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Abstract

Growth mixture models (GMMs) are prevalent for modeling unknown population heterogeneity via distinct latent classes.

However, GMMs are riddled with convergence issues, often requiring researchers to atheoretically alter the model with cross-

class constraints simply to obtain convergence. We discuss how within-class random effects in GMMs exacerbate convergence

issues, even though these random effects rarely help answer typical research questions. That is, latent classes provide a

discretization of continuous random effects, so including additional random effects within latent classes can unnecessarily

complicate the model. These random effects are commonly included in order to properly specify the marginal covariance;

however, random effects are inefficient for patterning a covariance matrix, resulting in estimation issues. Such a goal can be

achieved more simply through covariance pattern models, which we extend to the mixture model context in this article (covari-

ance pattern mixture models, or CPMMs). We provide evidence from theory, simulation, and an empirical example showing that

employing CPMMs (even if they are misspecified) instead of GMMs can circumvent the computational difficulties that can

plague GMMs, without sacrificing the ability to answer the types of questions commonly asked in empirical studies. Our results

show the advantages of CPMMs with respect to improved class enumeration and less biased class-specific growth trajectories, in

addition to their vastly improved convergence rates. The results also show that constraining the covariance parameters across

classes in order to bypass convergence issues with GMMs leads to poor results. An extensive software appendix is included to

assist researchers in running CPMMs in Mplus.
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In longitudinal data analysis, mixture models are common-

place in the empirical literature in which the primary goal

is to identify unobserved, latent classes of growth trajec-

tories (Jung and Wickrama, 2007). As a hypothetical ex-

ample, researchers may follow students’ test scores over

time and wish to identify which students in the sample are

“on-pace” learners, “accelerated” learners or “slow”

learners (e.g., Musu-Gillette, Wigfield, Harring, &

Eccles, 2015). These subgroups are latent and are not iden-

tified a priori as observed variables like other independent

variables that may be of interest (e.g., gender, socioeco-

nomic status [SES], treatment condition). Instead, their

existence must be inferred from characteristics of the

growth patterns themselves.

Common goals of a mixture analysis in this longitudi-

nal context are to identify how many classes exist, to

which of these latent classes an individual belongs, and

to estimate the growth trajectory of each of the latent

classes. These interests parallel how a researcher may

want to estimate different growth trajectories for different

levels of an observed variable. For instance, a researcher

may wish to separately model growth trajectories for stu-

dents identified as coming from households with high and

low SES (i.e., whether SES moderates growth curves).

The major difference in the mixture model context is that

the classification variable of interest happens to be latent.

When adding latent classes to growth models, two

methods are common: latent class growth models and

growth mixture models.

Latent class growth models (LCGMs; Nagin, 1999, 2005;

Nagin & Tremblay, 2001) use trajectory groups to approxi-

mate a complex, non-normal underlying distribution (Nagin,

2005). To explain, a typical growth model incorporates con-

tinuous random effects for each individual, which are typically

assumed to be normally distributed in order to create a unique
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subject-specific growth curve for each individual in the data.

For continuous outcomes, LCGMs discretize this continuous

distribution by estimating a handful of classes, each with a

unique mean trajectory. Individuals are assigned to the class

trajectory that most closely represents what their subject-

specific growth curve would have been in a standard growth

model with continuous random effects. This discretization of

the random effects facilitates interpretation because the di-

mensionality is reduced from the number of individuals

(where each individual has a unique growth curve) to a small

number of easily interpretable representative trajectories.

LCGMs do not allow for subject-specific growth trajectories

within classes, meaning that any deviation from the class tra-

jectory is assigned to an error term that is assumed to be

independently and identically distributed across time with

common variance. Though conceptually appealing, a noted

downside of LCGMs is that the number of classes tends to

be overextracted, especially at larger sample sizes (i.e., ex-

tracted classes are not necessarily substantively different from

one another). The specification of the model is not always

flexible enough to properly model the marginal covariances

among the repeated measures, so covariance misspecification

manifests as additional latent classes (e.g., Kreuter &Muthén,

2008).

Growth mixture models (GMMs) represent another meth-

od by which to model latent classes with longitudinal data

(Muthén, 2001; Muthén & Shedden, 1999). Similar to

LCGMs, GMMs estimate latent classes, each with a unique

mean growth trajectory. Unlike LCGMs, GMMs also specify

random effects of the growth factorswithin each class to allow

between-individual and within-individual variability within

classes. The benefit of such an approach is that the model

more easily accommodates proper specification of the covari-

ance of the repeated measures. As a result, the model is less

likely to extract the spurious classes as a consequence of a

misspecified covariance structure.

Though effective for accurately capturing the marginal co-

variance of the repeated measures, GMMs’ reliance on con-

tinuous within-class random effects can be inefficient. As we

discuss in more detail in subsequent sections, GMMs are com-

putationally demanding and as a result, routinely encounter

estimation issues. In psychology-adjacent fields that are inter-

ested in modeling change over time, such as epidemiology

and public health, population-averaged models (i.e. marginal

models; Liang & Zeger, 1986) are popular alternatives to

random-effect models for longitudinal data, because they

can appropriately model the marginal covariance while requir-

ing fewer assumptions and are much less demanding to esti-

mate (Burton, Gurrin, & Sly, 1998; Harring & Blozis, 2016).

To date, there has been no coverage in the literature extolling

the advantages of and applying population-average models

within a mixture model framework. This is precisely the goal

of this article.

Specifically, we will use the existing literature, statistical

theory, Monte Carlo simulation, and an empirical example to

argue that most research questions being addressed with

GMMs do not require the within-class random effects. That

is, researchers are primarily interested in the discretization of

individual growth-curves provided by the latent classes—

individual deviation within each latent class is rarely a re-

search focus and the use of random effects primarily serves

the secondary function of properly specifying the marginal

covariance between repeated measures. A primary aim of this

article is to show that this objective can be satisfied in a less

computationally demanding fashion with population-

averaged models, which ultimately yields better convergence

rates, reduced need for atheoretical model constraints, and

better statistical properties of model estimates.

To outline the structure of this manuscript, we first over-

view the generic latent-growth model and demonstrate how it

naturally extends to GMMs. We discuss how the random-

effect approach makes estimation more demanding, which

can augment computational difficulties. We then provide evi-

dence from the post-traumatic stress literature—in which mix-

ture models frequently appear—to demonstrate that research

questions rarely make use of the information provided by

within-class random effects featured in GMMs. Population-

averaged models are then overviewed with specific focus on

covariance pattern models and the advantages they provide in

the context of mixture models for longitudinal data. We pro-

vide a Monte Carlo simulation study to highlight how covari-

ance pattern mixture models can address issues that tend to

plague applications of GMMs. Specifically, we explore con-

vergence rate, class trajectory bias, classification accuracy,

and class enumeration. We then provide an empirical example

to compare and contrast the traditional GMM with our pro-

posed population-averaged approach. A detailed appendix of

annotated Mplus code is also provided to facilitate the use of

these models by empirical researchers.

Overview of latent-growth models
and growth mixture models

The latent-growth model

First, consider a traditional latent-growth model, which can be

thought of as a special case of a GMM with only one class.

