

(N
TA

s)
 h

yb
rid

M
et

hy
le

ne
 b

lu
e

Ph
ot

oc
at

al
yt

ic
 d

eg
ra

da
tio

n
99

.8
%

18
0

10
[6

88
]

C
ad

m
iu

m
 se

le
ni

de
/g

ra
ph

en
e 

qu
an

tu
m

 d
ot

s 
(C

dS
e/

G
Q

D
s)

M
et

hy
le

ne
 b

lu
e

So
no

ca
ta

ly
tic

 d
eg

ra
da

tio
n

99
%

9
90

5
[6

89
]

G
ra

ph
en

e 
qu

an
tu

m
 d

ot
s

O
xa

m
yl

So
rp

tio
n

12
5 

m
g/

g
8

25
20

[6
90

]
N

-d
op

ed
 re

du
ce

d 
gr

ap
he

ne
 q

ua
nt

um
 d

ot
s

R
ho

da
m

in
e 

B
So

rp
tio

n
24

.6
2 

m
g/

g
7

72
0

[6
91

]
Fe

3O
4/h

yd
ro

xy
ap

at
ite

/g
ra

ph
en

e 
qu

an
tu

m
 d

ot
s 

 (F
e 3

O
4/H

A
P/

G
Q

D
s)

M
et

hy
l o

ra
ng

e
IC

P-
A

ES
37

.9
9 

m
g/

g
7

[6
92

]
M

et
hy

le
ne

 b
lu

e
15

.3
5 

m
g/

g
C

u
83

–1
04

%
La

ye
re

d 
do

ub
le

 h
yd

ro
xi

de
–c

ar
bo

n 
do

t c
om

-
po

si
te

M
et

hy
l b

lu
e

So
rp

tio
n

18
5 

m
g/

g
60

25
[6

93
]

C
Q

D
s@

PA
FP

na
no

bi
os

or
be

nt
U

(V
I)

So
rp

tio
n

95
–9

8%
5

4
[6

94
]

G
ra

ph
en

e 
qu

an
tu

m
 d

ot
s (

G
Q

D
s)

 im
m

ob
ili

ze
d 

on
to

 th
e 

 N
iF

e 2
O

4-
ha

llo
ys

ite
 n

an
ot

ub
es

 
 (N

iF
e 2

O
4-

H
N

Ts
)

Pb
(I

I)
So

rp
tio

n
42

.0
2 

m
g/

g
25

[6
95

]

PV
A

/C
M

C
-B

@
G

O
/F

e 3
O

4/G
Q

D
 (L

)
M

et
hy

le
ne

 b
lu

e
So

rp
tio

n
10

00
 m

g
8

24
0

4
[6

96
]



1 3

Topics in Current Chemistry (2022) 380: 44 Page 75 of 113 44

BET-analyzed surface area of MMT nanoclay was found to be in the range of 
277–355   m2/g. The mechanistic approach confirmed that the sorption of arsenite 
took place through both the outer-sphere (physisorption) and inner-sphere com-
plexes (chemisorption) at the hydroxyl iron nanoclay surface. The sorption capacity 
obtained for the arsenite removal was 3.85 mg/g. Nikkhah et al. [704] explored the 
synthesis of a Cloisite 20A nanoclay-modified polyurethane foam structure and used 
it for the removal of oil from an oil–water system. Sorption capacity of 21.5 mg/g 
was achieved by the prepared sorbent. Narwade et al. [705] explored the synthesis 
of hydroxyapatite (HAp) by the wet-chemical precipitation method and used it as a 
sorbent for phenol removal. Sorption capacity of ~ 64 mg/g was achieved, confirm-
ing the efficiency of the prepared substance. Phenol tends to form phenoxide ions 
when dissolved in water. At acidic pH, a variety of reactions take place between the 
phenoxide ions and the surface of the CNF–HAp films.

