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Covariance algebra of a partial dynamical system
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Abstract: A pair (X,α) is a partial dynamical system if X is a compact topological space and

α : ∆ → X is a continuous mapping such that ∆ is open. Additionally we assume here that

∆ is closed and α(∆) is open. Such systems arise naturally while dealing with commutative

C∗-dynamical systems.

In this paper we construct and investigate a universal C∗-algebra C∗(X,α) which agrees with

the partial crossed product [10] in the case α is injective, and with the crossed product by a

monomorphism [22] in the case α is onto.

The main method here is to use the description of maximal ideal space of a coefficient algebra,

cf. [16, 18], in order to construct a larger system (X̃, α̃) where α̃ is a partial homeomorphism.

Hence one may apply in extenso the partial crossed product theory [10, 13]. In particular,

one generalizes the notions of topological freeness and invariance of a set, which are being

used afterwards to obtain the Isomorphism Theorem and the complete description of ideals of

C∗(X,α).
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Introduction

In quantum theory the term covariance algebra (crossed product) means an algebra gener-

ated by an algebra of observables and by operators which determine the time evolution of

a quantum system (a C∗-dynamical system), thereby the covariance algebra is an object

which carries all the information about the quantum system, see [6, 18] (and the sources

cited there) for this and other connections with mathematical physics. In pure mathe-

matics C∗-algebras associated to C∗-dynamical systems proved to be useful in different
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fields: classification of operator algebras [25, 6, 23]; K-theory for C∗-algebras [4, 10, 20];

functional and functional differential equations [2, 3]; or even in number theory [17]. This

multiplicity of applications and the complexity of the matter attracted many authors and

caused an abundence of various approaches [25, 10, 20, 26, 1, 22, 12, 14]. In the present

article we propose another approach which on one hand may seem to embrace a very

special case but on the other hand:

1) unlike the other authors investigating crossed products (see discussions below) we

do not require here any kind (substitute) of reversibility of the given system,

2) we obtain a rather thorough description of the associated covariance algebra, and

also strong tools to study it,

3) we find points of contact of different approaches and thereby clarify the relations

between them.

In order to give the motivation of the construction of the crossed product developed

in the paper we would like to present a simple example.

Example. Consider the Hilbert space H = L2
µ(R) where µ is the Lebesgue measure.

Let A ⊂ L(H) be the C∗-algebra of operators of multiplication by continuous bounded

functions on R that are constant on R− = {x : x ≤ 0}. Set the unitary operator U ∈ L(H)

by the formula

(Uf)(x) = f(x− 1), f( · ) ∈ H.
Routine verification shows that the mapping

A ∋ a 7→ UaU∗

is an endomorphism of A of the form

UaU∗(x) = a(x− 1), a( · ) ∈ A, (1)

and

U∗aU(x) = a(x+ 1), a( · ) ∈ A. (2)

Clearly the mapping A ∋ a 7→ U∗aU does not preserve A.

Let C∗(A, U) be the C∗-algebra generated by A and U . It is easy to show that

C∗(A, U) = C∗(B, U)

where B ⊂ L(H) is the C∗-algebra of operators of multiplication by continuous bounded

functions on R that have limits at −∞.

In addition we have that

UBU∗ ⊂ B and U∗BU ⊂ B

and the corresponding actions δ( · ) = U( · )U∗ and δ∗( · ) = U∗( · )U on B are given by

formulae (1) and (2).
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Moreover

C∗(A, U) = C∗(B, U) ∼= B ×δ Z.

Where in the right hand side stands the standard crossed product of B by the automor-

phism δ.

This example shows a natural situation when the crossed product B×δ Z is ’invisible’

at the begining (on the initial algebra A, δ acts as an endomorphism and δ∗ even does

not preserve A) but after implementing a natural extension of A up to B, δ becomes an

automorphism and leads to the crossed product structure. The aim of the paper is to

investigate the general constructions of this type. We will also find out that the arising

constructions are rather natural and one can come across them ’almost anywhere’, in

particular they present the passage from the irreversible topological Markov chains to the

reverible ones (see Propostition 2.8) and the maximal ideal spaces of the algebras of B
type possess the solenoid structure (see Examples 2.12, 6.15).

We deal here with C∗-dynamical systems where dynamics is implemented by a single

endomorphism, hence a C∗-dynamical system is identified with a pair (A, δ) where A is a

unital C∗-algebra and δ : A → A is a ∗-endomorphism. Additionally we assume that A is

commutative. Hence, in fact, we deal with topological dynamical systems. Indeed, using

the Gelfand transform one can identify A with the algebra C(X) of continuous functions

on the maximal ideal space X of A, and within this identification the endomorphism δ

generates (see, for example, [16]) a continuous partial mapping α : ∆→ X where ∆ ⊂ X

is closed and open (briefly clopen), and the following formula holds

δ(a)(x) =





a(α(x)) , x ∈ ∆

0 , x /∈ ∆
, a ∈ C(X). (3)

Therefore we have one-to-one correspondence between the commutative unital C∗-dynamical

systems (A, δ) and pairs (X,α), where X is compact and α is a partial continuous map-

ping in which the domain is clopen. We shall call (X,α) a partial dynamical system.

Usually covariance algebra is another name for the crossed product which in turn is

defined in various ways [25, 23, 10, 22], though it seems more appropriate to define such

objects as C∗-algebras with a universal property with respect to covariant representations

[26, 1]. In the literature, cf. [25, 10, 20, 1], a covariant representation of (A, δ) is meant

to be a triple (π, U,H) where H is a Hilbert space, π : A → L(H) is a representation of

A by bounded operators on H , and U ∈ L(H) is such that

π(δ(a)) = Uπ(a)U∗, for all a ∈ A,

plus eventually some other conditions imposed on U and π. If π is faithful we shall

call (π, U,H) a covariant faithful representation. The covariant representations of a C∗-

dynamical system give rise to a category Cov(A, δ) where objects are the C∗-algebras

C∗(π(A), U), generated by π(A) and U , while morphisms are the usual ∗-morphisms
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φ : C∗(π(A), U)→ C∗(π′(A), U ′) such that

φ(π(a)) = π′(a), for a ∈ A, and φ(U) = U ′

(here (π, U,H) and (π′, U ′, H ′) denote covariant representations of (A, δ)). In many cases

the main interest is concentrated on the subcategory CovFaith(A, δ) of Cov(A, δ) for

which objects are algebras C∗(π(A), U) where now π is faithful. The fundamental problem

then is to describe a universal object in Cov(A, δ), or in CovFaith(A, δ), in terms of the

C∗-dynamical system (A, δ). If such an object exists then it is unique up to isomorphism,

and it shall be called a covariance algebra.

It is well known [25] that, in the case that δ is an automorphism, the classic crossed

product A ⋊δ Z is the covariance algebra of the C∗-dynamical system (A, δ). Being

motivated by the paper [8], in which J. Cuntz discussed a concept of the crossed product

by an endomorphism which is not an automorphism, many authors proposed theories

of generalized crossed products with some kind of universality (see [24, 10, 20, 22, 12]).

For instance, G. Murphy in [22] has proved that a corner of the crossed product of a

certain direct limit is a covariance algebra of a system (A, δ) where δ is a monomorphism

(in fact he has proved far more general result, see [22, Theorem 2.3]). R. Exel in [10]

introduced a partial crossed product which can be applied also in the case δ is not injective,

though generating a partial automorphism (see also [13, 20]). Nevertheless, in general

the inter-relationship between the C∗-dynamical system and its covariance algebra is still

not totally-established.

In the approach developed in this paper we explore the leading concept of the coeffi-

cient algebra, introduced in [18]. The elements of this algebra play the role of Fourier’s

coefficients in the covariance algebra, hence the name. The authors of [18] studied the C∗-

algebra C∗(A, U) generated by a ∗-algebra A ⊂ L(H) and a partial isometry U ∈ L(H).

They have defined A (in a slightly different yet equivalent form) to be a coefficient algebra

of C∗(A, U) whenever A possess the following three properties

U∗U ∈ A′, UAU∗ ⊂ A, U∗AU ⊂ A, (4)

where A′ denotes the commutant of A. Let us indicate that this concept appears, in

more or less explicit form, in all the aforesaid articles: If U is unitary then (4) holds iff

δ(·) = U(·)U∗ is an automorphism of A, and thus in this case A can be regarded as a

coefficient algebra of the crossed product A⋊δ Z. For example in the paper [8], the UHF

algebra Fn is a coefficient algebra of the Cuntz algebra On. Also the algebra A considered

by Paschke in [24] is a coefficient algebra of the C∗-algebra C∗(A, S) generated by A and

the isometry S. The algebra C α̃ defined in [22] as the fixed point algebra for dual action

can be thought of as a generalized coefficient algebra of the crossed product C∗(A,M, α)

of A by the semigroup M of injective endomorphisms.

Thanks to [16], the main tool we are given is the description of maximal ideal spaces

of certain coefficient algebras. More precisely, for any partial isometry U and unital

commutative C∗-algebra A such that U∗U ∈ A′ and UAU∗ ⊂ A we infer that (A, δ) is

a C∗-dynamical system, where δ(·) = U(·)U∗. However A does not need to fulfill the
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third property from (4). The solution then is to pass to a bigger C∗-algebra B generated

by {A, U∗AU,U2∗AU2, ...}. Then (B, δ) is a C∗-dynamical system and B is a coefficient

algebra of C∗(B, U) = C∗(A, U), see [18]. In this case the authors of [16] managed to

’estimate’ the maximal ideal space M(B) of B in terms of (A, δ), or better to say, in terms

of the generated partial dynamical system (X,α). Fortunately, the full description of

M(B) is obtained [16, 3.4] by a slight strengthening of assumptions - namely by assuming

that the projection U∗U belongs not only to commutant A′ but to A itself. The partial

dynamical system (M(B), α̃), corresponding to (B, δ), is thus completely determined by

(X,α). Two important facts are to be noticed: α̃ is a partial homeomorphism, and

U∗U ∈ A implies that the image α(∆) of the partial mapping α is open, see Section 1 for

details.

In Section 2, to an arbitrary partial dynamical system (X,α) such that α(∆) is open

we associate another partial dynamical system (X̃, α̃) such that:

1) α̃ is a partial homeomorphism,

2) there exist a continuous surjection Φ : X̃ → X such that the equality Φ ◦ α̃ = α ◦ Φ

holds wherever it makes sense (see diagram (18)),

3) if α is injective then Φ becomes a homeomorphism, that is (X̃, α̃) ∼= (X,α).

This authorizes us to call (X̃, α̃) the reversible extension of (X,α). In the case α is

onto, X̃ is a projective limit (see Proposition 2.10) and thus (X̃, α̃) generalizes the known

construction.

In Section 3 we find out that all the objects of CovFaith(A, δ) have the same (up to

isomorphism) coefficient C∗-algebra whose maximal ideal space is X̃. We denote this C∗-

algebra by B. Then we construct a coefficient ∗-algebra B0 (the closure of B0 is B) with

the help of which we express the interrelations between the covariant representations of

(A, δ) and (B, δ̃) where δ̃ is an endomorphism associated to the partial homeomorphism

α̃. In particular we show that, if δ is injective, or equivalently α is onto, then we have

a natural one-to-one correspondence between aforementioned representations. In general

this correspondence is maintained only if we constrain ourselves to covariant faithful

representations.

In Section 4 we define C∗(A, δ) = C∗(X,α) to be the partial crossed product of

B = C(X̃) by a partial automorphism generated by the partial homeomorphism α̃. We

show that C∗(A, δ) is the universal object in CovFaith(A, δ), and in the case that δ is

injective, it is also universal when considered as an object of Cov(A, δ). Therefore we call

it a covariance algebra.

Section 5 is devoted to two important notions in C∗-dynamical systems theory: topo-

logical freeness and invariant sets. Classically, these notions were related only to home-

omorphisms, but recently they have been adopted (generalized), by authors of [13], to

work with partial homeomorphisms, see also [19]. Inspired by this line of development we

present here the definitions of topological freeness and invariance under a partial mapping

which include also noninjective partial mappings. Let us mention that, for instance, in

[15] appears also the definition of topologically free irreversible dynamical system, but
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the authors of [15] attach to dynamical systems different C∗-algebras than we do, hence

they are in need of a different definition. We show that there exists a natural bijection

between closed α-invariant subsets of X and closed α̃-invariant subsets of X̃ and that the

partial dynamical system (X,α) is topologically free if and only if its reversible extension

(X̃, α̃) is topologically free.

Section 6 contains two important results. Namely, we establish a one-to-one corre-

spondence between the ideals in C∗(X,α) and closed invariant subsets of X generalizing

Theorem 3.5 from [13]. Then we present a version of the Isomorphism Theorem, cf. [2,

Theorem 7.1], [3, Chapter 2], [13, Theorem 2.6], [18, Theorem 2.13], which says that all

objects of CovFaith(A, δ) are isomorphic to C∗(A, δ) whenever the corresponding system

(X,α) is topologically free.

1 Preliminaries. Maximal ideal space of a coefficient C∗-algebra

We start this section by fixing some notation. Afterwards, we present and discuss briefly

the results of [16] in order to present our methods and motivations. We finish this section

with Theorem 1.8 to be used extensively in the sequel.

Throughout this article A denotes a commutative unital C∗-algebra, X denotes its

maximal ideal space (i.e. a compact topological space), δ is an endomorphism of A, while

α stands for a continuous partial mapping α : ∆ → X where ∆ ⊂ X is clopen and the

formula (3) holds. We adhere to the convention that N = 0, 1, 2, ..., and when dealing

with partial mappings we follow the notation of [16], i.e.: for n > 0, we denote the domain

of αn by ∆n = α−n(X) and its image by ∆−n = αn(∆n); for n = 0, we set ∆0 = X and

thus, for n,m ∈ N, we have

αn : ∆n → ∆−n, (5)

αn(αm(x)) = αn+m(x), x ∈ ∆n+m. (6)

We recall that in terms of the multiplicative functionals of A, α is given by

x ∈ ∆1 ⇐⇒ x(δ(1)) = 1, (7)

α(x) = x ◦ δ, x ∈ ∆1. (8)

For the purpose of the present section we fix (only in this section) a faithful representation

of A, i.e. we assume that A is a C∗-subalgebra of L(H) where L(H) is an algebra of

bounded linear operators on a Hilbert space H . Additionally we assume that endomor-

phism δ is given by the formula

δ(a) = UaU∗, a ∈ A,

for some U ∈ L(H) and so U is a partial isometry (note that there exists a correspondence

between properties of U and the partial mapping α, cf. [16, 2.4]). In that case, as it makes

sense, we will consider δ also as a mapping on L(H). There is a point in studying together

with δ(·) = U(·)U∗ one more mapping

δ∗(b) = U∗bU, b ∈ L(H),
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which in general maps a ∈ A onto an element outside the algebra A and hence, even

if we assume that U∗U ∈ A′, we need to pass to a bigger algebra in order to obtain an

algebra satisfying (4) .

Proposition 1.1. [18, Proposition 4.1] If δ(·) = U(·)U∗ is an endomorphism of A,

U∗U ∈ A′ and B = C∗(
⋃∞
n=0U

∗nAUn) is a C∗-algebra generated by
⋃∞
n=0U

∗nAUn, then

B is commutative and both the mappings δ : B → B and δ∗ : B → B are endomorphisms.

The elements of the algebra B play the role of coefficients in a C∗-algebra C∗(A, U)

generated by A and U , [18, 2.3]. Hence the authors of [18] call B a coefficient algebra.

It is of primary importance that B is commutative and that we have a description of its

maximal ideal space, denoted here by M(B), in terms of the maximal ideals in A, see

[16]. Let us recall it.

With every x̃ ∈M(B) we associate a sequence of functionals ξnx̃ : A → C , n ∈ N, defined

by the condition

ξnx̃ (a) = δn∗ (a)(x̃), a ∈ A. (9)

The sequence ξnx̃ determines x̃ uniquely because B = C∗(
⋃∞
n=0 δ

n
∗ (A)). Since δ∗ is an

endomorphism of B the functionals ξnx̃ are linear and multiplicative on A. So either

ξnx̃ ∈ X (X is the spectrum of A) or ξnx̃ ≡ 0. It follows then that the mapping

M(B) ∋ x̃→ (ξ0
x̃, ξ

1
x̃, ...) ∈

∞∏

n=0

(X ∪ {0}) (10)

is an injection and the following statement is true, see Theorems 3.1 and 3.3 in [16].

