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Simple Summary: Glucocorticoid therapy resistance in B-cell malignancies is often associated

with constitutive activation of tyrosine kinases. Novel anticancer drugs targeting hyperactivated

tyrosine kinases, such as Bruton’s tyrosine kinase (BTK), have, therefore, gained much interest

over the past few decades and have already been approved for clinical use. In this study, we

compared the therapeutic efficacy of the phytochemical kinase inhibitor withaferin A with the

clinically approved BTK inhibitor ibrutinib to target hyperactivated tyrosine kinase signaling in

glucocorticoid-resistant multiple myeloma cells. Our results demonstrate that withaferin A-induced

cell death of glucocorticoid-resistant MM1R cells involves covalent cysteine targeting of multiple

Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including BTK.

Abstract: Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells’

uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired

therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive

hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically

approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have,

therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing

BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase

inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and

transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK

overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent

cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification,

including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could
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further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molec-

ular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the

kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases.

Altogether, we show that WA’s promiscuous inhibition of multiple BTK family tyrosine kinases

represents a highly effective strategy to overcome GC-therapy resistance in MM.

Keywords: withaferin A; BTK; multiple myeloma; therapy resistance; glucocorticoids; ibrutinib

1. Introduction

MM is a hematological malignancy of terminally differentiated plasma cells and is
currently the second most common adult blood cancer [1]. MM often results in develop-
ment of end-organ diseases, such as anemia, hypercalcemia, renal insufficiency, and bone
lesions, making it an illness of considerable clinical and social impact [2,3]. In recent years,
important therapeutical advancements in the field of MM have been made, increasing the
life expectancy of patients by six to ten years [4,5]. These novel therapies have mostly
been developed based on an improved understanding of the biology of myeloma cells
and their interaction with the bone marrow (BM) environment [6]. They include protea-
some inhibitors [7], immunomodulatory drugs [8], glucocorticoids (GCs) [9], monoclonal
antibodies [10], and histone deacetylase inhibitors [11]. However, MM still remains an
incurable disease as the majority of patients eventually relapse and become refractory to
existing therapies [12]. Acquisition of resistance to anticancer drugs, therefore, remains the
main barrier in treating MM [4,13].

One of the cellular pathways mediating drug resistance in many B-cell malignancies
is the BCR signaling pathway [14]. Under physiological conditions, the BCR is activated
upon ligation of antigen and promotes survival, function and development of B-cells [15].
After initial antigen binding, the immune receptor tyrosine activation motif domains
CD79A and CD79B are phosphorylated by Src family kinases Lyn and Syk and recruit
other adaptor proteins and tyrosine kinases (TK), a key example being Bruton’s tyrosine
kinase (BTK) [16]. BTK ultimately orchestrates activation of downstream effectors of
BCR signaling, such as nuclear factor-κB (NF-κB) and nuclear factor of activated T cells
(NFAT), through PLC-γ2 and phosphoinositide 3-kinase (PI3K) phosphorylation [14].
In MM, BTK is often constitutively activated, thereby modulating survival signals and
therapy resistance [17–20]. As a result, BTK kinase inhibitors have received growing
pharmacological interest and have already shown promising therapeutic responses in B-cell
malignancies in the clinic [21]. More particularly, the covalent-binding BTK inhibitor IBR
has shown to be a potent anticancer drug in chronic lymphocytic leukemia (CLL), mantle
cell lymphoma, diffuse large B-cell lymphoma, and MM by interfering with B-cell homing,
survival and microenvironment-mediated drug resistance [17,18,22–25]. Suppression of
BTK hyperactivation is also key to the therapeutic efficacy of GCs in B-cell leukemias,
where IBR has been shown to improve GC therapy response [26–29]. In clinical trials
of MM, combination therapies investigating IBR efficiency demonstrated encouraging
responses and a manageable safety profile [30,31].

Although preliminary clinical data revealed the beneficial effects and acceptable safety
profile of IBR in MM, clinical studies in other B-cell malignancies have linked IBR use with
adverse effects, including diarrhea, fatigue, nausea, and rashes [32,33]. More important, IBR
therapy is associated with a significant increase in the occurrence of ventricular arrhythmias
and sudden cardiac death [34,35]. The underlying mechanisms of these severe side effects
are not well understood but could be partially explained by the off-targets interaction
of IBR with interleukin-2-inducible T-cell kinase (ITK), epidermal growth factor (EGFR),
and PI3K [36]. Another pressing issue that has arisen since IBR has been applied in the
clinic is the development of therapy resistance (reviewed in [37]). Nearly one-third of
patients diagnosed with B-cell malignancies display primary resistance against IBR therapy,
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while many others acquire resistance over time. These major issues accompanying the
therapeutic use of IBR have sparked the development of second and third-generation BTK
inhibitors (e.g., acalabrutinib), characterized by higher selectivity and potency profiles [38].
Unfortunately, acquired resistance to these novel BTK inhibitors has already been described
in some B-cell malignancies as well [39]. As a result, alternative treatment strategies
to suppress BTK hyperactivation in therapy-resistant hematological malignancies are
currently being investigated in high-throughput combinatorial screenings of clinically
approved and preclinical investigational compound libraries [40]. Given that nearly half of
the agents used in cancer therapy today are either natural products or derivatives thereof,
novel BTK-targeting lead compounds may be identified from this vast arsenal of chemically
active structures [41–43]. Interestingly, withaferin A, a withanolide phytochemical isolated
from Withania somnifera, is one of the top investigational compounds prioritized for IBR
combination therapy to target chronic active BCR signaling [40].

WA reveals broad-spectrum therapeutic activities in several (drug-resistant) cancer
cell types [44], including B-cell lymphoma and MM [45–47]. Of particular interest, some
of WA’s antitumor effects have been attributed to its ability to covalently target kinase
activity [48–52]. Accordingly, innovative phosphopeptidome kinome activity profiling,
RNA sequencing, in silico docking simulations, and chemo-affinity approaches were
combined in this study to characterize BTK hyperactivation and TK inhibitor therapy
response of WA and IBR in GC-resistant MM cells.