The general linear latent-growth model with q time-invariant

covariates can be written as a restricted confirmatory factor

analysis model with a structured mean vector of the observed

variables such that

yi ¼ Λiηi þ εi ð1Þ

and
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ηi ¼ α þ Γxi þ ζi: ð2Þ

In Eq. 1, yi is an ni × 1 vector of responses, where ni is the

number of observations for individual i;Λi is an ni × q matrix

of loadings for q the number of growth factors where the

loadings are commonly, but not always, prespecified to fit a

specific type of growth trajectory;1ηi is a q × 1 vector of

individual-specific growth factor scores for individual i, and

εi is an ni × 1 vector of time-specific residuals where

εi~MVN(0,Θi) and Θi depends on i only through its dimen-

sion, although this assumption can be relaxed (Davidian &

Giltinan, 1995). In Eq. 2, the individual-specific growth factor

scores are equal to a q × 1 vector of factor means α, a q × p

matrix of time-invariant coefficients in Γ for p the number of

time-invariant covariates, a p × 1 vector of time-invariant co-

variate values xi, and a q × 1 vector of random effects,

ζi~MVN(0,Ψ).

The model-implied mean and covariance structures of the

repeated measures are thus,

E yi½ � ¼ μi ¼ Λi α þ Γκð Þ ð3Þ

and

var yið Þ ¼ Σi ¼ Λi ΓΦΓT þ Ψ
� �

ΛT
i þΘi ð4Þ

where κ is the vector of covariate means and Φ is the covari-

ance matrix of the time-invariant covariates.

Multiple group growth models Populations are often hetero-

geneous and different segments of the population may follow

different growth trajectories. If the heterogeneity is the result

of known group membership, parameters can be estimated

separately for each group with what is referred to as a multi-

ple-group model (e.g., Muthén & Curran, 1997). Notationally,

the vectors and matrices of Eqs. 1–4 would take a g subscript

(where g = 1, . . . , G) to denote to which observed group the

parameters belong.

Although the conceptual idea is alluring, multiple group

models require that the grouping variable be an observed var-

iable in the data, which is not frequently the case with hetero-

geneous populations (e.g., it is hard to objectively assign

“fast” learner or “slow” learner labels to individuals). Group

membership is more often latent and not known a priori

(Nylund-Gibson, Grimm, Quirk, & Furlong, 2014), leading

to the use of mixture models to sort individuals via latent

classes.

Growth mixture model

GMMs are a generalization of the multiple group framework

in which group membership is unobserved (Muthén, 2001;

Muthén & Shedden, 1999; Nagin, 1999; Verbeke &

Lesaffre, 1996). Instead of a known value for group member-

ship, each observation receives a probability of membership in

each of the estimated latent classes. Assuming multivariate

normality, the composite density of a vector of continuous

outcome variables for the ith individual, yi, can be written as

f yijφ;μi;Σið Þ ¼ ∑
K

k¼1

φk f k yijμik ;Σikð Þ; ð5Þ

where K is the number of latent classes that the researcher

specifies, fk is the component density for the kth class, μik is

the model-implied mean vector for the kth class, Σik is the

model-implied covariance matrix for the kth class, and φk is

the mixing proportion for the kth class where 0 ≤φk ≤ 1 and

φK ¼ 1− ∑
K−1

k¼1

φk . Given class k, Eqs. 1 and 2 can be extended

to accommodate the inclusion of latent classes as

yi ¼ Λiηi þ εi ð6Þ

ηi ¼ αk þ Γkxi þ ζi ð7Þ

with the assumption that the residuals and random effects for

the ith individual follow separate multivariate distributions,

εi ∣ k~MVN(0,Θik), and ζi ∣ k~MVN(0,Ψk). Following the

notation from Eqs. 3 and 4, the model-implied mean vector

and model-implied covariance matrix from Eqs. 6 and 7 can

be written as

μijk ¼ Λi αk þ Γkκð Þ ð8Þ

Σijk ¼ Λi Γk ΦΓT
k þ Ψk

� �

ΛT
i þΘik : ð9Þ

More conceptually, GMMs add a discrete latent variable

with a specific number of categories to a traditional latent-

growth model. This discrete latent variable then serves as a

moderator for the whole model, allowing parameter estimates

to differ for the different categories of the discrete latent

variable.

Within-class variation

Though GMMs have the advantage that they summarize the

covariances among the repeated measures in a more realistic

manner (based on Eq. 9) than LCGMs do, this richer model

1
Note that the Λ matrix has an i subscript and by implication would assume

that the loading matrix can be person-specific. This is contrary to the typical

specification when modeling growth as a multivariate system in the structural

equation modeling framework, which is less adept at handling time-

unstructured data (McNeish & Matta, 2018). However, including the i sub-

script is the most general form of the model, because there are methods to

handle time-unstructured data, and the dimension ofΛ can be person-specific

even with time-structured data in the common context of missing data (Codd

& Cudeck, 2014). Methods have been developed to handle time-unstructured

data in the latent-growth model framework (e.g., Mehta &West, 2000), but, to

our knowledge, this issue has not been widely investigated in the context of

mixture modeling.
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specification containing (latent) within-class random effects

can be difficult to estimate on top of the latent classes. That

is, variances of growth factor random effects are difficult to

estimate in any growth model, so a model that requires unique

growth factor variances and time-specific residual variances

within each class quickly becomes challenging. Indeed, the

frequency of inadmissible or non-converging solutions is no-

table when the variance parameters are uniquely estimated for

each class and the frequency rapidly increases as the complex-

ity of the model increases (Diallo et al., 2016; M. Liu &

Hancock, 2014).

A common method by which to work around estimation

issues encountered with estimating unique covariance param-

eters in each class is to constrain covariance parameters to be

equal across classes (i.e., Θik =Θi; and Ψk =Ψ for all k in

Eq. 9; see, e.g., Petras & Masyn, 2010). In fact, this constraint

is applied by default inMplus and must be actively overridden

(Diallo, Morin, & Lu, 2016). This simplifies Eq. 9 by remov-

ing the k subscript on Σ, Ψ, and/or Θ.

More conceptually, if the growth factor variances and co-

variances are difficult to estimate, applying constraints so that

the model features fewer of these parameters will simplify the

estimation. The rationale for this decision is often rooted in a

desire to reduce the complexity of the estimation rather than

for substantive reasons (Bauer & Curran, 2003; Enders &

Tofighi, 2008; Gilthorope, Dahly, Tu, Kubzansky, &

Goodman, 2014; Harring & Hodis, 2016, Infurna & Grimm,

2017; Infurna & Luthar, 2016; van de Schoot et al., 2017).

Though commonly implemented in empirical settings

(Infurna & Grimm, 2017), the approach of constraining vari-

ance terms across classes has been widely criticized in the

methodological literature. The main reason being that the ra-

tionale behind this modeling decision is to aid estimation rath-

er than because theory posits that each latent class actually has

equal variance(s). Bauer and Curran (2003) explicitly

questioned the choice to apply constraints across classes by

stating,

Although [covariance equality constraints] are statisti-

cally expedient, we do not regard these equality con-

straints as optimal from a theoretical standpoint, and in

our experience, they are rarely found to be tenable in

practice. Indeed, implementing these constraints is in

some ways inconsistent with the spirit of the analysis,

because one is forcing the majority of the parameter

estimates to be the same over classes (permitting only

mean differences in the within-class trajectories). (p.

346)

Furthermore, recent methodological studies by Diallo et al.

(2016) and Morin et al. (2011) have demonstrated that

implementing covariance equality constraints directly impacts

class enumeration because the estimation attempts to classify

individuals who best mirror the within-class growth character-

istics defined by the model. Thus, individuals must necessar-

ily vary around the within-class mean trajectories in equal

amounts while holding the amount of variability within indi-

viduals across time to be equal as well. This has the effect of

adding an additional homogeneity of variance assumption into

the model that is questionably tenable and likely false in many

applications.

