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ABSTRACT Recently, a number of robust adaptive beamforming (RAB) methods based on Capon

power spectrum estimator integrated over a specific region for covariance matrix reconstruction have

been proposed. However, all of these methods ignore the residual noise existing in the Capon spectrum

estimator, which results in reconstruction errors. In this paper, we propose a RAB algorithm via residual

noise elimination and interference powers estimation to reconstruct covariance matrix. First, the proposed

algorithm demonstrates the existence of residual noise and analyze its relationship to actual noise. Then,

after eliminating the residual noise, the modified Capon power spectrum estimator is utilized to reconstruct

the covariance matrix and desired signal SV. Moreover, to reduce the influence of the desired signal

on interference powers estimation, we project the snapshots onto the complementary subspace of the

desired signal and estimated interference powers are derived according to the theoretical formulation of

the interference covariance matrix (ICM). The simulation results demonstrate that the proposed method is

robust against various mismatches and can achieve superior performance.

INDEX TERMS Robust adaptive beamforming (RAB), steering vector (SV) estimation, powers estimation,

covariance matrix reconstruction.

I. INTRODUCTION

Adaptive array signal processing is one of the major areas in

signals and has been studied extensively because it’s widely

applied in many fields such as radar, sonar, wireless commu-

nication, speech processing, biomedicine, radio astronomy,

etc. It involves multiple sensors placed at different positions

in space to process the received signals impinging from dif-

ferent directions. As an important branch of array signal pro-

cessing, the adaptive beamfroming adjusts its weight vector

depend on the environment to enhance the desired signal

and suppress the interferences and noise, where it can be

regarded as a spatial filtering technique. The standard Capon

beamforming [1] is an optimal adaptive beamforming when

the precise knowledge of desired signal is available and the

covariance matrix of received is exactly known, the Capon

beamformer can yield both excellent output performance
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and high convergence rate. However, the standard adaptive

beamforming [1] is sensitive to mismatch errors such as sig-

nal direction errors, sensor position errors, amplitude and

phase errors and so on, especially when the desired signal

components is present in the sample covariance matrix, and

these could result in performance degradation [2], [3]. There-

fore, the robustness of adaptive beamforming has become the

focus of research.

To improve the robustness of the adaptive beam-

forming, many technologies have been proposed, and

they can be classified as following categories: diago-

nal loading (DL) technologies [4]–[7], Eigenspace-based

technologies [8]–[12], uncertainty set constraint technologies

[13]–[17] and covariance matrix reconstruction technologies

[18]–[23]. DL [4] technologies are widely used to improve

the robustness by adding a scaled identity matrix to the sam-

ple covariance matrix. Unfortunately, it’s difficult to choose

the optimal DL factor in practice. In [7], the DL factor can

be automatically computed but this method fails to provide
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satisfactory performance in high input signal to noise ratios

(SNRs). Eigenspace-based [8] technologies are implemented

by projecting the nominal steering vector (SV) onto the sig-

nal plus interference subspace. However the performance of

Eigenspace-based beamformers degrade drastically at low

input SNRs, where the signal subspace may be swapped

with noise subspace. The main idea of uncertainty set con-

straint algorithms [13] is to constrain the SV on the presumed

spherical or ellipsoidal and SV is estimated by solving a

second-order cone programming problem with high com-

putational complexity. Moreover, uncertainty set constraint

algorithms have been proven to be equivalent to the DL

algorithms.

In order to remove the desired signal components from

sample covariance matrix, nowadays, a number of algorithms

based on interference-plus-noise covariance matrix (INCM)

reconstruction have become popular. The authors of [18]

firstly employ Capon spatial power spectrum estimator inte-

grating over the regions separated from desired signal to

reconstruct INCM. The method in [19] modifies the lin-

ear integration area [18] into annulus uncertainty set to

reconstruct INCM, which has the obvious performance

improvement but with high computational complexity. Both

in [18], [19], the desired signal SV is obtained by solving

a quadratically constrained quadratic programming (QCQP)

problem. To reduce the computational complexity, a spa-

tial power spectrum sampling method is proposed in [20],

it requires large number of sensors to achieve the compara-

ble performance as [18]. In [22], INCM is reconstructed by

searching for the interference SVs lying in the intersection of

two subspaces, however one of subspaces is the reconstructed

INCM in [18]. Besides, it also need Eigen-decomposition

several times depending on the number of interference.