2. Results

2.1. GC Therapy Resistance in Multiple Myeloma Is Associated with Hyperactivation of
Tyrosine Kinases

GC therapy-sensitive MM1S and -resistant MM1R cell lines derived from a single MM
patient have previously been described as cell models to study the etiology of GC therapy
resistance and to evaluate novel classes of chemotherapeutic drugs [53,54]. To investigate
the vulnerability of GC-resistant MM1R cells for specific clinical TK inhibitor drugs, we
compared the tyrosine kinome activity profiles of GC-resistant MM1R and GC-sensitive
MM1S cell lysates by means of a PTK-specific phosphopeptide array (PamChip), containing
144 conserved peptides corresponding to TK specific substrates [55,56]. Overall, TK activity
was consistently higher in MM1R cells compared to MM1S cells (Figure 1a and Figure S1).
Identification of the 20 most significant differential hyperphosphorylated peptides (ad-
justed p-value (FDR) < 0.01) in MM1R compared to MM1S predicted hyperactivation of
multiple (non) receptor TK in MM1R, such as SYK, DDR, ABL, ZAP70, FAK2, BRK, BTK,
ITK and FGR (Figure 1b). Subsequent MetaCore pathway analysis showed that the hyper-
activated kinases in MM1R cells are involved in cell proliferation, cell cycle regulation, cell
adhesion, cancer, therapy resistance, immune response, T-cell receptor signaling and BCR
signaling (Supplementary Figure S2).

To investigate whether the observed TK hyperactivation is also reflected at the tran-
scriptome level, RNA sequencing analysis of basal gene expression in MM1S and MM1R
cells was conducted. Results were analyzed with the R-package DESeq2 [57], using a
selection criterion of a minimal FDR < 0.01. Upon comparing gene expression patterns in
both cell lines, 1383 differentially expressed genes (DEG) (logFC > 1 or logFC < −1) could
be identified (Figure 1c). Interestingly, from all hyperactivated TK in MM1R cells listed
before, BTK was identified as the strongest upregulated TK in GC-resistant MM1R cells
(Figure 1d, is included in the top 20 most significant DEG (Table 1). Upregulation of BTK
in MM1R cells was validated by qPCR and Western blot analysis (Figure 1e–f) and is in
line with previous observations [17,58]. Taken together, these findings suggest that BCR
signaling and BTK in MM1R cells may represent an attractive target to kill GC-resistant
MM1R cells.
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Figure 1. (a) Heatmap showing phosphorylation intensities of peptides serving as substrates for tyrosine kinases. Figure

shows hyperphosphorylated (red) or hypo-phosphorylated (blue) peptides in MM1R (n = 3) and MM1S (n = 3) samples. (b)

Ranking of hyperactivated kinases in MM1R versus MM1S cells based on the top 20 significant differentially phosphorylated

peptides. Fill color of the bars is based on the kinase specificity score, indicating the specificity of differences in kinase

activity with respect to the quantity of peptides used for predicting the corresponding kinase (c) Heatmap representation of

differentially expressed genes (logFC >|1|, p < 0.01) in MM1R versus MM1S cells as determined by RNA sequencing. n = 3

biologically independent replicates per cell line. (d) Ranking of the top overexpressed kinases in MM1R versus MM1S cells

based on their log2-fold change as determined by RNA sequencing. Fill colors of the bars are a measure for kinase activity

as measured via the PTK-specific phosphopeptide array. (e) Relative Bruton’s tyrosine kinase (BTK) mRNA levels in MM1R

and MM1S cells. Data are plotted as the mean ± s.d., n = 3 biologically independent replicates (** p = 0.0035, unpaired t-test).

(f) Western immunoblot detection and quantification of basal BTK and GAPDH protein levels in MM1R and MM1S cells.

Data are plotted as the mean ± s.d., n = 3 biologically independent replicates (* p = 0.0385, unpaired t-test).
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Table 1. Overview of top 20 most significantly differentially expressed genes (logFC > 1 or logFC < −1) between glucocorti-

coid (GC)-resistant MM1R and GC-sensitive MM1S cells.

Gene Ontology
Term

Symbol Gene ID Name Log2FC p-Adj.

ECM and cell–cell
adhesion

RELN * 5649 Reelin 2.9 7.4 × 10−160

PLXNB2 23654 Plexin B2 1.8 7.1 × 10−96

PODXL2 * 50512 Podocalyxin like 2 2.6 6.8 × 10−83

ESAM 90952
Endothelial cell adhesion

molecule
2.0 1.7 × 10−80

PRKX * 5613 Protein kinase X-linked 1.1 8.1 × 10−79

ACP5 54
Acid phosphatase 5,

tartrate-resistant
4.8 2.0 × 10−77

GPCR signaling
GNG7 2788 G protein subunit gamma 7 1.5 5.7 × 10−99

UTS2R 2837 Urotensin 2 receptor 1.9 5.4 × 10−77

BCR signaling

BTK * 695 Bruton’s tyrosine kinase 2.8 1.5 × 10−216

TNFRSF8 943
TNF receptor superfamily

member 8
3.7 6.9 × 10−93

CD52 1043 CD52 molecule 3.5 5.6 × 10−83

mRNA/protein
stability

CTAG2 30848 Cancer/testis antigen 2 8.5 4.0 × 10−168

LINC01518 101929397
Long intergenic non-protein

Coding RNA 1518
7.9 1.4 × 10−147

CMTR1 23070 Cap methyltransferase 1 −1.1 9.6 × 10−115

TMEM25 84866 Transmembrane protein 25 4.8 6.0 × 10−79

Cell cycle
regulation

CDKN2A 1029
Cyclin-dependent kinase

inhibitor 2A
9.4 1.7 × 10−210

Cytoskeleton TUBB4A 10382 Tubulin beta 4A class IVa 3.6 6.1 × 10−165

Inflammation NLRP11 204801
NLR family pyrin domain

containing 11
4.9 1.2 × 10−220

Transmembrane
transport

SLC38A5 92745
Solute carrier family 38

member 5
1.8 1.7 × 10−92

ABCG2* 9429
ATP-binding cassette

subfamily G member 2
5.6 2.0 × 10−84

* Genes associated with therapy resistance. Abbreviations: ECM, extracellular matrix; GPCR, G-protein coupled receptor; BCR,
B-cell receptor.

