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Carbon nanotubes combine a range of properties that make them 

well suited for use as probe tips in applications such as atomic force 

microscopy (AFM)1, 2, 3. Their high aspect ratio, for example, opens 

up the possibility of probing the deep crevices4 that occur in micro-

electronic circuits, and the small effective radius of nanotube tips sig-

nificantly improves the lateral resolution beyond what can be achieved 
using commercial silicon tips5. Another characteristic feature of nano-

tubes is their ability to buckle elastically4,6, which makes them very 

robust while limiting the maximum force that is applied to delicate 

organic and biological samples. Earlier investigations into the per-

formance of nanotubes as scanning probe microscopy tips have fo-

cused on topographical imaging, but a potentially more significant is-

sue is the question of whether nanotubes can be modified to create 
probes that can sense and manipulate matter at the molecular level7. 

Here we demonstrate that nanotube tips with the capability of chemi-

cal and biological discrimination can be created with acidic function-

ality and by coupling basic or hydrophobic functionalities or biomo-

lecular probes to the carboxyl groups that are present at the open tip 

ends. We have used these modified nanotubes as AFM tips to titrate 
the acid and base groups, to image patterned samples based on mo-

lecular interactions, and to measure the binding force between single 

protein–ligand pairs. As carboxyl groups are readily derivatized by a 

variety of reactions8, the preparation of a wide range of functionalized 

nanotube tips should be possible, thus creating molecular probes with 

potential applications in many areas of chemistry and biology.

Among the many reactions that can be used to derivatize car-

boxy (–COOH) functional groups, we have concentrated on nanotube 

chemical modification that involves the coupling of amines to the-

carboxyl groups at the tip ends to form amide-linked groups (Fig-

ure 1a)9. The broad applicability of this coupling reaction to aqueous 

and non-aqueous chemistry makes it especially attractive for nano-

tube functionalization.

Open-ended nanotube tips are formed while shortening the tubes 

in an oxidizing environment before use. A transmission electron mi-

croscopy (TEM) image of a multi-walled nanotube tip end demon-

strates that this process produces open ends (Figure 1a, inset). Car-

boxyl groups are expected at these open ends on the basis of previous 

spectroscopic studies of oxidized bulk nanotube10 and graphite11,12 

samples. Such traditional analytical techniques are nevertheless lim-

ited in their ability to verify directly the functional groups at the very 

end of a specific tip, because in the ideal limit there will be only a sin-

gle such group (~10-24 mol).

An alternative approach for assessing the functionality at a spe-

cific nanotube tip end is to measure the adhesion force between the tip 
and a surface that terminates in a known chemical functionality (that 

is, chemical force microscopy)13, 14, 15. Previous adhesion measure-

ments carried out as a function of solution pH (force titrations) be-

tween gold-coated Si
3
N

4
 tips and substrates functionalized with self-

assembled monolayers (SAMs) terminating in carboxyl and hydroxyl 

groups showed that the fraction of proton dissociation from the sur-

face carboxyl groups could be readily monitored by the drop in adhe-

sion force as in a classic pH titration14,16,17. If carboxyl groups do in-

deed exist at the nanotube ends, then they also should be able to be 

titrated in the same way. Force titrations between pH 2 and 9 with 

multi-walled nanotube tips on hydroxyl-terminated SAM substrates 

show a well defined drop in the adhesion force at pH ~4.5 (Figure 
1b) that is characteristic of the deprotonation of a carboxylic acid; the 

mid-point of this drop (4.5) is assigned to be the pK
a
. In these and all 

other experiments described below, the applied loads were kept be-

low the force required for nanotube buckling4,5 to ensure that only the 

nanotube end contacted the surface. The observed decrease in adhe-

sion force with increasing pH is also reversible for a given tip, and the 

transition is observed reproducibly for other tips. The absolute value 

of the adhesion force at low pH can vary between tips, and we believe 

that this reflects a variation in the number of carboxyl groups exposed 
at the ends of different tips. Last, the similarity of the value of the pK

a
 

determined in our force titrations (4.5) to the bulk solution value for 

benzoic acid (4.2) implies that the carboxyl group is well solvated and 

accessible to reaction16.

To investigate the covalent modification of nanotube tips we have 
coupled amines (RNH

2
), which yield non-ionizable or ionizable func-

tionalities on the tips, using carbodiimide chemistry that selectively 

forms amide linkages only with carboxyl groups (Figure 1a)9,18. 