Nonetheless, all these methods ignore the influence of resid-

ual noise on covariance matrix reconstruction, which would

lead to reconstruction errors. The authors of [23] propose a

novel reconstruction method by estimating all interference

SVs and corresponding powers, whereas the estimated pow-

ers are based on the approximately orthogonality of different

SVs rather than strictly orthogonal. In addition, the sample

covariance matrix is used to compute the interference powers,

where the desired signal is existed in the sample covariance

matrix and it may cause estimation errors.

This paper focuses on improving the performance of adap-

tive beamformers when mismatch errors are existed. Differ-

ent from the previous INCM reconstruction methods. In this

paper, a novel RAB algorithm based on the residual noise

elimination and interference powers estimation is developed.

Analyzed from [18], [19], [22], the performance of INCM

reconstruction methods depend on the accuracy of covariance

matrix reconstruction. Compared with [18], the reconstruc-

tion method in [19] narrows the integral regions to reduce

the useless information. And in [22], the reconstructed INCM

is the linear combination of interference SVs and associated

powers, which contains the less redundant information. Thus,

we exploit a more effective way to improve the accuracy of

SV and covariance matrix to resist various mismatch errors.

The proposed algorithm demonstrates the existence of resid-

ual noise and analyze its numerical changes to calculate the

actual noise power, and we can reduce reconstruction errors

of desired signal covariance matrix reconstruction by elim-

inating the residual noise. The prime eigenvector of recon-

structed desired signal covariance matrix containing the most

information is regarded as the desired signal SV. In order to

reduce the influence of desired signal on interference powers

estimation, we project the snapshots onto the complementary

subspace of desired signal. Then we derive the estimated

interference powers based on the theoretical formulation

of interference covariance matrix (ICM). Simulation results

show that the proposed algorithm has better performance in

terms of robustness and output signal-to-interference-plus-

noise ratio (SINR) in most cases of mismatches comparing

with other existing methods.

The main contributions of our work are summarized as

follows:
• A RAB algorithm based on residual noise elimina-

tion and interference powers estimation is developed.

We demonstrate the existence of residual noise and ana-

lyze its relationship to actual noise.

• The desired signal SV is estimated from the recon-

structed covariance matrix which doesn’t suffer from the

influence of residual noise.

• The estimated interference powers are derived depend-

ing on the theoretical ICM expression and we recon-

struct the ICM as theoretical formulation.

The rest of this paper is organized as follows. The signal

model and necessary background about adaptive beamform-

ing technology are introduced in section II. In section III,

the proposed RAB algorithm is described in detail and the

analysis of performance is performed. The simulation results

are provided in section IV. Finally, conclusions are drawn in

Section V.

II. PROBLEM BACKGROUND

Consider a uniform linear array (ULA) composed of M

omnidirectional sensors that receives L + 1 uncorrelated

narrowband signals from far-field sources. All signals are

uncorrelated with noise. The M × 1 complex array obser-

vation vector at time k is modeled as:
x(k) = xs(k) + xi(k) + xn(k) (1)

where xs(k) = s0(k)a0, xi(k) =
L
∑

l=1

sl(k)al and xn(k) stand

for the components of desired signal, interference and noise,

respectively. sl(k) and al , l = 0, 1, · · · ,L are the l-th signal

waveform and corresponding SV, respectively. xn(k) is the

additive Gaussian noise with zero mean and equal variance.

The SV of ULA has the following general form:

a(θ ) = [1, e−j2π
dsinθ

λ , · · · , e−j2π
(M−1)dsinθ

λ ]T (2)

where d is the distance between two adjacent sensors and

λ is the wavelength of sources and θ is the angle between
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the incident signal and the array normals. (·)T denotes the

transpose. Apparently, the Euclidean norm of steering vector

is
√
M :

‖a‖22 = M (3)

where ‖ · ‖2 denotes the ℓ2 norm. The output of beamformer

is written as:

y(k) = wHx(k) (4)

where w = [w1,w2, · · · ,wM ]T is the complex weight vector

of beamformer and (·)H denotes the Hermitian transpose. The

optimal weight vector w is solved by maximizing the output

SINR:

SINR = σ 2
s |wHa0|2
wHRi+nw

(5)

where σ 2
s = E{|s0(k)|2} denotes the power of desired signal

and E{·} stands for the expectation operator of stochastic

variables. Ri+n is the theoretical INCM expressed as:

Ri+n = E{(xi(k) + xn(k))(xi(k) + xn(k))
H }

=
L

∑

l=1

σ 2
l ala

H
l + E{xn(k)xHn (k)}

= Ri + σ 2
n I (6)

where σ 2
l , σ

2
n , Ri and I represent the l-th interference power,

noise power, theoretical ICM and identity matrix, respec-

tively. The maximization of the output SINR is formed as:

min
w

wHRi+nw subject to wHa0 = 1 (7)

The above optimization problem is known as minimum vari-

ance distortionless respond (MVDR) beamformer and the

optimal solution is:

wopt =
R−1
i+na0

aH0 R
−1
i+na0

(8)

It has been proved that replacingRi+n byR doesn’t change

the optimal output SINR [24], and then (8) changes to the

weight of Capon beamformer:

wCapon = R−1a0

aH0 R
−1a0

(9)

The output power of the Capon beamformer is obtained:

P = wH
CaponRwCapon = 1

aH0 R
−1a0

(10)

where R is the theoretical array covariance matrix expressed

as:

R = Rs + Ri+n

= σ 2
s a0a

H
0 +

L
∑

l=1

σ 2
l ala

H
l + σ 2

n I (11)

Capon spatial power spectrum [25] is employed as a power

estimator over all directions:

P(θ ) = 1

aH (θ )R−1a(θ )
(12)

where a(θ ) is the actual SV associated with a hypothetical

direction θ . However,R andRi+n are unavailable in practice,
and they are usually replaced by the sample covariancematrix

R̂ = 1
K

K
∑

k=1

x(k)xH (k) withK received snapshots. In addition,

the precise array structure is hard to obtain as well, so the

compromise is to replace a(θ) by the nominal SV ā(θ ) based

on the known array structure:

P̂(θ ) = 1

āH (θ )R̂−1ā(θ )
(13)

correspondingly, the optimal weight vector becomes to the

sample covariance inversion (SMI) beamformer:

wSMI = R̂−1ā0

āH0 R̂
−1ā0

(14)

III. PROPOSED METHOD

A. THE ANALYSIS OF RESIDUAL NOISE AND DESIRED

SIGNAL SV ESTIMATION

Most of the existing INCM reconstruction methods are based

on (12) integrating over the angular sectors. However, they all

ignore that the Capon spatial power spectrum estimator (12)

contains power of residual noise, where the residual noise

would lead to inaccurate reconstruction through integration.

Without loss of generality, assuming that R only contains

complex Gaussian white noise and one signal no matter

desired signal or interference, and then it can be expressed as

R = σ 2a(θi1)a
H (θi1) + σ 2

n I, where σ 2 denotes the power of

impinging signal and θi1 is the associated direction. Accord-

ingly, (12) changes to:

P(θ) = 1

aH (θ )

(

σ 2a(θi1)aH (θi1) + σ 2
n I

)−1

a(θ)

(15)

When θ = θi1, using the matrix inversion lemma [26],

the above equation is rewritten as:

P(θi1) = 1

aH (θi1)

(

σ 2a(θi1)aH (θi1) + σ 2
n I

)−1

a(θi1)

= σ 2
n

M
+ σ 2 (16)

The (16) implies that in the impinging direction, the power is

the sum of residual noise and signal, and the power of residual

noise has become 1/M of actual noise. We can also verify

the existence of residual noise from another aspect. If R is

only comprised of complex Gaussian white noise, it means

R = σ 2
n I. Correspondingly, (12) becomes to:

P(θ ) = 1

aH (θ )(σ 2
n I)

−1a(θ)
= σ 2

n

M
(17)
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(17) demonstrates the existence of residual noise, and the

residual noise is distributed in the whole space. So we can

infer that in the directions of incident signals, the power is the

sum of signal and residual noise, and in the directions away

from the regions of signals, only residual noise exists. Fig. 1

is drawn in the condition of d/λ = 1/2, and it shows the

magnitude of power in whole space according to (12), where

we set the power of one desired signal and two interference as

0 dBw respectively, and the noise variance is set as σ 2
n = 1.

It can be seen that in each peak, the magnitude of power

is 1.1 which is larger than its actual value and consistent

with (16), and in the regions away from impinging signals,

the magnitude of power is 0.1 rather than zero, which is

consistent with (17).

FIGURE 1. Power distribution of one 0 dBw desired signal from −5◦ and
two 0 dBw interference from −40◦ and 30◦ with M = 10.