2.2. The Tyrosine Kinase Inhibitor Profile of Withaferin A and Ibrutinib Show a High Degree
of Similarity

Taking into account the hyperactivation of BCR-BTK kinase signaling in MM1R cells
(see 2.1.), we next tested their sensitivity for the clinically approved BTK inhibitor IBR as
well as WA, a top prioritized investigational phytotherapeutic compound identified in a
high-throughput drug screening against chronic BCR signaling [40]. MM1R cells were
treated for 24 h with different concentrations of WA or IBR kinase inhibitors, and the
relative % cell survival/cell death was evaluated by MTT assay. Both compounds were
effective in killing GC-resistant MM1R cells in a dose-dependent manner, although WA is
the more potent cell death inducer (IC50 = 1.7 µM) since its IC50 was > 10 times lower than
the one of IBR (IC50 = 27.9 µM) (Figure 2a). Remarkably, both WA and IBR also induce cell
death in GC-sensitive MM1S cells lacking BTK overexpression, although IC50 values were
higher than MM1R cells (IC50WA = 1.9 µM, IC50IBR = 49.3 µM) (Figure 2a).
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Figure 2. (a) Relative cell viability of MM1 cells upon 24 h exposure to increasing concentrations of BTK inhibitor ibrutinib

(IBR) or withaferin A (WA). Data are plotted as the mean ± s.d., n = 3 biologically independent replicates. (** p < 0.01,

*** p < 0.001 **** p < 0.0001, ANOVA). (b) Heatmap representation of hyperactivated or inhibited kinases in MM1R versus

MM1S cells, or following 15 min IBR or WA treatment, n = 3 biologically independent replicates per treatment group.

(c) Close-up heatmap representation of Figure 2b showing inhibited BCR-related kinases in MM1R versus MM1S or

following 15 min IBR or WA treatment, n = 3 biologically independent replicates per treatment group. (d) Kinase trees

displaying the tyrosine kinase targets of IBR (left) and WA (right). Kinase trees were generated with the CORAL web tool

(http://phanstiel-lab.med.unc.edu/CORAL/, accessed on 30 November 2020).

http://phanstiel-lab.med.unc.edu/CORAL/
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To explore the mode of action of these compounds, we measured corresponding
cellular changes in TK activities by phosphopeptidome based tyrosine kinome profiling
of MM1R cells exposed to either WA (1 µM) or IBR (1 µM). Similarly, and as mentioned
above, cell lysates of treated cells were analyzed through PTK-specific phospho-peptide
arrays, after which the top activated or inhibited kinases were identified based on the
significant differences in phospho-intensities of the PTK peptide substrates. We found that
WA and IBR both inhibited most of the hyperactivated kinases in MM1R cells, with largely
overlapping, though promiscuous, TK inhibitor profiles (Figure 2b, annotation of heatmap
rows can be found in Supplementary Figure S3). At the level of BCR signaling, clear
inhibition of BTK kinase activity can be observed in the presence of IBR, as expected, and
WA (Figure 2c,d). Besides BTK, multiple BCR signaling kinases, such as ZAP70, BLK, FLT3,
TEC, and SYK, are also targeted by both WA and IBR (Figure 2c). In line with previous
studies, which already revealed that IBR could trigger off-target BCR-BTK independent
kinase inhibitor (side) effects [59], we also identified additional IBR-responsive TK in
MM1R cells (Figure 2c, Figure S3). Of special note, whereas most binding affinities of IBR
have been determined in vitro (Supplementary Figure S4), we provide the first cell-based
integrated tyrosine kinome activity map in MM1R cells in the presence of the IBR inhibitor.
Although WA inhibits similar BCR family kinases as IBR, variations in kinase inhibitor
specificity/potency of WA in comparison to IBR treatment may explain differences in the
therapeutic efficacy of both compounds in MM1R cells (Figure 2a,d).

2.3. WA Inhibits BCR-BTK Kinase Activity by Transcriptional Downregulation and Covalent
Cysteine-Dependent Targeting of BTK

To further characterize how WA decreases BTK kinase activity in MM1R cells, we
next checked whether WA treatment changes BTK mRNA and protein expression levels.
Panther pathway enrichment analysis of RNA sequencing data from WA-treated MM1R
cells already revealed that DEGs are significantly enriched in B-cell activation (Figure 3a).
More particularly, WA significantly decreased BTK mRNA expression (Log2FC = −0.525,
FDR = 0.023). This was further confirmed by qPCR and western immunoblot experiments.
As can be observed from Figure 3b,c, WA was able to lower BTK expression in a time-
dependent manner, both at the mRNA and protein level. Similar WA-specific changes
could also be observed in U266 cells, another GC-resistant multiple myeloma cell line
sensitive to WA treatment (Figure 3b,c and Figure S5). In line with previous studies [60–62],
we did not observe any changes in BTK expression after the IBR treatment of MM1R cells
indicating that IBR mainly targets BTK (hyper)phosphorylation and not total BTK protein
levels (Supplementary Figure S6).
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Figure 3. (a) Panther pathway enrichment analysis of significant (FDR < 0.05) differentially expressed

genes of WA-treated MM1R cells as determined by RNA sequencing. (b) Relative BTK mRNA levels

of MM1R, MM1S and U266 cells treated with WA for 3 h. Data are plotted as the mean ± s.d., n = 3

biologically independent replicates (* p = 0.0453, ** p = 0.0015, ANOVA) (c) Western blot detection

and quantification of BTK and GAPDH expression levels after WA treatment in MM1R and U266

cells. Data are plotted as the mean ± s.d., n = 3 biologically independent replicates. (* p < 0.05,