The critical take-home message is that the individuals

assigned to each latent class, the number of enumerated clas-

ses, and the trajectories of the classes are all impacted by

constraining covariance parameters across classes. However,

this choice is frequently based on whether the model con-

verges rather than on criteria related to the theory being tested.

With such rampant frequency of convergence issues and the

current solution of cross-class constraints being known to

cause so many issues, a natural question that emerges is

whether the complexity of GMMs is necessary in order to

answer the questions being asked by researchers or whether

a simpler model may suffice. The next section reviews a seg-

ment of the psychological literature that frequently uses

GMMs to explore whether researchers’ questions necessitate

a model as complex as GMMs.

Do mixture model research questions require
random effects?

Despite GMMs often being described as a person-oriented or

person-centered modeling approach (Bergman &Magnusson,

1997; Laursen & Hoff, 2006; Muthén & Muthén, 2000), the

most common interest in empirical studies applying GMMs

pertains to classes, not individuals (Cole & Bauer, 2016;

Sterba & Bauer, 2010, 2014). To provide evidence that re-

searchers are employing GMMs with random effects when

the research questions of interest do not require them, we

reviewed research questions, modeling practices, and

reporting practices in empirical articles using mixture models

in post-traumatic stress disorder (PTSD) research. We use the

literature review of van de Schoot et al. (2018), the results of

which are available on the original author’s Open Science

Framework page. Van de Schoot et al. conducted a thorough

review of all studies employing any type of mixture model

within the field of PTSD research up to October 2016; ulti-

mately locating 34 articles from 11,395 initially identified

articles that satisfied keywords (full details are available in

Appendix A of van de Schoot et al., 2018).

Our interest in these articles deviated from the original

authors’ interests, so we reviewed each of these 34 studies to

identify (a) which type of mixture model was used in the

study, (b) whether the model constrained covariance parame-

ters across classes, (c) whether the growth factor covariance

estimates were reported, and (d) whether any subject-specific
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information was reported or required to answer the research

questions.

The results of our review showed that 18 studies (53%)

used GMMs (the other 47% used LCGMs). A surprising mi-

nority of these GMM studies reported any information related

to the within-class random effects: 83% did not report any

covariance parameter estimates. Furthermore, 39% reported

applying cross-class covariance constraints to aid conver-

gence, and another 44% did not provide enough information

to determine if covariance constraints were present or not (i.e.,

only 17% definitively did not constrain covariance estimates

across classes). None of the studies that applied cross-class

constraints reported doing so for a theoretical reason (i.e., it

is highly probable that constraints were uniformly applied to

address convergence issues or as a default software option).

Most importantly, and similar to points made in Cole and

Bauer (2016), zero studies reported or had asked any research

questions about subject-specific curves. Studies invariably

had the same three basic interests: (a) how many classes exist,

(b) what the class trajectories look like, and (c) which covar-

iates predict class membership. Notably, none of these three

interests requires within-class random effects. Although the

individual is the central focus of latent-growth models, the

latent class is the central focus of GMMs. From this evidence,

it seems that the within-class random effects are not providing

answers to substantively motivated questions and do not ap-

pear to be a factor that researchers are seriously considering

when modeling their data (e.g., perhaps GMMs are used be-

cause researchers have been exposed to them rather than for

their correspondence with the research question).

This is extremely relevant because researchers regularly

encounter rampant convergence issues because of overly com-

plex models, which ultimately leads them to atheoretically

constrain any parameters they can across classes with the sole

purpose of achieving model convergence. Poignantly, this

process is undertaken to obtain quantities (partitioned variance

components and subject-specific curves) that are irrelevant to

the research questions.

Instead, we argue that a more advantageous modeling strat-

egy is to bypass within-class random effects and adopt a

population-average approach, a class of models that specifi-

cally focuses on the broader mean trajectory while accounting

for the variances and correlations among the repeated mea-

sures. As we outline in detail in the next section, these

methods can similarly account for complex covariance struc-

tures but do so without relying on random effects.

Modeling change without random effects

As an extension of latent-growth models, GMMs explicitly

model between-individual variability and within-individual

variability. However, the random-effect framework is not

necessarily required in order to properly model repeated mea-

sures data in all circumstances, especially when subject-

specific curves are not needed. Although the random-effect

framework is omnipresent for growth models in psychology,

the subject-specific focus concomitant with these models has

largely been forgotten (e.g., Cudeck & Codd, 2012; Liu,

Rovine, and Molenaar, 2012a, b; McNeish, Stapleton, &

Silverman, 2017; Molenaar, 2004; Molenaar & Campbell,

2009). Cudeck and Codd (2012) aptly summarize the discon-

nect between the widespread use of random-effect models and

their ensuing model interpretation by noting, “the current cu-

rious state of practice is to sing the praises of the model as an

ideal method for the study of individual change, but then ig-

nore the individuals and resort to an analysis of the mean

change profile” (p. 5).

If the research questions can be sufficiently addressed with-

out needing to inspect subject-specific curves or if the interest

is in the mean trajectories within each class while properly

accounting for within-class variation, the high computational

demands of GMMs are needlessly taken on. In such cases,

researchers (perhaps unknowingly) are augmenting the com-

plexity of an already complex model with random effects and

making an already difficult estimation problem more difficult,

all for the purpose of obtaining information that is not central

to the primary goals of a mixture model analysis and whose

estimates are often not reported.

A different perspective: Population-averaged models

The population-averaged approach in non-mixture contexts

has beenwritten about extensively in the biostatistics literature

(e.g., Diggle, Heagerty, Liang, & Zeger, 2002; Vonesh, 2013).

In the context of continuous outcomes measured longitudinal-

ly, the goal is to obtain the average growth trajectory in the

sample (conditional on any relevant covariates like sex or

treatment group) while accommodating the covariance that

arises due to the dependent nature of the repeated measures

without partitioning the variance or estimating subject-

specific random effects (Fitzmaurice, Laird, & Ware, 2011;

Jennrich & Schluchter, 1986; Verbeke & Molenberghs,

2000). Put another way, the goal of population-averaged

models is to describe the covariance between repeated mea-

sures rather than try to explain the covariance between repeat-

ed measures with random effects, as is the goal in latent-

growth models.

As an advantage, the estimation of population-averaged

models, even in the non-mixture context, is much easier due

to the simplified form of the covariance structure. This ap-

proach to summarizing the underlying change process has

received very little attention in the behavioral sciences, espe-

cially in mixture contexts where the appeal of simplified esti-

mation would seem to be very attractive given widespread

convergence issues encountered with GMMs. We review a
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specific type of population-averaged model—the covariance

pattern model—in the next section and compare it to the

latent-growth model.

Differentiating between covariance pattern
and latent-growth models

Consider the role of the marginal covariance in growth

models. Because data within an individual are dependent,

the off-diagonal terms representing the covariance between

pairs of repeated measures within a person are likely nonzero.

For some arbitrary design in which time t = 1, . . . , T, the

covariance of the raw repeated measures of the outcome Y

takes the general form

Var Y 1ð Þ
Cov Y 1;Y 2ð Þ Var Y 2ð Þ

⋮ ⋱ ⋱
Cov Y 1; Y Tð Þ ⋯ Cov Y T−1; Y Tð Þ Var Y Tð Þ

2

6

6

4

3

7

7

5

:

In latent-growth models, the marginal covariance structure

is computed by partitioning the variance in between-

individual (Ψ) and within-individual (Θi) components with

random effects and then combining the between-individual

and within-individual covariance matrices together by adher-

ing to distributional assumptions and following standard

methods of deriving the model-implied second moment:

Σi ¼ Λi ΓΦΓT þ Ψ
� �

ΛT
i þΘi.

