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ABSTRACT 

In this paper, we review applications of covariance-based structural equation modeling (SEM) in 

the Journal of Advertising (JA) starting with the first issue in 1972.  We identify 111 articles 

from the earliest application of SEM in 1983 through 2015, and discuss important 

methodological issues related to the following aspects: confirmatory factor analysis (CFA), 

causal modeling, multiple group analysis, reporting, and guidelines for interpretation of results.  

Moreover, we summarize some issues related to varying terminology associated with different 

SEM methods.  Findings indicate that the use of SEM in the JA contributes greatly to conceptual, 

empirical, and methodological advances in advertising research.  The assessment contributes to 

the literature by offering advertising researchers a summary guide to best practices and reminds 

of the basics that distinguish the powerful and unique approach involving structural analysis of 

covariances. 

Key Words: Structural equation(s) modeling, SEM, confirmatory factor analysis, CFA, analysis 

of covariance, theory testing, advertising research 
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From its very first issue, the Journal of Advertising (JA) welcomed both innovative 

analytical approaches as well as reviews of advertising research within its pages.  In the first 

issue, Ginter and Bass (1972) present an innovative approach attempting to establish causality 

associated with a television advertisement.  Other early issues also took the bold approach of 

publishing review-like comments on empirical work published in the JA (Arndt 1972; Largen 

1972).  In fact, the JA explicitly invited such in its very first pages where Sandage (1972, p. 6) 

states “criticism should be welcomed.” 

In keeping with this tradition, this paper reviews the use of covariance-based structural 

equation modeling (SEM) within the extant JA volumes.  Marketing and consumer research’s 

first applications of modern multivariate statistical procedures, including SEM, date from the 

1970s (Aaker and Bagozzi 1979; Darden and Perreault 1975).  Given the importance of 

measurement in advertising research, and the unique contributions of SEM to measure 

validation, the JA was early to publish SEM applications.  The first SEM application examines 

the convergent and discriminant validity of a three-dimensional television ratings measure 

developed to assess viewer perceptions of advertising relevance, confusion, and entertainment 

(Lastovicka 1983).  Subsequently, more than 100 published JA articles apply structural analysis 

of covariance in one form or another.  These articles provide useful content to understand the 

evolution of SEM in advertising research, as well as the evolution of SEM in business research 

in general. 

This research reviews articles reporting or purporting SEM analyses in the JA.  We 

attempt to describe the types of research and the research approaches involved within those 

articles.  In particular, we pay attention to core issues associated with the appropriate use of SEM 

including practices related to CFA, as the sine qua non of psychometric measurement, causal 
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modeling, and multiple group analyses.  This work contributes further to the literature by 

offering an overview of the technique, illustrations of uses in the advertising literature, and 

concludes with a summary guide to good practices and insight into other avenues of SEM 

applications for researchers. 

 
BASIC OVERVIEW 

We do not intend detail how to do structural equation modeling, as other reviews or texts 

provide adequate, although sometimes overlooked, descriptions of the procedure (see Bagozzi 

and Yi 2012; Byrne 2006; Iacobucci 2010; Shah and Goldstein 2006).  Further, the presentation 

avoids an overly technical or detailed mathematical presentation in keeping with the applied 

focus of the JA.  Others provide such presentations (see Bagozzi 1980; Kaplan 2009).  We focus 

on a number of basic issues related to terminology and a fundamental understanding of the 

technique’s capabilities.  As the literature evolves, the analytical lexicon can come to be quite 

confusing and terminology that was clear in the conception of a technique has become cloudy as 

various researchers adopt the terminology to their own applications.  Such an evolution is likely 

inevitable as a multifaceted tool diffuses ever more widely. 

 
THE STRUCTURE IN STRUCTURAL EQUATION MODELING 

The phrase “structural equation model” broadly encompasses an ever increasing family 

of approaches, statistical, mathematical, and graphical.  Similarly, terms like path analysis and 

factor analysis also display very broad boundaries.  In contrast, the term “causal modeling” 

appears to be used much less often in recent years.   

Causal Models 
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A quick search of the exact term in EBSCOhost reveals six JA articles using the term, 

two appearing since 2000.  In the Journal of Marketing Research, for example, the term “causal 

modeling” yields 55 hits, only three since 2000, nine in the 1990s, 39 in the 1980s, and four in 

the 1970s.  The term causal modeling, very familiar to those involved in SEM in the 1980s, 

clearly has fallen out of favor.  Freedman (1991) provides a historical overview of this 

progression.  We would be naïve to deny the fact that authors oftentimes pick terms, and even 

techniques, as a manner of politically navigating the review process rather than providing the 

most straight forward description of their research intention (Babin, Griffin, and Hair 2016).  

Authors may sometimes recognize the limitations in their data, but may have been cautious about 

stating a causal conclusion even if the original intention was to demonstrate how some change in 

advertising characteristics brought about a change in performance.  Causal conclusions seem 

central to offering ad managers normative guidance. 

The genesis of SEM indeed lies in the desire to draw causal inferences.  Pearl (2009; 

2010; 2012; 2014) provides a comprehensive review of causality and SEM, and points out that 

the greater accessibility to statistical techniques coincides with users who may lack a 

fundamental understanding of key principles.  Among these are the relevant assumptions that 

support causal inferences.  Given the inherent limitations that accompany a typical experimental 

design, particularly with respect to generalizability, researchers long desired to be able to draw 

causal inferences from nonexperimental data (Blalock 1964; Teas, Wacker, and Hughes 1979).  

Thus, a tool that could facilitate testing the accuracy of our a priori, hypothetical causal theories 

indeed represented a major breakthrough for advertising and marketing researchers as it allowed 

survey-based research to enter the causal domain.  In essence, SEM enables us to see how well 

our preconceived theory of a given set of advertising effects “fits” reality as represented by the 
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observed data.  In data terms, SEM allows the theoretical structure of the data (the way the data 

should look if our explanatory theory is correct) to be directly compared to the actual structure of 

the observed sample data. 

SEM procedures are not the same as typical Ordinary Least Squares (OLS) applications.  

One key distinction is that in applying SEM, one accounts for non-relationships as well as 

relationships.  In a graphical model, the absence of a connection imposes a constraint that 

presupposes that these entities are unrelated.  In a path diagram, the fact that variables are not 

connected is just as important as connected variables.  One often misunderstood distinction of 

SEM is the treatment of the error-variance in equations (Pearl 2009).  In SEM, error-variance is 

represented by a latent, exogenous factor.  The absence of connections among the error-variance 

factors represents an independence assumption necessary to establish evidence of non-

spuriousness, and thus of causality.  That is, the latent factors referred to as error-variance terms 

capture the effect of all non-measured alternative causes.  If the absence of connections, and thus 

relationships between error-variance factors, is detrimental to fit, causal claims become tenuous.  

Furthermore, SEM procedures allow us to examine the consequences of a violation of this 

necessary but insufficient assumption of causality.  A relationship between the error-variance 

factors of a cause and effect means that other common causes likely exist.  The model is 

underspecified.  Thus, SEM procedures offer advantages in providing evidence of causality (or 

the lack thereof), and thus the term causal modeling does apply, although causal claims can 

never be established without logical rationale for causal processes as well.  