** p < 0.01, ANOVA).

Since WA contains several reactive nucleophilic groups, which can covalently bind
to kinase sulfhydryl groups of cysteines through Michael addition [48,63,64], we also
evaluated the potential covalent binding of WA to BTK by pulldown experiments with
biotinylated WA (WABI). Pull-down experiments with WABI in MM1R cells indeed con-
firmed cysteine-dependent binding to BTK, which can be blocked by excess amounts
(1 mM) of the reducing agent dithiothreitol (DTT) (Figure 4a). Along the same line, co-
valent WA-BTK interaction could be confirmed in U266 cells (Figure 4b). The biological
relevance of this covalent interaction could further be validated in washout experiments
where MM1R cells were exposed to increasing concentrations of WA for 15 min, after
which it was washed away with PBS. Although WA cells were only briefly treated with
WA, the cell viability of MM1R cells was still affected in a dose-dependent manner 24 h
post-treatment (Supplementary Figure S7). The growth inhibition remains the strongest
in the unwashed cells, suggesting the contribution of non-covalent interactions of WA as
well. H-bond and van der Waals interactions between WA and target molecules, such as
Hsp90, have indeed been reported to contribute to the anticancer mechanism of WA [65].
Alternatively, covalent binding by WA may be weaker than a normal covalent binding and
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become reversed by washout experiments [66–68]. Finally, by confocal microscopy, we
could also demonstrate colocalization of BTK and WABI in MM1R cells (Figure 4c).

Figure 4. (a) Western immunoblot detection of BTK levels before and after pulldown with biotinylated WA (WABI),

following 2 h WABI treatment in MM1R in the presence or absence of excess thiol donor DTT (1 mM). (b) Western

immunoblot detection of BTK levels before and after pulldown with biotinylated WA (WABI), following 2 h WABI treatment

in U266 cells in the presence or absence of excess thiol donor DTT (1 mM). (c) Confocal imaging of colocalization of BTK

expression and WABI localization in MM1R cells.

2.4. Covalent C481 Targeting of BTK by WA in Hinge-6 Domain of the Protein Kinase Cysteinome
Classification Reduces Survival of Glucocorticoid Resistant Multiple Myeloma MM1 Cells

Human protein kinases are composed of two highly conserved domains, namely
catalytic and regulatory domains. It has been shown that the catalytic domain can be
further classified based on the positions of the gatekeeper amino acids and cysteines hosted
in the catalytic pocket [69–72]. Based on the positions of cysteines present across the human
kinome, Leproult et al. reclassified the human kinome into a cysteinome according to the
cysteine positions relative to the ATP binding pocket (Table 2) [69,73]. Interestingly, most
kinases inhibited by WA treatment, including BTK, BLK and EGFR, were found to be highly
enriched in Hinge-6 domain type kinases (Table 2). Multiple sequence alignment of these
Hinge-6 domain orthologs revealed the presence of a conserved glycine-cysteine motif,
suggesting that WA covalently binds to this site within its TK targets (Figure 5a). Through
molecular docking studies, we found that the conserved cysteine site within BTK (Cys481)
is indeed accessible and favorable (−4.93 kcal/mol) for WA binding (Supplementary Table
S1). The docking results predict that covalent bond formation occurs via the C4-OH group
of WA and the Cys481 residue of BTK and that this interaction is further stabilized via
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hydrogen bond formation with surrounding Leu482, Tyr485 and Gly480 amino acids
(Figure 5b,c). Given that IBR also covalently targets the Cys481 residue of BTK, these
results suggest that WA interacts with BTK in a similar manner as IBR [63]. By using
the NanoBRET Target Engagement Intracellular Kinase assay, where the affinity of WA
for BTK can be analyzed by competitive displacement of a fluorescent NanoBRET Tracer
bound to BTK, we could further confirm that WA can displace the WT BTK protein, but
not the mutated C481S BTK protein in HEK-293 cells (Figure 5d). This suggests that
the Cys481 residue of BTK is the main binding site of WA. Furthermore, we show that
silencing of endogenous WT BTK reduces cell MM1R viability and can be rescued upon
overexpression of C481S BTK overexpression. (Figure 5e, Figure S8). Of special note,
C481S BTK overexpression cannot completely rescue WA-induced cell death in MM1R,
confirming that WA kinase effects on cell viability are not limited to BTK alone and may
involve additional hinge 6 domain type kinase targets of the cysteinome classification in
MM1R cells. Along the same line, GC-sensitive MM1S cells lacking BTK overexpression
are also sensitive to WA treatment through promiscuous covalent cysteine targeting of
alternative cell survival tyrosine kinases expressed in MM1S cells (Figure S9a–c).

Table 2. Kinase cysteinome classification. Summarized from [73]. Bold highlights kinases representing the main tyrosine

kinase targets of withaferin A.