Theorem 1.2. Let δ(·) = U(·)U∗ be an endomorphism of A, U∗U ∈ A′, and α : ∆1 → X

be the partial mapping determined by δ. Then the mapping (10) defines a topological

embedding of M(B) into topological space
⋃∞
N=0 X̂N ∪ X∞. Under this embedding we

have
∞⋃

N=0

XN ∪X∞ ⊂M(B) ⊂
∞⋃

N=0

X̂N ∪X∞

where

X̂N = {x̃ = (x0, x1, ..., xN , 0, ...) : xn ∈ ∆n, α(xn) = xn−1, 1 ≤ n ≤ N},

X∞ = {x̃ = (x0, x1, ...) : xn ∈ ∆n, α(xn) = xn−1, 1 ≤ n}.

XN = {x̃ = (x0, x1, ..., xN , 0, ...) ∈ X̂N : xN /∈ ∆−1},

The topology on
⋃∞
N=0 X̂N ∪ X∞ is defined by a fundamental system of neighborhoods

of points x̃ ∈ X̂N given by

O(a1, ..., ak, ε) = {ỹ ∈ X̂N : |ai(xN )− ai(yN)| < ε, i = 1, ..., k}
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and respectively of x̃ ∈ X∞ by

O(a1, ..., ak, n, ε) = {ỹ ∈
∞⋃

N=n

X̂N ∪X∞ : |ai(xn)− ai(yn)| < ε, i = 1, ..., k}

where ε > 0, ai ∈ A and k, n ∈ N.

Remark 1.3. The topology onX is weak∗. One immediately sees then (see (10)), that the

topology on
⋃
N∈N

X̂N ∪X∞ is in fact the product topology inherited from
∏∞

n=0(X∪{0})
where {0} is clopen.

The foregoing theorem gives us an estimate of M(B) and aiming at sharpening that result

we need to strengthen the assumptions. If we replace the condition U∗U ∈ A′ with the

stronger one

U∗U ∈ A, (11)

then the full information on B is carried by the pair (A, δ), cf. [16, Theorem 3.4].

Theorem 1.4. Under the assumptions of Theorem 1.2 with U∗U ∈ A′ replaced by

U∗U ∈ A we get

M(B) =

∞⋃

N=0

XN ∪X∞.

This motivates us to take a closer look at condition (11).

Firstly, let us observe [16, 3.5] that if U∗U ∈ A′ then δ is an endomorphism of the C∗-

algebra A1 = C∗(A, U∗U) and since C∗(
⋃∞
n=0 U

∗nA1U
n) = B one can apply the preceding

theorem to the algebra A1 for the full description of M(B). This procedure turns out to

be very fruitful in many situations.

Example 1.5. Let the elements of A be the operators of multiplication by periodic

sequences of period n, on the Hilbert space l2(N), and let U be the co-isometry given

by [Ux](k) = x(k + 1), for x ∈ l2(N), k ∈ N. Then X = {x0, ..., xn−1} and α(xk) =

xk+1 (mod n). If for k = 0, ..., n− 1 we write

(∞, k) = (xk, xk−1, ..., x1, x0, xn−1, xn−2, . . . )

and

(N, k) = (xk, xk−1, ..., x1, x0, xn−1, ...︸ ︷︷ ︸
N

, xn−r, 0, 0, . . . )

where N − r ≡ k (mod n) (for each N there are n pairs (N, k)), then from Theorem 1.2

we get

{∞} × {0, 1, ..., n− 1} ⊂M(B) ⊂ N× {0, 1, ..., n− 1}
where N = N ∪ {∞} is a compactification of the discrete space N. In order to describe

M(B) precisely let us pass to the algebra A1 = C∗(A, U∗U). As U∗U is the operator

of multiplication by (0, 1, 1, ...) the elements of A1 are the operators of multiplication by
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sequences of the form (a, h(0), h(1), ...) where a is arbitrary and h(k + n) = h(k), for all

k ∈ N. In an obvious manner (with a slight abuse of notation) we infer the spectrum of A1

to be {y, x0, ..., xn−1}, and the mapping generated by δ considered as an endomorphism

of A1 acts as follows: α(xk) = xk+1 (mod n) and α(y) = x0. Abusing notation once again

and putting

(N, k) = (xk, xk−1, ..., x1, x0, xn−1, ..., x0︸ ︷︷ ︸
N

, y, 0, 0, ...)

where N ≡ k (mod n) (for each N there is now the only one pair (N, k)), in view of

Theorem 1.4 we have

M(B) = {(N, k) ∈ N× {0, 1, ..., n− 1} : N ≡ k (mod n)} ∪
(
{∞} × {0, 1, ..., n− 1}

)
,

so M(B) can be imagined as a spiral subset of the cylinder N×{0, 1, ..., n−1}, (see Figure

1).

q
(∞, 0)

q
(∞, n 1)−

q
(∞, 1)

q
(∞, 2)

�
�

��
PP

PP

.....

q
(0, 0)

q
(1, 1) q

(2, 2)
..

q
(n, 0)

q
(n 1, 1)+ q

(n 2, 2)+
.

Fig. 1 Maximal ideal space of the coefficient algebra from Example 1.5.

Condition (11) is closely related to the openness of ∆−1 (as ∆1 is compact and α is

continuous ∆−1 is always closed).

Proposition 1.6. Let P∆−1
be the projection corresponding to the characteristic function

χ∆−1
. If U∗U ∈ A then ∆−1 is open and U∗U = P∆−1

. If U∗U ∈ A′, ∆−1 is open and A
acts nondegenerately on H , then U∗U 6 P∆−1

.

Proof. Let U∗U ∈ A. We show that the image ∆−1 of the set ∆1 of functionals satisfying

(7) under the mapping (8) is the set of functionals x ∈ X satisfying x(U∗U) = 1.

Let x′ ∈ ∆1, that is x′(UU∗) = 1. Putting x = α(x′) we have x(U∗U) = x′(δ(U∗U)) =

x′(UU∗UU∗) = x′(UU∗)x′(UU∗) = 1. Now, let x ∈ X be such that x(U∗U) = 1. We

define on δ(A) a multiplicative functional x′(b) := x(U∗bU), b ∈ δ(A). For b = δ(a),

a ∈ A, we then have

x′(δ(a)) = x(U∗UaU∗U) = x(U∗U)x(a)x(U∗U) = x(a).



B.K. Kwaśniewski / Central European Journal of Mathematics 3(4) 2005 718–765 727

x′ is therefore well defined. Since x′(δ(1)) = x(1) = 1 it is non zero and there exists its

extension x′ ∈ X on A (see [9, 2.10.2]). It is clear that x′ ∈ ∆1 and α(x′) = x. Hence

x ∈ ∆−1. Thus we have proved that x ∈ ∆−1 ⇐⇒ x(U∗U) = 1, which means that

U∗U ∈ A is the characteristic function of ∆−1. It follows then that ∆−1 is clopen.

Now, let ∆−1 be open. Then χ∆−1
∈ C(X) and δ(χ∆−1

) = χα−1(∆−1) = χ∆1
. As A acts

nondegenerately, rewriting this equation in terms of operators we have

UP∆−1
U∗ = UU∗. (12)

Letting Hi = U∗UH be the initial and Hf = UU∗H be the final space of U we get

U∗ : Hf → Hi is an isomorphism and U : Hi → Hf is its inverse. Taking arbitrary

h ∈ Hf and applying the both sides of (12) to it we obtain UP∆−1
U∗h = h, and hence

P∆−1
Hi = Hi, that is U∗U 6 P∆−1

. �

Note. The inequality in the second part of the preceding proposition can not be replaced

by equality. In order to see that consider for instance A and U from Example 1.5.

By virtue of Proposition 1.1 the mappings δ and δ∗ are endomorphisms of the C∗-algebra

B. With the help of the presented theorems we can now find the form of the partial

mappings they generate. We shall rely on the fact [16, 2.5] expressed by the coming

proposition.

Proposition 1.7. Let δ(·) = U(·)U∗ and δ∗(·) = U∗(·)U be endomorphisms of A and

let α be the partial mapping of X generated by δ. Then ∆1 and ∆−1 are clopen and

α : ∆1 → ∆−1 is a homeomorphism. Moreover, the endomorphism δ∗ is given on C(X)

by the formula

δ∗(a)(x) =






a(α−1(x)) , x ∈ ∆−1

0 , x /∈ ∆−1

(13)

Finally we arrive at the closing theorem.

Theorem 1.8. Let the hypotheses of Theorem 1.2 hold. Then

i) the sets

∆̃1 = {(x0, ...) ∈M(B) : x0 ∈ ∆1},
∆̃−1 = {(x0, x1, ...) ∈M(B) : x1 6= 0}

are clopen subsets of M(B),

ii) the endomorphism δ generates on M(B) the partial homeomorphism α̃ : ∆̃1 → ∆̃−1

given by the formula

α̃(x0, ...) = (α(x0), x0, ...), (x0, ...) ∈ ∆̃1, (14)

iii) the partial mapping generated by δ∗ is the inverse of α̃, that is α̃−1 : ∆̃−1 → ∆̃1

where

α̃−1(x0, x1...) = (x1, ...), (x0, x1...) ∈ ∆̃−1. (15)
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Proof. We rewrite Proposition 1.7 in terms of Theorem 1.2. Let x̃ = (x0, x1, ...) ∈ M(B).

From (7) we get

x̃ ∈ ∆̃1 ⇐⇒ x̃(UU∗) = 1, x̃ ∈ ∆̃−1 ⇐⇒ x̃(U∗U) = 1.

However, the definition (9) of functionals ξnx̃ = xn implies that x̃(UU∗) = 1 ⇐⇒
x0(UU

∗) = 1, and x̃(U∗U) = 1⇐⇒ x1(1) = 1, which proves i).

The mapping α̃ generated by δ on M(B) (see (8)), is given by the composition: α̃(x̃) ≡
x̃ ◦ δ. So, let x̃ = (x0, x1, ...) ∈ ∆̃1, then the sequence of functionals ξnx̃ satisfies: ξnx̃ (a) =

a(xn), a ∈ A, n ∈ N. Now let us consider an analogous sequence of functionals ξnα̃(x̃)

defining the point α̃(x̃) = (x0, x1, ...). For n > 0 we have

a(xn) = ξnα̃(x̃)(a) = α̃(x̃)(δn∗ (a)) = x̃(δ(δn∗ (a))) = x̃(UU∗naUnU∗) =

= x̃(UU∗)x̃(δn−1
∗ (a))x̃(U∗U) = x̃(δn−1

∗ (a)) = ξn−1
x̃ (a) = a(xn−1),

while for n = 0 we have

a(x0) = ξ0
α̃(x̃)(a) = α̃(x̃)(a) = x̃(δ(a)) = ξ0

x̃(δ(a)) = δ(a)(x0) = a(α(x0)).

Thus we infer that α̃(x̃) = (α(x0), x0, ...). By Proposition 1.7, α̃−1 is the inverse to

mapping α̃. Hence we get (15). �

2 Reversible extension of a partial dynamical system

One of the most important consequences of Theorems 1.4 and 1.8 is that although the

algebra B is relatively bigger than A and its structure depends on U and U∗ (U and U∗

need not be in A) the C∗-dynamical system (B, δ) still can be reconstructed by means of

the intrinsic features of (A, δ) itself (provided (11) holds). Therefore in this section, we

make an effort to investigate effectively this reconstruction and, as it is purely topological,

we forget for the time being about its algebraic aspects.

Once having the system (X,α), we will construct a pair (X̃, α̃):

• a compact space X̃ - a counterpart of the maximal ideal space obtained in Theorem

1.4 (or a ’lower estimate’ of it, see Theorem 1.2), and

• a partial injective mapping α̃ - a counterpart of the mapping from Theorem 1.8.

We then show some useful results about the structure of (X̃, α̃). In particular, we cal-

culate (X̃, α̃) for topological Markov chains, and show the interrelation between X̃ and

projective limits.

The most interesting case occurs when the injective mapping α̃ has an open image. We

shall call such mappings partial homeomorphisms, cf [13]. More precisely,

a partial homeomorphism is a partial mapping which is injective and has open image.

Let us recall that by a partial mapping of X we always mean a continuous mapping

α : ∆1 → X such that ∆1 ⊂ X is clopen, and so if α is a partial homeomorphism, then
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α−1 : ∆−1 → X is a partial mapping of X in our sense, that is ∆−1 is clopen.

As we shall see if ∆−1 is open then α̃ is a partial homeomorphism and X̃ actually becomes

the spectrum of a certain coefficient algebra (see Theorem 3.3). That is the reason why

we shall often assume the openness of ∆−1. However in this section we do not make it a

standing assumption in order to get to know better the role of it and the condition (11),

cf. Proposition 1.6.

2.1 The system (X̃, α̃)

Let us fix a partial dynamical system (X,α) and let us consider a disjoint union X ∪ {0}
of the set X and the singleton {0} (we treat here 0 as a symbol rather than the number).

We define {0} to be clopen and hence X ∪ {0} is a compact topological space. We will

define X̃ to be a subset

X̃ ⊂
∞∏

n=0

(X ∪ {0})

of the product of ℵ0 copies of the space X ∪ {0} where the elements of X̃ represent

anti-orbits of the partial mapping α. Namely we set

X̃ =

∞⋃

N=0

XN ∪X∞ (16)

where

XN = {x̃ = (x0, x1, ..., xN , 0, ...) : xn ∈ ∆n, xN /∈ ∆−1, α(xn) = xn−1, n = 1, ..., N},

X∞ = {x̃ = (x0, x1, ...) : xn ∈ ∆n, α(xn) = xn−1, n > 1}.
The natural topology on X̃ is the one induced from the space

∏∞
n=0(X ∪ {0}) equipped

with the product topology, cf. Remark 1.3. Since X̃ ⊂∏∞
n=0(∆n ∪ {0}), the topology on

X̃ can also be regarded as the topology inherited from
∏∞

n=0(∆n ∪ {0}).

Definition 2.1. We shall call the topological space X̃ the extension of X under α, or

briefly the α-extension of X.

Theorem 2.2. The subset X∞ is compact and the subsetsXN are clopen in X̃. Moreover,

the following conditions are equivalent:

a) ∆−1 is open.

b) X̃ is compact.

c) X0 is compact.

d) XN is compact for every N ∈ N.

Proof. As the sets ∆n, n ∈ N, are clopen, by Tichonov’s theorem, the space
∏∞

n=0(∆n ∪
{0}) is compact, and to prove the compactness of X∞ it suffices to show that X∞ is a

closed subset of
∏∞

n=0(∆n ∪ {0}), or equivalently that its complement is open. To this
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end, let x̃ = (x0, x1, ...) ∈
∏∞

n=0(∆n ∪ {0}) and suppose that x̃ /∈ X∞. We show that x̃

has an open neighborhood contained in
∏∞

n=0(∆n ∪ {0}) \ X̃∞.

In view of the definition of X∞ we have two possibilities:

1) there is n > 0 such that xn = 0,

2) there is n > 0 such that xn ∈ ∆n, and α(xn) 6= xn−1,

If 1) holds then the set Ṽ =
∏∞

k=0 Vk where Vk = ∆k ∪ {0}, for k 6= n, and Vn = {0}, is

an open neighborhood of x̃ and Ṽ ∩X∞ = ∅.
Let us suppose now that 2) holds. We may also suppose that xn−1 6= 0 (xn−1 ∈ ∆n−1).

Hence there exist two disjoint open subsets V1, V2 ⊂ ∆n−1 such that α(xn) ∈ V1 and

xn−1 ∈ V2. Clearly, the set Ṽ =
∏∞

k=0 Vk where Vk = ∆k ∪ {0}, for k 6= n − 1, n, and

Vn−1 = V2, Vn = α−1(V1), is an open neighborhood of x̃, and V1 ∩ V2 = ∅ guarantees that

Ṽ ∩X∞ = ∅.
Fix N ∈ N. To prove that XN is open we recall that ∆n, n ∈ N, are clopen and ∆−1 is

closed. Hence ∆n \∆−1, n ∈ N, are open, and it is easy to see that

XN = X̃ ∩ (∆0 ×∆1 × ...×∆N−1 ×∆N \∆−1 × (∆N+1 ∪ {0})× ...).