Structure in SEM 

What is structure? If a researcher’s theory presupposes the sequence of causal 

relationships, and equally as important if not more so, the lack of relationships among all the 
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measured variables involved in an analysis, then he or she could presuppose the pattern of 

relationships in the covariance matrix.  As SEM became less commonly known as a causal 

modeling tool, the question of “what is the structure in the term structural equation modeling?” 

likewise became less fully known.  While today’s easy to use software makes tools like SEM 

accessible to greater and greater numbers of researchers, including those who have not studied 

multivariate data analysis or SEM in more than a cursory way, users may not comprehend all 

fundamental concepts.  The theoretical structure inevitably coincides with data patterns varying 

with relationships and/or non-relationships. 

AMOS and LISREL, SEM software used nearly exclusively in the JA, now enable the 

user to work directly from raw data.1  In AMOS, for example, the data to all appearances of the 

user remain forever in their raw form in SPSS.  Thus, the interface can easily lead to the 

impression that parameters are estimated and answers are derived in the same manner as OLS 

regression in SPSS.  Those using SEM software pre-1990, fortunately, did not enjoy that 

convenient advantage and more clearly understood that covariance provides the foundation of the 

analysis!  Once a user had a theory and corresponding raw data, an initial analysis was needed to 

extract and store the observed covariance matrix (S) of the measured variables in a manner that 

could be read by SEM software.  Therefore, the user was keenly aware that the SEM approach 

was analysis of covariance.   

Thus, the structure is evidenced in the covariance (or correlation if standardization is 

used) and its derivatives including factor loading matrices and covariances among unobservables 

                                            
1 We limit discussion to the software used by the JA authors.  AMOS and LISREL are most 
widely used and are available for use by purchasing a license (as are Mplus and EQS).  Many 
other programs exist now including SEM packages within R, which are free to use.  Perhaps the 
most promising is Lavaan – latent variable analysis.   
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(Hox and Bechger 1998).  In fact, in addition to program execution code, some SEM software 

provides a matrix entry form with which one could represent the pattern of relationships/non-

relationships by specifying proposed patterns in these matrices.  The matrices are essential to the 

matrix algebra equations in structural equation analysis.  From a theory-testing standpoint, by far 

the most critical aspect of an SEM analysis is the model-derived or implied covariance matrix 

(�̂�).  That matrix represents the structure of the data implied by the user’s theory.  When we use 

the term SEM in the remainder of this article, we refer specifically to analysis of covariance 

approaches.  As the review points out, analysis of covariance SEM is the approach applied most 

often (nearly universally) in the JA.  As such, a brief mention of the role of covariance is 

fundamental (Hair et al. 2017). 

The Structure Explains 

Researchers interested in cause and effect are motivated by explanation.  In fact, theory 

takes us beyond prediction by offering explanations of not just how much, but why the 

dependent variable (DVs including endogenous constructs) responds to changes in the 

independent variables (IVs including exogenous constructs).  The analyst must explain if and 

how one of the IVs, for example K1, changes systematically with other variables (i.e., K2).  For 

the theory to be causally complete it must also account for non-relationships; in other words, 

which variables (observed and latent, including those representing residual variance) do not 

change in response to others.  The program(er) must constrain non-relationships to 0 because 

they are expected to not exist.  Statistically, the structure matches the over-identification that 

results from constraints corresponding to the theory (Ronkko, McIntosh and Antonakis (2015).  

Without this full accounting of the structure, the explanation is incomplete. 
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How is a theory tested in a single analysis?  By comparing the theorized structure of 

reality with the observed structure of reality.  That is, by comparing the theory-implied 

covariance structure (matrix) to the observed covariance structure (matrix).  The closer the two 

come to one another, the more accurate is the theory.  Thus, the 2 statistic, which is relatively 

simple conceptually, following the functional form, 

2 = f( | S - ̂ | ) 

becomes the most important outcome in SEM theory testing, and is the most important result to 

report. As the two matrices become the same, the value tends toward 0.  The 2 statistic cannot 

be interpreted without considering parsimony as represented by the model’s degrees of freedom 

(df).  While software provides the net degrees of freedom, the model df easily can be computed: 

df = [(p(p+1)) / 2] – K 

with p representing the number of measured variables and K the number of free (unconstrained) 

parameters. 

PLACE FIGURE 1 ABOUT HERE 

Figure 1 illustrates this process with a basic example.  The theory derived model is 

depicted to show that attitude toward the ad causes changes in attitude toward the brand.  �̂�, 

shown in the middle matrix on the right, represents the theorized structure. S, the observed data 

shown in the top right matrix (derived from 475 observations), indeed corresponds fairly closely, 

but not perfectly.  In fact, this result produces a 2 of 17.3 with 8 degrees of freedom (p = .03).  

In this case, the actual data structure and theory-derived data structure match pretty closely, or 

should we say, they ‘fit’ each other.  As alluded to earlier, when the residual covariances exhibit 

a random pattern, further support of causality is exhibited since such a pattern is evidence against 

spurious causation.  The lack of a connection between the exogenous factors (error-variance for 
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Abrand and Aad) is justified.  A key point made by emphasizing the extraction of the covariance 

matrix is that the moments come from the covariance matrix.  Therefore, the degrees of freedom 

available are determined by the size of the covariance matrix (unique elements only) and not by 

the sample size.  In addition, nothing about the relationships between the indicators (common 

variance) is lost by the covariances.  The covariance matrix contains full information about the 

data structure and in SEM applications, we end up with poor fit to the extent that our theory does 

not explain, or match, the observed data.  The data structure cannot be separated from SEM 

analysis and yet be well understood. 

Path Analysis 

Path analysis, not to be confused with critical path analysis from operations research, is 

another term widely applied in SEM papers and beyond.  The idea is similarly to try to capture 

the cause and effect paths within a sequence of variables using a cross-sectional analysis.  Evans 

(1978) represents an early “path analysis” approach.  The article focuses on the causal paths of a 

Fishbein model using survey research.  The relationships between the beliefs and evaluations 

components, with attitude toward the ad followed by subjective norms, and ultimately behavioral 

intentions are estimated using OLS.  Thus, what distinguishes this from a traditional OLS 

regression application?  First, cosmetically, the author includes a path diagram showing the flow 

of effects.  In addition, the possibility of indirect effects exists as the multiplicative-product, 

beliefs*evaluations cause attitude toward the ad, which in turn causes behavioral intent.  Second, 

the path analysis model employs multiple equations, but each equation is independently 

estimated on the raw data.  The main distinguishing characteristic is the emphasis on implied 

causality and explanation over prediction.   
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Many JA authors employ the term path analysis in their SEM applications.  In fact, the 

use of the term path analysis tends to signify that something other than a covariance-based SEM 

has been conducted and that typically involves the use of composite factors (most often 

summated scales), OLS estimates, attenuated estimates (not corrected for measurement error), 

and sometimes lack of a rigorous psychometric assessment.  However, the term path analysis 

does not coincide with the use of “reduced-form” OLS.  A reduced-form approach models the 

ultimate dependent variable in a single equation that includes only and all exogenous variables as 

predictors (only a single endogenous factor is involved and; see Cox (2009) for a straight-

forward discussion of reduced-form versus structural equation systems).  The use of multiple 

specified equations corresponding to a theory are consistent with the desire to draw causal 

conclusions. 