Site Subsite Representative Kinases

Gatekeeper region GK MOK
GK + 1 SgK494
GK − 1 MAP2K4, MKK3, MAP2K6, KHS1, KHS2, GCK

DFG region DFG + 1 MAP3K8, MOS, MAP3K4, PINK1
DFG + 2 PKCz, PKCi, AKT1, AKT2, AKT3, PKCg, SGK1F, SGK2
DFG − 1 PBK, TGFbR2, CDKL3, CDKL2, PRP4, MNK2, MNK1

Glycine rich loop region Glycineloop WNK4, WNK1, WNK2, WNK3, HER3
Glycineloop 1 ZAK
Glycineloop 2 SgK496, MEKK1, PLK2, PLK3, PLK1, RSK1
Glycineloop 3 SgK493
Glycineloop5 FGFR1, FGFR2, FGFR3, FGFR4

Hinge binding region Hinge 1 FGFR4, TTK, MAPKAPK2, MAPKAPK3
Hinge 2 IKKa, IKKb, LKB1, NEK4, Wee1, SLK, FLT4, KDR
Hinge 3 Ron, FGR, SgK494, Kit, CSFR, FLT3
Hinge 4 SgK110, BubR1, LKB1, TBK1
Hinge 5 PINK1, EphB3
Hinge 6 MAP2K7, TEC, TXK, ITK, BTK, BMX, BLK, HER2, EGFR, HER4, JAK3
Hinge 7 JNK1, JNK2, JNK3

Roof region Roof sheet HER3
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Figure 5. (a) Multiple sequence alignment of Hinge 6 domain-type kinases. The conserved GC-motif between different

orthologs is indicated. Alignment was performed with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/

accessed on 30 November 2020). (b) Crystal structure of BTK (PBD id: 6TFP) in complex with WA (PubChem CID: 26537)

covalently bound to Cys481. (c) Interaction between WA and BTK structure visualized using Ligplot [74], showing the

covalent bond formation of the C4-OH group of WA with the SH group of Cys481 from BTK. (d) Inhibition of wild-type (WT)

BTK and mutated (C481S) BTK by WA in HEK-293 cells. Data are plotted as mean ± s.d., n = 3 biologically independent

replicates. (e) Relative viability of MM1R cells treated for 24 h with increasing concentrations of WA, upon BTK silencing

(siBTK) in presence or absence of C481S BTK overexpression. Data are plotted as mean ± s.d., n = 3 biologically independent

replicates (ns = p > 0.05, * p = 0.0309, *** p < 0.0001, ANOVA).

3. Discussion

A common feature of many B-cell malignancies is their ability to develop therapy
resistance through increased BCR signaling and BTK activity. Along the same line, in-
creased BCR signaling has been shown to reduce the therapeutic efficacy of GCs in B-cell
leukemias [26–29]. Although MM cells are typically lacking active BCR, BTK overex-

https://www.ebi.ac.uk/Tools/msa/clustalo/
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pression and signaling has been associated with increased therapy resistance in the dis-
ease [18,75]. Accordingly, we compared the anticancer effect of the clinically approved BTK
kinase inhibitor IBR and the preclinical phytotherapeutic kinase inhibitor WA to kill GC
therapy-resistant MM cells via suppression of BTK hyperactivation. Phosphopeptidome
based tyrosine kinome profiling confirmed hyperactivation of multiple BCR family kinases
besides other receptor TK families (FGFR, PDGFR, DDR) in GC therapy-resistant MM1R
cells. Furthermore, hyperactivated BCR kinases could completely be suppressed with both
kinase inhibitors, WA and IBR. Nonetheless, kinase tree representations of both kinase in-
hibitor profiles revealed quantitative and qualitative differences in specificity and potency,
which may underly the differences in potency of WA and IBR to kill GC-resistant MM cells.
Biotin affinity-purification experiments confirmed a cysteine-dependent covalent interac-
tion between WA and BTK, similar to IBR-BTK Cys481 binding [63]. This is supported
by molecular modeling studies, which revealed favorable covalent WA binding to the
conserved Cys481 residue in BTK. In addition, NanoBRET Target Engagement Intracellular
Kinase assays confirm WA-dependent inhibition of WT BTK kinase activity, which is lost
upon C481S mutation. Interestingly, most kinases inhibited by WA treatment, including
BTK, BLK and EGFR, belong to the Hinge-6 domain-type kinases, according to the kinase
cysteinome classification. The latter suggests broad redundant kinase inhibitory effects of
WA through covalent cysteine targeting. Accordingly, BTK silencing experiments could
only partially mimic the therapeutic cell death effects of WA in MM1R, whereas overex-
pression of the C481S kinase mutant could only partially protect against WA. Similarly,
cancer therapeutic effects of WA could also be observed in GC-sensitive MM1S cells, which
lack BTK overexpression, through covalent targeting of alternative cell survival kinases
expressed in MM1S. As such, the therapeutic efficacy of WA against different cancer cell
types may strongly depend on its promiscuous nucleophilic cysteine reactivity towards
the cellular repertoire of hyperactivated tyrosine cell survival kinases. Additionally, the
anticancer effects of WA may also partially rely on its non-covalent interactions with target
proteins. H-bond interactions with terminal hydroxyl groups of WA were shown to be suffi-
cient to deform protein complexes through naïve hindrance [65]. Alternatively, the covalent
interaction of WA may be weaker than that of the normal covalent bond and be reversible in
washout experiments [76]. Taunton and coworkers demonstrated that drug efficacy could
be optimized by finetuning warhead residence time and exploiting the intrinsic reversibil-
ity of the reaction moiety [66,77]. In this respect, partially reversible covalent binding
characteristics of WA may promote more promiscuous tyrosine kinase targeting than IBR
and explain the higher efficacy of WA than IBR in overcoming MM drug resistance. Finally,
WA-mediated inhibition of BTK kinase activity was also accompanied by a time-dependent
decrease in BTK mRNA and protein expression, not observed for IBR, suggesting that
WA targets BTK hyperactivation at multiple levels [62]. For example, WA may indirectly
decrease BTK activity by reducing kinase protein levels by inhibition of Sp1-dependent
transcription [78], by post-transcriptional microRNA silencing mechanisms [53,79], or by
decreasing kinase stability via heat shock chaperone proteins [45,47].