Hence XN is an open subset of X̃. It is also closed because its complement is the sum of

two open sets: Ṽ1 = {(x0, x1...) ∈ X̃ : xN = 0} and Ṽ2 = {(x0, x1...) ∈ X̃ : xN+1 6= 0}.
We prove now the equivalence of a), b), c) and d).

a)⇒b). Suppose that ∆−1 is open. We prove the compactness of X̃ in an analogous

fashion as we proved the compactness of X∞. Let x̃ = (x0, x1, ...) ∈
∏∞

n=0(∆n ∪{0}) \ X̃.

In view of the definition of X̃ we have the three possibilities:

1) there are n,m ∈ N such that xn = 0 and xn+m ∈ ∆n+m (xn+m 6= 0),

2) there is n > 0 such that xn ∈ ∆n, and α(xn) 6= xn−1,

3) for some n > 0 we have xn ∈ ∆n ∩∆−1, and xn+1 = 0.

Let us suppose that 1) holds. Then the set Ṽ =
∏∞

k=0 Vk where Vk = ∆k ∪ {0}, for

k 6= n, n + m, and Vn = {0}, Vn+m = ∆n+m, is an open neighborhood of x̃. It is clear

that none of the points from X̃ belongs to Ṽ .

The same argumentation as the one concerning X∞ shows that in the case 2) x̃ lies in

the interior of
∏∞

n=0(∆n ∪ {0}) \ X̃.

If we suppose that 3) holds, then the set Ṽ =
∏∞

k=0 Vk where Vk = ∆k ∪ {0}, for k 6=
n, n+ 1, and Vn = ∆n ∩∆−1, Vn+1 = {0}, is an open neighborhood of x̃ (here we use the

openness of ∆−1). Clearly Ṽ does not contain any point from X̃.

b)⇒c). X0 is closed and hence it is compact.

c)⇒a). Suppose that ∆−1 is not open. Then X \∆−1 is not closed and hence it is not

compact. Thus there is an open cover {Vi}i∈I of X \∆−1 which does not admit a finite

subcover. Defining Ṽi = {(x0, x1...) ∈ X̃ : x0 ∈ Vi}, for i ∈ I, we get an open cover of X0

which does not admit a finite subcover. Hence X0 is not compact.

Thus we see that a)⇔b)⇔c). As b)⇒d) and d)⇒c) are obvious, the proof is complete.�

It is interesting how X̃ depends on α. For instance, if α is surjective then Xn, n ∈ N,

are empty and X̃ = X∞, in this case X̃ can be defined as a projective limit, see Proposition
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2.10. If α is injective then a natural continuous projection Φ of X̃ onto X given by the

formula

Φ(x0, x1, ...) = x0 (17)

becomes a bijection and, as we will see, in the case that ∆−1 is open even a homeomor-

phism. But the farther from injectivity α is, the farther X̃ is from X.

Proposition 2.3. Let (X,α) be such a system for which α is injective. Then Φ : X̃ → X

is a homeomorphism if and only if ∆−1 is open.

Proof. If ∆−1 is not open then by Theorem 2.2, X̃ is not compact and hence not home-

omorphic to X. Suppose then that ∆−1 is open. Then α : ∆1 → X is an open mapping

because α is a homeomorphism of compact set ∆1 onto the compact set ∆−1. We only

need to show that the mapping Φ−1 is continuous or, which is the same, that Φ is open.

To see this it is enough to look at a subbase for the topology in X̃ in a appropriate way.

Indeed, let Ũ ⊂ X̃ be of the form

Ũ = X̃ ∩ (U0 × U1 × ...× UN × (∆N+1 ∪ {0})× (∆N+2 ∪ {0})× ...)

where Ui ⊂ X ∪ {0}, i = 1, ..., N , are open. Without loss of generality we can assume

that Ui ⊂ ∆i ∪ {0}, i = 1, ..., N . There are the two possibilities:

1) If 0 /∈ UN then the set UN−1 ∩ α(UN) is open and

Ũ = X̃ ∩ (U0 × U1 × ...×
(
UN−1 ∩ α(UN)

)
× (∆N ∪ {0})× (∆N+1 ∪ {0})× ...)

2) If 0 ∈ UN then the set UN−1 ∩ α(UN \ {0}) ∪ UN−1 \∆−1 ∪ {0} is open and

Ũ = X̃ ∩ (U0 × U1 × ...×
(
UN−1 ∩ α(UN \ {0})∪ UN−1 \∆−1 ∪ {0}

)
× (∆N ∪ {0})× ...).

Applying the above procedure N times we conclude that Ũ = X̃ ∩∏∞
k=0 Vk where Vk =

∆k∪{0}, for k > 0, and V0 ⊂ X ∪{0} is a certain open set. It is obvious that Φ(Ũ) = V0.

Thus Φ is an open mapping and the proof is complete. �

Example 2.4. Consider the dynamical system (X,α) where X = [0, 1] and α(x) = q · x,
for fixed 0 < q < 1 and any x ∈ [0, 1]. In this situation α is injective and ∆−1 = [0, q] is

not open. As Φ is bijective, we can identify X̃ with an interval [0, 1] but the topology on

X̃ differs from the natural topology on [0, 1]. It is not hard to check that the topology

on X̃ = [0, 1] is generated by intervals [0, a), (a, b), (b, 1], where 0 < a < b < 1, and

singletons {qk}, k > 0. Thus X̃ is not compact and Φ is not a homeomorphism.

Now, we would like to investigate a partial mapping α̃ on X̃ associated with α. It

seems very natural to look for a partial mapping α̃ such that Φ ◦ α̃ = α ◦Φ wherever the

superposition α ◦ Φ makes sense. If such α̃ exists then its domain is ∆̃1 := Φ−1(∆1) and

its image is contained in ∆̃−1 := Φ−1(∆−1). Moreover, as Φ is continuous, we get

∆̃1 = Φ−1(∆1) = {x̃ = (x0, x1, ...) ∈ X̃ : x0 ∈ ∆1}
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is clopen while

∆̃−1 = Φ−1(∆−1) = {x̃ = (x0, x1, ...) ∈ X̃ : x0 ∈ ∆−1}

is closed and if ∆−1 is open then ∆̃−1 is open too. It is not a surprise that there always

exists a homeomorphism α̃ such that the following diagram

∆̃1
α̃−→ ∆̃−1

Φ ↓ ↓ Φ

∆1
α−→ ∆−1

(18)

commutes. However, the commutativity of the diagram (18) does not determine the

homeomorphism α̃ uniquely.

Proposition 2.5. The mapping α̃ : ∆̃1 → ∆̃−1 given by the formula

α̃(x̃) = (α(x0), x0, ...), x̃ = (x0, ...) ∈ ∆̃1 (19)

is a homeomorphism (and hence if ∆−1 is open α̃ is a partial homeomorphism of X̃) such

that the diagram (18) is commutative.

Proof. The inverse of α is given by the formula α̃−1((x0, x1, ...)) = (x1, x2, ...). The

straightforward equations α̃(∆̃1 ∩ (U0 × U1 × ...)) = X̃ ∩ (X × U0 × ...) and α̃−1(∆̃−1 ∩
(U0×U1×U2× ...)) = X̃ ∩ ((α−1(U0)∩U1)×U2× ...), and the definition of the topology

in X̃ imply that α̃ and α̃−1 are continuous and hence they are homeomorphisms. The

commutativity of the diagram (18) is obvious. �

In this manner we can attach to every pair (X,α) such that ∆−1 is open another system

(X̃, α̃) where α̃ is a partial homeomorphism of X̃ and if α is a partial homeomorphism

then systems (X,α) and (X̃, α̃) are topologically equivalent via Φ, see Proposition 2.3. In

particular case of a classical irreversible dynamical system, that is when α is a covering

mapping of X, α̃ is a full homeomorphism and hence (X̃, α̃) is a classical reversible

dynamical system. This motivates us to coin the following definition.

Definition 2.6. Let (X,α) be a partial dynamical system and let ∆−1 be open. We say

that the pair (X̃, α̃), where X̃ and α̃ are given by (16) and (19) respectively, is a reversible

extension of (X,α).

Example 2.7. It may happen that two different partial dynamical systems have the

same reversible extension. Let (X,α) and (X ′, α′) be given by the relations: X =

{x0, x1, x2, y2}, ∆1 = X \ {x0}, α(y2) = α(x2) = x1, α(x1) = x0; X
′ = {x′0, x′1, x′2, y′1, y′2},

∆′
1 = X ′ \ {x′0} and α′(x′2) = x′1, α

′(y′2) = y′1 , α′(y′1) = α′(x′1) = x′0; or by the diagrams:

q
x0

q
x1

q
x2

q
y2

�
���)�

P
PPPi

q
x′0

q
x′1

q
y′1

q
x′2

q
y′2

�
���)

P
PPPi

�

�
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Then X̃ consist of the following points x̃0 = (x0, x1, x2, 0, ...), x̃1 = (x1, x2, 0, ...), x̃2 =

(x2, 0, ...), ỹ0 = (x0, x1, y2, 0, ...), ỹ1 = (x1, y2, 0, ...) and ỹ2 = (y2, 0, ...). Similarly X̃ ′

is the set of points x̃′0 = (x′0, x
′
1, x

′
2, 0, ...), x̃

′
1 = (x′1, x

′
2, 0, ...), x̃

′
2 = (x′2, 0, ...), ỹ

′
0 =

(x′0, y
′
1, y

′
2, 0, ...), ỹ

′
1 = (y′1, y

′
2, 0, ...) and ỹ′2 = (y′2, 0, ...). Hence the systems (X̃, α̃) and

(X̃ ′, α̃′) are given by the same diagram

q̃x0�

q̃y0�

q̃x1�

q̃y1�

q̃x2

q̃y2

q̃x
′
0�

q̃y
′
0�

q̃x
′
1�

q̃y
′
1�

q̃x
′
2

q̃y
′
2

2.2 Topological Markov chains, projective limits and hyperbolic attrac-

tors

It is not hard to give an example of a partial dynamical system which is not a reversible

extension of any ’smaller’ dynamical system, though its dynamics is implemented by a

partial homeomorphism. Yet many reversible dynamical systems arise from irreversible

ones as their reversible extensions. In order to see that we recall first the topological

Markov chains and then the hyperbolic attractors.

Let A = (A(i, j))i,j∈{1,...,N} be a square matrix with entries in {0, 1}, and such that no

row of A is identically zero. We associate with A two dynamical systems (XA, σA) and

(XA, σA). The one-sided Markov subshift σA acts on the compact space XA = {(xk)k∈N ∈
{1, ..., N}N : A(xk, xk+1) = 1, k ∈ N} (the topology on XA is the one inherited from the

Cantor space {1, ..., N}N) by the rule

(σAx)k = xk+1, for k ∈ N, and x ∈ XA.

Unless A is a permutation matrix σA is not injective, and σA is onto if and only if every

column of A is non-zero. The two-sided Markov subshift σA acts on the compact space

XA = {(xk)k∈Z ∈ {1, ..., N}Z : A(xk, xk+1) = 1, k ∈ Z} and is defined by

(σAx)k = xk+1, for k ∈ Z, and x ∈ XA.

Mapping σA is what is called a topological Markov chain and abstractly can be defined

as an expansive homeomorphism of a completely disconnected compactum.

If we assume that not only the rows of A but also the columns are not identically zero

then σA is onto and we have

Proposition 2.8. Let A have no zero columns and let (X̃A, σ̃A) be the reversible exten-

sion of (XA, σA). Then

(X̃A, σ̃A) ∼= (XA, σA).

Proof. Let x̃ ∈ X̃A. Then x̃ = (x0, x1, ...) where xn = (xn,k)k∈N ∈ XA is such that

σmA (xn+m) = xn, n,m ∈ N. Thus, xn+m,k+m = xn,k, for k, n, m ∈ N, or in other words

m1 − n1 = m2 − n2 =⇒ xn1,m1
= xn2,m2

.
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We see that the sequence x ∈ σA such that xk = xn,m, m − n = k ∈ Z, carries the full

information about x̃. Hence, defining Υ by the formula

Υ(x̃) = (..., xn,0, ..., x1,0, ẋ0,0, x0,1, ..., x0,n, ...) (20)

where dot over x0,0 denotes the zero entry, we get an injective mapping Υ : X̃A → XA.

It is evident that Υ is surjective and can be readily checked that it is also continuous,

whence Υ is a homeomorphism.

Finally let us recall that σ̃A(x̃) = (σA(x0), x0, ...) and σA(x0) = (x0,1, x0,2, ...) and thus

Υ(σ̃A(x̃)) = (..., xn,0, ..., x1,0, x0,0, ẋ0,1, ..., x0,n, ...) = σA(Υ(x̃))

which says that (X̃A, σ̃A) and (σA, XA) are topologically conjugate by Υ. �

The shift σA has a clopen image of the form

σA(XA) = {(xk)k∈N ∈ XA :
N∑

x=1

A(x, x0) > 0}.

Thus, if A has at least one zero column then σA is not onto, and since σA is always onto,

systems (X̃A, σ̃A) and (XA, σA) cannot be conjugate. In fact, X̃A =
⋃
n∈N

XA,n ∪XA,∞,

see Definition 2.1, and in the same manner as in the proof of Proposition 2.8 we may

define a homeomorphism Υ from the subset XA,∞ = {(x0, x1, ...) : xn ∈ XA, σA(xn) =

xn−1, n > 1} onto XA such that Υ(σ̃A(x̃)) = σA(Υ(x̃)) for x̃ ∈ XA,∞, that is

(XA,∞, σ̃A) ∼= (XA, σA).

In order to build a homeomorphic image of the whole space X̃A we need to add a

countable number of components to XA. We may do it by embedding XA into an-

other space XA′ associated with the larger alphabet {0, 1, ..., N} and a larger matrix

A′ = (A′(i, j))i,j∈{0,1,...,N}.

Proposition 2.9. Let A′ = (A′(i, j))i,j∈{0,1,...,N} be given by

A′(i, j) =





A(i, j), if i, j ∈ {1, ..., N},
1, if i = 0 and either j = 0 or j-th column of A is zero ,

0, otherwise,

and let X+
A′ = (xk)k∈Z ∈ X+

A′ : x0 6= 0. Then σA′(X
+

A′) ⊂ X
+

A′ and

(X̃A, σ̃A) ∼= (X
+

A′, σA′).

Proof. Let us treat XA as a subset of {0, 1, ..., N}Z and recall that X̃A =
⋃
n∈N

XA,n ∪
XA,∞, and we have the homeomorphism Υ : XA,∞ → XA, cf. (20). We put

Υ(x̃) = (..., 0, 0, xn−1,0, ..., x1,0, ẋ0,0, x0,1, ..., x0,n, ...)
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for x̃ = (x0, x1, ..., xn−1, 0, ...) ∈ XA,n where xm = (xm,k)k∈N ∈ XA, m = 0, ..., n − 1.

In the same fashion as in the proof of Proposition 2.8 one checks that the mapping

Υ : X̃A → {0, 1, ..., N}Z is injective and the equality Υ(σ̃A(x̃)) = σA′(Υ(x̃)) holds for

every x̃ ∈ X̃A. Moreover, XA,n is mapped by Υ onto the set

{(xk)k∈Z ∈ {0, 1, ..., N}Z : xk = 0, k < −n;
N∑

i=1

A(i, xn) = 0; A(xk, xk+1) = 1, k > −n}

denoted by XA,n. Thus (X̃A, σ̃A) ∼= (
⋃
n∈N

XA,n ∪ XA, σA′). It is clear that X
+

A′ =⋃
n∈N

XA,n ∪XA and hence the proof is complete. �

The proof of Proposition 2.8 is actually the proof of the probably known fact that if

σA is onto, then XA is the projective (inverse) limit of the projective sequence XA
σA←−

XA
σA←− ... . Let us pick out the relationship between α-extensions and projective limits.

For that purpose (and also for future needs) we introduce some terminology.