METHODOLOGY 

We set out to identify the articles in JA that purport to perform covariance-based 

structural equation analyses.  Articles were identified using key-word searches within the entire 

Journal of Advertising bibliographical record.  The key words or phrases include each of the 

following exact terms: 

 Structural equation(s) modeling (modelling) 

 SEM 

 Confirmatory factor analysis 

 CFA 

 LISREL 

 AMOS 

 EQS 
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 Causal model (modeling) 

 Path analysis 

 Structural model 

Online Appendix shows those articles identified and published between 1983 and 2015, 

the key word to which it is associated, and a description of the type of analysis involved.  The list 

describes characteristics of the studies relevant to describing how the analysis was actually 

conducted.  

Results 

An initial search resulted in a total of 377 articles from the first volume of the JA through 

2015.  After deleting duplicate articles that included more than one search term and articles that 

only mentioned yet did not apply SEM, the final sample consists of 111 articles matched up to at 

least one of these key words.  Figure 2 plots the frequency of SEM articles’ occurrence by year.  

The plot shows a generally increasing trend with fluctuation from year to year.  The greatest 

frequency of occurrence is 11 SEM articles published in the 2012 calendar year.  Given that 

quite a few of the articles from 1983 to 2015 report multiple SEM applications, the total number 

of SEM models in the JA exceeds 300. 

PLACE FIGURE 2 ABOUT HERE 

Although advertising research is traditionally both analytical and rigorous, not all 

advertising researchers are mathematical statisticians.  As such, SEM applications grew in 

proportion to the availability of easy to use software that required neither detailed theoretical 

knowledge of statistics nor the ability to write program logic.  Thus, what SEM software have JA 

authors traditionally employed?  Although not all articles report the software applied in the 

analyses reported, among those that do, more than half (36) indicate LISREL (Jöreskog and 
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Sörbom 1982).  LISREL precipitated the growth of SEM in marketing and has been available 

almost twice as long as AMOS (and much longer than other software options), so its position as 

the most often applied software is not surprising.  AMOS, with its graphical interface and 

marketing approach involving a cobranding effort with SPSS, is the second most applied 

software with 25 applications (see Figure 3).  The first AMOS application appears in 2002 and 

11 occur since 2010.  Among software other than LISREL or AMOS, only EQS shows more 

than a single application being used in four articles.  The distribution of software applications is 

an indication of the length of availability and the user-friendliness of the software. 

With respect to estimation approaches, 90 percent of the applications involve maximum 

likelihood estimation.  Only a handful of the articles report reliance on an SEM with other 

estimation techniques, such as generalized least squares or distribution-free estimation.  The 

heavy reliance on maximum likelihood is justified based on the relative robustness of the 

approach (Awang, Afthanorhan, and Asri 2015; Hox and Bechger 1998). 

PLACE FIGURE 3 ABOUT HERE 

Testing Measurement Theory (Psychometric Validation) 

In the early years of SEM applications, researchers had yet to settle on a standardized 

approach or sequence of steps that would characterize a valid analysis.  Chief among debates was 

how to deal with the measurement theory, sometimes referred to as the auxiliary theory, which 

specifies how measured (or “manifest”) variables operationalize latent constructs that eventually 

form the structural theory to be tested (Sajtos and Magyar 2015).  The biggest debate boiled 

down to whether or not the measurement theory should be tested “independently” of the 

structural theory.  After all, the structural theory test is flawed to the extent that measurement is 

poor.  The measurement model indeed serves as an upper bound for the fit of a theoretical model 
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in the sense that a saturated theoretical model, meaning one estimating every possible one-way 

(i.e., recursive) theoretical relationship, will be the same as that of a standard CFA. 

Mathematically the test of correspondence rules linking measured variables to latent 

constructs and those correspondence rules interconnecting constructs, are not independent.  

Practically speaking, with good measurement performance, including the lack of evidence of 

interpretational confounding, the measurement model should be able to stand for examination 

separately.  In fact, should the changes needed to convert a CFA into a recursive theoretical 

model result in measurement loading estimates changing more than trivially (say > .05), then the 

analyst should look into the possibility of problems with the measures/data. 

An influential article by Anderson and Gerbing (1988) led to a growing consensus that a 

two-step SEM approach is preferable to a simultaneous test of measurement and structural 

theory.  The two steps constitute, first a test of the theoretical measurement model using 

confirmatory factor analysis (CFA), and second, only if the CFA displays evidence of construct 

validity including good fit, a test of a subsequent theoretical or structural model.  The 

measurement theory explains how measured variables represent latent constructs.  In the years 

following publication of this influential article (Anderson and Gerbing 1988), the two-step 

approach became the standard approach for conducting and presenting SEM results as opposed 

to the simultaneous approach of testing the model implied measurement and theoretical 

covariance structures against the observed covariance structure in a single analysis. 

CFA fit.  CFA assessment is very prominent in the set of relevant JA articles appearing 

after 2000.  A total of 87 of the 111 articles report a CFA result.  Four articles explicitly are 

positioned as a scale development where the CFA becomes the key focus of analysis.  In 

particular, the degrees of freedom represent a proxy for complexity because more variables 
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means more degrees of freedom.  Extremely simple or complex models can prove problematic. 

The simplest results presented include models with 0 degrees of freedom.  The most complex 

model contained 1,169 degrees of freedom, while the average is 148.  Even though parsimony is 

desirable, a CFA with 0 degrees of freedom represents a ‘just-identified identified’ model fitting 

perfectly by mathematical definition.  Thus, a CFA test is not particularly useful if the fit is 

predetermined.  The notion of identification may not be well understood by all users and 

reviewers as at least three CFAs are reported with 0 degrees of freedom (see for example, Sirgy 

et al. 1998).  Likewise, models with few degrees of freedom are very simple and by that fact 

alone should provide relatively good fit.  Two additional applications report 5 degrees of 

freedom or fewer (Noguti and Russell 2014).  While on a rare occasion one might find value in 

trying to validate a single 4-item dimension alone (perhaps if the paper reports the development 

of such a scale), one should expect an insignificant p-value if there is any case at all to be made 

for good fit. Simple models should be held to the strictest standard. 

How did the CFA models perform?  Prime facie evidence of good fit results from an 

insignificant 2 statistic, thus signaling that the implied covariance matrix, computed from the 

theoretical model representation, is not significantly different from the observed covariance 

matrix.  Twenty-five (12 percent) of the reported 2 statistic values, excluding those with 0 

values, are insignificant based on a p-value greater than 0.05.  As a frame of reference for future 

users, the unweighted average is 561 with 147 degrees of freedom. 