Although WA clearly suppresses hyperactivated BTK family kinases signaling, some
limitations of our study need to be acknowledged. Most notably, mainly GC therapy-
resistant MM cell models were studied here. Further preclinical in vitro and in vivo studies
are required to fully appreciate the therapeutic efficacy of WA to overcome multidrug
resistance by covalent inhibition of hinge 6 cysteine domain BTK family kinases. In
addition, small qualitative and/or quantitative variations in specificity/potency observed
for the promiscuous BCR TK inhibitor profiles of WA and IBR may not be sufficient to
explain the large difference in the therapeutic efficacy of WA as compared to IBR against
GC-resistant MM cell lines. Of special note, whereas nM concentrations of IBR are effective
against B-cell lymphoma cancer cells, much higher µM concentrations seem to be required
to kill BTK overexpressing MM cells [17,80–83], presumably because of the presence of
highly redundant BCR/NFKB survival pathways (PI3K/Akt/mTOR/Syk) in MM, which
compensates for pharmacological BTK inhibition [37]. Yet, despite the presence of these
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compensatory pathways, complete silencing of BTK expression is cytotoxic to MM1R
cells, emphasizing BTK’s involvement in myeloma cell survival. This is in line with
previous observations made in BTK KO mouse models, where complete loss of BTK
expression resulted in a more significant decrease in splenic B-cell numbers compared
to mice harboring BTK mutations [84]. Because BTK also possesses crucial shuttling and
scaffold activities, complete silencing of BTK is likely more detrimental to B-cells due to
additional loss of non-kinase functions [85].

Furthermore, covalent cysteine binding of WA has also been reported to Ser/Thr
kinases [86] and phosphatases [87], which were not included in our phosphopeptidome
screening approach. Indeed, in addition to BTK, BCR signaling is fine-tuned by Ser/Thr
kinases (for example, IKK2, PKCβ) [15,88] and phosphatases (i.e., SHIP1, PTEN) [89,90].
Finally, chemoproteomic strategies have identified additional WA non-kinase target pro-
teins, which may further strengthen the potential cancer therapeutic efficacy of WA [45,91].
Therefore, functional silencing approaches with shRNA libraries will be informative to
further distinguish druggable key cancer targets from adverse off-targets to defeat therapy
resistance in MM by WA [87,92]. Further research determining the safety and pharmacoki-
netic profile of WA is needed as well. Preliminary (pre)clinical toxicology studies of WA in
different cancer models revealed that WA administration is generally well tolerated with
limited to no adverse toxicity reported [93–95]. Yet, no toxicology data of WA have been
collected in B-cell malignancies, such as MM.

4. Materials and Methods

4.1. Cell Culture and Cell Viability Assays

GC-sensitive MM1S (CRL-2974) and GC-resistant MM1R MM cell lines (CRL-2975)
have been described previously and were purchased from ATCC [53]. GC-resistant U266
cells were kindly provided by Dr. Eva Lion, Head of Tumor Immunology Group of the
Laboratory of Experimental Hematology (University of Antwerp). Cells were cultivated in
RPMI-1640 supplemented with 10% fetal bovine serum (E.U approved; South American
origin) and 1% penicillin/streptomycin solution (Invitrogen, CA, USA). The cell lines were
additionally supplemented with 1% MEM Non-Essential amino acids and 1% sodium
pyruvate (Invitrogen, CA, USA). Each cell line was maintained at 37 ◦C in 5% CO2 and 95%
air atmosphere and 95–98% humidity. Cell viability was assessed by colorimetric assay
with 3-(4, 5-dimethylthiozol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich,
St. Louis, MO, US) as previously described [53].

4.2. Cell Lysis and Peptide Array-Based TK Activity Profiling

WA- or BTK-treated and untreated MM1S and MM1R cells (n = 3 biologically indepen-
dent samples per cell line per treatment) were lysed in M-PER lysis buffer containing 1:100
Halt’s protease and Pierce™ phosphatase inhibitors (Thermo Scientific, Waltham, MA,
USA). The lysates were collected and centrifuged at >13,000× rpm for 15 min at 4 ◦C. The
supernatants were transferred to pre-chilled Eppendorf tubes and flash-frozen immediately
on dry ice. Protein concentrations were determined by the Pierce™ BCA method (Thermo
Scientific, Waltham, MA, USA) [96]. Cellular kinase activities were measured by TK-specific
phosphopeptide arrays (PamChip, PamGene International B.V. the Netherlands) according
to the manufacturer’s protocol as previously described [56,97]. The differences in peptide
phosphorylation signal intensity between different experimental setups were analyzed in a
linear mixed model by using BioNavigator 6.3 software integrated with R (Bioconductor)
for statistical analysis (paired two-sided t-test and unpaired t-tests). FDR were calculated
using Benjamini–Hochberg method (adjusted p-values < 0.05) [55]. The upstream kinases
were correlated with the identified PTK-specific phosphopeptide fingerprints according to
the human (phospho)protein reference database [98–101]. Peptide lists showing differential
phosphorylation intensities were further cross-compared with phosphorylation specific
datasets of the Kinexus kinase predictor [102]. The kinases’ ranking was based upon scoring
penalties of sensitivity and specificity of observed peptide phosphorylation changes in the
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tested experimental conditions. The significance of the upstream kinase scoring functions
was calculated by Fisher’s exact test. Pathway enrichment of differentially phosphorylated
protein IDs was analyzed via MetaCore (Clarivate Analytics, Philadelphia, PA, USA) and
Ingenuity pathway analysis (IPA) software (Qiagen, Germany) [103].

4.3. cDNA Conversion Quantitative Real-Time PCR

Total RNA (1 µg) extracted from each sample was converted into cDNA with the Go
Script reverse transcription system (Promega, Madison, WI, USA) following the manu-
facturer’s protocol. Next, qPCR analysis was carried out using the GoTaq qPCR master
mix (Promega, Madison, WI, USA) according to the manufacturer’s instructions. In brief,
a 25µL reaction volume mix per sample was prepared, containing 12.5µL GoTaq qPCR
master mix, 0.4µM forward and reverse primer and nuclease-free water. The following
PCR program was applied on the Rotor-Gene Q qPCR machine of Qiagen: 95 ◦C for 2 min,
40 cyclic denaturations (95 ◦C, 15 s) and annealing/extension (60 ◦C, 30 s), and dissociation
(60–95 ◦C). Each sample was run in triplicate. The median value of the triplicates was taken
to calculate the ∆∆Ct-values using GAPDH as the normalization gene. Primer sequences
are listed in Supplementary Table S2.