In covariance patternmodels, the variance is not partitioned

and the marginal covariance is directly modeled. That is, a

standard single-level regression model is fit to the data but

assumptions about the residuals are relaxed. Rather than as-

suming constant variance and that the residuals are indepen-

dent (e.g., ε∼i:i:d: N 0;σ2ð Þ as in ordinary least squares), max-

imum likelihood allows the residuals from the same individual

to be related to each another: εi~MVN(0,Σi), where Σ is a

residual covariance structure specified by the researcher. The

model is called a “covariance pattern model” because the re-

searcher selects a covariance structure that patterns how the

residuals are related to each other. The elements of the struc-

ture that is selected for Σ are then directly estimated as pa-

rameters with maximum likelihood. For instance, Cov(Y1,

T2)from the matrix above would be directly estimated with a

covariance pattern model, whereas in a latent-growth model it

be an indirect combination of Ψ (the between-individual co-

variance matrix) and elements of Θi (the within-individual

covariance matrix). The word “pattern” is used because a par-

simonious structure is typically applied (e.g., all repeatedmea-

sures that are one occasion apart have the same correlation)

rather than uniquely estimating each individual element of the

matrix (though simply estimating all unique elements is also

possible). The covariance patternmodel has fallen out of favor

in recent years within psychology as computational advances

have removed the computational barrier that once existed for

the estimation of random-effect models. However, the model

continues to receives attention for its generality and flexibility

in the quantitative psychology literature (e.g., Azevedo, Fox,

& Andrade, 2016; S. Liu, Rovine, &Molenaar, 2012a, 2012b;

Lix & Sajobi, 2010).

Though the mechanism adopted by latent-growth models

and covariance pattern models differs, each model essentially

has the same goal: to provide estimates that reproduce the

observed covariances as closely as possible. The next subsec-

tion discusses some of the common structures used in covari-

ance pattern models and when different structures may be best

applied.

Common covariance pattern covariance structures

Similar to the requirement that researchers select the structure

of the within- and between-individual covariance matrices in

latent-growth models, researchers must similarly select the

covariance pattern structure in covariance pattern models.

This is often accomplished through an exploration of the re-

peated measures data taking into account longitudinal design

features (e.g., spacing of the measurements and whether the

measurement occasions are fixed across subjects).

We discuss four possible structures in the following sub-

sections. Note that these structures are not exclusive to covari-

ance pattern models and are sometimes used to describe the

within-individual covariance matrix in latent-growth models

(though less complicated structures with all off-diagonal ele-

ments constrained to be zero remain the most popular choices;

Grimm &Widaman, 2010). The difference in covariance pat-

tern models is that the structure captures all residual

covariance—not just within-person residual covariance, as in

latent-growth models—so structures with nonzero off-

diagonal terms are typically required with covariance pattern

models.

Compound symmetry One common patterned structure is a

compound symmetric (i.e., exchangeable) structure, whereΣi

¼ σcJni þ σ2Ini for Jni a matrix of ones of dimension ni and

Ini is an identity matrix of dimension, ni. This results in a

correlation matrix with equal off-diagonal elements. The var-

iance terms on the diagonal can also be heterogeneous if the

variance of the repeated measures changes over time. In a

hypothetical case of five repeated measures, the compound

symmetric correlation matrix would be

1

ρ 1

ρ ρ 1

ρ ρ ρ 1

ρ ρ ρ ρ 1

2

6

6

6

6

4

3

7

7

7

7

5

:
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First-order autoregressive Another popular structure features

residuals that follow a first-order autoregressive process such

that the (j, j′)th element isΣi (j, j') = σ2ρ|j − j'|. In this first-order

autoregressive structure, pairs of repeated measures separated

by the one measurement occasion (i.e., that are lagged by one)

are correlated equally. Repeated measures with larger lags are

correlated to a lesser degree based on an exponential function

of the one-lag correlation. For instance, with this structure,

repeated measures that are one lag apart (e.g., Time 1 and

Time 2) are correlated at some estimated value ρ, and repeated

measures that are two lags apart (e.g., Time 1 and Time 3)

would be correlated at ρ2. The structure increases flexibility

without sacrificing parsimony because it allows for correla-

tions to vary across lags (i.e., measurements that are further

apart are less related) but does not require additional parame-

ters to be estimated because each lag is a function of a single

estimate, ρ. This structure could be embellished to allow for

heterogeneous variances across time. In a hypothetical case of

five repeated measures, the autoregressive correlation matrix

would be

1

ρ 1

ρ2 ρ 1

ρ3 ρ2 ρ 1

ρ4 ρ3 ρ2 ρ 1

2

6

6

6

6

4

3

7

7

7

7

5

:

Toeplitz A structure that is similar to the first-order

autoregressive structure that maintains more flexibility is the

Toeplitz structure. In a Toeplitz structure, the autocorrelation

process for the (j, j′)th element isΣi (j, j') = σ|j − j'| + 1. Similar to

the first-order autoregressive structure, all measures separated

by one measurement occasion are equally correlated.

However, for measures lagged by two, the Toeplitz structure

estimates a separate correlation rather than simply squaring

the lag 1 correlation. Each subsequent lag also receives a

unique estimate, so the number of off-diagonal parameters to

be estimated is equal to the number of measurement occasions

minus one. Like the first-order autoregressive structure, this

allows the correlation between measures to change as the

measures become more distant in time. Unlike the first-order

autoregressive structure, a Toeplitz structure does not require

that the change in correlation follow a specific function of the

lag 1 correlation. In a hypothetical case of five repeated mea-

sures, the Toeplitz correlation matrix would be

1

ρ1 1

ρ2 ρ1 1

ρ3 ρ2 ρ1 1

ρ4 ρ3 ρ2 ρ1 1

2

6

6

6

6

4

3

7

7

7

7

5

:

Unstructured The most flexible of all within-class covariance

structures is one that is completely unstructured, so that every

element is uniquely estimated. In a hypothetical case of five

repeated measures, the unstructured correlation matrix would

be

1

ρ21 1

ρ31 ρ32 1

ρ41 ρ42 ρ43 1

ρ51 ρ52 ρ53 ρ54 1

2

6

6

6

6

4

3

7

7

7

7

5

:

This structure is reminiscent of the covariance structure in

multivariate analysis of variance within a general linear

modeling framework (S. Liu et al., 2012a).

Selecting a covariance structure The selection of which type

of structure to use in a covariance pattern model can be a

challenge to researchers not well-versed in this framework.

Many options exist and readers looking for a good summary

of possible options may wish to consult the treatment provid-

ed in the SAS 9.2 manual under the Repeated Statement sec-

tion of the PROCMIXED chapter (PROCMIXED is the SAS

procedure used to fit covariance pattern models even though

they are not technically mixed-effects models). Chapter 7 of

Fitzmaurice et al. (2011) is also dedicated to discussing co-

variance pattern models. As general guidance,

& Compound symmetry tends to be most useful when there

are few repeated measures or when repeated measures are

spaced very closely together. Compound symmetry in a

covariance pattern model produces an identical marginal

covariance matrix as a latent-growth model with random

intercepts but no random slopes.

& First-order autoregressive structures are most useful when

there are many repeated measures and the spacing be-

tween measurement occasions is equal or nearly equal.

& Toeplitz is best suited to a moderate number of repeated

measures but correlations are not expected to decrease

exponentially over time.

& Unstructured modeling is typically reserved for very few

measurement occasions or when the measurement occa-

sions have an unorthodox structure.

Ultimately, the goal is to strive for parsimony, such that the

covariance pattern structure reflects the dependency among

repeated measures with as few parameters as possible.