Most INCM reconstruction methods employ the equa-

tion (13) as follow:

R̄p =
∫

2p

P̂(θ )ā(θ )āH (θ )dθ

=
∫

2p

1

āH (θ )R̂−1ā(θ )
ā(θ )āH (θ )dθ (18)

where 2p represents the specific angular sectors. While they

all ignore the residual noise components in P̂(θ), and this

would lead to inaccuracy reconstruction because of collect-

ing plenty of redundant components. Although the power

of residual noise σ 2
n /M may very small compared with the

impinging signals, the influence cannot be ignored after the

integration operation.

According to the above analysis, we firstly estimate the

residual noise power by average operation:

σ̄ 2
n = 1

T

T
∑

t=1

1

āH (θt )R̂−1ā(θt )
, θt ∈ 2n (19)

where2n is the angular regions separated from desired signal

and interference, and θt is the discrete sample point in 2n. T

is the number of sample points. We sum up the powers away

from the impinging signal angle regions and then average it,

and result is regarded as the residual noise power. Based on

this, the actual noise power and noise covariance matrix can

be calculated respectively:

σ̂ 2
n = M σ̄ 2

n (20)

R̂n = σ̂ 2
n I (21)

In order to obtain the estimated SV of desired signal,

we need to reconstruct the accurate desired signal covariance

matrix. Different from (18), we remove the residual compo-

nents from P̂(θ):

R̂s =
∫

2s

(P̂(θ ) − σ̄ 2
n )ā(θ )ā

H (θ )dθ

=
∫

2s

(
1

āH (θ )R̂−1ā(θ )
− σ̄ 2

n )ā(θ )ā
H (θ )dθ

=
∫

2s

ā(θ)āH (θ )

āH (θ )R̂−1ā(θ )
dθ −

∫

2s

σ̄ 2
n ā(θ )ā

H (θ )dθ (22)

where 2s denotes angular sector of desired signal and 2̄s is

the complement angular sector of 2s. We should note that

the above equation is quite different from diagonal loading

method, because the term of

∫

2s

σ̄ 2
n ā(θ)ā

H (θ )dθ stands for

the redundant components in 2s and is not a diagonal matrix

entirely.

The term P̂(θ ) − σ̄ 2
n stands for the accuracy power distri-

bution of signals, and it should be the positive. So we only

choose the positives value of P̂(θ ) − σ̄ 2
n in 2s and ignore

the negative values. Moreover, σ̄ 2
n also can be regarded as

the threshold to determine the effective regions of integration,

and if σ̄ 2
n is set larger, the range of 2s would be smaller. The

prime eigenvector of R̂s in (22) contains the most information

of desired signal which can be regarded as the estimated SV:

R̂s =
M

∑

m=1

αmcmc
H
m (23)

where αm, m = 1, 2, · · · ,M are the eigenvalues of R̂s

arranged in descending order (i.e. α1 ≥ α2 ≥ · · · ≥ αM ),

cm is the eigenvector corresponding to αm. The principal

eigenvector of R̂s covers the most information of desired

signal and the rest are residual components. Consequently,

the desired signal SV is supposed as follow:

âs =
√
Mc1 (24)

where C = [c1, c2, · · · , cM ] = [C1,C2]. C1 contains N

eigenvectors corresponding to N largest eigenvalues. Obvi-

ously, âs belongs to the subspace C1C
H
1 , and is orthogonal to

the complementary subspace of C1C
H
1 : ‖(I − C1C

H
1 )âs‖2 =

0. This equation can be verified by plotting the value of the

term of ‖(I − C1C
H
1 )ā(θ)‖22. Consider a ULA with M = 10

sensors spaced half a wavelength apart, 2s = [−9◦, −1◦],
snapshot K = 30, and one 10 dB desired signal from −5◦

and two 10 dB interference from−40◦ and 30◦. Fig. 2 depicts
the value of ‖(I − C1C

H
1 )ā(θ)‖22 versus the angle. It can
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been seen that when N = 3, the term ‖(I − C1C
H
1 )ā(θ)‖2

is almost zero for ∀θ ∈ 2s, and in the complement sector

of 2s, the (I − C1C
H
1 ) hardly changes the norm of SV.

So ‖(I − C1C
H
1 )ā(θ )‖ can be considered as the projection

matrix to eliminate desired signal and preserve the interfer-

ence components.