13  Mechanism of Pollutant Remediation

Generally, the mechanism of the interaction of heavy metal ions with the sorbents 
can be discussed in terms of the chelation of the metals with anionic functional 
groups present on the surface of the sorbent [706]. Heavy metals can be removed 
through sorption only if they are completely entrapped by the chelating agents pre-
sent on the surface of the sorbent. Most of the chelating groups contain carboxylic 
acids which are directly connected to one or more nitrogen atoms. These groups 
also hinder the precipitation of the metals, inhibit metal ion catalysis, and ensure the 
availability of metal ions in the reaction system [707]. The key groups taking part in 
metal chelation are the carboxyl and amino groups.

The pH also affects the uptake of the metals by the chelating groups. If the pH 
is low, ligands tend to be associated with hydronium ions and inhibit the metal 
cation approach. Also, at lower pH, the carboxylic groups are mostly not dissoci-
ated, although they are part of the complexation reactions. The chelation mecha-
nism follows the formation of quinquedentate, hexadentate, and sometimes distorted 
structures [708]. In the case of the dye molecules, they generally tend to follow the 
electrostatic interaction with that of the adsorbent surface. The electrostatic interac-
tion can be affected by properties such as surface charge, degree of ionization, and 
speciation. In general, the sorbent surface may have acidic or alkaline characteris-
tics, which may interact with the dye contaminants through the pH effect. At lower 
pH, the surface of the sorbent is protonated, bearing a positive charge. This posi-
tive charge will electrostatically attract the negatively charged dyes, causing their 
removal from the aqueous solution. In the case of a basic medium, the surface of 
the sorbent may be completely ionized, causing repulsive forces with the dye anions 
[709].

The interaction of pharmaceutical compounds with sorbent molecules can be 
explained based on hydrogen bonding. The hydrogen bonding occurs when the 
hydrogen bonding donor groups on the surface of the sorbent interact with those of 
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the hydrogen bonding acceptor atoms on the surface of the contaminants. Generally, 
the functional groups containing nitrogen and oxygen atoms act as the H-acceptors, 
which may interact with the –OH or phosphorus-containing groups. Other factors 
involved in the interaction include n–π, and π–π interaction is also common, which 
is a specific and non-covalent interaction and exists between electron-rich and elec-
tron-poor compounds [710].

13.1  Mechanism of Sorption

Sorption is a surface phenomenon in which the sorbate molecules attach to the sur-
face of the sorbent through either physical or chemical interactions. The physical 
interaction, or physisorption, may be driven by van der Waals forces or electrostatic 
interactions, which are fast, reversible, and result in multilayer formation on the sur-
face of the sorbent. On the contrary, chemical interaction, or chemisorption, exhibits 
strong covalent bonding which is slower and requires activation energy, is irreversi-
ble, and produces a monolayer on the surface of the sorbent. The sorption phenome-
non is greatly affected by the reaction conditions such as pH, temperature, time, and 
sorbate concentration and dosage. The sorption of contaminants can be analyzed by 
the amount of contaminant sorbed per unit mass of sorbent (qe) and the residual 
left (Ce) at equilibrium conditions. Different isotherm models have been designed to 
explain the mechanism and bonding interactions [711, 712].

13.2  Sorption Isotherm Models

The sorption results can be further evaluated by applying the sorption isotherm 
models, which are discussed in detail as follows. The Langmuir isotherm model is 
based on the conditions where the surface of the sorbent is homogeneous, provid-
ing equal binding sites, and the sorbate molecules tend to form a monolayer on the 
surface. The following equation is designed based on the Langmuir model (Eq. 9):

where Ce stands for the equilibrium concentration (mg/L), qm is the amount sorbed 
per unit mass of sorbent (mg/g), and KL is the Langmuir equilibrium constant related 
to the heat of sorption [713].