Equivalency of mean structures

Though latent-growth models and covariance pattern models

differ with respect to the formation of the covariance structure

and whether subject-specific curves are available, either
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model will produce the same mean trajectory with identical

interpretations with continuous outcomes. Covariance pattern

models estimate the growth trajectory for the typical individ-

ual in a sample but does not include random effect to capture

individual deviation from the mean trajectory. Therefore, the

means structure is written very similarly to the latent-growth

mean structure in Eq. 1 except that the growth factors have no

i subscript because they do not vary by individual. This can be

written as

yi ¼ Λiηþ εi ð10Þ

The mean growth trajectory of the covariance pattern mod-

el can be obtained by taking the expectation of yi:

E yið Þ ¼ E Λiηð Þ þ E εið Þ ð11aÞ

¼ Λiα; ð11bÞ

The mean growth trajectory of the latent-growth model can

similarly be obtained by taking the expectation of Eq. 3, which

yields a quantity identical to that in Eq. 11b:

E yið Þ ¼ E Λiηið Þ þ E Λiζið Þ þ E εið Þ ð12aÞ

¼ Λiα; ð12bÞ

given that the random effects and residuals have a zero mean

vector [i.e. ,E(ζ i) = E(ε i) = 0] and are uncorrelated

[i.e.,Cov(ζi, εi) = 0].

Extending covariance pattern models
to the mixture context

To place the covariance pattern mixture model (CPMM) on

the present continuum of mixture models for repeated mea-

sures data, CPMMs fall between the LCGM from Nagin

(2005) and the GMM from Muthén and Shedden (1999).

Like LCGMs, CPMMs acknowledge that the latent classes

are already a discretization of the random-effect distribution

and the discrete classes are the focus of the interpretation, so

random effects within classes are not necessarily required.

CPMMs address possible issues in LCGMs by expanding

the marginal covariance structure so that extra classes are

not extracted because of a covariance st ructure

misspecification. Like GMMs, CPMMs fully model all vari-

ation by including a patterned marginal covariance structure

that reflects between- and within-individual variation. Unlike

GMMs, the marginal covariance in CPMMs is directly esti-

mated rather than a combination of partitioned variance

components.

If researchers are primarily interested in enumerating clas-

ses and interpreting the mean trajectory for each class while

satisfactorily summarizing the pattern of variances and covari-

ances among the repeated measures, a CPMM accomplishes

these tasks in a more parsimonious and more efficient manner

than GMMs. Concurrently, the CPMM has a simpler specifi-

cation than does a GMM, which should theoretically make

convergence, inadmissible solutions, atheoretical parameter

constraints, and other estimation-related issues less frequent.

These claims are explicitly assessed and demonstrated via

simulation evidence in the next section.

Simulation design

Data generation

The data generation model is based on the so-called “cat’s

cradle” pattern that emerges in substance use (Sher, Jackson,

& Steinley, 2011) and post-traumatic stress research

(Bonanno, 2004). In these research domains, four classes typ-

ically emerge: one class that starts at higher values and main-

tains high values (the “chronic” class), a second class that

starts low and maintains low values (the “unaffected” class),

a third class that starts high but decreases over time (the “re-

covery” class), and a fourth class that starts low and increases

over time (the “delayed-onset” class). In both research do-

mains in which such solutions are found, the chronic and

unaffected classes typically comprise a majority of the data

(approximately 65% to 80%; Bonanno, 2004; Sher et al.,

2011). Of the remaining data, the recovery class tends to be

about twice as big as the delayed-onset class.

Figure 1 shows a plot of the trajectories in each of the four

classes, and Fig. 2 shows the general path diagram of the

model. Table 1 shows the model equations and covariance

structures that were used to generate data from these trajecto-

ries within Mplus version 8; the population-generating model

is a GMM.

The growth trajectory in each class has both linear and

quadratic components, to achieve nonlinear trajectories. The

linear slope varies across individuals within classes but the

quadratic slope variance was constrained to zero in the popu-

lation. The unaffected group comprised 63% of the popula-

tion, the recovery class 12%, the chronic class 19%, and the

delayed-onset class 6%, in an attempt to mirror empirical ap-

plications of mixture models in which class proportions are

disparate. The data feature five time points that represent ei-

ther months after baseline in the substance use context or

weeks in the post-traumatic stress context. The loadings from

the linear slope factor to the observed variable are 0 (baseline),

1, 10, 18, and 26. The loadings from the quadratic slope factor

to the observed variables are the squares of these loadings.

The growth factor variances are rather large relative to the

growth factor means for the intercept and linear slope, which

was intentional, in order to generate data that were not well

separated, as are typically encountered in empirical examples.
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Simulation conditions

The simulation features sample sizes of 500 and 1,500. Our

assessment of the van de Schoot et al. (2018) literature review

on mixture models in PTSD research resulted in a median sam-

ple size of 509, which informed our smaller sample size condi-

tion. We then selected 1,500 to represent a study that is far

above average, because 1,500 corresponded to about the 85th

percentile of sample sizes in the van de Schoot et al. review.

Three different models were fit to the data: a CPMM with a

compound symmetric structure with homogeneous variances

that was unconstrained across classes (CPMM; two covariance

parameters per class: one residual variance, one covariance), a

GMM with all variances unconstrained across classes (GMM;

Fig. 2 Path diagram of the data generation model. C is a discrete latent

variable representing each of the different classes. The α parameters

represent the latent variable means; the η0 latent variable represents the

intercept, η1 represents the linear slope, and η2 represents the quadratic

slope. The intercept latent variable varies across people within a class

(with variance Ψ00), as does the linear slope latent variable (with

variance Ψ11). The quadratic slope latent variable does not vary across

people within a class. The latent-variable loadings are fixed because the

data are time-structured, such that all people have the same occasions of

observations. The residual variances are constrained to be equal across

time

Fig. 1 Plots of the mean trajectories in each of the four simulated classes in Model 2. Using the class proportions in a study by Depaoli, van de Schoot,

van Loey, and Sijbrandij (2015), we assigned 63% of the sample to Class 1, 12% to Class 2, 19% to Class 3, and 6% to Class 4
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four covariance parameters per class: one residual variance, in-

tercept variance, slope variance, and a covariance between in-

tercepts and slopes), and a GMMwith all covariance parameters

constrained across classes (GMMC; four covariance parameters

total: one residual variance, intercept variance, slope variance,

and a covariance between intercepts and slopes). The residual

variance was constrained to be equal within classes across all

models, to match the data generation process. The path diagram

for the GMM was identical to that in Fig. 2. The path diagram

for the GMMC was similar to that in Fig. 2, with the exception

that theΨ and θ parameters were constrained to be equal across

all classes. The CPMM path diagram is shown in Fig. 3.

As an important note, the four-class GMM is identical to the

data generation model. Also of note, because the data genera-

tion included nontrivial random slopes, the CPMM covariance

structure will be moderately misspecified. This was done inten-

tionally. Using a misspecified CPMMwould paint a more real-

istic picture of performance and would avoid artificially inflat-

ing the performance of CPMMs by unrealistically modeling the

true covariance structure. Instead, the results reflect the results

that would be obtained if someone were to use CPMMs some-

what naively and to select an unfavorable covariance structure.

So, keep in mind that the results we present compare a perfect

GMM with a misspecified CPMM. As a secondary consider-

ation, we hope that this will alleviate potential fears that re-

searchers may have about switching model types and not spec-

ifying the model perfectly—our results already have built in

some possible user error that might be encountered if using an

unfamiliar modeling framework.