A host of various other fit indices developed over time, motivated in great part by the fact 

that the χ2 test, like other parametrical statistical tests, is susceptible to power effects and quickly 

becomes significant with large samples.  Early on, little consensus existed over which of these 

indices was most appropriate to report.  Over time, the Comparative Fit Index (CFI) (Bentler 
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1990) and the Root Mean Squared Error of Approximation (RMSEA) became the most 

commonly referred to goodness and badness of fit indices, respectively.  Hair et al. (2010) 

provide a discussion of the evolution of these statistics and guidelines for assessing values for 

CFI and RMSEA for models with varying degrees of complexity and varying sample sizes.  The 

key idea of their analysis is that there is no one size fits all cutoff value for these statistics, 

meaning it is impossible to apply a single standard to all models and research situations.  

Complicated models, consisting of more variables and constructs, with large sample sizes could 

fit well with lower CFI values than simple models with small samples.  The lower value for CFI 

associated with good fit for the most complicated models is approximately 0.92.  In the articles 

published/featured in the JA reporting only CFA results, the CFIs range from 0.75 to 1.0, with an 

average CFI of 0.949, and a RMSEA ranging from 0 to 0.22, and an average of 0.081.  Thus, if 

extreme values are excluded, most of the CFA models are within the guidelines of good fit.  

Further, researchers should report the initial CFA results as well as the results subsequent to 

substantial modification of the theoretical measurement model.  In addition, at times authors may 

report competing theories, such as comparing two-factor to one-factor solutions as a test of 

unidimensionality.  These tests account for some of the low goodness of fit values reported in the 

JA (e.g., Latour and Rotfeld 1997).  Additionally, the 𝜒2 value Like for other parametric 

statistics, the p-value itself is of limited value, particularly in situations with high statistical 

power.  But, reporting both the χ2 and df should be an essential part of any report.  

Measurement Theory.  Valid measurement is a nonnegotiable characteristic of good 

research.  Historically, measurement validity was based on face and content validity that resulted 

from a qualitative assessment.  With the adoption of SEM, measurement validity is also assessed 

quantitatively.  Thus, good psychometric measurement is characterized by evidence of fit 
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validity as demonstrated empirically by favorable CFA results.  CFA fit validity is a necessary 

(but insufficient) condition for overall validity, so long as the measurement theory allows each 

indicator to load on only one factor and constrains all error-covariance to 0 (i.e., an appropriate 

congeneric representation) (Babin and Zikmund, 2016).  This means the hypothesized 

measurement structure (leading to the implied covariance matrix) closely mirrors the observed 

covariance matrix.  Another measurement theory criterion is convergent validity, meaning the 

items representing a construct correspond with each other to represent a unidimensional factor.  

Beyond fit validity and convergent validity, discriminant validity should be present, so that each 

measured variable corresponds to only a single construct and the constructs that make up a 

model each represent a unique entity.  Other forms of validity such as concurrent and predictive 

are possible but much less often associated with SEM.   

CFA, properly applied, is a statistical tool uniquely qualified to provide empirical 

evidence of validity for any set of latent constructs.  Some of the JA articles do not indicate a 

properly applied CFA model.  Sometimes, limitations of the research prevent a full examination 

of the validity of measures.  At other times, a CFA can be conducted in a way that does not allow 

a full test of measurement validity, meaning one or more aspects crucial to validation are 

impossible to detect.  One such practice is the use of partial CFA.  Partial CFA involves 

measurement models containing only a portion of the measurement model involved in a study; 

sometimes testing model constructs in a model individually rather than as part of an integrated 

model.  Thus, a five-construct model will include five separate CFAs.  While this approach may 

provide evidence of convergent validity within each factor, it is not possible to examine 

discriminant validity.  A partial CFA completely masks any lack of fit that would be produced if 

the indicators of one construct covary strongly with the indicators of another construct.  
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Similarly, a strong correlation suggesting a lack of discriminant validity between constructs also 

would go undetected. 

Based on the descriptions of the CFA models reported in the JA articles, as many as 30 

report some form of a partial CFA.  As an example, one article assesses multiple constructs but 

reports a CFA for only one construct – ad-evoked emotions (Zhao, Muehling, and Kareklas 

2014).  The ad-evoked emotions construct includes item indicators, such as happy and pleased.  

The authors also measure brand attitudes with items such as “good” and “favorable,” but do not 

include attitude and emotion together in a CFA.  In sum, all of the items and constructs should be 

included in an overall CFA to address any concerns about construct validity, whether convergent 

or discriminant.2  Assessment of differences in fit based on additions of cross-loadings or 

consolidation of constructs could be helpful in such an assessment, but may create other 

problems (O'Rourke and Hatcher 2013).  If a model with cross-loadings (an item reflecting more 

than one construct) fits better than one without, the results provide evidence of a lack of 

construct validity.  

In a small number of cases, CFAs were reported using composite scales.  This approach 

also masks problems with individual items, such as strong residual covariance that would 

diminish fit.  Thus, the general rule for CFA is to include all latent constructs and variables 

involved in the theoretical model in a single CFA.  Note that if an appropriate single item 

variable is in the model (e.g., sales), it may not be included in the CFA.  Moreover, in rare cases 

a parceling approach could be adopted.  Parceling involves taking composite subsets of item 

                                            
2 Convergent validity, the extent to which multiple measures converge on a consistent meaning, 
and discriminant validity, the extent to which a measure is unique and not confounded by 
another, are both necessary elements of the broader concept of construct validity, the extent to 
which a measure truly represents a construct. 
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indicators and using them in place of the individual item indicators for a construct.  For example, 

a construct measured by 50 items might be modeled with ten indicators that are each composites 

of five measured variables.  In no case in the JA articles was a scale long enough to call for item 

parceling and rarely in advertising or marketing research would one find such a long scale. 

Identification.  Another issue that limits a model’s ability to fully test measurement 

validity involves statistical identification (Blalock 1964).  A full description of statistical 

identification is well beyond the scope of this article, but the crux of the matter involves under-

identification, an inability to mathematically derive a solution due to insufficiencies such as a 

lack of information.  The most common statistical violation occurs when a researcher, usually 

without full awareness, proposes a theory that requires more parameters to be estimated than the 

number of unique moments used as input to the model (i.e., the number of unique elements of a 

covariance matrix).  For example, if one tries to estimate a single factor model indicated by two 

measured variables, no standard CFA solution is possible because mathematically, the model is 

under-identified (the model requires four parameters to be estimated while the covariance matrix 

providing input to the model contains only three unique moments).  If the researcher combines 

the two-item construct into a model consisting of several other constructs, each measured by 

several items, the overall model may become identified making a solution possible. However, 

statistical identification of the two-item construct remains problematic.  Thus, problems with 

model convergence or unstable solutions are often attributable to an identification problem.  

More than 25 of the JA articles include measures with less than three-items as indicators.  A 

comprehensive discussion of identification can be found in Mardia, Kent, and Bibby (1980). 