Another model to explain the sorption process is the Freundlich isotherm model, 
which is generally applied to the multilayer sorption of sorbate molecules onto a 
heterogeneous surface. The linear equation of the Freundlich isotherm model is as 
follows (Eq. 10):

(9)
Ce

qm
=

1

KLqmax

+
Ce

qmax

(10)logqm = logKf +
1

n
logCe
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where qm (mg/g) indicates the molecules sorbed (amount) onto the sorbent surface, 
Ce (mg/L) denotes the equilibrium concentration, and n and Kf are the Freundlich 
constant and Freundlich exponent, respectively. Kf (mg/g) is the sorption capacity, 
while n shows the degree of the surface heterogeneity and conveys the distribution 
of the sorbed molecules on the sorbent surface. A higher value of n indicates a posi-
tive rise in sorption and gives the intensity of sorption [714].

Yet another isotherm model, called the Temkin isotherm, shows the effect of the 
heat of sorption, which is inversely related to the sorption and monolayer formation. 
The linear decrease in the sorption heat is caused by the interaction between the 
sorbent and sorbate molecules. The Temkin isotherm model is expressed in the fol-
lowing form (Eq. 11):

Here, T is the temperature (K), R is the ideal gas constant (8.314 J/mol/K), bT 
represents the Temkin constant (J/mol), which depends on the heat of sorption, 
and A is the equilibrium sorption constant, corresponding to the maximum sorp-
tion energy (L/mg) [715].

The sorption phenomenon can also be described by the 
Brunauer–Emmett–Teller isotherm model, which is generally based on the 
assumptions of the Langmuir sorption isotherms and is widely used to calculate 
the surface area and porosity of the system. This model is generally applied to 
gas–solid systems [716]. The equation form of the model can be represented as 
Eq. (12):

The Redlich–Peterson isotherm is a combined form of the Langmuir and Fre-
undlich isotherm models, taking hints from the assumptions of both the models. 
This model is applied to systems having both homogeneous and heterogeneous 
surfaces of sorbents over a wide range of sorbate concentrations. At higher sorb-
ate concentrations, Freundlich isotherm assumptions are followed, while at a 
lower concentration, Henry’s law is obeyed [717]. The equation, Eq. (13), for this 
model is represented as follows:

where KRP (L/g) and α (L/mg) are Redlich–Peterson constants, and β is an exponen-
tial value in the range between 0 and 1. If the β value is 0, the isotherm behaves as 
Langmuir’s model, while it obeys Henry’s law when the β value is 1.

(11)qe =

(

RT

bT

)

ln
(

ACe

)

(12)lnqe

(13)lnqe =

(

1

nH
lnKH

)

−

(

1

nH
ln

1

Ce

)
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13.3  Mechanism of Photocatalysis

A general definition of photocatalysis can be derived from the reported literature, as 
the breakdown of organic pollutants in a spontaneous reaction from the principles of 
thermodynamics. As its name suggests, photocatalysis refers to the lysis/breakdown/
degradation of pollutants with the aid of light and a catalyst [718–720]. The mecha-
nism of photocatalysis can be divided into four major steps:

• Light is absorbed, which generates electron/hole pairs.
• The excited charges are separated.
• The electrons and the holes are transported to the surface of the photocatalyst.
• The redox reactions occur on the surface by utilizing the charges.

In the third step, the electrons/holes may recombine and scatter the harvested 
light energy in the form of heat (non-radiative recombination) or light (radiative 
recombination). The remaining photogenerated charges present on the surface of the 
catalysts tend to carry out the redox reactions, depending on the acceptor or donor 
properties of the absorbed species [721, 722].

14  Conclusion

Worldwide concern related to wastewater contamination has driven researchers to 
develop advanced, rapid, and accurate methods for the removal of a variety of con-
taminants primarily emerging from industrial sources. These contaminants have 
hazardous effects on living organisms, requiring the development of efficient means 
of decontamination. This quest has led researchers to the use of NMs based on 
their unique properties including very small size and high surface area-to-volume 
ratios. NMs have revolutionized conventional techniques used for the treatment of 
contaminants such as sorption and photocatalysis by improving and enhancing the 
productivity of these techniques. Innovation in the field of nanotechnology has been 
achieved by the functionalization of the pristine NMs, thus incorporating the use-
ful properties of multiple materials to provide better results. This review covers the 
available reports on the removal of contaminants by FNMs for the past 10 years, 
highlighting their bright future.
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