4.4. RNA Extraction and RNA Sequencing

The RNeasy mini kit (Qiagen, Germany) was used to extract total RNA from untreated,
or WA exposed MM1S and MM1R cells (n = 3 biologically independent samples per cell
line per treatment) according to the manufacturer’s protocol. Isolated, pure total RNA was
then quantified and qualified using an EpochTM microplate spectrophotometer (BioTek,
Winusky, VT, USA). RNA samples were stored at −80 ◦C and subsequently shipped
to BGI (BGI Group, Beijing, China), where RNA integrity was determined using the
2100 Bioanalyzer system (Agilent Technologies, CA, USA). All 12 samples with acceptable
quality levels (RNA content >80 ng/µL, 28 s/18 s ≥ 1.0 and RIN ≥ 7.0) were included for
sequencing library preparation. Prepared libraries were 2 × 50 bp paired-end sequenced
using the BGISEQ-500 platform (BGI Group, China). RNAseq data were deposited in the
NCBI GEO database (GSE162475).

The quality of the RNA sequencing reads was assessed using FastQC (v0.11.5, Babra-
ham Institute, Cambridge, UK) [104]. STAR (v2.7.3a, Cold Spring Harbor Laboratory, CA,
USA) [105] was subsequently used to map reads to the human reference genome build
37 (hg19) and to generate a read count table summarizing the counts per gene. Finally,
differential gene expression analysis was performed using the DESeq2 package [57], and
pathway analysis was performed with Panther (Protein Informatics, Celera Genomics, CA,
USA) [106].

4.5. Antibodies and Reagents

WA was purchased from Alta Vista Phytochemicals (Hyderabad, India), and biotiny-
lation of WA was performed by Dr. P. Van der Veken (WA-BT; Universiteit Antwerpen,
Belgium). Both formulations were stored as 20 mM stocks in DMSO at −20 ◦C as previously
described [48,107]. IBR (IMBRUVICA®) stock solutions were obtained from Pharmacyclics
(Sunnyvale, CA, USA). Antibodies BTK (3533) and GAPDH (2118S) were obtained from
Cell Signaling Technology (Danvers, MA, USA).

4.6. Cell Viability after WA Washout

After 15 min treatment of MM1R cells with increasing concentrations of WA (with or
without DTT), cells were washed extensively with PBS (3 × 5 min) and left to grow for
an additional 24 h in WA-free supplemented RPMI-1640 medium. Once incubation was
complete, cell viability was determined by colorimetric MTT assay as described above.
MM1R cells continuously treated with WA for 24 h were included to allow for a direct
comparison of covalent and non-covalent effects on cell viability.
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4.7. Protein Extraction and Western Immunoblot Analysis

For western immunoblot analyses, cell pellets were lysed in 0.5 mL RIPA buffer
(150 mM NaCl, 0.1% Triton X-100, 0.1% SDS, 50 mM Tris-HCl pH 8) supplemented with
protease inhibitors (Complete Mini®, Roche, CA, USA). Soluble protein extracts were
obtained after 15 min incubation on ice, followed by brief sonication and centrifugation at
16 g for 20 min at 4 ◦C. Samples were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS–PAGE) and transferred onto nitrocellulose membranes (Hybond
C, Amersham) following standard protocols. After blocking, membranes were incubated
overnight at 4 ◦C with the primary antibodies, followed by dye-conjugated secondary anti-
bodies (polyclonal goat anti-rabbit HRP, #P0448, Dako). Bound complexes were detected
with the Amersham Imager 680 (Cytiva, Austria) and quantified by Image J software (Max
Planck Institute, Dresden, Germany) [108]. Original immunoblot images are provided in
Supplementary Table S4.

4.8. WA-Biotin-Based Affinity Purification

WA-BT affinity purification and co-precipitation were performed as previously de-
scribed [48]. In short, MM1R and U266 cells were seeded in 10 cm culture dishes and
incubated for 24 h at 37 ◦C. Cells were treated with biotinylated WA (1 µM, 2.5 µM, 5 µM
or 7.5 µM as indicated) or left untreated for 2 h. Cells were then lysed in 1 mL lysis buffer
(5 mM Tris pH 7.6, 1% Triton-X100 and 5 mM EDTA, supplemented with Complete™
protease inhibitor cocktail) and incubated with Neutravidin beads overnight. Beads were
centrifuged for 5 min at 500 g after which the supernatant was removed. Beads were
subsequently washed 5 times with lysis buffer. Total protein lysates, or coprecipitates, were
separated by SDS–PAGE and electrotransferred onto a nitrocellulose membrane. Blots were
probed using the appropriate antibodies, and the immunoreactive proteins were detected
using the Amersham Imager 680 (Cytiva, Austria).

4.9. Immunofluorescence Confocal Microscopy

After treatment with WABI, MM1R cells were fixed in 4% (v/v) formaldehyde. Cells
were stained with rhodamine–phalloidin (Molecular Probes, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) to visualize the cellular morphology, Hoechst 33,258 (Sigma-Aldrich,
St. Louis, MO, USA) to visualize the nucleus and streptavidin-Alexa Fluor555 (Molecular
Probes, Thermo Scientific, MA, USA) to visualize biotinylated WA. To determine WABI
colocalization with specific proteins (BTK), WABI-treated MM1R cells were immunostained
with primary (anti-rabbit BTK, Cell Signaling Technology, mAb#8547) and corresponding
labeled secondary antibodies (anti-rabbit Alexa Fluor-488, Molecular Probes, Thermo
Scientific, MA, USA). Cells were then placed on glass slides and mounted with coverslips
using FluoromountTM (Sigma-Aldrich, St. Louis, MO, US)Confocal imaging was carried
out by a laser-scanning microscope equipped with a Plan-Apochromat 63X/1.40 Oil DIC
objective lens and excitation wavelengths 405, 488, 561 and 640 nm (Zeiss LSM 800, Carl
Zeiss, Germany). At least 20 different microscopic fields were analyzed for each sample
using ZEN imaging software (Carl Zeiss). ZEN liteTM (Carl Zeiss, Germany) was used to
perform image reconstruction and presentation.