Even single-item measures can be included in an SEM model. But the loading parameter 

and associated error-variance parameter should be specified rather than estimated.  In some 
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cases, authors indicate fixing parameters for single-item measures.  A fixed parameter is one that 

is constrained to some predetermined value.  If one assumes perfect measurement, the loading 

for a single-item can be fixed to 1 and the error variance fixed to 0.  But the fixing of parameters 

is not typically described for two-item measures.  As such, the risks of an unstable solution for 

models with two-item factors remains high, and the results are not as dependable as a model that 

would be fully or over identified overall and within each theoretical construct.  For this reason, 

aside from any theoretical arguments about the number of items sufficient to measure any given 

construct, a measure with a minimum of three measured indicators is greatly preferable and will 

minimize problems as researchers perform analyses. 

One article illustrates problems related to a lack of statistical identification (Leigh, 

Zinkhan, and Swaminathan 2006).  The authors report difficulties such as a “small, 

nonsignificant negative error variance” (p. 115), otherwise known as a Heywood case.  

Equivalently, a negative error variance means a quirky result indicating more than 100 percent 

explained variance.  Additionally, subsequent models report a path estimate (presumably 

standardized) of 0.99 between cognitive and recall constructs.  The observed correlations for the 

measured variables corresponding to this relationship are between 0.5 and 0.75.  Thus, the 0.99, 

signaling that the two constructs are synonymous, is likely an unreliable estimate due to the lack 

of identification.  Similar to single-item factors, if a two-item factor is included, additional 

parameters must be fixed (fixed means constrained) rather than freed.  For instance, both factor 

loading estimates can be fixed to some like value (e.g., 0.70) rather than estimated. 

Thus, although most of the articles using CFA exhibit good practices, researchers can 

learn from awareness of some of the more questionable approaches.  One trend discovered in the 

review that is difficult to quantify is the tendency of researchers to delete items in the process of 
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doing a “confirmatory” factor analysis.  In some cases, the authors do not clearly state how many 

items were discarded in the process of trying to confirm a factor structure.  Such information is 

very important for others who may wish to use the same scales or replicate the analysis.  In the 

discussion, we’ll follow up with thoughts on when modifications are numerous enough that the 

analysis is no longer “confirmatory.”3 

Theoretical Models 

Reviewing SEM applications published in the JA, at least 60 of the 300 plus applications 

across the 111 articles report a theoretical (between constructs) model fit without a 

corresponding CFA result.  The bulk of those not reporting a CFA are published in issues before 

2000.  Thus, the influence of the two-step approach is seen in the later years.  Moreover, there 

are other potentially questionable approaches or unclear reporting.  In some cases, the number of 

items reported for a measure does not correspond to the degrees of freedom reported in a model.  

At times, composite indicators are used to represent constructs actually measured by a battery of 

several items (i.e., Muehling, Lazniack, and Stoltman 1991).  While such an approach produces 

very parsimonious tests of theoretical models (2 degrees of freedom in this case), the drawback, 

as with partial CFAs, is the possibility that problems with item validity are masked by the 

composite.  Issues with discriminant validity, such as when a single item relates highly to two 

constructs rather than one, not only are hidden in this approach but also produce a higher 

                                            
3 We decided not to detail the distinction between reflective and formative indicators.  As is 
expected, and likely is appropriate given the perceptual nature of most of the research, the vast 
majority of measures involve reflective indicators.  Fewer than five studies state some type of 
formative measure.  However, one misnomer is that SEM is not appropriate for formative 
indicators.  Formative indicator models present problems with statistical identification unless 
formulated in a manner as to avoid these problems.  Thus, caution is advised to make sure over-
identifying assumptions are in place  For a more comprehensive explanation, we refer you to a 
source such as MacKenzie, Podsakoff, and Podsakoff (2011). 
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structural parameter coefficient than would be observed otherwise.  Thus, a CFA should be 

encouraged whenever possible. 

Among all models of causal relationships across constructs, how well do the JA authors’ 

theoretical models tend to fit?  The averages provide some benchmark values.  The unweighted 

average 2 statistic is 219.5 with 78 degrees of freedom.  Both are less than the average values 

for the reported CFA models above.  The average reported CFI is 0.944, and ranges from 0.66 to 

1.0.  The average reported RMSEA is 0.087, with a range from 0 to 0.5.  Based on these results, 

the majority of model results appear to fall within the rules of thumb for good fit, and drawn 

from peer review sources.  The reason theoretical models, on average, report fewer degrees of 

freedom than CFA models is that in many cases composite indicators are used in the theoretical 

model, with or without a CFA including individual item indicators. 

Early in the evolution of SEM, the use of composites (combinations of indicators, most 

often average summated scores) in theoretical models was condoned if an acceptable CFA model 

fit (with individual item indicators) was first presented.  One motivation for such practice is the 

pursuit of an insignificant 2 statistic, which is much more likely in a model with relatively few 

degrees of freedom.  In the extreme, a model that could consist of dozens of items is reduced to a 

saturated theoretical model with each construct represented by composites resulting in 0 degrees 

of freedom and “perfect” fit (Henthorne, Latour, and Natarajan 1993).  Thus, the switch from 

individual items in the CFA to composites in the theoretical model is essentially a cosmetic 

change that produces a more enticing appearance based on over attention to p-values.  

One aspect that is lost in such an approach, and often overlooked otherwise, is the value 

of the CFA model in assessing theoretical fit.  All of the JA applications involve recursive 

models, meaning models in which the flow of causation is only in one direction (no reciprocal 
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causation exists).  In a recursive model, the CFA provides an upper bound (i.e., the best) on the 

fit of a subsequent theoretical model.  Therefore, a theoretical model can fit no better than the 

corresponding CFA model.  Consequently, the CFA fit provides a basis with which to judge the 

subsequent fit of the theoretical model.  The closer the two become, the better the fit of the 

theoretical model.  Given that the CFI attempts to lessen the effects of sample size and model 

complexity on fit, it provides a basis for a potentially useful index for assessing theoretical fit 

following a CFA comprised of the same indicators.  The following theoretical fit index (TFI) can 

be used for that purpose: 

𝑇𝐹𝐼 = (𝐶𝐹𝐼𝐶𝐹𝐴 − 𝐶𝐹𝐼𝑇𝑀𝐶𝐹𝐼𝐶𝐹𝐴 ) 

When evaluating the TFI, relatively small values indicate a better theoretical model fit.  

For example, given a CFA with CFI of 0.99, a subsequent theoretical structural model (TM) of 

0.97 yields a TFI of 0.02, approximately a two percent drop in fit.  In contrast, if the theoretical 

model fit is a CFI of 0.92, the TFI would be 0.07, representing approximately a seven percent 

drop in fit.  The TFI works as a badness of fit indicator because a higher value means a relatively 

worse fit.  Thus, the former model would provide a much better theoretical fit.  Here again, one 

should always take parsimony into account.  A theoretical structural model with only 1 degree of 

freedom difference from the CFA model is very nearly a reproduction of the measurement 

model.  As the number of degrees of freedom difference increases, the theoretical model is more 

parsimonious and larger differences in fit are to be expected.  Thus, an Adjusted TFI is proposed, 

which includes an adjustment for parsimony: 

𝐴𝑇𝐹𝐼 = (𝐶𝐹𝐼𝐶𝐹𝐴 − 𝐶𝐹𝐼𝑇𝑀𝐶𝐹𝐼𝐶𝐹𝐴 )𝑋 𝐷𝐹𝑇𝑀𝐷𝐹𝐶𝐹𝐴 
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The use of TFI or ATFI applies to models following the two-step SEM approach, and if it 

is to be used to demonstrate that the tested theory fits, it is predicated on a CFA with good fit.  