Simulation outcomes

Our discussionwill follow the four outcomes in the simulation:

class enumeration, percentage of convergent models, relative

bias in the class-specific growth trajectories, and classification

accuracy. For the last three outcomes (convergence, bias, and

classification), the results can be easily automated within

Mplus version 8 using the MonteCarlo module. These results

are based on 500 replications for each sample size condition. In

each of these 500 replications, the results will be based on the

assumption that the correct four-class solution has been fit to

the data. For these three outcomes measures, the population

values for the class trajectories were used as starting values for

the mean structure in each class. The default Mplus starting

values were used for all covariance structure parameters. To

study the class enumeration, a separate simulation using a dif-

ferent setup was required, which will be outlined next.

Details of the separate class enumeration simulation To study

the class enumeration behavior of each of the three fitted

models, we generated 100 datasets for each sample size con-

dition and then fit three-, four-, and five-class models to each

generated dataset. Fewer replications were used than for other

simulation outcomes because class enumeration requires

fitting multiple models per replication. We then compared

the sample-size-adjusted Bayesian information criterion (SA-

BIC; Sclove, 1987) across the three different class solutions

for each replication, for each model. The solution with the

lowest SA-BIC was then selected for each replication. SA-

BIC was chosen because Yang (2006) and Tofighi and

Enders (2007) found that it tends to perform better than other

information criteria for class enumeration. Tofighi and Enders,

in particular, noted that SA-BIC is the clear choice for enu-

meration with moderate sample sizes (p. 332) or poorly sepa-

rated classes (p. 333), or when there is a large disparity in the

class proportions (p. 334), all of which exist in some or all

conditions of our simulation design.

The goal of the simulation was to track the number of times

each model type selected the correct four-class solution. The

class enumeration simulation used Mplus default starting

Table 1 Data generation equations for our population model

Class Model Equation Covariance Structures

1

(Unaffected)

yij = η0i + η1it + εij
η0i = 15.0 + ζ0i
η1i = − 0.15 + ζ1i

Ψ¼
40

0 0:04

� �

Θ = 28I5

2

(Recovery)

yij = η0i + η1it + η2it
2 + εij

η0i = 38.0 + ζ0i
η1i = − 0.1 + ζ1i
η2i = − 0.008

Ψ¼
160

0 0:04

� �

Θ = 72I5

3

(Chronic)

yij = η0i + η1it + η2it
2 + εij

η0i = 41.0 + ζ0i
η1i = 0.12 + ζ1i
η2i = − 0.002

Ψ¼
120

0 0:04

� �

Θ = 60I5

4

(Delayed Onset)

yij = η0i + η1it + η2it
2 + εij

η0i = 18.0 + ζ0i
η1i = 0.2 + ζ1i
η2i = 0.015

Ψ¼
72

0 :035

� �

Θ = 60I5

t = 0, 1, 10, 18, 26
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values rather than using the population values as starting

values. Default starting values were used because (a) it was

unclear which starting values should be used for the incorrect

three-class and five-class solutions, as there would not be any

population values for these classes; (b) default starting values

are more representative of how classes are enumerated in em-

pirical studies in the initial stages of analyses (i.e., researchers

do not have a good idea of the class trajectories before they

know howmany classes there are); and (c) it may be helpful to

present simulation results for how starting values may impact

convergence. We also tracked the percentage of non-

convergent replications for each of the fitted models.

Replications in which the best likelihood was not replicated

from multiple random sets of random starting values were not

treated as nonconverging for this simulation.

These models were run by calling Mplus version 8 via

SAS PROC IML to facilitate aggregating the results be-

cause this type of simulation cannot be performed entirely

within the Mplus MonteCarlo module (to our knowledge).

We used 100 random starts and 10 final stage

optimizations based on recommendations in M. Liu and

Hancock (2014) and Li, Harring, and Macready (2014)

so that the full likelihood surface could be explored. All

code for the simulation from SAS and Mplus are included

on the first author’s Open Science Framework webpage

(https://osf.io/yh6kf/).

Simulation results: Unknown number
of classes

Class enumeration

The initial step of a mixture model analysis is typically to

determine the number of latent classes that are present, so

we begin with the enumeration and convergence results.

Table 2 shows the numbers of replications that converged

for each class solution and the numbers of replications

selecting each class solution, by model type and sample

size. The numbers of replications selecting each class so-

lution might not add up to 100, because in some of the

replications none of the competing class solutions con-

verged (and therefore, none of the competing options was

selected). We did include cases in which some but not all

Fig. 3 Path diagram of the covariance pattern mixture model. The

parameter definitions are the same as in Fig. 2. The newly added ρ is a

residual covariance; with the compound symmetric structure, all residual

covariances are constrained to be equal. The residual variances are not

shown, to avoid overcrowding, but each residual variance is constrained

to be θ, as in Fig. 2. Also note that the latent-variable variances are all

constrained to be 0, which forces all the residual variance to the observed

repeated measures, rather than partitioning it into within-person and

between-person components. A covariance pattern is then applied direct-

ly to the residuals of the repeated measures

Behav Res (2020) 52:947–979 957

https://osf.io/yh6kf/


class solutions converged. For example, if only the three-class

solution converged, but the four- and five-class solutions did not,

the replication was recorded as selecting the three-class solution.

We followed this criterion because it most closely mirrors how

we felt the situation would be handled with empirical data.

N = 500 condition In the N = 500 condition, the CPMM

narrowly had the highest number of replications in which

the true four-class solution was selected (33 out of 100).

This vastly exceeds the GMM that only selected the four-

class solution in two replications (poor performance was

largely driven by convergence issues) but only narrowly

eclipses the number of times the GMMC selected the correct

four-class solution (32 out of 100).

Regarding convergence, using Mplus default starting

values, the convergence issues encountered by the GMM are

readily apparent: Only 5% of the four-class models converged,

even though this was the exact model from which data were

generated. Constraining all the covariance structure parameters

to be equal across classes is clearly effective for convergence,

in that convergence rates of the GMMCwere in the high 60s to

low 80s. Do note that the CPMM convergence was in the high

80s to high 90s without requiring the assumptions implied by

constraints, however. Constrained variances in the GMMC

were not warranted on some parameters (i.e., intercept vari-

ance, residual variances). This may explain why the GMMC

seemed to prefer the five-class solution because the

misspecified covariance structure may be emerging as a sepa-

rate class, especially when considering that BIC-based mea-

sures tend to be conservative and underextract the number of

classes (e.g., Diallo, Morin, & Lu, 2017; Dziak, Lanza, & Tan,

2014). Despite the improved convergence of the GMMC over

the GMM, the CPMM uniformly had the highest convergence

rates, especially for the correct four-class solution.

N = 1,500 condition In the N = 1,500 condition, the fre-

quency with which the CPMM selected the correct four-

class solution increased to 74 out of 100, and convergence

issues were essentially negligible across conditions. For

the GMM, even though the model was identical to the data

generation model and the sample size was in the 85th

percentile of empirical studies in this area, convergence

issues remained immensely problematic, with only 16

out of 100 replications converging for the four-class solu-

tion. As a result, the GMMmost often selected the three-class

solution (66 out of 100 replications) and only selected the

correct four-class solution in two replications. As expected,

the GMMC vastly improved convergence rates as compared

to the GMM. However, the GMMC overwhelmingly favored

the five-class solution, which is an unconventional finding,

given the conservative nature of the BIC-based metrics and

their tendency to underextract. The spurious class is likely

attributable to the covariance structure misspecification, such

that additional classes represent assumption violations rather

than a substantively interesting group of people (e.g., Bauer &

Curran, 2003). Across all conditions, the convergence rate of

the CPMM was, at worst, within 1% of the GMMC, and

CPMM convergence rates exceeded the GMMC rates by a

wide margin in other conditions, particularly in the true four-

class solution condition.