As α̃ is a partial homeomorphism, we denote by ∆̃n the domain of α̃n, n ∈ Z. For n ∈ N
we have

∆̃n = {x̃ = (x0, x1, ...) ∈ X̃ : x0 ∈ ∆n} = Φ−1(∆n),

∆̃−n = {x̃ = (x0, x1, ...) ∈ X̃ : xn 6= 0} ⊂ Φ−1(∆−n).

With the help of Φ and α̃−1, we define the family of projections Φn = Φ ◦ α̃−n : ∆̃−n −→
∆n, for n ∈ N. We have

Φn(x̃) = (Φ ◦ α̃−n)(x0, x1, ..., xn, ...) = xn, x̃ ∈ ∆̃−n.

Since X∞ =
⋂∞
n=1 ∆̃−n, the mappings Φn are well defined on X∞, and the following

statements are straightforward.

Proposition 2.10. The system (X∞,Φn)n∈N is the projective limit of the projective

sequence (∆n, αn)n∈N where αn = α|∆n
: X∞ = lim←−−(∆n, αn).

Corollary 2.11. If α is onto, then X̃ = lim←−−(∆n, αn).

The above statement provides us with many interesting examples of reversible exten-

sions because projective (inverse) limit spaces commonly appear as attractors in dynam-

ical systems (this was observed for the first time by R. F. Willams, see [27]). We recall

here the classic example.

Example 2.12 (Solenoid). Let S1 = {z ∈ C : |z| = 1} be the unit circle in the complex

plane and let α be the expanding endomorphism of S1 given by

α(z) = z2, z ∈ S1.

Then the projective limit lim←−−(S1, α) is homeomorphic to Smale’s solenoid, that is an

attractor of the mapping F acting on the solid torus T = S1 ×D2, where D2 = {z ∈ C :

|z| ≤ 1}, by F (z1, z2) = (z2
1 , λz2 + 1

2
z1) where 0 < λ < 1

2
is fixed.
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Fig. 2 The image of the solid torus under F is a solid torus which wraps twice around itself.

Namely the solenoid is the set S =
⋂
k∈N

F k(T ), see Fig. 2, and the reversible

extension of (S1, α) is equivalent to (S, F |S), see e.g. [7].

2.3 Decomposition of sets in X̃

Before the end of this section we introduce a certain idea which enables us to ’decompose’

a subset Ũ ⊂ X̃ into the family {Un}n∈N of subsets of X. We shall need this device in

Section 5.

Definition 2.13. Let Ũ ⊂ X̃ be a subset of α-extension of X and let n ∈ N. We shall

call the set

Un = Φn(Ũ ∩ ∆̃−n)

an n-section of Ũ .

It is evident that if {Un}n∈N is the family of sections of Ũ then Ũ is a subset of
(
U0 ×

(U1 ∪ {0})× ...× (Un ∪ {0})× ...
)
∩ X̃ but in general the opposite relation does not hold

(see Example 2.16). Fortunately we have the following true statements.

Proposition 2.14. If α is injective on the inverse image of ∆−∞ :=
⋂
n∈N

∆−n, that is

for every point x ∈ ∆−∞ we have |α−1(x)| = 1, then for every subset Ũ ⊂ X̃ we have

Ũ =
(
U0 × (U1 ∪ {0})× ...× (Un ∪ {0})× ...

)
∩ X̃ (21)

where Un is the n-section of Ũ , n ∈ N.

Proof. Let x̃ = (x0, x1, ...) ∈ (U0× (U1 ∪{0})× ...× (Un ∪ {0})× ...)∩ X̃. We show that

x̃ ∈ Ũ . Indeed, if x̃ /∈ X∞ =
⋂
n∈N

∆̃−n, then x̃ = (x0, ..., xN , 0, ...) where xN ∈ ∆N \∆−1,

and thus x̃ is uniquely determined by xN . As xN ∈ UN = ΦN (Ũ ∩ ∆̃−N ), Ũ must contain

x̃.

If x̃ ∈ X∞ then xn ∈ ∆−∞ for all n ∈ N, and x̃ is uniquely determined by x0 ∈ U0. Thus

x̃ ∈ Ũ . �
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Theorem 2.15. Let (X,α) be a partial dynamical system such that ∆−1 is open. Then

every closed subset Ṽ ⊂ X̃ is uniquely determined by its sections {Vn}n∈N via formula

(21).

Proof. Let Ṽ ⊂ X̃ be closed, that is compact (see Theorem 2.2), and let x̃ = (x0, x1, ...) ∈
(V0 × (V1 ∪ {0}) × ... × (Vn ∪ {0}) × ...) ∩ X̃. We show that x̃ ∈ Ṽ . If x̃ /∈ X∞

then (see the argument in the proof of Proposition 2.14) we immediately get x̃ ∈ Ṽ .

Thus we only need to consider the case when x̃ ∈ X∞. For that purpose we define

D̃n = {ỹ = (y0, y1, ...) ∈ X̃ : yn = xn} ∩ Ṽ , n ∈ N. Clearly {D̃n}n∈N is the decreasing

family of closed nonempty subsets of the compact set Ṽ . Hence
⋂

n∈N

D̃n = {x̃} ∈ Ṽ

and the proof is complete. �

Example 2.16. For the sake of illustration of the preceding statements and to see that

they cannot be sharpen let us consider a dynamical system given by the diagram

qx1 qx0 �
	


�-

or equivalently by relations X = ∆1 = {x0, x1}, α(x1) = α(x0) = x0 (or equivalently

let α = σA and X = XA where A =




1 0

1 0


). Then ∆−∞ = {x0} and |α−1(x0)| = 2,

therefore Proposition 2.14 can not be used. The space X̃ consists of elements x̃n =

(x0, ..., x0, x1︸ ︷︷ ︸
n

, 0, ...), n ∈ N, and x̃∞ = (x0, ..., x0, ...). Hence it is convenient to identify X̃

with the compactification N = N∪{∞} of the discrete space N. Under this identification

α̃ is given by

α̃(n) = n + 1, n ∈ N, α̃(∞) =∞.
It is clear that all the sections of the subset N ⊂ N are equal to X. As N is not closed in

N, Theorem 2.15 does not work here. Indeed, we have

N =
(
X × (X ∪ {0})× ...× (X ∪ {0})× ...

)
6= N.

3 Covariant representations and their coefficient algebra

The aim of this section is to study the interrelations between the covariant representations

of C∗-dynamical systems corresponding to (X,α) and its reversible extension (X̃, α̃). Our

main tool will be Theorem 1.4 and hence, cf. Proposition 1.6,

from now on we shall always assume that the image ∆−1 of the partial mapping α is

open.
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First we show that the algebra B = C(X̃) possesses a certain universal property with

respect to covariant faithful representations of (X,α). Afterwards, we construct a dense

∗-subalgebra of B with the help of which we investigate the structure of B and endomor-

phisms induced by α̃ and α̃−1. Finally we show that there is a one-to-one correspondence

between the covariant faithful representations of (X,α) and (X̃, α̃), and in the case α is

onto this correspondence is true for all covariant (not necessarily faithful) representations.

3.1 Definition and basic result

Let us recall that A = C(X) and δ is combined with α by (3). We denote by CK(X) the

algebra of continuous functions on X vanishing outside a set K ⊂ X. We start with the

definition of covariant representation, cf. [25, 10, 20, 1].

Definition 3.1. A covariant representation of a C∗-dynamical system (A, δ), or of the

partial dynamical system (X,α), is a triple (π, U,H) where π : A → L(H) is a represen-

tation of A on Hilbert space H and U ∈ L(H) is a partial isometry whose initial space is

π(C∆−1
(X))H and whose final space is π(C∆1

(X))H . In addition it is required that

Uπ(a)U∗ = π(δ(a)), for a ∈ A.

If the representation π is faithful we call the triple (π, U,H) a covariant faithful repre-

sentation. Let CovRep(A, δ) denote the set of all covariant representations and

CovFaithRep(A, δ) the set of all covariant faithful representations of (A, δ).

Remark 3.2. As ∆1 and ∆−1 are clopen, the projections P∆1
and P∆−1

corresponding

to the characteristic functions χ∆1
and χ∆−1

belong to A. Thus for every covariant

representation (π, U,H) we see that UU∗ = π(P∆1
) and U∗U = π(P∆−1

) belong to π(A),

cf. (11).

We shall see in Corollary 3.13 that every C∗-dynamical system (A, δ) possesses a covariant

faithful representation, and hence the sets CovRep (A, δ) and CovFaithRep (A, δ) are non-

empty.

Now we reformulate the main result of [16] in terms of covariant representations. The

point is that for every covariant representation (π, U,H) of (A, δ) the condition (11) holds,

whence if π is faithful then by Theorem 1.4 the maximal ideal space of the C∗-algebra

C∗(
⋃∞
n=0 U

∗nπ(A)Un) is homeomorphic to α-extension X̃ of X.

Theorem 3.3. Let (π, U,H) ∈ CovFaithRep (A, δ) and let X̃ be the α-extension of X.

Then

C∗
( ∞⋃

n=0

U∗nπ(A)Un
) ∼= C(X̃).

In other words, the coefficient C∗-algebra of C∗(π(A), U) is isomorphic to the algebra of

continuous functions on α-extension of X, cf. [18]. Moreover this isomorphism maps an

operator of the form π(a0)+U∗π(a1)U+ ...+U∗Nπ(aN)UN , where a0, a1, ..., aN ∈ A, onto
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a function b ∈ C(X̃) such that

b(x̃) = a0(x0) + a1(x1) + ... + aN(xN ),

where x̃ = (x0, ...) ∈ X̃ and we set an(xn) = 0 whenever xn = 0.

Proof. By Theorem 1.4 the maximal ideal space of C∗(
⋃∞
n=0U

∗nπ(A)Un) is homeomor-

phic to X̃. Hence C∗(
⋃∞
n=0 U

∗nπ(A)Un) ∼= C(X̃). Taking into account formulas (9),(10)

we obtain the postulated form of this isomorphism. Indeed, if x̃ = (x0, x1, ...) is a char-

acter on C∗(
⋃∞
n=0 U

∗nπ(A)Un) then

x̃(

N∑

n=0

U∗nπ(an)U
n) =

N∑

n=0

x̃(U∗nπ(an)U
n) =

N∑

n=0

ξnx̃(an) =

N∑

n=0

an(xn)

where ξnx̃(a) = x̃(U∗nπ(a)Un), cf. (9), and xn = 0 whenever ξnx̃ ≡ 0. �

From the above it follows that B = C(X̃) can be regarded as the universal (in fact

unique) coefficient C∗-algebra for covariant faithful representations. In case δ is injective

(that is α is onto), the universality of B is much ’stronger’, see Proposition 3.7.

3.2 Coefficient C∗-algebra

We shall present now a certain dense ∗-subalgebra of B = C(X̃), a coefficient C∗-algebra

which frequently might be more convenient to work with. The plan is to construct an

algebra B0 ⊂ l1(N,A) and then take the quotient of it by certain ideal. The result will

be naturally isomorphic to a ∗-subalgebra of B.

First, let us observe that if we set An := δn(1)A, n ∈ N, then we obtain a decreasing

family {An}n∈N, of closed two-sided ideals in A. Since the operator δn(1) corresponds to

the characteristic function χ∆n
∈ C(X), one can consider An as C∆n

(X). Let B0 denote

the set consisting of sequences a = {an}n∈N where an ∈ An, n ∈ N, and only a finite

number of functions an is non zero. Namely

B0 = {a ∈
∞∏

n=0

An : ∃N>0 ∀n>N an ≡ 0}.

Let a = {an}n>0, b = {bn}n>0 ∈ B0 and λ ∈ C. We define the addition, multiplication by

scalar, convolution multiplication and involution on B0 as follows

(a+ b)n = an + bn, (22)

(λa)n = λan, (23)

(a · b)n = an

n∑

j=0

δj(bn−j) + bn

n∑

j=1

δj(an−j), (24)

(a∗)n = an. (25)
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These operations are well defined and seems very familiar, except maybe the multiplica-

tion of two elements from B0. We point out here that the index in one of the sums of

(24) starts running from 0.

Proposition 3.4. The set B0 with operations (22), (23), (24), (25) becomes a commu-

tative algebra with involution.

Proof. It is clear that operations (22), (23) define the structure of vector space on

B0 and that operation (25) is an involution. The rule (24) is less easy to show its

properties. Commutativity and distributivity can be checked easily but in order to prove

the associativity we must strain ourselves quite a lot.

Let a, b, c ∈ B0. Then

((a · b) · c)n = (a · b)n
n∑

j=0

δj(cn−j) + cn

n∑

j=1

δj((a · b)n−j),

(a · (b · c))n = an

n∑

j=0

δj((b · c)n−j) + (b · c)n
n∑

j=1

δj(an−j),

where

(a · b)n
n∑

j=0

δj(cn−j) = [an

n∑

k=0

δk(bn−k) + bn

n∑

k=1

δk(an−k)]
n∑

j=0

δj(cn−j)

= an

n∑

k,j=0

δk(bn−k)δ
j(cn−j) + bn

n∑

k=0,j=1

δk(an−k)δ
j(cn−j)

and

cn

n∑

j=1

δj((a · b)n−j) = cn

n∑

j=1

δj(an−j

n−j∑

k=0

δk(bn−j−k) + bn−j

n−j∑

k=1

δk(an−j−k))

= cn

n∑

j=1

δj(an−j)

n∑

k=j

δk(bn−k) + δj(bn−j)

n∑

k=j+1

δk(an−k)) = cn

n∑

k=1,j=1

δj(an−j)δ
k(bn−k).

Simultaneously by analogous computation

an

n∑

j=0

δj((b · c)n−j) = an

n∑

k,j=0

δk(bn−k)δ
j(cn−j)

(b · c)n
n∑

j=1

δj(an−j) = bn

n∑

k=0,j=1

δk(an−k)δ
j(cn−j) + cn

n∑

k=1,j=1

δj(an−j)δ
k(bn−k).

Thus, ((a · b) · c)n = (a · (b · c))n and the n-th entry of the sequence a · b · c is of the form

an

n∑

k,j=0

δk(bn−k)δ
j(cn−j) + bn

n∑

k=0,j=1

δk(an−k)δ
j(cn−j) + cn

n∑

k=1,j=1

δk(an−k)δ
j(bn−j).
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�

Let us define a morphism ϕ : B0 → B. To this end, let a = {an}n∈N ∈ B0 and

x̃ = (x0, x1, ...) ∈ X̃. We set

ϕ(a)(x̃) =
∞∑

n=0

an(xn), (26)

where an(xn) = 0 whenever xn = 0. The mapping ϕ is well defined as only a finite

number of functions an, n ∈ N, is non zero.

Theorem 3.5. The mapping ϕ : B0 → B given by (26) is a morphism of algebras with

involution and the image of ϕ is dense in B, that is

ϕ(B0) = B.

Proof. It is clear that ϕ is a linear mapping preserving an involution. We show that ϕ

is multiplicative. Let a, b ∈ B0 and x̃ = (x0, x1, ...) ∈ X̃ and let N > 0 be such that for

every m > N we have am = bm = 0. Using the fact that αj(xn) = xn−j we obtain

ϕ(a · b)(x̃) =

N∑

n=0

(a · b)n(xn) =

N∑

n=0

[
an

n∑

j=0

δj(bn−j) + bn

n∑

j=1

δj(an−j)
]
(xn)

=

N∑

n=0

[
an(xn)

n∑

j=0

bn−j(xn−j) + bn(xn)

n∑

j=1

an−j(xn−j)
]

=
N∑

n=0,j=0

an(xn)bj(xj) =
N∑

n=0

an(xn) ·
N∑

j=0

bj(xj) =
[
ϕ(a) · ϕ(b)

]
(x̃).

To prove that ϕ(B0) is dense in B = C(X̃) we use the Stone-Weierstrass theorem. It is

clear that ϕ(B0) is a self-adjoint subalgebra of B and as a = (1, 0, 0, ...) ∈ B0, we get

ϕ(a) = 1 ∈ B, that is ϕ(B0) contains the identity. Thus, what we only need to prove is

that B0 separates points of X̃.