When appropriate, researchers should consider assessing and reporting the ATFI as an indicator 

of theoretical model fit.  The ATFI always should be interpreted in light of the overall CFA fit.  

A good structural model ATFI with a poor measurement model remains tenuous. 

Conceptually, the breakthrough represented by the goodness of fit test cannot be 

overstated.  No longer were researchers relegated to assessing relationships one at a time or for a 

few variables predicting a single dependent variable in a multiple regression model.  Even then, 

the analysis is restricted to overlapping variance with inherent limitations in explanatory power.  

The 2 goodness of fit test is the gauge by which one’s theory is assessed.  Now, one’s theory 

can be represented by a theoretical structure (covariance matrix) and compared against an actual 

structure (covariance matrix) obtained from sample data.  Since the deductive structure matches 

the data derived in the real world, the theory becomes validated. 

Moreover, the comparison of model fits using the 2 difference statistic can be extremely 

useful in assessing which of multiple, plausible, theoretical processes most closely matches 

reality.  For instance, a parameter can be fixed to be equal across two cultural groups.  Should 

the constraint worsen fit, as evidenced by a change in the 2, the result presents evidence of 

moderation by culture. 

Multigroup Analyses  

Multigroup SEM analysis is particularly relevant to advertising research.  Multigroup 

SEM models are aimed at simultaneously trying to reproduce the covariance matrix for each 

group examined.  Research reported in the JA often involves cross-cultural comparisons with 

samples from two or more countries (cultural regions) or a moderating group effect.  Multigroup 
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SEM is an ideal tool to report results in either situation.  Over the years, the multigroup approach 

has become useful and relatively standardized.  Babin, Borges, and James (2016) provide a 

recent review of the methodology and demonstrate the versatility of multigroup SEM. 

Not surprisingly then, JA authors employ multigroup SEM analysis and 14 articles refer 

to it in their methods in some way.  Andrews (1989) represents an early application of a 

multigroup SEM analysis examining potential invariance in the factor structure of a seven-item 

scale of attitudes toward advertising.  Thus, its publication is another instance demonstrating 

JA’s contribution to innovation in advertising research.  The article predates the adoption of 

standard methodology and terminology.  One key term is metric invariance.  Metric invariance 

refers to the fact that both a factor loading structure and relative size of loadings does not change 

(is not significantly different) from group to group.  Although the authors’ intent appears to have 

been to examine whether the factor structure remained constant across groups, the number of 

degrees of freedom reported suggest that some other constraints were imposed.  Kim, Baek, and 

Choi (2012) also report a two-group factor analysis testing metric invariance.  The results appear 

to be reported clearly (p. 85, 86) although with six factors and 16 items, under-identified factors 

are involved in the analysis.  The authors then switch to a “path analysis” using multiple 

regression to examine structural relationships across groups, attributing the decision to a small 

sample size.  Perhaps other factors played into that decision since the smallest group size is 148, 

seemingly sufficient for the model to be examined (MacCallum et al. 2001).  Other authors point 

to difficulties with model convergence in their attempts to use a multigroup analysis (Garretson 

and Niedrich 2004).  As a consequence, they also applied path analysis to test for moderation.  

Authors using multigroup analysis need to pay particular care to the descriptions of the goals of 

an analysis and their results to reduce ambiguity in meaning.  In addition, multiple group 
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analyses, although not terribly difficult to execute with software, can be intricate and benefit 

from experience with the approach. 

 
DISCUSSION 

Structural equation modeling is a very useful research tool in the advertising literature 

based on trends outlined in the review.  In the past, many social scientists considered SEM to be 

quite a complex statistical method, requiring considerable investment in time and effort to 

master.  Most social science disciplines took years to disseminate the concepts and absorb the 

knowledge, and to some extent still struggle with advanced statistics.  Although readily 

accessible software, in a sense, brings advanced statistical techniques to the masses, getting the 

software to produce results does not constitute understanding of the technique.  Thus, it is not 

surprising to see similar challenges faced by advertising. 

The attractiveness of SEM for advertising scholars and practitioners can be attributed to 

the method being an excellent tool to examine and test advertising theories.  Those theories 

include measurement theories where JA authors should present research using CFA to provide 

other researchers with better psychometric scales or to corroborate existing scales for measures 

relevant in explaining why advertising works or does not work.  Moreover, it has great potential 

to facilitate better understanding of which theories are appropriate for a particular situation, how 

to improve pricing of advertising, how to evaluate advertising strategies, explaining customer 

responses to varied stimuli, and so forth.  Authors and reviewers should be more open to 

comparing models based on truly competing theories, where the relative fit can be used as 

evidence of which explanation best matches reality.  In addition, the ability to replicate results 

from prior studies is greatly facilitated by the ability to compare model fit across samples as 

illustrated in a multigroup analysis.  The extent to which prior studies can be reproduced is 
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important to the credibility of science (Hubbard 2016).  SEM provides a tool well suited to assist 

in this important endeavor and more efforts to compare results of theory tests, including 

replication using SEM, presents an important avenue for future research. 

Our review of SEM applications in the Journal of Advertising indicates clearly that the 

use of SEM in advertising contributes greatly to conceptual, empirical, and methodological 

advances in advertising.  Indeed, the trend toward improving knowledge and overcoming 

weaknesses in advertising research is evident.  Like any academic journal, we also can learn 

from critically reviewing papers that are published.  In short, it appears SEM’s theoretical 

methodology, like with other statistical techniques, is sometimes not well understood by its 

users.  A potential reason for unfamiliarity with SEM principles might be that multivariate data 

analysis textbooks did not traditionally discuss SEM at all, or present the coverage of the topic in 

an understandable manner given many advertising and marketing scholars’ limited mathematical 

training.  Universities should at minimum ensure that all graduate research students learn to 

understand and appreciate the strengths and limitations of SEM.  

Statistical approaches are like tools in a mechanic’s toolbox.  Although in any situation 

there may be more than one tool that can at least “sort of” get the job done, the good mechanic 

knows the right tool for the right problem.  Likewise, advertising researchers must understand 

the initial goal of data analysis is to select an appropriate statistical method.  Choose the wrong 

tool or apply it poorly and at best, one makes life difficult and at worst, the results do not paint 

an accurate picture.  Also, we are wise to remember the words of Clint Eastwood stating: “a 

man’s (researcher) got to know his limitations.”  Researchers should use the tools they 

understand, or collaborate with a coauthor that truly understands the desired approach. 
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Many of these issues were discussed in our review, such as removing too many indicators 

as a means of achieving fit, lack of congruence based on degrees of freedom, and limitations of 

understanding constraints in multigroup comparisons.  These topics have been researched in the 

methodological literature, and yet they are being overlooked or just not reported.  Advertising 

researchers are well advised to more strongly consider the methodological foundations of the 

SEM method and complementary analysis techniques. 