B. ICM RECONSTRUCTION

For each received snapshot x(k), the desired signal compo-

nents is eliminated through projection:

x̃(k) = PHx(k)

∼= PHxi(k) + PHxn(k) (25)

where P = PH = I − C1C
H
1 . Then covariance matrix is

expressed as:

R̃ = 1

K

K
∑

k=1

x̃(k)x̃H (k)

= 1

K

K
∑

k=1

PHx(k)xH (k)P

= PH R̂P (26)

The above equation means that the matrix R̃ is derived from

sample covariance matrix R̂ through projection and is absent

of desired signal components. We can prove it as follow:

R̃ = 1

K

K
∑

k=1

x̃(k)x̃H (k)

= 1

K

K
∑

k=1

PH (xi(k) + xn(k))(xi(k) + xn(k))
HP

∼= PH R̂iP + σ̂ 2
nP

HP (27)

The above equation means the matrix R̃ can be approximated

to contain only interference and noise. From Fig. 2, we can

see that the projectionmatrixP doesn’t affect the norm of ā(θ )

FIGURE 2. Values of ‖(I − C1CH

1
)ā(θ)‖2

2
versus θ .

for ∀θ ∈ 2̄s, which signifies PHRiP ∼= Ri. So we have the

approximate equation PH R̂iP ∼= R̂i. Combine (26) and (27),

we have:

PH R̂P − σ̂ 2
nP

HP ∼= R̂i (28)

The terms of PH R̂P − σ̂ 2
nP

HP preserves the interference

components. However, the projection operation may cause

lots of errors. Thus we aim to estimate the powers of each

interference from PH R̂P − σ 2
nP

HP instead of regarding it as

ICM. The theoretical Ri is expressed in (6):

Ri =
L

∑

l=1

σ 2
l ala

H
l = Ai3iA

H
i (29)

where Ai = [a1, a2, · · · , aL] ∈ C
M×L represents the SVs of

interference. 3i = diag{σ 2
1 , σ 2

2 , · · · , σ 2
L } is diagonal matrix

and each elements stands for the powers of corresponding

interference. In order to obtain the 3i, we pre-multiply the

above equation by (AH
i Ai)

−1AH
i and post-multiply the above

equation by Ai(A
H
i Ai)

−1, then we have:

3i = (AH
i Ai)

−1AH
i RiAi(A

H
i Ai)

−1 (30)

The above equation is explained as: if we have the SVs

of interference and the ICM, we can express the powers

of interference as a diagonal matrix. We can replace Ri

by R̂i in (26). For Ai, there are multiply spectrum peaks

by performing searching in the space through (13) in [23].

From the locations of peaks, we get the direction estimators

{θ̄1, θ̄2 · · · , θ̄
L̂
}, and combine the known array geometry,

we obtain the corresponding SVs {ā(θ̄1), ā(θ̄2), · · · , ā(θ̄
L̂
)} =

{ā1, ā2, · · · , ā
L̂
} = Ãi. So the estimated powers of interfer-

ence is expressed as:

3̃i = (ÃH
i Ãi)

−1ÃH
i (P

H R̂P − σ̂ 2
nP

HP)Ãi(Ã
H
i Ãi)

−1 (31)

where 3̃i ∈ C
L̂×L̂ is not diagonal matrix which is different

from 3, while the diagonal elements of 3̃i represent the

corresponding powers of interference. The term of PH R̂P −
σ̂ 2
nP

HP is absent of desired signal components, which can

reduce the estimation errors and is quite different from

previous interference powers estimation methods like [23].

Although PH R̂P− σ̂ 2
nP

HP contains some error components,

it doesn’t affect the interference powers estimation seriously.

Then we reconstruct the INCM based on the powers of inter-

ference and corresponding SVs:

R̃i+n = Ãidiag(3̃i)Ã
H
i + σ̂ 2

n I (32)

where diag(3̃i) means that get the diagonal elements of 3̃i

and turn it into a new diagonal matrix. Substituting âs and

R̃i+n into (8), the proposed beamformer is designed as:

wpro =
R̃−1
i+nâs

âHs R̃
−1
i+nâs

(33)

In proposed method, the computational complexity of

desired signal SV estimation is O(M2S + M3) including

integration operation and Eigen decomposition, where S is
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the number of sampling points in 2s. In ICM reconstruction

part, the spectrum searching and matrix inverse operation are

O(M2Q + M3), where Q denotes the number of searching

points. Compared with [18], [19], [22], the proposed method

is more efficient.