Let x̃ = (x0, x1, ...) and ỹ = (y0, y1, ...) be two distinct points of X̃. Then there exists n ∈
N such that xn 6= yn and by Urysohn’s lemma there exists a function an ∈ C∆n

(X ∪ {0})
such that an(xn) = 1 and an(yn) = 0. Taking a ∈ B0 of the form

a = (0, ..., 0︸ ︷︷ ︸
n

, an, 0, ...)

we see that ϕ(a)(x̃) = 1 and ϕ(a)(ỹ) = 0. Thus the proof is complete. �

Let us consider the quotient space B0/Kerϕ and the quotient mapping φ : B0/Kerϕ→
B0, that is φ(a + Kerϕ) = ϕ(a). Clearly φ is an injective mapping onto a dense ∗-

subalgebra of B. In what follows we make use of the following notation

B0 := φ(B0/Kerϕ)
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[a] := φ(a+ Kerϕ), a ∈ B0

Definition 3.6. We shall call B0 the coefficient ∗-algebra of a dynamical system (A, δ).
We will write [a] = [a0, a1, ...] ∈ B0 for a = (a0, a1, a2, ...) ∈ B0.

The natural injection A ∋ a0 −→ [a0, 0, 0, ...] ∈ B0 enables us to treat A as an

C∗-subalgebra of B0 and hence also of B:

A ⊂ B0 ⊂ B, B0 = B.

Using the mappings Φn : ∆̃−n −→ ∆n (see subsection 2.2) one can embed into B0 not

only A but all the subalgebras An = C∆n
(X), n ∈ N. Indeed, if we define Φ∗n : An → B

to act as follows

Φ∗n(a) = [0, ..., 0︸ ︷︷ ︸
n

, a, 0, ...] =





a ◦ Φn , x̃ ∈ ∆̃−n

0 , x̃ /∈ ∆̃−n

,

then clearly Φ∗n are injective. Moreover we have C∗(
⋃
n∈N

Φ∗n(An)) = B, and in the case

δ is a monomorphism, that is α is surjective, {Φ∗n(An)}n∈N forms an increasing family of

algebras and B0 =
⋃
n∈N

Φ∗n(An). We are exploiting this fact in the coming proposition.

Proposition 3.7. If δ is injective then B is the direct limit lim−−→An of the sequence

(An, δn)∞n=0 where δn = δ|An
, n ∈ N.

Proof. Let B = lim−−→An be the direct limit of the sequence (An, δn)∞n=0, and let ψn :

An → B be the natural homomorphisms, see for instance [21]. It is straightforward to

see that the diagram

An δn−→ An+1

ց Φ∗n ↓ Φ∗n+1

B
commutes and hence there exists a unique homomorphism ψ : B → B such that the

diagram

An ψn

−→ B

ց Φ∗n ↓ ψ

B
commutes. It is evident that ψ is a surjection (

⋃
n∈N

Φ∗n(An) generates B) and as

Φ∗n(An) is increasing and, Φ and ψ are injective. Therefore ψ is an isomorphism and the

proof is complete. �

The preceding proposition points out the relationship between our approach and the

approach presented (among the others) by G. J. Murphy in [22]. We shall discuss this
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relationship in the sequel, see Remark 4.10.

Let us now proceed and consider endomorphisms of B = C(X̃) given by the formulae

δ̃(a)(x) =




a(α̃(x̃)) , x̃ ∈ ∆̃1

0 , x̃ /∈ ∆̃1

δ̃∗(a)(x) =




a(α̃−1(x̃)) , x̃ ∈ ∆̃−1

0 , x̃ /∈ ∆̃−1

(27)

where α̃ : ∆̃1 → ∆̃−1 is a canonical partial homeomorphism of X̃ defined by formula

(19). What is important is that characteristic functions of ∆̃1 and ∆̃−1 belong to A ⊂
B0. Indeed, we have χ∆̃1

= [χ∆1
, 0, 0, ...], χ∆̃1

= [χ∆−1
, 0, 0, ...] ∈ A (see remark after

Definition 3.6). Furthermore, the domain ∆̃n of the mapping α̃n, n ∈ Z, is clopen

and it is just an easy exercise to check that for n ∈ N we have χ∆̃n
= [χ∆n

, 0, 0, ...],

χ∆̃−n
= [0, 0, ..., 0︸ ︷︷ ︸

n

,∆n, ...] ∈ B0. In particular χ∆̃−1
= [χ∆−1

, 0, 0, ...] = [0, χ∆1
, 0, ...]. We

are now ready to give an ‘algebraic’ description of δ̃ and δ̃∗.

Proposition 3.8. Endomorphisms δ̃ and δ̃∗ preserve ∗-subalgebra B0 ⊂ B and for a =

(a0, a1, a2, ...) ∈ B0 we have

δ̃([a]) = [δ(a0) + a1, a2, a3, ...], δ̃∗([a]) = [0, a0δ(1), a1δ
2(1), ...]. (28)

Proof. Let x̃ = (x0, x1, x2, ...) ∈ X̃. In order to prove the first equality in (28) it is

enough to notice that for x̃ ∈ ∆̃1 we have

δ([a])(x̃) = [a](α̃(x̃)) = [a](α(x0), x0, x1, ...) = a0(α(x0)) + a1(x0) + a2(x1) + ...

= [δ(a0) + a1, a2, a3, ...](x0, x1, x2, ...) = [δ(a0) + a1, a2, a3, ...](x̃)

and for x̃ /∈ ∆̃1 both sides of the left hand side equation in (28) are equal to zero.

In the same manner we show the validity of the remaining equality. If x̃ ∈ ∆̃−1 then

δ∗([a])(x̃) = [a](α̃−1(x̃)) = [a](x1, x2, x3...) = a0(x1) + a1(x2) + a2(x3) + ...

= [0, a0δ(1), a1δ
2(1), ...](x0, x1, x2, ...) = [0, a0δ(1), a1δ

2(1), ...](x̃)

and if x̃ /∈ ∆̃1 then both sides of the right hand side equation in (28) are equal to zero.�

Example 3.9. The dynamical system (X,α) from Example 2.16 corresponds to the C∗-

dynamical system (A, δ) where A = C({x0, x1}) and δ(a) ≡ a(x0). We identify X̃ with N
as we did before. Then, since a = [a0, a1, ..., aN , 0, ...], ak ∈ A, k = 0, ...N , is a continuous

function on X̃ = N we can regard it as a sequence which has a limit. One readily checks

that this sequence has the following form: a(n) =
∑n−1

k=0 ak(x0) + an(x1) for n = 0, ...N ,

and a(n) =
∑N

k=0 ak(x0) for n > N . Hence B0 is the ∗-algebra of the eventually constant

sequences, in particular A consist of sequences of the form (a, b, b, b, ...), a, b ∈ C. We

have

B0 = {(a(n))n∈N : ∃N∈N ∀n,m>N a(n) = a(m)},
B = {(a(n))n∈N : ∃a(∞)∈C lim

n→∞
a(n) = a(∞)}

and within these identifications δ̃ is the forward and δ̃∗ is the backward shift.



744 B.K. Kwaśniewski / Central European Journal of Mathematics 3(4) 2005 718–765

3.3 The interrelations between covariant representations

The construction of the ∗-algebra B0 enables us to excavate the inverse of the isomorphism

from Theorem 3.3, and what is more important it enables us to realize that every covariant

faithful representation of (A, δ) gives rise to a covariant faithful representation of (B, δ̃).

Theorem 3.10. Let (π, U,H) ∈ CovFaithRep (A, δ). Then there exists an extension

π of π onto the coefficient algebra B such that π : B → C∗
(⋃∞

n=0 U
∗nπ(A)Un

)
is an

isomorphism defined by

[a0, ..., aN , 0, ...] −→ π(a0) + U∗π(a1)U + ... + U∗Nπ(aN)UN .

Moreover, we have (π, U,H) ∈ CovFaithRep (B, δ̃), that is

π(δ̃(a)) = Uπ(a)U∗, π(δ̃∗(a)) = U∗π(a)U, a ∈ B. (29)

Proof. In view of Theorem 3.3 it is immediate that π is an isomorphism. By Theorem

1.8 and by the form of endomorphisms δ̃ and δ̃∗, see (27), we get (29). �

We can give a statement somewhat inverse to the above.

Theorem 3.11. Let (π, U,H) ∈ CovRep (B, δ̃) and let π be the restriction of π onto

A. Then (π, U,H) ∈ CovRep (A, δ). Moreover if (π, U,H) is in CovFaithRep (B, δ̃) then

(π, U,H) is in CovFaithRep (A, δ) and the extension of π mentioned in Theorem 3.10

coincides with π.

Proof. Recall that for a ∈ A we write [a, 0, 0, ...] ∈ B and thus (see also Proposition 3.8)

we get

π(δ(a)) = π([δ(a), 0, 0, ...]) = π(δ̃([a, 0, 0, ...])) = Uπ([a, 0, 0, ...])U∗ = Uπ(a)U∗.

U∗U = π(χ∆̃1
) = π([χ∆1

, 0, 0, ...]) = π(χ∆1
),

UU∗ = π(χ∆̃−1
) = π([χ∆−1, 0, 0, ...]) = π(χ∆−1

).

Hence (π, U,H) ∈ CovRep (A, δ).
For [a0, ..., aN , 0, ...] ∈ B0 we have, cf. Proposition 3.8,

π([a0, ..., aN , 0, ...]) = π(a0+δ̃∗(a1)+...+δ̃
N
∗ (aN )) = π(a0)+U

∗π(a1)U+...+U∗Nπ(aN )UN .

Hence the second part of the theorem follows. �

Corollary 3.12. There is a natural bijection between CovFaithRep (A, δ) and

CovFaithRep (B, δ̃).

The endomorphism δ̃ maps isomorphically C∆̃−1
(X̃) onto C∆̃1

(X̃), whence we have

a ∗-isomorphism between two closed two-sided ideals in B. In [10] R. Exel calls such
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mappings partial automorphisms (of B), see [10, Definition 3.1]. He also considers covari-

ant representations of partial automorphisms and his definition of those objects agrees

with Definition 3.1 in the case that α is a partial homeomorphism. Moreover, R. Exel

proves in [10, Theorem 5.2] the existance of covariant faithful representation of a partial

automorphism which automatically gives us

Corollary 3.13. The set CovFaithRep (A, δ) is not empty.

Proof. The set CovFaithRep (B, δ̃) is not empty by [10, Theorem 5.2]. �

The former of the preceding corollaries is not true for not faithful representations

(see Example 3.16). In general the set CovRep (B, δ̃) is larger than CovFaithRep (A, δ),
and there appears a problem with prolongation of π from A to B when π is not faithful.

Fortunately in view of Proposition 3.7 we have the following true statement.

Theorem 3.14. If δ : A → A is a monomorphism then for any (π, U,H) ∈ CovRep (A, δ)
there exist (π, U,H) ∈ CovRep (B, δ̃) such that π([a0, ..., aN , 0, ...]) = π(a0)+U∗π(a1)U +

...+ U∗Nπ(aN)UN .

Proof. Let (π, U,H) ∈ CovRep (A, δ). Let us notice that as δ is injective ∆−1 = X

and hence U is an isometry (see Remark 3.2). Now, consider the C∗-algebra

C∗
( ⋃∞

n=0U
∗nπ(A)Un

)
and define the family of mappings πn : An → C∗

(⋃∞
n=0 U

∗nπ(A)Un
)
,

n ∈ N, by the formula

πn(a) = U∗nπ(a)Un, a ∈ An.

Then the following diagram

An δn−→ An+1

ց πn ↓ πn+1

C∗
(⋃∞

n=0 U
∗nπ(A)Un

)

commutates. Hence, according to Proposition 3.7 there exists a unique C∗-morphism π

such that the diagram

An Φ∗n−→ B

ց πn ↓ π

C∗
(⋃∞

n=0 U
∗nπ(A)Un

)

commutes. The hypotheses now follows. �

Corollary 3.15. If δ is a monomorphism then the mapping π → π|A establishes a

bijection from CovRep (B, δ̃) onto CovRep (A, δ).
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In case δ is not a monomorphism two different covariant representations of (B, δ̃) may

induce the same covariant representation of (A, δ).

Example 3.16. Not to look very far let us take the system (X,α) from Example 2.7.

The corresponding C∗-dynamical system is (A, δ) where A = C({x0, x1, x2, y2}) ∼= C4

and δ(a) = (0, ax0
, ax1

, ax1
) for a = (ax0

, ax1
, ax2

, ay2) ∈ A. The coefficient algebra is

B = C({x̃0, x̃1, x̃2, ỹ0, ỹ1, ỹ2}) ∼= C6

and we check that, for a ∈ A,

[a, 0, ...] = (ax0
, ax1

, ax2
, ax0

, ax1
, ay2), [0, aδ(1), 0, ...] = (0, ax0

, ax1
, 0, ax0

, ax1
),

[0, 0, aδ2(1), 0, ...] = (0, 0, ax0
, 0, 0, ax0

) and [0, 0, ..., 0, aδN(1), 0...] ≡ 0, for N > 2.

Moreover, we have δ̃(ax̃0
, ax̃1

, ax̃2
, aỹ0, aỹ1 , aỹ2) = (0, ax̃0

, ax̃1
, 0, aỹ0, aỹ1). It is now straight-

forward that (π1, U,C2) and (π2, U,C2) where U =




0 0

1 0


,

π1(ax̃0
, ax̃1

, ax̃2
, aỹ0 , aỹ1, aỹ2) =



ax̃0

0

0 ax̃1




and

π2(ax̃0
, ax̃1

, ax̃2
, aỹ0 , aỹ1, aỹ2) =



aỹ0 0

0 aỹ1




are covariant representations of (B, δ̃) which induce the same covariant representation

(π, U,C2) of (A, δ) where π(ax0
, ax1

, ax2
, ay2) =



ax0

0

0 ax1


.

4 Covariance algebra

In this section we introduce the title object of the paper. We recall the definition of the

partial crossed product, cf. [10, 20], and then define the covariance algebra of (A, δ) to

be the partial crossed product associated with (B, δ̃). We give a number of examples of

such algebras, and finally show (justify the definition) that the covariant algebra is the

universal object in the category of covariant faithful representations of (A, δ) and in the

case δ is injective also in the category of covariant (not necessarily faithful) representations

of (A, δ).
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4.1 The algebra C∗(X,α)

Let us recall that a partial automorphism of a C∗-algebra C is a mapping θ : I → J where

I and J are closed two-sided ideals in C and θ is a ∗-isomorphism, cf. [10]. If a partial

automorphism θ is given then for each n ∈ Z we let Dn denote the domain of θ−n with

the convention that D0 = C and θ0 is the identity automorphism of C. Letting

L = {a ∈ l1(Z, C) : a(n) ∈ Dn}

and defining the convolution multiplication, involution, and norm as follows

(a ∗ b)(n) =

∞∑

k=−∞

θk
(
θ−k

(
a(k)

)
b(n− k)

)

(a∗)(n) = θn(a(−n)∗)

‖a‖ =

∞∑

n=−∞

‖a(n)‖

we equip L with a Banach ∗-algebra structure. The universal enveloping C∗-algebra of L

is called the partial crossed product (or the covariance algebra) for the partial automor-

phism θ and is denoted by C ⋊θ Z, see [10, 20].

It is clear that the partial homeomorphism α̃ of X̃ defines the partial automorphism

δ̃ : C∆̃−1
(X̃)→ C∆̃1

(X̃) of the coefficient C∗-algebra B = C(X̃) (we shall not distinguish

between the endomorphism δ̃ given by (27) and its restriction to C∆̃−1
(X̃) ⊂ B). The

definition to follow anticipates Theorem 4.7.

Definition 4.1. The covariance algebra C∗(X,α) of a partial dynamical system (X,α)

is the partial crossed product for the partial automorphism δ̃ of the coefficient C∗-algebra

B.

That is C∗(X,α) = B ⋊
δ̃

Z and for C∗(X,α) we shall also write C∗(A, δ).

Remark 4.2. In the case α is injective, equivalently δ is a partial automorphism, the

systems (A, δ) and (B, δ̃) are equal and the covariance algebra of (A, δ) is simply the

partial crossed product. In particular, if α is a full homeomorphism, equivalently δ is an

automorphism, then C∗(A, δ) is the classic crossed product. As we shall see, in the case

α is surjective, equivalently δ is a monomorphism, C∗(A, δ) is the crossed product by a

monomorphism considered for instance in [22, 24, 12, 1], cf. Remark 4.10.