To emphasize practical issues and decisions associated with the application of SEM, and 

to highlight ones that advertising researchers should consider more closely, we suggest the 

following framework for decision-making when using SEM.  Specifically, SEM applications 

should follow a step-by-step process, as shown below:  

1. Model Specification – to match a theory 

2. Model Identification – to identify adequate data 

3. Model Estimation – to provide parameter estimates and �̂� , as a barometer for the 

theory 

4. Model Evaluation – to assess fit and other aspects of validity 

5. Model Re-specification – to compare theoretical explanations, further examine 

conditions of causality, explore post-hoc results or improve model fit (only to the 

extent where changes are minor and do not fundamentally change meaning; non-

minor modifications result in a shift toward developmental or post-hoc results 

rather than theory testing).  Cross-validation using new data when possible. 

6. Model Reporting – to draw appropriate conclusions 

Each step includes multiple decisions that have implications for subsequent steps.  Incorrect 

decisions in an earlier step can create problems in subsequent steps.  Indeed, incorrect decisions 
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in earlier steps may result in invalid model results.  Other sources provide a more complete 

description of these assumptions (see Kaplan 2009; Kline 2015; MacKenzie, Podsakoff, and 

Podsakoff 2011; McDonald and Moon-Ho 2002). 

SEM offers many beneficial properties for testing measurement theory and subsequently, 

theories comprised of more than individual relationships (e.g., Babin, Boles, and Hair 2008; 

Bagozzi and Yi 1988; Chin, Peterson, and Brown 2008).  Indeed, SEM is not the tool for the 

researcher who is exploring data.  SEM also is not the tool for someone interested only in mere 

prediction.  Having found through CFA that the measures are lacking, SEM is not a good tool for 

research plagued with poor measures.  In Table 1, we provide basic suggestions for good practice 

including various rules of thumb motivated largely by issues discovered in our review.  Others 

are more broadly applicable.  By following these recommendations, we wish to reduce the 

danger created by easy to use software that researchers without proper foundation are getting 

results from but not understanding how they came to be.  

PLACE TABLE 1 ABOUT HERE 

We strongly recommend that authors, reviewers, and editors be familiar with and observe 

these guidelines.  High quality peer-reviewed journals should more strongly emphasize the 

importance of adhering to these guidelines.  Moreover, making all information available, 

including the data used in the analysis, will facilitate the replication of statistical analyses (e.g., 

in Web Appendices).  Progressing towards the highest possible level of transparency will 

substantially improve the way research is conducted, and give a free rein to accelerated 

development paths for methodological issues increasingly encountered in social sciences 

research. 

Conclusion 
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This article contributes to the advertising and marketing literature through improved 

implementation of SEM procedures in the advertising literature and beyond.  Although we do not 

intend to settle terminology issues, we also wish to call attention to some potential boundaries in 

terms.  In this article we have used, perhaps in what some may call a past practice, the term SEM 

to refer to covariance-based SEM.  In fact, in previous eras the term Analysis of Covariance 

Structures was synonymous with CFA and SEM procedures.  Today, other linear modeling, 

graphical, non-parametric, and probability-based approaches fall under the SEM rubric.  In 

addition, the term path analysis (as opposed to SEM) is more commonly used to refer to models 

with multiple-item indicators based on composites and not common factors where the aim is to 

make a causal inference.  Confirmatory factor analysis applies to an approach that tests 

measurement theory by examining the fit of the proposed theoretical measured model and not to 

a set of composites.  Causal modeling is a term that can apply to SEM, but only if conditions 

beyond those necessary to generate estimates are met.  In particular, counterfactual conditions 

implying the lack of relationships are a key in having SEM allowing causal inferences (Pearl, 

2009).  This type of counterfactual account is imperative to understand the nature of causality in 

structural models (Pearl 2014).  Indeed, connections that do not exist are critically important and 

represent assumptions that are generally only implied.  In fact, the tradition of stating models 

piecewise with individual hypotheses for each path contributes to a misunderstanding of this 

fundamental point by drawing attention to the connections and away from the assumptions that 

affect the theory’s interpretation.  To the extent that advertising benefits from theories of cause 

and effect, SEM  remains the appropriate tool. 

This article emphasizes the fit concept as a key distinguishing factor of covariance-based 

SEM and links it to the covariance structure.  We also introduce the notion of a Theoretical Fit 
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Index (TFI), and its parsimony adjusted variation the ATFI, as an alternative and potentially 

improved way of assessing fit of the theoretical model subsequent to a CFA.  Researchers are 

encouraged to use this index.  SEM is an explanatory tool.  Recall philosophically that 

explanation begets prediction but not vice-versa (Hunt 2010).  The covariance-based SEM user 

carries the attempts to account for all the information in the covariance matrix.  Any deficiency 

in how one variable corresponds (or does not correspond) to another, costs the theory in terms of 

fit.  Thus, SEM is a tool used when a researcher wishes to test an explanatory theory. 

In addition, we review SEM applications in the JA as a motivation for suggestions for 

improvement.  We would be remiss to not to point out that there can be too much emphasis on a 

benchmark of “good models” or “good fit” for publication.  If a theory is strong, knowing that it 

does not fit is equally as important as knowing that it does fit.  However, the academic 

community possesses a strong publication bias that suggests reviewers only consider good results 

to be those supported by statistical significance, or in the case of SEM, good fit.  This kind of 

thinking, although perhaps also born in love of a given theory, leads to what some call advocacy 

in research such that researchers are only willing to report “good” results that support the 

preconceived theory (Babin, Griffin, and Hair 2016; Woodside 2016).  If the theory is relevant 

and the research is done well, then test results should not determine publication.  Only in this 

way do we openly encourage truthful reporting of results.  In addition, research should be 

replicable.  SEM provides a great way to examine replication because a study done with a second 

sample, or hold out sample, can be directly compared and even tested for cross-validity using a 

multigroup approach and analysis of fit.  We must also embrace surprising results that come out 

of our models and not force fit SEM as a statistical tool for every application.  Knowing when 

not to use a tool is equally as important as knowing when to use that tool!  Further, SEM will 
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also play a role in big data analysis as we recognize ways to measure latent phenomena residing 

in sets of variables recorded through online behaviors.  SEM has become an essential tool in the 

advertising researcher’s statistical toolbox, and it will continue to be important to advertising in 

the future.      
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TABLE 1 
 

Some Suggestions for Good Practice 
 

Issue  Comment  Suggestion/Rules of Thumb 

Setup and Reporting 

Issues 

    

Use  For testing and 
explanation. 

 Use when sufficient theory exists to deduce generalizations 
between measured variables and latent constructs and infer 
the network among the latent constructs (including over-
identifying assumptions).  The results allow one to explain 
the phenomena including an explanation of strengths and 
weaknesses of the theory as a result of the test. Not ideal for 
exploratory research. 
 

How to conduct a CFA  To get the full test of 
construct validity. 

 Avoid testing piecemeal and do not test using composites.  
Only when all constructs and variables are included can one 
adequately assess fit validity, convergent validity and 
discriminant validity. 
 

Sample size  SEM not as sensitive to 
low sample size as once 
thought.  