Based on the above description, the proposed algorithm is

summarized as follows:

Algorithm 1 Proposed RAB Algorithm

1: Calculated the sample covariancematrix R̂ and obtain the

Capon power spectrum (13).

2: Estimate the residual noise power σ̄ 2 using (19) and

calculate the actual noise power σ̂ 2 via (20).

3: Reconstruct R̂s using (22) and eigen-decompose R̂s to

obtain the âs and C1.

4: Compute the covariance matrix R̃ via (27) and R̂i

via (28).

5: Obtain the interference SVs Ãi via (13) and calculate the

interference powers based on (31).Then reconstruct R̃i+n
via (32).

6: Obtain the weight vector of proposed algorithm wpro

(33).

IV. SIMULATION RESULTS

In our simulations, a uniform linear array with M = 10

omnidirectional sensors spaced half a wavelength is consid-

ered. There are three signals impinging from the directions

θ0 = −5◦, θ1 = −40◦ and θ2 = 30◦, and the estimated

directions are θ̄0 = −8◦, θ̄1 = −43◦, θ̄2 = 27◦. The
first signal is assumed to be the desired signal and the other

two signals are interference with 20 dB interference-to-noise-

ratios (INR). The additive noise is modeled as a Gaussian

zero-mean spatial and temporal white process. The angular

region of one desired signal and two interference are set to

be 20 = [θ̄0 − 8◦, θ̄0 + 8◦], 21 = [θ̄1 − 8◦, θ̄1 + 8◦] and
22 = [θ̄2 − 8◦, θ̄2 + 8◦] respectively, while the complement

angular sectors of20 is 2̄0 = [−90◦, θ̄0−8◦)
⋃

(θ̄0+8◦, 90◦]
and the interference angular sector is 2i = 21

⋃

22. All

integral operations in this paper are replaced by discrete sums

and all angular sectors are uniformly sampled to be discrete

sectors with the same angular interval 1θ = 0.1◦. For each
scenario, 200 Monte-Carlo runs are performed.

The proposed method is compared to the eigen-based

(EIG) beamformer [12], the worst-case-based beamformer

(WCP) [13], the linear reconstruction-based beamformer

(INCM-linear) [18], the volume reconstruction-based beam-

former (INCM-volume) [19], the spatial power spectrum

sampling beamformer (INCM-SPSS) [20] and the subspace

reconstruction-based beamformer (INCM-subspace) [22].

We assume that the parameter ρ = 0.9 for both [12] and [22],

the uncertainty set parameter ε = 0.3M for [13] and the

parameter ε =
√
0.1 for [19]. The α0 = 0◦ is used and

δ = sin−1(M/2) in [20]. The parameter N = 3 is set in

proposed method to determine the dominant eigenvectors

of C1. Convex optimization toolbox CVX [27] is used to

solve optimization problems.

Example 1 (Mismatch Due to Look Direction Error):

In the first example, assume that the random direc-

tion errors of desired signal and interference are uni-

formly distributed in [−4◦, 4◦] for each simulation. Fig. 3

demonstrates the output SINR curves of tested methods

versus the input SNR for the fixed snapshot K = 30.

It shows that the proposed method and INCM-reconstruction

beamformers [18]–[20], [22] achieve better performance

than EIG [12] and WCP beamformers [13]. Fig. 4 denotes

the deviation from optimal output SINR curves of proposed

method and INCM-reconstruction methods [18]–[20], [22],

and we can see that the proposed method acquires the

least deviation. Although the curves of INCM-subspace

beamformer is close to the proposed method, the proposed

method has the lower computational complexity. The pro-

posed method strongly benefits the high accurate estima-

tions of both the desired signal SV and ICM. It’s well

FIGURE 3. Output SINR versus the input SNR in case of look direction
error.

FIGURE 4. Deviation from optimal SINR versus input SNR in case of look
direction error.
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FIGURE 5. Output SINR versus the number of snapshots in case of look
direction error.

known that the theoretical ICM is a linear combination

of the SVs and powers of interferences, and the recon-

structed ICM in proposed method is the linear combination

of estimated powers 3̃i and corresponding SVs Ãi. Com-

pared with INCM-reconstruction methods [18], [19], INCM-

volume [19] beamformer achieves the better performance.