Let
∑N

k=−N aku
k stands for the element a in L = {a ∈ l1(Z,B) : a(n) ∈ C∆̃n

(X̃)} such

that a(k) = ak for |k| 6 N , and a(k) = 0 otherwise. In view of the defined operations

on L it is clear that u is a partial isometry, uk is u to power k and (uk)∗ = u−k, so this

notation should not cause any confusion. Using the natural injection B ∋ a 7→ au0 ∈ L
we identify B = C(X̃) with the subalgebra of C∗(A, δ), see [10, Corollary 3.10]. Recalling

the identification from Definition 3.6 we have

A ⊂ B ⊂ C∗(A, δ) = B ⋊θ Z.
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Example 4.3. The covariance algebra of the dynamical system considered in Examples

2.16 and 3.9 is the Toeplitz algebra. Indeed, the coefficient algebra B consists of conver-

gent and δ̃ is a forward shift so the partial crossed product B⋊
δ̃
Z, cf. [10], is the Toeplitz

algebra.

Example 4.4. Let us go back again to Example 2.7 (see also Example 3.16). It is

immediate to see that C∗(X,α) = C∗(X ′, α′) and invoking [10], or [20, Example 2.5] we

can identify this algebra with M3⊕M3 where M3 is the algebra of complex matrices 3×3.

If we set A = C(X) and A′ = C(X ′) then due to the above remark we note that A and

A′ consist of the matrices of the form




ax0
0 0

0 ax1
0

0 0 ax2



⊕




ax0
0 0

0 ax1
0

0 0 ay2



, and




ax0
0 0

0 ax1
0

0 0 ax2



⊕




ax0
0 0

0 ay1 0

0 0 ay2




respectively. The dynamics on A and A′ are implemented by the partial isometry

U :=




0 0 0

1 0 0

0 1 0



⊕




0 0 0

1 0 0

0 1 0




. The coefficient algebras B0 = {⋃∞
n=0U

∗n(A)Un} and

B′
0 = {⋃∞

n=0 U
∗n(A′)Un} equal with the algebra of diagonal matrices




ax̃0
0 0

0 ax̃1
0

0 0 ax̃2



⊕




aỹ0 0 0

0 aỹ1 0

0 0 aỹ2



, and it is straightforward that M3 ⊕M3 = C∗(A, U) = C∗(A′, U) and

A ⊂ A′. In fact A is the smallest C∗-subalgebra of M3⊕M3 such that U∗U ∈ A, U(·)U∗

is an endomorphism of A and C∗(A, U) = M3 ⊕M3.

Example 4.5. It is known, cf. [10, 20], that an arbitrary finite dimensional C∗-algebra

can be expressed as a covariance algebra (partial crossed product) of a certain dynam-

ical system. The foregoing example inspires us to present the smallest such system in

the sense that space X has the least number of points. Let A = Mn1
⊕ ... ⊕ Mnk

where 1 6 n1 6 ... 6 nk be a finite dimensional C∗-algebra and let us first assume

that is there is no factor M1 in the decomposition of A, that is n1 > 1. We set

X = {x1, x2, ..., xnk−1, yn1
, yn2

, ..., ynk
}, so |X| = nk + k − 1, and α(xm) = xm−1, for

m = 2, ..., nk − 1; α(ynm
) = xnm−1, for m = 1, ..., k,
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qx1. . . --qxn1−1

�
�

��*

q
yn1

-. . .-qxnm−1

�
�

��*

q
ynm

-. . .-qxnk−1

�
�

��*

q
ynk

It is clear that C∗(X,α) = A, see [20, Example 2.5]. In order to include algebras con-

taining a number, say l, of one-dimensional factors one should simply add l points to the

above diagram.

Example 4.6. Let a be the bilateral weighted shift on a separable Hilbert space H and

let a have the closed range. We have the polar decomposition a = U |a|, where |a| is

a diagonal operator and U is the bilateral shift. If we denote by A the commutative

C∗-algebra C∗(1, {Un|a|U∗n}n∈N), then δ(·) = U(·)U∗ is a unital injective endomorphism

of A and hence the dynamical system (X,α) corresponding to (A, δ) is such that α :

X → X is onto. It is immediate that the coefficient algebra B = C(X̃) has the form

C∗(1, {Un|a|U∗n}n∈Z). Thus due to [23, Theorem 2.2.1], C∗(a) = B ⋊
δ̃

Z and so

C∗(a) = C∗(X,α).

Following [23] we present now the canonical form of (X,α). Let Y denote the spectrum

of |a| and let T : X → ∏∞
n=0 Y be defined by T (x) = (x(|a|), x(δ(|a|)), ..., x(δn(|a|)), ...).

Then similarly to [23] we infer that T is a homeomorphism ofX onto T (X), where T (X) is

given the topology induced by the product topology on
∏∞

n=0 Y , and under T , α becomes

a shift on the product space T (X).

4.2 Universality of C∗(X,α)

Now we are in position to prove the main result of this section which justifies the antici-

pating Definition 4.1. We shall base the proof on the results from the previous section and

some known facts concerning the partial crossed product [10]. We adopt the commonly

used notation U−n = U∗n where U is a partial isometry and n ∈ N.

Theorem 4.7. Let (π, U,H) ∈ CovFaithRep (A, δ) or (π, U,H) ∈ CovRep (A, δ) in the

case δ is a monomorphism. Then the formula

(π × U)(
N∑

n=−N

a(n)un) =
N∑

n=−N

( ∞∑

k=0

U∗kπ(a
(n)
k )Uk

)
Un (30)

where a(n) = [a
(n)
0 , a

(n)
1 , ..., a

(n)
k , ..] ∈ B0, establishes an epimorphism of the covariance

algebra C∗(A, δ) onto the C∗-algebra C∗(π(A), U) generated by π(A) and U .

Proof. In both cases, (π, U,H) ∈ CovFaithRep (A, δ) or (π, U,H) ∈ CovRep (A, δ) and

δ is injective, (π, U,H) extends to the covariant representation (π, U,H) of (B, δ̃), see

Theorems 3.10, 3.14. Since C∗(π(A), U) = B ⋊
δ̃

Z we obtain, by [10, Proposition 5.5],
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that

(π × U)(

N∑

n=−N

a(n)un) =

N∑

n=−N

π(a(n))Un.

establishes the representation of C∗(A, δ), and by Theorems 3.10 and 3.14, (π × U) is in

fact given by (30). �

Due to Definition 3.1, Corollary 3.13, and the preceding Theorem 4.7 we can alterna-

tively define the covariance algebra to be the universal unital C∗-algebra generated by a

copy of A and a partial isometry u subject to relations

u∗u ∈ A, δ(a) = uau∗, a ∈ A,

see also Proposition 1.6. In particular the above relations imply that uu∗ = P∆1
and

u∗u = P∆−1
. Thus δ is injective iff u is isometry, and δ is an automorphism iff u is

unitary.

Theorem 4.8. Let σ be a representation of C∗(A, δ) on a Hilbert space H . Let π denote

the restriction of σ onto A and let U = σ(u). Then (π, U,H) ∈ CovRep (A, δ).

Proof. By [10, Theorem 5.6] we have (π, U,H) ∈ CovRep (B, δ̃) where π is σ restricted

to B. Hence by Theorem 3.11 we get (π, U,H) ∈ CovRep (A, δ). �

Corollary 4.9. If δ is a monomorphism then the correspondance (π, U,H)←→ (π×U),

cf. Theorem 4.7, is a bijection between CovRep (A, δ) and the set of all representations

of C∗(A, δ).

Proof. In virtue of Theorem 4.7 the mapping (π, U,H) ←→ (π × U) is a well defined

injection and by Theorem 4.8 it is also a surjection. �

Remark 4.10. Corollary 4.9 can be considered as a special case of Theorem 2.3 from the

paper [22] where (twisted) crossed products by injective endomorphisms were investigated.

However, our approach is slightly different. Oversimplifying; Murphy defines the algebra

C∗(A, δ) as pZp where Z is the full crossed product of direct limit B = lim−−→A and p

is a certain projection from B, whereas we include the projection p in the direct limit

B = lim−−→An ⊂ B, see Proposition 3.7, and hence take the partial crossed product.

5 Invariant subsets and the topological freeness of partial map-

pings

The present section is devoted to the generalization of two important notions of the

theory of crossed products. We start with a definition of α-invariant sets. With help of

this notion we will describe (in the next section) the ideal structure of the covariance

algebra. Next we introduce a definition of topological freeness - a property which is a
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powerful instrument when used to construct faithful representations of covariance algebra.

Thanks to that in Section 6 we prove a version of the Isomorphism Theorem.

5.1 Definition of the invariance under α and α̃ and their interrelationship

The Definition 5.1 to follow might look strange at first however the author’s impression

is that among the others this one is the most natural generalization of that from [13,

Definition 2.7] for the case considered here. One may treat α-invariance as the invariance

under the partial action of N on X.

Definition 5.1. Let α be a partial mapping of X. A subset V of X is said to be invariant

under the partial mapping α, or shorter α-invariant, if

αn(V ∩∆n) = V ∩∆−n, n = 0, 1, 2... . (31)

When α is injective then we have another mapping α−1 : ∆−1 → X and life is a bit

easier.

Proposition 5.2. Let α be an injective partial mapping and let V ⊂ X. Then V is

α-invariant if and only if one of the following conditions holds

i) V is α−1-invariant

ii) for each n = 0,±1,±2, ..., we have αn(V ∩∆n) ⊂ V

iii) α(V ∩∆1) ⊂ V and α−1(V ∩∆−1) ⊂ V ,

iv) α(V ∩∆1) = V ∩∆−1.

Proof. The equivalence of invariance of V under α and α−1 is straightforward, and so

are implications i)⇒ ii)⇒ iii).

To prove iii) ⇒ iv) let us observe that since α(V ∩∆1) ⊂ ∆−1 and α−1(V ∩∆−1) ⊂ ∆1

we get α(V ∩∆1) ⊂ V ∩ ∆−1 and α−1(V ∩ ∆−1) ⊂ V ∩∆1. The latter relation implies

that V ∩∆−1 = α(α−1(V ∩∆−1)) ⊂ α(V ∩∆1) and so α(V ∩∆1) = V ∩∆−1.

The only thing left to be shown is that iv) implies α-invariance of V . We prove this by

induction. Let us assume that αk(V ∩∆k) = V ∩∆−k, for k = 0, 1, ..., n−1 . By injectivity

it is equivalent to α−k(V ∩ ∆−k) = V ∩ ∆k, for k = 0, 1, ..., n − 1 . As ∆n ⊂ ∆n−1 and

∆−n ⊂ ∆−(n−1) we have αn(V ∩∆n) ⊂ V ∩∆−n and α−n(V ∩∆−n) ⊂ V ∩∆n. Applying

αn to the latter relation we get V ∩∆−n ⊂ αn(V ∩∆n) and hence αn(V ∩∆n) = V ∩∆−n.

�

Item ii) tells us that Definition 5.1 extends [13, Definition 2.7] in the case of a single

partial mapping. Let us note that if ∆1 6= X and α is not injective, then none of items

ii)-iv) is equivalent to (31) and therefore none of them could be used as a definition of

α-invariance.

Example 5.3. Indeed, let X = {x0, x1, x2, y2, y3} and let α be defined by the relations
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α(y3) = y2, α(y2) = α(x2) = x1 and α(x1) = x0:

q
x0

q
x1

q
y2

q
y3

q
x2

�
���)�

P
PPPi

�

Then the set V1 = {x0, x1, x2} fulfills item iv) but it is not invariant under α in the sense

of Definition 5.1. Whereas the set V2 = {x0, x1, y2, y3} is α-invariant but it does not fulfill

items ii) and iii).

We shall show that in general there are less α-invariant sets in X than α̃-invariant sets

in X̃, cf. Theorem 5.5 and a remark below, but fortunately there is a natural one-to-one

correspondence between closed sets invariant under α and closed sets invariant under α̃,

see Theorem 5.7. We start with a lemma.

Lemma 5.4. Let α be a partial mapping of X and let U ⊂ X be invariant under α.

Then we have

αk(∆n+k ∩ U) = U ∩∆n ∩∆−k, n, k = 0, 1, 2, ... .

Proof. As αk(U ∩ ∆k) = U ∩ ∆−k and U ∩ ∆n+k ⊂ U ∩ ∆k we have αk(∆n+k ∩ U) ⊂
U ∩∆n ∩∆−k, for k, n ∈ N. On the other hand, for every x ∈ U ∩∆n ∩∆−k there exists

y ∈ U ∩ ∆k such that αk(y) = x. Since x ∈ ∆n we we have y ∈ U ∩ ∆n+k and hence

U ∩∆n ∩∆−k ⊂ αk(∆n+k ∩ U). �

Theorem 5.5. Let (α,X) be a partial dynamical system and let (α̃, X̃) be its reversible

extension. Let Φ : X̃ → X be the projection defined by (17). Then the map

X̃ ⊃ Ũ −→ U = Φ(Ũ) ⊂ X (32)

is a surjection from the family of α̃-invariant subsets of X̃ onto the family of α-invariant

subsets of X. Furthermore if {Un}n∈N are the sections of Ũ (see Definition 2.13)), then

Ũ is α̃-invariant if and only if U0 is α-invariant and

Un = U0 ∩∆n, n = 0, 1, 2, ... .

Proof. Let Ũ be α̃-invariant and let U = Φ(Ũ ). Then by (19) and α̃-invariance of Ũ , for

each n ∈ N, we have

αn(U ∩∆n) = Φ(α̃n(Ũ ∩ ∆̃n)) = Φ(Ũ ∩ ∆̃−n) = U ∩∆−n

and hence U is invariant under α and the mapping (32) is well defined. Moreover, if Un,

n ∈ N, are the sections of Ũ , then by invariance of Ũ under α̃−1 (see Proposition 5.2) we

get

Un = Φ(α̃−n(Ũ ∩ ∆̃−n)) = Φ(Ũ ∩ ∆̃n) = U ∩∆n

where U = U0 is α-invariant.

Now, we show that the mapping (32) is surjective. Let U be any nonempty set invariant
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under α and let us consider Ũ of the form

Ũ :=
(
U × (U ∩∆1 ∪ {0})× ...× (U ∩∆n ∪ {0})× ...

)
∩ X̃.

What we need to prove is that Φ(Ũ) = U (note that in general Ũ may occur to be empty).

It is clear that Φ(Ũ) ⊂ U . In order to prove that U ⊂ Φ(Ũ) we fix an arbitrary point

x0 ∈ U and suppose that there does not exist x̃ in Ũ such that Φ(x̃) = x0. We will

construct an infinite sequence (x0, x1, x2, ...) in Ũ and thereby obtain a contradiction.

Indeed, we must have x0 ∈ U ∩ ∆−1, for otherwise we can take x̃ = (x0, 0, 0, ...) ∈ Ũ .

Hence by Lemma 5.4 there exists x1 ∈ U ∩ ∆1 such that α(x1) = x0. Suppose now we

have chosen n−1 points x1, ..., xn such that xk ∈ U∩∆k and α(xk) = xk−1 for k = 1, ..., n,

then xn must be in U ∩∆n ∩∆−1, for otherwise we can take x̃ = (x0, x1, ..., xn, 0, ...) ∈ Ũ .

Hence by Lemma 5.4 there exists xn+1 ∈ U ∩∆n+1 such that α(xn+1) = xn. This ensure

us that there is a sequence x̃ = (x0, x1, x2, ...) such that xn ∈ U ∩∆n and α(xn) = xn−1,

for all n = 1, 2, ... . Thus x̃ ∈ Ũ and we arrive at the contradiction.

By virtue of item v) in Proposition 5.2 in order to prove the α̃-invariance of Ũ it suffices

to show that

α̃(Ũ ∩ ∆̃1) ⊂ Ũ and α̃−1(Ũ ∩ ∆̃−1) ⊂ Ũ

but this follows immediately from the form of Ũ , α̃, α̃−1 and from α-invariance of U . Thus

according to the first part of the proof we conclude that, for each n ∈ N, the n-section

Un of Ũ is equal to U ∩∆n. The proof is complete. �

Corollary 5.6. If α is injective on the inverse image of ∆−∞ =
⋂
n∈N

∆−n (for x ∈ ∆−∞

we have |α−1(x)| = 1) then the mapping (32) from the previous theorem is a bijection.