 N = 100 is sufficient for most applications as long as 
measurement is good (AVE of .5 or better).  Bottom line is 
that the generalizability necessary in the study is a more 
determinant criteria for sample size than statistical approach.  
No technique can make up for a sample that cannot 
generalize. 
 

Estimation technique  Multiple linear options 
available. 

 Maximum likelihood estimation proves fairly robust and is 
applicable in most marketing research studies barring gross 
problems in measurement 
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Missing data treatment  For individual 
observations. 

 As long as missing data is minimal (below 5 percent), no 
practical difference in results will occur.  Pairwise and 
listwise (casewise) deletions are options as EM imputation 
of missing data.  If more than ten percent data are missing, 
EM imputation is necessary. 
 

Measurement scale level  Type of scale 
measurement. 

 Generally, metric (at least interval) measures are presumed.  
However, dichotomous variables can be included when 
structured as dummy variables or with an augmented 
moment matrix. 
 

Number of indicators  How many scale items 
are needed? 

 3 items insure that a construct is statistically identified.  4 
items insure that the construct is over-identified.  Thus, best 
to use a minimum of 3 items.  If a measure consists of a 
single item and must be included in theoretical model, the 
loading and error variance term should be fixed rather than 
free.  Likewise, while we recommend avoiding two-item 
scales, if they must be used, fix the loading estimates to 
identify. 
 

Software   What to use?  All widely available software can produce reliable results.  
It's best to report what software was used in the analysis.  
More programs are available all the time including freeware.  
Users should use software that they are comfortable with. 

Measurement model 
description 

 Measurement model is 
measurement theory. 

 Describe all indicators completely and be clear on what 
indicators were dropped to obtain final CFA results. 
 

Individual item error-
variance terms 

 How to treat?  A congeneric measurement model is a psychometrically 
sound representation.  That means no correlated error 
variance terms.  Generally, if correlated error terms are 
necessary to achieve good fit, the measurement is flawed. 
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Latent variable measurement 
mode  

 
 

 Reflectively measurement models typical; formative 
measurement possible with MIMIC type approach or by 
including a sufficient number of outcomes. 

Statistical identification  For recursive (one-way 
causality) models. 

 In general avoid two item and single item measures.  The 
best case scenario is to over-identify constructs by including 
4 items or more as indicators of each construct.  That means 
the net df for that construct is greater than 0.  If fewer than 
three items are included with a construct, consider fixing the 
loading parameter(s).  Nonrecursive models (2-way causal 
flow) are more complex to identify. 
 

Theoretical identification  Lack of parsimony.  When every latent construct is connected to every other 
latent construct with a directional, causal path, the model is 
considered theoretically saturated.  Every possible path is 
estimated.  The result should fit the same as a standard CFA 
model.  An assessment of theoretical is not possible. 

Indicator loadings size  
 

 Standardized indicator loadings ≥ 0.70 

Construct reliability   
 

 
 

Construct/Composite reliability ≥ 0.70 (in exploratory 
research 0.60 to 0.70 is considered acceptable) 
 

Convergent validity  How to establish 
evidence? 
 

 AVE > 0.50 for each construct 

Discriminant validity  How to establish 
evidence? 

 AVE of a latent construct = higher than the construct’s 
highest squared correlation with any other latent construct 
 

Fit validity / Overall fit  𝛘2, df  ALWAYS REPORT final 𝛘2 value and final degrees of 
freedom!  The results should be judged based on complexity 
of the model and sample size (see Hair et al. 2010).  Simple 
models (with 5 or fewer df should exhibit insignificant p-
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values for good fit).  The TFI, introduced above, provides a 
summary index of theoretical fit relative to measurement fit. 
 

Overall validity  What else to report?  
Avoid a dump of all fit 
indices.  

 For CFA, in addition to 𝛘2 and df, report p-value, CFI and 
RMSEA to fully report fit.  Also report AVE and CR 
(Construct/Composite Reliability).  

Judging fit  How to know if fit is 
"good?" 

 No absolute standard exists for "good fit."  Very simple 
models should be judged by the strictest criteria 
(insignificant p-values).  More complex models should be 
judged by less strict criteria (CFI > .94; RMSEA < 0.08).  
See Hair et al. (2010) for tabled values.  Comparing 
competing models with a 𝛘2 difference test is a valid way to 
give relative fit. 

Formative Measurement Models 

Significance of weights 
 
Multicollinearity 
 

 
 

 Report t-values and p-values 
 
Examine for high correlations as indicators are theoretically 
independent. 

Model Evaluation and Diagnostics 

Fit validity / Overall fit  How to know if theory 
fits? 

 Guidelines for CFA fit above apply.  Researcher can use TFI 
to provide assessment of fit for the second step of the two-
step SEM approach. 
 

Path coefficient estimates  
 

 
 

 Assess significance and confidence intervals. 
 

Number of indicators 
eliminated 

 When is analysis no 
longer confirmatory? 

 No more than 20% otherwise the CFA has become 
exploratory.  That means if one starts with 20 items, no more 
than 4 can be dropped without admitting that the original 
measurement theory was flawed.  In mid stages of scale 
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development, developmental CFA may violate this rule as 
long as a subsequent validation adheres to it. 
 

Mediation  How to model indirect 
effects? 

 Simply model the indirect relationships that the theory 
dictates.  If model fits, then the evidence supports the 
indirect effects as modeled.  Bootstrapping is available as an 
alternative to traditional t-values for parameter significance.  
Nonspecification bias can be diagnosed using error-variance 
terms. 
 

Moderation  How to test moderation?  Although techniques exist to include multiplicative 
interactions, multiple group SEM is ideal for group level 
moderators based on the intuitive nature of the results and 
the ease of presentation of one group's effects relative to 
another group's effects. 
 

Measurement invariance  Configural invariance  Means that the same factor structure can represent the 
theoretical latent constructs in each group.  The evidence 
comes from a good fit for the multigroup CFA model. 
 

Measurement invariance 
 latent constructs 

 Metric invariance means 
that loadings do not vary 
by group and allow 
relationships to be 
compared between 
groups 

 Metric Invariance tests are necessary when the groups that 
are compared are sufficiently unique to suggest that they 
may not use the measures in a like manner.  Such is typically 
the case when the groups have responded in different 
languages or are from different cultures.  If the two groups 
are all from the same company, for instance, and all speak 
the same language, then that a-priori rationale for metric 
invariance may not be present.  If in doubt, apply the test.  
Evidence comes when holding loadings constant between 
groups does not significantly diminish fit. 
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 Scaler invariance means 
that the intercept terms 
for each variable and 
construct do not vary by 
group and allow means 
to be compared between 
groups 

 Same as above except evidence comes when constraining 
intercept terms to be equal across groups does not diminish 
fit. 

Indicators of problems  Parameter instability, 
implausibility, lack of 
convergence, 
incongruent df 

 Pay attention to these as they indicate problems with the 
data or errors in constructing the model. 
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FIGURE 1 
 

Covariance, Structure, and Fit 
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FIGURE 2 

Frequency of JA Articles with SEM Terms by Year 
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FIGURE 3 

Software Usage in JA SEM Articles 
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