4.10. Covalent Docking of WA with BTK

In silico molecular docking studies of the BTK protein (PDB id: 6TFP) with WA
(PubChem CID: 26537) were performed as previously described [109]. Briefly, BTK and WA
structures were energy minimized with Swiss-PdbViewer (v4.1) [110] and UCSF Chimera
(Geneva Biomedical Institute, Geneva, Switzerland) [111], respectively. Molecular docking
and calculation of the docking scores were performed with Autodock4 (v4.2.6, University
of California, Berkeley, CA, USA). The obtained docking solutions were evaluated based on
their scoring, and the generated poses were clustered based on the ligand’s cluster ranks.
Finally, the clusters were differentiated based on the covalent bond lengths and prime
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energies. Final docking results were visualized with LIGPLOT (v.4.5.3, University College
London, UK) [74] and PyMOL (v.2.4, Schrödinger, NY, USA) [112] software.

4.11. Cell Transfections and BRET Measurements

BTK- and BTK(C481S)-NanoLuc® fusion vectors were purchased from Promega and
used in BRET target engagement experiments. HEK-293 cells were transfected with the
NanoLuc® fusion vectors using FuGENE HD (Promega, Madison, WI, USA) according to
the manufacturer’s protocol. Briefly, fusion vectors were diluted into transfection carrier
DNA (Promega, Madison, Wisconsin, USA) at a mass ratio of 1:10, after which FuGENE
HD was added at a ratio of 1:3. The FuGENE HD complexes were then added to HEK-
293 cells (1:20 ratio) at a density of 2 × 105 per mL. Subsequently, cells were plated onto
white, 96-well plates (Corning, NY, USA) at a density of 2 × 104 cells/well and left to
incubate for 24 h at 37 ◦C and 5% CO2. After incubation, cells were equilibrated for 2 h
with the NanoBRET tracer reagent (K11, Promega, Madison, WI, USA) and increasing
WA concentrations (0.5–10 µM). To measure BRET, NanoBRET NanoGlo substrate and
extracellular NanoLuc inhibitor (Promega, Madison, WI, USA) was added according to the
manufacturer’s protocol, and filtered luminescence was measured on a GloMax Discover
luminometer equipped with 450 nm BP filter and 600 nm LP filter. MilliBRET units (mBU)
were calculated by multiplying raw BRET values by 1000 and plotted with GraphPad Prism.

4.12. Nucleofection of siBTK and C481S BTK

The BTK(C481S)-NanoLuc® Fusion Vector was purchased from Promega, and siBTK
was purchased from GE-Healthcare Bio-sciences (Accell Human BTK siRNA, EQ-003107–
00–0005, 29121299, sequence supplied in Table S3). MM1R cells were transfected with
siBTK alone or siBTK combined with BTK(C481S) using the Nucleofector IIb device (Lonza,
Switzerland) according to the manufacturer’s instructions. In short, 2.106 MM1R cells were
resuspended in supplemented nucleofector solution, after which 300 nM siBTK was added
with or without 2 µg BTK(C481S). To each nucleofection reaction, an additional 2 µg of
pmaxGFP™ Vector was added as an internal positive control (transfection efficiency =
51.3 ± 2.4%). Resuspended cells were subsequently transferred to a cuvette and transfected
using the O-020 nucleofector program. After nucleofection, a pre-equilibrated medium was
added, and cells were transferred to a 96-well plate at a density of 80.000 cells/well. Eight
hours post-transfection, transfection efficiency and GFP expression were assessed with
fluorescence microscopy. If a GFP signal was present, cells were treated with increasing
concentrations of WA and cell viability was measured after 24 h using the MTT colorimetric
method. BTK mRNA expression of nucleofected cells was further confirmed by quantitative
real-time PCR.

5. Conclusions

Although cysteine code classification has been developed to explain the selectivity of
different electrophiles classes, many cysteine-reactive natural products have shown promis-
cuous therapeutic anticancer activities with poorly characterized targets [87,113,114]. In
a high-throughput compound library screening, the cysteine reactive phytochemical WA
was identified as a top prioritized investigational compound to suppress hyperactivated
BCR cancer signaling, together with IBR [63]. Given that WA possesses broad-spectrum
therapeutic activities in several (drug-resistant) cancer cell types, including B-cell lym-
phoma and MM [46,51], we further characterized its molecular mechanisms of action in
GC-resistant MM cells by combining innovative transcriptomic and phosphor-peptidomic
kinase (activity) profiling approaches. Our findings demonstrate that the TK inhibitory
profile of WA in GC-resistant MM cells is similar to that of IBR and that hyperphospho-
rylation of many BCR-related kinases, including BTK, is inhibited. Because WA also
covalently targets BTK in a cysteine-dependent manner, we hypothesize that WA inhibits
BTK autophosphorylation and activation in an IBR-like fashion. We additionally found
that WA silences BTK expression in GC-resistant MM cells at the mRNA and protein level,
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suggesting that WA suppresses BTK cancer signaling via a dual mechanism. Since WA
displays high a similarity with IBR mode of action, but with a more potent effect on cell
death of GC-resistant MM cells, further structure-function analysis of WA-analogs may
allow (pre)clinical optimization of highly effective withanolide BCR inhibitors to expand
the arsenal of cancer drugs against therapy-resistant B-cell malignancies.
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