Proof. It suffices to apply Proposition 2.14. �

Under the hypotheses of Theorem 5.5, surjection considered there might not be a

bijection. For instance in Example 2.16 we have three α-invariant sets: X, {x0}, ∅, and

four α̃-invariant sets: N,N,∞, ∅. However the mapping (32) is always bijective when

restricted to closed invariant sets.

Theorem 5.7. The mapping (32) is a bijection from the family of α̃-invariant closed sets

onto the family of α-invariant closed sets.

Proof. By Theorems 5.5 and 2.15, for every α̃-invariant closed subset Ũ such that Φ(Ũ) =

U we have

Ũ =
(
U × (U ∩∆1 ∪ {0})× ...× (U ∩∆n ∪ {0})× ...

)
∩ X̃, (33)

that means Ũ is uniquely determined by U . Since X̃ and X are compact, and Φ : X̃ → X

is continuous the set U is closed. Hence Φ maps injectively the family of closed α̃-invariant

sets into the family of closed α-invariant sets.
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On the other hand, if U is closed and α-invariant then by definition of the product

topology, the set Ũ given by (33) is also closed and according to Theorem 5.5, Φ(Ũ) = U .

Thus the proof is complete. �

The next important notion which we shall need to obtain a simplicity criteria for

covariance algebra (see Corollary 6.6) is the notion of minimality, cf. [13].

Definition 5.8. A partial continuous mapping α (or a partial dynamical system (X,α))

is said to be minimal if there are no α-invariant closed subsets of X other than ∅ and X.

Proposition 5.9. A partial dynamical system (X,α) is minimal if and only if its re-

versible extension (X̃, α̃) is minimal.

Proof. An easy consequence of Theorem 5.7. �

When α is injective, the binary operations ”∪” and ”∩”, or equivalently partial order

relation ” ⊂ ”, define the lattice structure on the family of α-invariant sets, see [13]. The

situation changes when α is not injective. Of course ” ⊂ ” is still a partial order relation

which determines the lattice structure, but it may happen that the intersection of two

α-invariant sets is no longer α-invariant.

Example 5.10. Let (X,α) and (X ′, α′) be dynamical systems from Example 2.7. It

is easy to verify that there are four sets invariant under α: X, V1 = {x0, x1, x2},
V2 = {x0, x1, y2} and ∅; and four sets invariant under α′: X ′, V ′

1 = {x′0, x′1, x′2}, V ′
2 =

{x′0, y′1, y′2}, ∅. Hence neither V1 ∩ V2 nor V ′
1 ∩ V ′

2 is invariant. However there are four

invariant subsets: X̃, Ṽ1 = {x̃0, x̃1, x̃2}, Ṽ2 = {ỹ0, ỹ1, ỹ2}, ∅ on the reversible extension

level ((X̃, α̃) = (X̃ ′, α̃′)) and Ṽ1 ∩ Ṽ2 = ∅ is invariant of course.

Definition 5.11. We denote by closα(X) the lattice of α-invariant closed subsets of X

where the lattice structure is defined by the partial order relation ” ⊂ ”.

According to Theorem 5.7, Φ determines the lattice isomorphism closα̃(X̃) ∼= closα(X).

5.2 Topological freeness

Recall now that a partial action of a group G on a topological space X is said to be

topologically free if the set of fixed points Ft, for each partial homeomorphism αt with

t 6= e, has an empty interior [13]. In view of that, the next definition constitutes a

generalization of topological freeness notion to the class of systems where dynamics are

implemented by one, not necessarily injective, partial mapping.

Definition 5.12. Let α : ∆ → X be a continuous partial mapping of Hausdorff’s topo-

logical space X. For each n > 0, we set Fn = {x ∈ ∆n : αn(x) = x}. It is said that the
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action of α (or briefly α) is topologically free, if every open nonempty subset U ⊂ Fn pos-

sess ’an exit’, that is there exists a point x ∈ U such that one of the equivalent conditions

hold

i) for some k = 1, 2, ..., n we have |(α−k(x))| > 1,

ii) for some k = 1, 2, ..., n α−1(αk(x)) 6= {αk−1(x)}.

We supply now some characteristics of this topological freeness notion.

Proposition 5.13. The following conditions are equivalent

i) α is topologically free,

ii) for each n > 0 and every open nonempty subset U ⊂ Fn there exist points x ∈ U ,

y ∈ ∆1 \ Fn and a number k = 1, 2, ..., n, such that

α(y) = αk(x).

iii) for each n > 0, the set

{x ∈ ∆n−1 : αk−n(x) = {αk(x)} for k = 0, 1, ..., n− 1}

has an empty interior.

Proof. i) ⇒ ii). Let U ⊂ Fn be an open nonempty set. Let x ∈ U and k = 1, ..., n

be such that item ii) from Definition 5.12 holds. We take y ∈ α−1(αk(x)) such that

y 6= αk−1(x). Then α(y) = αk(x) and since αn(y) = αk−1(x) we have y /∈ Fn.
ii) ⇒ iii). Suppose that for some n > 0 there exists a nonempty open subset U of

{x ∈ ∆n−1 : αk−n(x) = {αk(x)} for k = 0, 1, ..., n − 1}. It is clear that U ⊂ Fn and

hence for some k0 = 1, 2, ..., n, there exists y ∈ ∆1 \ Fn such that α(y) = αk0(x). Taking

k = k0 − 1 we obtain that y ∈ αk−n(x) = {αk(x)} and thus we arrive at a contradiction

since αk(x) ∈ Fn and y /∈ Fn.
iii)⇒ i). Suppose that α is not topologically free. Then there exists an open nonempty

set U ⊂ Fn such that for all x ∈ U and k = 1, ..., n, we have |α−k(x)| = 1. It is not hard

to see that U ⊂ {x ∈ ∆n−1 : αk−n(x) = {αk(x)} for k = 0, 1, ..., n− 1} and thereby we

arrive at the contradiction. �

The role similar to the one which topological freeness plays in the theory of crossed

products is the role played in the theory of C∗-algebras associated with graphs by the

condition that every circuit in a graph has an exit (see, for example, [5, 11]). The con-

nection between these two properties is not only of theoretical character, see for instance

[11, Proposition 12.2]). Taking this into account the following two simple examples might

be of interest. Before that let us establish the indispensable notation.

Let A = (A(i, j))i,j∈{1,...,N} be the matrix with entries in {0, 1}. It can be regarded as an

adjacency matrix of a directed graph Gr(A): the vertices of Gr(A) are numbers 1,...,N

and edges are pairs (x, y) of vertices such that A(x, y) = 1. By a path in Gr(A) we mean

a sequence (x0, x1, ...xn) of vertices such that A(xk, xk+1) = 1 for all k. A circuit, or a
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loop, is a finite path (x0, ..., xn) such that A(xn, x0) = 1. Finally a circuit (x0, x1, ..., xn)

is said to have an exit if, for some k, there exists y ∈ {1, ..., N} with A(xk, y) = 1 and

y 6= xk+1 (mod n).

Example 5.14. Let (X,α) be a partial dynamical system such that X = {1, ..., N} is

finite. If we define A by the relation: A(x, y) = 1 iff α(y) = x, then α is topologically

free if and only if every loop in Gr(A) has an exit. This is an easy consequence of the

fact that Gr(A) is the graph of the partial mapping α with reversed edges.

We shall say that a circuit (x0, x1, ..., xn) has an entry if, for some k, there exists

y ∈ {1, ..., N} with A(y, xk) = 1 and y 6= xk−1 (mod n).

Example 5.15. Let (XA, σA) be a dynamical system where σA is a one-sided Markov

subshift associated with a matrix A, see page 733. One-sided subshift σA acts topolog-

ically free if and only if every circuit in Gr(A) has an exit or an entry. Indeed, if there

exists a loop (y0, ..., yn) in Gr(A) which has no exit and no entry then U = {(xk)k∈N ∈
XA : x0 = y0} = {(y0, y1, ..., yn, y0, ...)} is an open singleton, U ⊂ Fn+1 and U has no

’exit’ in the sense of Definition 5.12, thereby σA is not topologically free.

On the other hand, if every loop in Gr(A) has an exit or an entry, and if x = (x1, ..., xn,

x1, ...) is an element of an open subset U ⊂ Fn for some n > 0, then the loop (x1, ..., xn)

must have an entry, as it clearly has no exit. Hence (x1, ..., xn) we have |(σ−k
A (x))| > 1,

for some k = 1, 2, ..., n, and thus σA is topologically free.

We end this section with the result which, in a sense, justifies Definition 5.12, and is

the main tool used to prove the Isomorphism Theorem.

Theorem 5.16. Let Fn = {x ∈ ∆n : αn(x) = x} and F̃n = {x̃ ∈ ∆̃n : α̃n(x̃) = x̃},
n ∈ N \ {0}. We have

F̃n = {(x0, x1, ...) ∈ X̃ : xk ∈ Fn, k ∈ N}, n = 1, 2, ..., (34)

and α is topologically free if and only if α̃ is topologically free.

Proof. Throughout the proof we fix an n > 0. It is clear that Fn and F̃n are invariant

under α and α̃ respectively (see Definition 5.1), and that Φ(F̃n) = Fn. By virtue of

Theorem 5.5 we have

F̃n =
(
Fn × (Fn ∩∆1 ∪ {0})× ...× (Fn ∩∆k ∪ {0})× ...

)
∩ X̃.

But, since Fn ⊂
⋂
k∈Z

∆k we obtain F̃n = (Fn × Fn × ... × Fn × ...) ∩ X̃ and hence (34)

holds.

Now suppose that α is topologically free and on the contrary that there exists an open

nonempty subset Ũ ⊂ F̃n. Without loss of generality, we can assume that it has the form

Ũ =
(
U0 × U1...× Um ×∆m+1 ∪ {0} ×∆m+2 ∪ {0} × ...

)
∩ X̃
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where U0, U1, ..., Um are open subsets of X, and as Ũ ⊂ F̃n = (Fn×Fn× ...×Fn× ...)∩X̃ ,

they are in fact subsets of Fn, and it is readily checked that

Ũ =
(
Fn × Fn...×

m⋂

k=0

α−k(Um−k)×∆m+1 ∪ {0} ×∆m+2 ∪ {0} × ...
)
∩ X̃.

The set U :=
⋂m

k=0 α
−k(Um−k) is an open and nonempty subset of Fn. Hence, due to the

topological freeness of α there exists y /∈ Fn and k = 1, ..., n, such that α(y) = αk(x) for

some x ∈ U . Taking any element x̃ = (x0, x1, ...) ∈ X̃ such that xm := x, xm+i := αn−i(x)

for i = 1, ..., n− k, and xm+n−k+1 = y we arrive at the contradiction, because x̃ ∈ Ũ and

x̃ /∈ F̃n.
Finally suppose that α is not topologically free. Then there exists an open nonempty

subset U ⊂ Fn such that, for all x ∈ U , |α−k(x)| = 1 and so

Ũ = {(x, αn−1(x), αn−2(x), ..., α1(x), x, αn−1(x), ...) ∈ X̃ : x ∈ U} = (U×(X∪{0})×...)∩X̃

is an open nonempty subset of F̃n. Hence α̃ is not topologically free and the proof is

complete. �

6 Ideal structure of covariance algebra and the Isomorphism

Theorem

It is well-known that every closed ideal of A = C(X) is of the form CU(X) where U ⊂ X

is open, and therefore we have an order preserving bijection between open sets and ideals.

The Theorem 3.5 from [13] can be regarded as a generalization of this fact; it says that,

under some assumptions, there exists a lattice isomorphism between open invariant sets

and ideals of the partial crossed product. In this section we shall prove the new useful

variant of this theorem. The novelty is that in our approach (cf. Theorem 5.7) it is

more natural to investigate a correspondence between ideals of the covariance algebra

and closed invariant sets.

After that we shall prove the main result of this paper, a version of the Isomorphism

Theorem where the main achievement is that we do not assume any kind of reversibility

of an action on a spectrum of a C∗-dynamical system.

6.1 Lattice isomorphism of closed α-invariant sets onto ideals of C∗(X,α)

Let us start with the proposition which is an attempt of describing the concept of invari-

ance on the algebraic level, cf. [13, Definition 2.7]. For that purpose we will abuse notation

concerning endomorphism δ and denote by δn, n ∈ N, morphisms δn : C(∆−n)→ C(∆n)

of composition with αn : ∆n → ∆−n. We believe that this notation does not cause confu-

sion, although we stress that set ∆−n does not have to be open and hence we can not iden-

tify C(∆−n) with a subset of C(X). For instance, it may happen that ∆−n is not empty

but have an empty interior, and then C∆−n
(X) is empty while C(∆−n) is not. We will also
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abuse notation concerning subsets and write B∩C(∆−n) for {a restricted to ∆−n : a ∈ B}
where B ⊂ C(X).

Proposition 6.1. Let V be a closed subset of X and let I = CX\V (X) be the corre-

sponding ideal. Then for n ∈ N we have

i) αn(V ∩∆n) ⊂ V ∩∆−n iff a ∈ I ∩ C(∆−n) =⇒ δn(a) ∈ I ∩ C(∆n),

ii) αn(V ∩∆n) ⊃ V ∩∆−n iff δn(a) ∈ I =⇒ a ∈ I, for all a ∈ C(∆−n).

Hence V is α-invariant (V ∈ closα(X)) if and only if

∀n∈N ∀a∈C(∆−n) a ∈ I ∩ C(∆−n)⇐⇒ δn(a) ∈ I ∩ C(∆n). (35)

Proof. i). Let αn(V ∩∆n) ⊂ V ∩∆−n and let a ∈ I∩C(∆−n) be fixed. Then for x ∈ V ∩∆n

we have αn(x) ∈ V ∩∆−n, whence δn(a) = a(αn(x)) = 0 and δn(a) ∈ I ∩ C(∆n).

Now suppose αn(V ∩∆n) * V ∩∆−n. Then there exists x0 ∈ V ∩∆n such that αn(x0) /∈
V ∩ ∆−n. As αn(x0) ∈ ∆−n and V is closed, by Urysohn’s lemma, there is a function

a0 ∈ C(X) such that a0(α
n(x0)) = 1 and a0(x) = 0 for all x ∈ V . Thus taking a to

be the restriction of a0 to ∆−n we obtain a ∈ I ∩ C(∆−n) but δn(a)(x0) = 1, whence

δn(a) /∈ I ∩ C(∆n).

ii). Let αn(V ∩ ∆n) ⊃ V ∩ ∆−n and let a ∈ C(∆−n) be such that δn(a) ∈ I ∩ C(∆n).

Suppose on the contrary that a /∈ I ∩ C(∆−n). Then a(y0) 6= 0 for some y0 ∈ V ∩∆−n.

Taking x0 ∈ V ∩∆n such that y0 = αn(x0) we arrive at the contradiction with δn(a) ∈
I ∩ C(∆n) because δn(a)(x0) = a(y0) 6= 0.

If αn(V ∩ ∆n) + V ∩ ∆−n, then there exists x0 ∈ V ∩ ∆−n \ αn(V ∩ ∆n). Similarly

as in the proof of item i), using Urysohn’s lemma we can take a0 ∈ C(X) such that

a0(x0) = 1 and a0|αn(V ∩∆n) ≡ 0. Hence putting a = a0|∆−1
we have a /∈ I ∩ C(∆−n) and

δn(a) ∈ I ∩ C(∆n).

In view of i) and ii), α-invariance of V is evidently equivalent to the condition (35). �

Definition 6.2. If I is a closed ideal of A satisfying (35) then we say that I is invariant

under the endomorphism δ, or briefly δ-invariant.

In virtue of Proposition 6.1 it is clear that I is a δ-invariant ideal iff I = CX\V (X)

where V is a closed α-invariant set. Thus, using Theorem 5.7 one can obtain a correspon-

dence between the invariant ideals of A and invariant ideals of B. To this end we denote

by 〈I〉
B, δ̃

the smallest δ̃-invariant ideal of B containing I.