Nanotube tips modified with benzylamine — which should expose 
non-ionizable, hydrophobic functional groups at the tip end — yield 
the expected pH-independent interaction force on hydroxyl-termi-

nated SAM substrates. This covalent modification thus eliminates the 
prominent pH-dependent behaviour observed with the unfunctional-

ized tips. Moreover, force titrations with ethylenediamine modified 
(that is, amine-functionalized) tips show no adhesion at low pH and 

finite adhesion above pH 7. These pH-dependent interactions are con-
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sistent with our expectations for an exposed basic amine functional-

ity that is protonated and charged at low pH and neutral at high pH. 

Although the observed pK
a
 of the nanotube-bound amine (~7) is re-

duced relative to homogeneous solution (9–10), similar behaviour has 

been observed in previous studies of SAM-modified Si
3
N

4
 tips16. Ad-

ditional experiments carried out on independent tips modified using 

benzylamine and ethylenediamine confirm the reproducibility of 
these results. We believe these data thus demonstrate unambiguously 

that carboxyl groups are exposed at the ends of nanotube tips, and that 

these groups can be covalently modified to produce probes with very 
distinct chemical functionalities.

We have explored several areas where these tips, and our newly de-

veloped approach to covalent modification, can be applied. First, the 
use of functionalized nanotube probes for chemically sensitive imag-

ing has been investigated using patterned SAM substrates (Figure 2). 

We recorded intermittent-contact or tapping-mode images (Figure 2b) 

in ethanol solution, using carboxyl-terminated nanotube tips on sub-

strates patterned19 with squares that terminate in CH
3
 groups and sur-

rounded by COOH-terminated regions. The images show a difference 

in phase between the two sample areas, although there is no differ-

ence in height: the tip–COOH/sample–COOH regions show a phase 

lag relative to the tip–COOH/sample–CH
3
 regions. Recent tapping-

mode studies using Au-coated Si
3
N

4
 tips functionalized with SAMs 

have shown that phase-lag differences can be quantitatively related 

to differences in the adhesion forces, and thus can be interpreted in 

terms of a map of the chemical functionality20. Because we expect13 

(and indeed find) the adhesion force between the carboxyl-terminated 
nanotube tip and the COOH-terminated SAM to be greater than the 

Figure 1. Preparation and characterization of functionalized carbon 

nanotube tips. a, Diagram illustrating the modification of a nanotube 
tip by coupling an amine (RNH

2
) to a pendant carboxyl group, and the 

application of this probe to sense specific interactions with functional 
groups (X) of a substrate. The circular inset is a molecular model of a 

single nanotube wall with one carboxyl group at the tip end. The multi-
walled nanotubes used in our studies were attached to the pyramids of 
gold-coated Si cantilevers (k = 0.5–5 N m-1, Digital Instruments, Inc.) 

using an acrylic adhesive under the direct view of an optical micro-

scope5. The as-made nanotube tips were shortened by applying a bias 
voltage between the tip and a sputtered Nb surface in an oxygen en-

vironment. Chemical modification of the nanotube ends was then car-
ried out by placing a cantilever-tip assembly in a solution of 50 mM 

EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) 

(Pierce) and 5 mM of either benzylamine or ethylenediamine in 0.1 M 

MES (2-[N-morpholino]ethanesulphonic acid) (Sigma) buffer pH 6.0, for 

2 hours. The tips were then successively washed in 0.1 M solutions 
of MES, NaCl (Fisher) and deionized water. The nanotubes were pre-

pared by arc-discharge and purified by oxidation (700 °C, air) until ~2% 
of the original mass remained. Inset, TEM image showing the open 
end of a shortened nanotube tip. b, Adhesion force as a function of pH 

between the nanotube tips and a hydroxy-terminated SAM (11-thioun-

decanol on gold-coated mica): filled squares, carboxyl (unmodified); 
open circles, phenyl (modified with benzylamine); and crosses, amine 
(modified with ethylenediamine). Each data point corresponds to the 
mean of 50–100 adhesion measurements, and the error bars represent 

one standard deviation.