That is because the INCM-volume uses an annulus uncer-

tainty set to constrain the SVs of interference and integrates

the Capon spectrum over the surface of annulus. Fig. 5

shows the curves of output SINR versus the number of

snapshots at SNR = 20 dB. Clearly, the proposed method

and INCM-subspace beamformer [22] almost get the optimal

performance. Due to the proposed method is based on the

interference powers estimation and doesn’t suffer from the

influence of desired signal, it has the best performance of

tested beamformers.

Example 2 (Mismatch Due to Amplitude and Phase Pertur-

bations Error): In the second example, the influence of ampli-

tude and phase perturbations on output SINR is taken into

consideration. Assuming that the amplitude and phase errors

of each sensor are Gaussian distributions N (1, 0.12) and

N (1, (0.25π)2), respectively. Fig. 6 corresponds to the output

SINR curves versus the input SNR at the condition K = 30.

The proposed method almost attains the best performance no

matter in low or high input SINR, and when the input SNR

is lower than 0dB, the EIG [12] and WCP [13] beamform-

ers perform better than INCM beamformers [18]–[20], [22].

Fig. 7 draws the curves of deviation from optimal out-

put SINR of proposed method and INCM-reconstruction

methods [18]–[20], [22]. The proposed method has the

higher output SINR than INCM-subspace [22] because there

is a obvious gap between them, besides, the proposed method

doesn’t need eigen-decomposition for each SV of interfer-

ence like [22]. The true SV of desired signal must belong

to the signal subspace. In proposed method, we reconstruct

the desired signal covariance matrix based on the accurate

power spectrum which doesn’t contain the residual noise,

FIGURE 6. Output SINR versus the input SNR in case of Amplitude and
Phase Perturbations.

FIGURE 7. Deviation from optimal SINR versus the input SNR in case of
Amplitude and Phase Perturbations.

and the corresponding eigenvectors span the signal subspace.

Thus, we choose the eigenvector corresponding the largest

eigenvalue as the estimated desired signal SV. Fig. 8 depicts

the output SINR curves versus the number of snapshots in the

condition of SNR = 20 dB. Although the curves of all tested

beamformers have deviations from optimal output SINR,

the proposed method outperform the other beamformers and

reaches the highest output SINR. The results strongly demon-

strate that the proposed method has the better estimation of

the desired signal SV and ICM because the estimated desired

signal doesn’t suffer from the influence of residual noise and

the reconstructed ICM doesn’t suffer from the influence of

desired signal. From Fig. 8, we can also conduct that the

number of snapshots doesn’t influence the performance of

proposed method.

Example 3 (Mismatch Due to SV Random Error): In this

example, the SVs of desired signal and interference are

assumed to be randomly distributed in an uncertainty set that
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FIGURE 8. Output SINR versus the number of snapshots in case of
Amplitude and Phase Perturbations.

FIGURE 9. Output SINR versus the input SNR in case of SV random error.

can be modeled as:

al = āl + el, l = 0, 1, · · · ,L (34)

where āl stands for the nominal SV corresponding to the

direction θ̄l , and el represents the random error vector. The

random error vector can be written as follow:

el = εl√
M

[ejφ
l
0 , ejφ

l
1 , · · · , ejφ

l
M−1]T (35)

where εl denotes the norm of el and it’s uniformly dis-

tributed in the interval [0,
√
0.3] in each simulation run.

φlm,m = 0, 1, · · · ,M − 1 represents the phases of ran-

dom error vector el , which is independently and uniformly

distributed in [0, 2π ). The mismatch in (34) is compre-

hensive which is considered to contain direction errors,

calibration errors and so on. Fig. 9 illustrates the out-

put SINR curves versus the input SNR for the number of

snapshots K = 30, and the proposed method and INCM

beamformers [18], [19], [22] almost have the same output

SINR. From Fig. 10 which displays the curves of devi-

ation from optimal output SINR, it’s clear seen that the

FIGURE 10. Deviation from optimal SINR in case of SV random error.

proposed method obtains the highest output SINR as INCM-

subspace [22] of all tested beamformers. Compared with pro-

posed method and INCM-subspace [22], the differences are

the INCM-subspace [22] method searches for the SV lying

in insertion of two subspace, while the proposed method

searches for the SV based on the peaks of power spectrum dis-

tribution and the known array geometry, and the interference

powers estimation of proposed method doesn’t suffer from

the influence of desired signal. Besides, the reconstructed

ICM in proposedmethod has the same formulation as theoret-

ical definition. Based on the similar performance of proposed

method and [22], the proposed method is more efficient than

INCM-subapce [22] beamformer. Compared with INCM-

volume [19], INCM-linear [18] and INCM-SPSS [20] beam-

formers, the reconstructed INCM in [18], [19] collects lots of

residual noise components, and in INCM-SPSS [20] beam-

former, the reconstructed INCM still includes the desired

signal components. Fig. 11 draws the output SINR versus

the number of snapshots at SNR = 20 dB. The results

demonstrate that the number of snapshots doesn’t affect the

output SINR seriously and the proposed method get the best

performance of all tested beamformers.