Proposition 6.3. Let I = CX\V (X) be a δ-invariant ideal of A and let Ṽ ∈ closα̃(X̃) be

such that Φ(Ṽ ) = V . Then

〈CX\V (X)〉
B, δ̃

= C
X̃\Ṽ (X̃),

and the mapping I 7−→ 〈I〉
B, δ̃

establishes an order preserving bijection between the

family of δ-invariant ideals of A and δ̃-invariant ideals of B. Moreover, the inverse of the

mentioned bijection has the form Ĩ 7−→ Ĩ ∩ A.
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Proof. In order to prove the first part of the statement we show that the support

S =
⋃

f∈〈CX\V (X)〉
B, δ̃

{x̃ ∈ X̃ : f(x̃) 6= 0}

of the ideal 〈CX\V (X)〉
B, δ̃

is equal to X̃ \ Ṽ .

Let a ∈ I = CX\V (X). We identify a with [a, 0, ...] ∈ B and since x0 ∈ V for any

x̃ = (x0, ...) ∈ Ṽ , we note that [a, 0, ...](x̃) = a(x0) = 0, that is a = [a, 0, ...] ∈ CX̃\Ṽ (X̃).

As C
X̃\Ṽ (X̃) is δ̃-invariant, we get 〈CX\V (X)〉

B, δ̃
⊂ C

X̃\Ṽ (X̃), whence S ⊂ X̃ \ Ṽ .

Now, let x̃ = (x0, ..., xk, ...) ∈ X̃ \ Ṽ . The form of Ṽ (compare Theorem 5.5) implies

that there exists n ∈ N such that xn /∈ V . According to Urysohn’s lemma there exists

a ∈ CX\V (X) such that a(xn) = 1. By invariance, all the elements δ̃k(a) and δ̃k∗ (a)

for k ∈ N, belong to 〈I〉
B, δ̃

. In particular δ̃n∗ (a) = [0, ..., aδn(1), 0, ...] ∈ 〈I〉
B, δ̃

where

δ̃∗(a)(x̃) = a(xn) = 1 6= 0. Thus x̃ ∈ S and we get X̃ \ Ṽ = S.

In virtue of Theorem 5.7 the relation Φ(Ṽ ) = V establishes an order preserving bijection

between closα̃(X̃) and closα(X) hence the relation 〈CX\V (X)〉
B, δ̃

= C
X̃\Ṽ (X̃) establishes

such a bijection too. The inverse relation CX̃\Ṽ (X̃)∩A = CX\V (X) is straightforward.�

Let us recall that we identify B with a subalgebra of the covariance algebra C∗(A, δ).
Therefore for any subset K of B we denote by 〈K〉 an ideal of C∗(A, δ) generated by K.

The next statement follows from the preceding proposition and Theorem 3.5 from [13].

Theorem 6.4. Let (A, δ) be a C∗-dynamical system such that α has no periodic points.

Then the map

V 7−→ 〈CX\V (X)〉
is a lattice anti-isomorphism from closα(X) onto the lattice of ideals in C∗(A, δ). More-

over, for Ṽ ∈ closα̃(X̃) such that Φ(Ṽ ) = V the following relations hold

〈CX\V (X)〉 = 〈CX̃\Ṽ (X̃)〉, 〈CX\V (X)〉 ∩ B = CX̃\Ṽ (X̃), 〈CX\V (X)〉 ∩ A = CX\V (X).

Proof. Since α has no periodic points neither does its reversible extension α̃. The co-

variance algebra C∗(A, δ) is the partial crossed product C(X̃)⋊
δ̃
Z and Z is an amenable

group. Hence (C(X̃), δ̃) has the approximation property, see [13]. Thus in view of Theo-

rem 3.5 from [13], the map Ṽ 7−→ 〈CX̃\Ṽ (X̃)〉 is a lattice anti-isomorphism from closα̃(X̃)

onto the lattice of ideals of C∗(A, δ), and the inverse relation is 〈C
X̃\Ṽ (X̃)〉 ∩ C(X̃) =

CX̃\Ṽ (X̃).

Now, let Ṽ ∈ closα̃(X̃) and V ∈ closα(X) be such that Φ(Ṽ ) = V . We show that

〈CX\V (X)〉 = 〈CX̃\Ṽ (X̃)〉.
On one hand, by Proposition 6.3 we have 〈C

X̃\Ṽ (X̃)〉 ∩ A = 〈C
X̃\Ṽ (X̃)〉 ∩ C(X̃) ∩ A =

CX̃\Ṽ (X̃) ∩ A = CX\V (X) and hence 〈CX\V (X)〉 ⊂ 〈CX̃\Ṽ (X̃)〉. On the other hand,

〈CX\V (X)〉 ∩ C(X̃) is a δ̃-invariant ideal of C(X̃) containing CX\V (X), and so it also

contains 〈CX\V (X)〉
B, δ̃

= C
X̃\Ṽ (X̃). Hence 〈C

X̃\Ṽ (X̃)〉 ⊂ 〈CX\V (X)〉.
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Concluding, we have the lattice isomorphism between sets V ∈ closα(X) and Ṽ ∈
closα̃(X̃), and the lattice anti-isomorphism between sets Ṽ ∈ closα̃(X̃) and

ideals 〈CX\V (X)〉 = 〈CX̃\Ṽ (X̃)〉, hence V 7−→ 〈CX\V (X)〉 is anti-isomorphism. �

Example 6.5. In Example 4.5 the only α-invariant sets are {x1, ..., xm−1, ym}, m =

1, ..., k, and their sums. The corresponding ideals are Mnm
, m = 1, ..., k, and their direct

sums.

We automatically get a simplicity criteria for the covariance algebra. We say that

(X,α) forms a cycle, if X = {x0, ..., xn−1} is finite and α(xk) = xk+1(mod n), k = 0, ...n−1.

Corollary 6.6. Let α be minimal. If (X,α) does not form a cycle then C∗(A, δ) is

simple.

Proof. It suffices to observe that if α is minimal then α has no periodic points or (X,α)

forms a cycle. Hence we can apply Theorem 6.4. �

Example 6.7. If (X,α) does form a cycle then there are infinitely many ideals in

C∗(A, δ). Indeed if we have A = Cn and δ(x1, ..., xn) = (xn, x1, ..., xn−1), it is known

that the partial crossed product Cn ⋊δ Zn is isomorphic to the algebra Mn of complex

matrices n× n and hence C∗(A, δ) →֒ C(S1)⊗Mn = C(S1,Mn).

6.2 The Isomorphism Theorem

The Isomorphism Theorem simply states that under some conditions epimorphism from

Theorem 4.7 is in fact an isomorphism. We will prove here two statements of that

kind, Theorems 6.9 and 6.11, in the literature however only the latter one is named

the Isomorphism Theorem. A significant role in the proofs of both of these statements

plays a certain inequality which ensures the existence of conditional expectation onto

the coefficient algebra, and which appears in different versions in a number of sources

concerning various crossed products. For references see [18, 19, 2, 3, 23], and for the

greatest similarity with the following Definition 6.8 and Theorem 6.9 see [1, Theorem

1.2].

Definition 6.8. We say that a C∗-algebra C∗(C, U) generated by a C∗-algebra C and an

element U possesses the property (∗) if the following inequality holds

‖
M∑

k=0

U∗kπ(a
(0)
k )Uk‖ ≤ ‖

N∑

n=−N

( M∑

k=0

U∗kπ(a
(n)
k )Uk

)
Un‖ (∗)

for any a
(n)
k ∈ C and M,N ∈ N.

Theorem 6.9. Let (π, U,H) ∈ CovFaithRep (A, δ). Then formula (30) establishes an
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isomorphism between the covariance algebra C∗(A, δ) and the C∗-algebra C∗(π(A), U) if

and only if C∗(π(A), U) possess the property (∗).

Proof. Necessity. It suffices to observe that C∗(A, δ) = C∗(A, u) possess the property

(∗), and this follows immediately from the fact that partial crossed products satisfy the

appropriate version of this property, see [19, Remark 2.1] and [20, Proposition 3.5].

Sufficiency. By Theorem 3.10, (π, U,H) extends to the covariant faithful representa-

tion (π, U,H) of the coefficient C∗-algebra B. This extended representation satisfies

assumptions of [19, Theorem 3.1] and as Z is amenable (π, U,H) give rise to the desired

isomorphism, see also [19, Remark 3.2] �

Corollary 6.10. Let v ∈ A be a partial isometry such that uu∗ ≤ v∗v, vv∗ where u is

the universal partial isometry in C∗(A, δ). Then the mapping

Λv(u) = vu, Λv(a) = a, a ∈ A,
extends to an automorphism of C∗(A, δ). In particular, taking v = λ1, λ ∈ S1, we have

the action Λ of the unit circle S1 on C∗(A, δ) for which the fixed points set is the coefficient

C∗-algebra B.

Proof. By the above theorem C∗(A, δ) = C∗(A, u) possesses the property (∗). Clearly,

the same is true for C∗(A, vu). Since uu∗ ≤ v∗v we have u = v∗vu = v∗(vu) ∈ C∗(A, uv),
whence C∗(A, δ) = C∗(A, uv), and furthermore (vu)∗vu = u∗v∗vu = u∗u ∈ A. Since

uu∗ ≤ vv∗ we have (vu)a(vu)∗ = uau∗vv∗ = uau∗, that is the element vu generates the

same endomorphism of A as u, and hence applying the preceding theorem we conclude

that Λv extends to an automorphism of C∗(A, δ). The rest is straightforward. �

Now, we are in position to prove our variant of the celebrated Isomorphism Theorem.

Theorem 6.11 (Isomorphism Theorem). Let (A, δ) be such that α is topologically

free. Then for every (π, U,H) ∈ CovFaithRep (A, δ) the algebra C∗(π(A), U) possess

property (∗). In other words, for any two covariant faithful representations (π1, U1, H1)

and (π2, U2, H2), the mapping

U1 7−→ U2, π1(a) 7−→ π2(a), a ∈ A,
determines an isomorphism of C∗(π1(A), U1) onto C∗(π2(A), U2).

Proof. Due to Theorem 5.16, the partial homeomorphism α̃ is topologically free and

according to Theorem 3.10 representations π1 and π2 give rise to covariant representations

(π1, U1, H1) and (π2, U2, H2) of the partial dynamical system (B, δ̃). Thus it is enough to

apply the Theorem 3.6 from [19]. �

Corollary 6.12. Let A act nondegenerately on a Hilbert space H , let δ(·) = U(·)U∗

where U ∈ L(H) is a partial isometry such that U∗U ∈ A, and let the generated partial

mapping α be topologically free. Then C∗(A, U) ∼= C∗(A, δ).
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The above corollary allow us, in the presence of topological freeness, consider only

abstract covariance algebras. However, in various concrete specification while using the

method mentioned after Theorem 1.4, it may happen that the Isomorphism Theorem can

be applied to systems (A, δ) such that ∆−1 is not open and α is not topologically free.

Example 6.13. Let A and U be as in Example 1.5, then the associated system forms

a cycle and therefore it is not topologically free. However after passing to algebra C =

C∗(A, U∗U) we obtain the dynamical system (X ∪ {y}, α) (see Example 1.5)

q
y

q
x0

q
xn−1

qq
x1

�
���)-

P
P

PPq

�

-

. . .
. . .

which is topologically free, cf. Example 5.14. Hence, due to the Isomorphism Theorem

C∗(A, U) ∼= C∗(X ∪{y}, α). In particular, if n = 1 then C∗(A, U) is the Toeplitz algebra,

see Examples 2.16, 3.9 and 4.3.

Example 6.14. Consider Hilbert spaces H1 = L2
µ([0, 1]) and H2 = L2

µ(R+) where µ

is the Lebesgue measure. We fix 0 < q < 1 and 0 < h < ∞. Let A1 ⊂ L(H1)

consists of operators of multiplication by functions from C[0, 1] and let U1 act according

to (U1f)(x) = f(q · x), f ∈ H1. Similarly, let elements of A2 ⊂ L(H2) act as operators of

multiplication by functions which are continuous on R+ = [0,∞) and have limit at infinity,

and let U2 be the shift operator (U2f)(x) = f(x+h), f ∈ H2. Then the dynamical systems

associated to C∗-dynamical systems (A1, U1(·)U∗
1 ) and (A2, U2(·)U∗

2 ) are topologically

conjugate but the images of the generated mappings are not open (compare with Example

2.4). Thus we can not apply the Theorem 6.11 in the form it is stated. Nevertheless,

endomorphisms of bigger algebras C1 = C∗(A1, U
∗
1U1) and C2 = C∗(A2, U

∗
2U2) do generate

dynamical systems

q
0

q
q

q
q2

q
1

q
y

	



 	
�


s q

0
q
h

q
2h

q∞

q
y,

NU �
	


�

satisfying the assumptions of the Isomorphism Theorem. These dynamical systems are

topologically conjugate by a piecewise linear mapping φ which maps nh into qn, n ∈
N ∪ {∞}, and y′ into y, that is

φ(x) = qn
(q − 1

h
x+1−n(q−1)

)
, for x ∈ [nh, nh+1), and φ(∞) = 0, φ(y′) = y.

Therefore, by the Isomorphism Theorem, the mapping A1 ∋ a 7→ a ◦ φ ∈ A2, and

U1 7→ U2, establishes the expected isomorphism; C∗(A1, U1) ∼= C∗(A2, U2).

Lastly, we would like to present an example which shows how the results achieved in

this paper clarify the situation mentioned in the example from which we have started the

introduction.
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Example 6.15 (Solenoid). Let H = L2
µ(R) where µ is the Lebesgue measure on R, and

let A ⊂ L(H) consists of the operators of multiplication by periodic continuous functions

with period 1, that is A ∼= C(S1). Set the unitary operator U ∈ L(H) by the formula

(Uf)(x) =
√

2 f(2x).

Then for each a(x) ∈ A, UaU∗ is the operator of mulitplication by the periodic function

a(2x) with period 1
2
, and U∗aU is the operator of multiplication by the periodic function

a
(x

2

)
with period 2. Hence

UAU∗ ⊂ A and U∗AU * A.

The endomorphism U(·)U∗ generate on the spectrum of A the mapping α given by α(z) =

z2 for z ∈ S1, and the spectrum of the algebra B generated by
⋃
n∈N

U∗nAUn is the

solenoid S: B ∼= C(S), cf. Example 2.12. Further more α is topologically free and

therefore we have

C∗(A, U) ∼= C∗(S1, α) = C(S) ⋊F Z

where in the right hand side stands the standard crossed product of B = C(S) by the

automorphism induced by the solenoid map F , see Example 2.12.

Summary

In this paper we introduced crossed product-like realization of the universal algebra as-

sociated to ’almost’ arbitrary commutative C∗-dynamical system (A, δ). This new real-

ization generalizes the known constructions for C∗-dynamical systems where dynamics is

implemented by an automorphism or a monomorphism.

The primary gain of this is that we are able to describe important characteristics of

the investigated object in terms of the underlying topological (partial) dynamical system

(X,α), the tool which until now was used successfully only in the case of a (partial)

automorphism.

Namely, we have described the ideal structure of covariance algebra by closed invariant

subsets of X, in particular simplicity criteria is obtained. Moreover we have generalized

the topological freeness, the condition under which all the covariant faithful representa-

tions of (A, δ) are algebraically equivalent, see the Isomorphism Theorem. For applica-

tions this is probably the most important result of the paper.

The important novelty in our approach is that the construction of covariance algebra

here consists of two independent steps. The advantage of this is that one may analyse

covariance algebra on two levels. First, one may study the relationship between initial

C∗-dynamical system and the one generated on its coefficient C∗-algebra, and then one

may apply known statements and methods as the latter system is more accessible (gen-

erated mapping on the spectrum of coefficient algebra is bijective).

We indicate that recently (see [12]) a notion of crossed-product of a C∗-algebra by an en-

domorphism (or even partial endomorphism, see [14]) has been introduced, a construction
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which depends also on the choice of transfer operator. This construction is especially well

adapted to deal with morphisms which generate local homeomorphisms. In particular it

was used to investigate Cuntz-Krieger algebras, cf. [12, 14, 11]. However it seems that

in the case that α is not injective there does not exist a transfer operator such that the

aforementioned crossed-product is isomorphic to covariance algebra considered here, and

in the case that α is injective the transfer operator is trivial, that is, it is α−1 and thus it

does not add anything new to the system.
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