Figure 2. Chemically sensitive imaging with functionalized nanotube 
tips. a, Diagram of a patterned sample prepared by microcontact print-

ing19 and consisting of 10-μm squares of a methyl-terminated (hexa-

decanethiol) SAM region surrounded by a carboxylic acid-terminated 

(16-mercaptohexadecanoic acid) SAM background on gold. Tapping 

mode phase-lag images of the patterned sample in ethanol were re-

corded with b, an unmodified nanotube tip (COOH-terminated) and c, 
a benzylamine-functionalized nanotube tip (phenyl terminated). Darker 

regions indicate greater phase lag; the contrast in b and c corresponds 

to phase variations of 2.3° and 2°, respectively. The images are 16 μm 
× 16 μm. Images and force curves were acquired with a Nanoscope III 
(Digital Instruments, Inc.). Imaging parameters were optimized for in-

dividual tips; typical ranges for the FESP (force modulation etched sil-

icon probe) nanotube tips were (1) resonant frequencies, 28–33 kHz; 
(2) free r.m.s. oscillation amplitude, 30–90 nm, (3) set-point, 1–3 V, and 

(4) scan rate, 0.5–1.2 Hz.
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CH
3
-terminated region, these results are consistent with chemically 

sensitive imaging. Furthermore, when tips are covalently modified 
with benzylamine, which produces a hydrophobic tip that interacts 

more strongly with the CH
3
 than with the COOH regions of the sam-

ple, the phase contrast is reversed (Figure 2c) as expected on the ba-

sis of the change in intermolecular interactions. In addition, control 

experiments carried out using the same modification procedures but 
without the EDC coupling reagent (see Figure 1 legend) required for 

covalent bond formation show the same phase contrast as the starting 

tips. These imaging results demonstrate that direct covalent coupling 

reactions on nanotube tips, which we believe provide a more flexible 
and robust method of modification than SAMs, can be used to create 
chemically sensitive imaging probes. The resolution that we achieve 

in our experiments (Figure 2) is limited by the technique used to create 

the patterned substrate. The multi-walled nanotubes used here can have 

diameters of 15–50 nm, but we have recently demonstrated25 that lat-

eral resolution of <3 nm can be achieved by using COOH-terminated 

single-walled nanotube21 tips on mixed monolayer/bilayer substrates.

Covalently modified nanotube tips also offer the possibility of 
probing biological systems at the nanometre scale. To illustrate this 

point we have studied the well characterized ligand–receptor interac-

tion of biotin–streptavidin22. 5-(biotinamido)pentylamine was cova-

lently linked to nanotube tips by the formation of an amide bond (Fig-

ure 3a). Force–displacement measurements (Figure 3b) made on mica 

surfaces containing immobilized streptavidin show well defined bind-

ing force quanta of ~200 pN per biotin–steptavidin pair (Figure 3c). 

Control experiments carried out with an excess of free biotin (which 

blocks all receptor sites of the protein) in solution, and with unmodi-

fied nanotube tips showed no adhesion within the noise limits of our 
experiments, and thus confirm that the observed binding force results 
from the interaction of nanotube-linked biotin with surface streptavi-

din. The functionalized nanotube tips usually show only single bind-

ing events of 200 pN, although with some tips it is also possible to 

observe events of twice this force; we attribute such events to the si-

multaneous binding of two biotin–streptavidin pairs. Our measured 

binding force quanta agree with previous AFM studies in which bio-

tin or avidin were attached to probe tips by the non-specific adsorp-

tion of bovine serum albumin23,24. We believe that our results show 

that it will be possible (by using well defined covalent chemistry) to 
attach individual active ligands, proteins or other macromolecules in 

a spatially defined manner to the ends of nanotubes, and then to use 
these functionalized probes to create high-resolution maps of binding 

domains on, for example, proteins and membranes. Such experiments 

would be difficult using conventional tips modified either using non-
specific adsorption or with SAMs.

The covalent modification of nanotube tips enables the straightfor-
ward creation of well defined probes which are sensitive to specific 
intermolecular interactions that define the properties of many chem-

ical and biological systems. In addition to the directions indicated 

above, we believe that functionalized nanotube tips will prove espe-

cially useful for imaging self-assembled polymeric and biological ma-

terials. In particular, recent studies in which we have extended the co-

valent modification procedures to single-walled nanotubes25 suggest 

the possibility of mapping functional groups with true molecular res-

olution. Among intriguing future applications is the use of the highly 

selective and robust chemistry described here to link catalysts, such 

as transition-metal complexes, to nanotube ends to create tools that 

could modify or create structures at the molecular scale. The selective 

functionalization of nanotube ends might also open up the possibili-

ties of creating interconnections for electronic devices on a nanometre 

scale and assembling new classes of materials from nanotubes.
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