Example 4 (Mismatch Due to Incoherent Local Scattering

Error): In the fourth example, we analyze the influence of

incoherent local scattering on output SINR. Assuming that

the desired signal has a time-varying spatial signature that is

different for each data snapshot, which is modeled as:

x(k) = s0(k)a0 +
4

∑

p=1

sp(k)ā(θ
′
p) (36)

where a0 represents the SV of desired signal impinging from

the direction θ0 = 0◦, ā(θ ′
p), p = 1, 2, 3, 4 denotes the SV

of the incoherent scattering signals. The directions θ ′
p, p =

1, 2, 3, 4 are independently and randomly drawn from the

Gaussian generator N (θ0, 4
◦). s0(k) and sp(k), p = 1, 2, 3, 4

are independently and identically distributed complex Gaus-

sian random variables drawn from the random generator
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FIGURE 11. Output SINR versus the number of snapshots in case of SV
random error.

FIGURE 12. Output SINR versus the input SNR in case of incoherent local
scattering error.

N (0, 1). Different from previous examples, the desired signal

covariance matrix is no longer a rank-one matrix and the

output SINR should be expressed as [7]:

SINRopt = wHRsw

wHRi+nw
(37)

then the optimal weight vector can be obtained by maximiz-

ing the SINR:

wopt = P{R−1
i+nRs} (38)

where P denotes the principal eigenvector corresponding to

the largest eigenvalue of the matrix. Fig. 12 displays the out-

put SINR curves versus the input SNR for the fixed number

of snapshots K = 30, and no matter in low or high input

SINR, the performance of proposed method is better than all

tested beamformers. Fig. 13 demonstrates the deviation from

optimal output SINR of tested beamformers. When the input

SNR is large than 25 dB, the deviation between proposed

method and INCM-subspace [22] is more than 0.5 dB. The

FIGURE 13. Deviation from optimal SINR in case of incoherent local
scattering error.

FIGURE 14. Output SINR versus the number of snapshots in case of
incoherent local scattering error.

superior performance of performance due to the accurate esti-

mation of desired signal SV and ICM.We remove the residual

noise components from Capon power spectrum to reconstruct

the desired signal covariance matrix, and the eigenvector

corresponding to largest eigenvector contains the most infor-

mation which is regarded as the SV. For interference powers

estimation, we project the snapshot onto the complementary

subspace of desired signal to reduce the estimation errors.

Fig. 14 depicts the output SINR curves versus the number

of snapshots on the condition of SNR = 20 dB. When the

snapshots are less than 30, there is the significant deviation

between proposed method and INCM-subspace [22] beam-

former, and the proposed method almost achieves the optimal

performance no matter in large or small number of snapshots.

The above four simulation examples have proved that the

proposed method is robust to achieve satisfactory perfor-

mance against various mismatch errors. In the cases of direc-

tion error and incoherent local scattering error, the proposed

method almost get the optimal output SINR, and in the cases
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of amplitude and phase perturbations error and SV random

error, although there is a gap between the curves of optimal

output SINR and proposed method, the proposed method still

outperforms the existing beamformers.

V. CONCLUSION

In this paper, we develop the RAB approach based on the

residual noise elimination and interference power estimation

for covariance matrix reconstruction. The proposed method

first analyzes the existence of residual noise and its relation-

ship to actual noise. Based on this, we obtain the accuracy

power spectrum distribution to reconstruct the desired signal

covariance matrix, and the principle eigenvector is employed

as desired signal SV. For ICM reconstruction, we project the

snapshots onto complementary subspace of desired signal to

reduce the influence of desired signal on interference powers

estimation, and the estimated interference powers are derived

from the theoretical formulation of ICM. Then we recon-

struct the ICM like theoretical definition. Simulation results

demonstrate that the proposed method is robust against many

types of mismatch errors and attains excellent performance

of tested beamformers.
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