Although the CPMM is not perfect (or even necessarily

good in the N = 500 condition, in an absolute sense), the

CPMM gives the best relative chance to select the correct

number of classes. Part of this improved performance is relat-

ed to improved convergence rates—in the GMM (and

GMMC, to a lesser extent), the four-class solution could not

converge due to the augmented complexity of the model, so

there was no chance that the correct solution could be selected.

Though the GMMC certainly improves convergence when

Table 2 Numbers of replications selecting a three-, four-, or five-class solution, based on the SA-BIC and the convergence rate by the number of

classes

N = 500 N = 1,500

CPMM GMM GMMC CPMM GMM GMMC

Number converged

Three-class 98 38 77 100 66 83

Four-class 93 5 67 100 16 72

Five-class 88 0 83 97 3 98

Number Selected

Three-class count 37 37 11 2 66 0

Four-class count 33 2 32 74 2 5

Five-class count 30 – 53 24 0 95

CPMM = covariance pattern mixture model, GMM = growth mixture model, GMMC = growth mixture model with covariance parameters constrained

to equality across classes. – = not applicable because there were no viable replications for this condition. Some columns do not add up to 100 because

some replications encountered convergence issues for each of the three-, four-, and five-class models
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good starting values are not known a priori, convergence is

worse than the CPMM, it requires more assumptions about

constraints across classes, and it selects the proper number of

classes less often than the CPMM. The behavior as sample

size increases is also telling—the GMMC performed much

more poorly in the larger sample size, possibly suggesting that

the four-class solutions in the smaller sample size conditions

may be attributable to uncertainty or the conservative nature of

BIC-based measures. On the other hand, the CPMM dramat-

ically improved at the larger sample size.

Simulation results: Known number of classes

The results in the previous section approached the analysis as

an empirical study, in that the number of classes was unknown

a priori. Even though there were discrepancies in the ability of

each approach to correctly identify the number of classes, the

results presented in this section are fit as if the enumeration

yielded the correct four-class solution. This was done with an

interest in gauging the quality of the model estimates indepen-

dent of each approach’s ability to detect the correct number of

classes. These analyses also used the population values from

the data generation for the mean structure in each class, as it

would be more reasonable that a researcher would have a

better idea about the different trajectories that exist in the data

once the number of classes was determined.

Convergence rates, population starting values

The results previously reported in Table 2 contained informa-

tion about convergence when the Mplus default starting

values were used. Figure 4 shows the percentages of the 500

replications with a four-class solution that successfully

converged with the population values used as starting values

for each class. As we noted previously, convergence is a major

obstacle to fitting GMMs in empirical studies—even with

good starting values—which is reflected in Fig. 4. Only 26%

of GMMs converged whenN= 500, and only 33% converged

when N = 1,500. Good starting values made an improvement

over the four-class values in Table 2, but the results still are

troubling, considering that this is true model with the popula-

tion values for the starting value of each class. The GMMC

was again effective for convergence, as evidenced by the 68%

and 100% convergence rates for GMMC in theN= 500 and N

= 1,500 conditions, respectively. However, the covariance pat-

tern approach led to the best convergence rates in Fig. 4, with

99% and 100% convergence in the N = 500 and N = 1,500

conditions, respectively. Coinciding with the argument that

CPMMs reduce model complexity, the starting values made

the smallest difference in convergence for the CPMMs, as

compared to the GMMs or GMMCs.

Though a helpful starting point, simply achieving conver-

gence and obtaining estimated values in software output is not

indicative of improved performance. The next subsection in-

vestigates the estimated trajectories of the classes to assess the

quality of the estimates that are obtained from eachmodel type

once convergence is achieved.

Trajectory bias

Figure 5 shows the class trajectories from each model type

with a four-class solution, averaged over replications that con-

verged for the N = 500 condition.We only present the N = 500

results in text for brevity, due to similarities across the condi-

tions, but the bias for theN = 1,500 condition is available from

the supplementary material, for interested readers.

Fig. 4 Plot of the convergence rates from 500 replications of the four-

class solution by model type and sample size condition. CPMM = covari-

ance pattern mixture model, GMMC = growth mixture model with

covariance parameters constrained to equality across classes, GMM =

unconstrained growth mixture model
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The generated population trajectories are shown in the up-

per left as a reference. The CPMM model, in the upper right,

does not perfectly match the population trajectories—the re-

covery class slope, in solid gray, is noticeably steeper, and the

delayed-onset class slope, in dashed gray, is noticeably flatter.

In fact, the relative biases of these slopes and the unaffected-

class slope, in solid black, exceed the 10% threshold typically

used in simulation studies (Flora & Curran, 2004), though the

intercept bias was negligible for all classes. Despite this bias,

the four classes from the generatingmodel are still rather clear:

The “cat’s cradle” pattern is quite apparent, and the basic

substantive interpretation of the classes is discernible.

The GMM and GMMC trajectories shown in the bottom

panels, on the other hand, do not reflect the population trajec-

tories very accurately. With both the GMM and the GMMC,

the recovery class slope in solid grey goes in the wrong direc-

tion and increases over time whereas the delayed-onset class

slope in dashed grey is essentially flat. The relative bias for the

slopes in the recovery and delayed-onset classes in these model

types ranged from – 120% to – 334%. Of ultimate importance,

the class trajectories from either the GMM or the GMMC do

not show the “cat’s cradle” pattern, and instead show four

nearly horizontal lines. Though the GMMC helped improve

convergence, as is noted in Fig. 4, the class trajectories pro-

duced by this model have the highest relative bias for all but

one parameter (slope of the unaffected class, in solid black; the

CPMM has the highest relative bias for this parameter).

So far, the CPMM shows better enumeration, convergence

rates, and improved (but not perfect) estimates of class

trajectories, even as compared to the true GMM. However, a

typical substantive interest of mixture models for longitudinal

data is the ability to assign individuals to the proper class. The

performance of classification accuracy is covered in the next

subsection to address this property of each model type.

Classification accuracy

Table 3 shows the classification percentages for each model

type and sample size condition for converged replications for

the four-class solution. This outcome measure shows the per-

centage of simulated individuals who were assigned to the

appropriate class by the model (this is possible in a simulation

because the true class is known). For example, the 96% value

in the CPMM column for N = 500 means that 96% of the

simulated individuals who were generated to be in the unaf-

fected class were assigned to the unaffected class by the

CPMM. The total number of correctly classified individuals

is included at the bottom of the table (because the class sizes

are very different, this value is not equal to the unweighted

average in each column).

In Table 3, the classification accuracy was the lowest for the

recovery and delayed-onset classes (the two middle classes

whose trajectories cross in Fig. 1). This makes sense from the

data generation because the intercepts of these classes are very

similar to those of the other classes, and the slope variances

were rather large relative to the magnitude of the growth factor

means. Additionally, the recovery and delayed-onset classes

were the smallest classes (12% and 6%, respectively).

Fig. 5 Comparison of the true population average class trajectories (upper left) to the covariance pattern mixture model (CPMM, upper right), the

unconstrained growth mixture model (GMM, lower left), and the constrained growth mixture model (GMMC, lower right) for the N = 500 condition
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In both sample size conditions, the CPMM had the highest

overall classification rate, but the CPMMwas not always the best

at classifying individuals for each class. Classification percent-

ages for the unaffected and chronic classes differed slightly across

model type and sample size, but the percentageswere roughly the

same. However, the CPMM tended to be worse than the GMM

and GMMC models for the recovery class, whereas the GMM

and GMMC performed noticeably worse for the delayed-onset

class. The classification rates for the delayed-onset class also

decreased with sample size for both the CPMM and GMM.

Of particular note is that the GMMC did not accurately

assign any individuals in the delayed-onset class. GMMC

did assign some individuals who were generated to be mem-

bers of other classes into the delayed-onset class, so the class

was not empty; however, these individuals truthfully belonged

to a different class. Nearly all (97% in both sample size con-

ditions) of the individuals generated to be in the delayed-onset

class were assigned to the unaffected class in the GMMC. This

somewhat odd finding may be attributable to the large trajec-

tory bias seen in Fig. 5. That is, given the values for the

intercept and slope variances and the fact that the GMMC

class trajectories were essentially four horizontal lines, it is

questionable whether the delayed-onset class has the same

meaning in the GMM or GMMC that it does in the data gen-

eration model. Conversely, the CPMM has some difficulty

accurately assigning individuals to the small, overlapping

classes, but the classes at least appear to have the same general

meaning as is intended in the data generation model.

In the next section, we show how the general findings from

the simulation study apply to an empirical dataset.

Empirical example

Consider a subset of 405 children and mothers from the National

Longitudinal Survey of Youth (NLSY), which can be found in

Hox (2010). Each child’s reading recognition was measured at

four different time points, when the children were between 6 and

8 years old at baseline. To these data, we fit a CPMMandGMM/

GMMC to outline the difference in approaches with a single

empirical dataset. Mixture models were estimated in Mplus 8

with 100 random starts and ten final stage optimizations.

Complete files containing the Mplus code and results for models

used in the example as well as the data are provided on the first

author’s Open Science Framework webpage. Mplus code for

each of the common covariance structures we discussed previous

for CPMMs is provided in the Appendix.

Determining the mean structure

To this data, we first fit an unconditional growth model to the

reading recognition variable without extracting any latent clas-

ses (means at the four time points are 2.52, 4.08, 5.00, and

5.77). When looking at the empirical means as well as explor-

atory plots, it seemed plausible that the growth trajectory may

be nonlinear because the difference between successive time

points decreases for larger values of time. When fitting the

latent-growth model without multiple latent classes, we fit a

linear growth model and a quadratic growth model. The qua-

dratic model resulted in a significant likelihood ratio test [χ2(1)

= 146.99, p < .01], and this mean structure was retained.

Adding mixture components

Then we subsequently fit a CPMM and a GMM. The CPMM

was fit with a homogeneous Toeplitz structure because the

measures are equally spaced and the raw variances at each point

are rather close (0.86, 1.17, 1.35, 1.56 for Time 1 through Time

4, respectively). Raw correlations between time points were

also high (range: .45 to .80) and decreased over time but in a

not consistent fashion. The GMM was fit with a homogeneous

diagonal residual structure; the quadratic growth factor variance

was set to 0 but the intercept and slope variance were estimated

and allowed to covary. We did consider heterogeneous vari-

ances for both models as well, but the SA-BIC was worse with

heterogeneous variances in all instances.

Table 3 Classification accuracy for simulated data for each sample size and model type, showing the percentages of simulated people who were

assigned to the correct class

Class N = 500 N = 1,500

CPMM GMM GMMC CPMM GMM GMMC

Unaffected class 96% 96% 97% 96% 97% 96%

Recovery class 54% 71% 77% 47% 39% 57%

Chronic class 89% 92% 87% 85% 80% 91%

Delayed-onset class 71% 55% 0% 58% 41% 0%

Percentages correctly classified 89% 89% 88% 87% 84% 86%

CPMM = covariance pattern mixture model, GMM = growth mixture model, GMMC = growth mixture model with covariance parameters constrained

to equality across classes
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For growth in academic measures like reading, it is typical to

find three latent classes generally corresponding to “fast”

learners, “on-time” learners, and “slow” learners (e.g., Musu-

Gillette et al., 2015). Along with this theory, we compared the

two-, three-, and four-class models for both the CPMM and the

GMM using the SA-BIC and the bootstrapped likelihood ratio

tests with 100 replications (BLRT; McLachlan, 1987). Though

the BLRTwas not included in the simulation because of its heavy

computational demand, its use has been advocated for alongwith

BIC-based measures in previous studies (Nylund, Asparouhov,

& Muthén, 2007; Nylund-Gibson & Masyn, 2016).

Enumerating classes

CPMM enumerationWith the CPMM, the SA-BIC of the three-

class solution was smaller than the two-class solution (three-

class SA-BIC = 3,107 vs. two-class SA-BIC = 3,154) and the

BLRTwas significant in the three-class model (Δ-2LL = 69.81,

pBLRT < .01), suggesting that the three-class solution fit better.

The four-class solution best likelihood could not be replicated

with different starting values. The issue likely stemmed from

the fact that the fourth class was very small (only 2% of the

sample, which is ten individuals for this data). Furthermore, the

estimates that were output (along with the warning message)

had a nearly identical class trajectory to another class, suggest-

ing that the four classes was an over-extraction. We therefore

continued with the three-class solution for the CPMM.

GMM enumeration When fitting an unconstrained GMM, the

two-class solution converged without issue (SA-BIC = 3,097).

When allowing all parameters to be class-specific, the three-

class GMM did not converge due to a non-positive definite

growth factor covariance matrix. Constraining the growth fac-

tor covariance matrices to be equal across classes did not lead

to convergence, but constraining the growth factor covariance

matrices and residual covariance matrices across classes did

allow the model to converge (i.e., a GMMC was required in

order to achieve convergence; three-class SA-BIC = 3,180).

The BLRTwas significant for the three-class solution (Δ–2LL

= 32.93, pBLRT < .01), suggesting that three classes fit better

than two classes. As with the CPMM, the four-class GMM

solution could not converge with all covariances freely esti-

mated across classes. Constraining growth factor covariance

matrices did not help, but constraining all covariance param-

eters did converge (four-class SA-BIC = 3,166). The BLRT

was significant for the four-class solution (Δ–2LL = 25.62,

pBLRT < .01), suggesting that the four-class solution fit better

than the three-class solution. Although the two-class SA-BIC

was lower, the BLRTwas significant, so we proceed with the

four-class solution because both the SA-BIC and BLRT sup-

port four classes over three classes and the BLRT also sup-

ported three classes over two classes. We acknowledge that

the two-class solution could also be used, depending on which

metrics researchers choose to weigh most heavily.

Class trajectories and proportions

Aplot of the class trajectories and the percentages of the sample

assigned to each class for the CPMM is shown in the top panel

of Fig. 6. The classes were well-separated, with average latent-

class probabilities of .877 for Class 1, .806 for Class 2, and .870

for Class 3. The bottom panel of Fig. 6 shows the results from

the four-class GMMC (with all covariance parameters

constrained across classes). The classes were also well-separat-

ed, with average latent-class probabilities of .839 for Class 1,

.806 for Class 2, .858 for Class 3, and .851 for Class 4.

When comparing the class trajectories between the CPMM

and the GMMC in Fig. 6, the GMMC has more classes, and

the assignment of participants to the classes is quite different.

Class 1 contains about the same proportion of the sample in

both the CPMM (22%) and the GMMC (23%). In the

GMMC, Class 2 makes up a majority of the sample, at 60%.

In the CPMM, Class 2 contains only 26% of the sample. A

majority of the sample in the CPMMwere assigned to Class 3

(52%), whereas Class 3 (13%) and Class 4 (4%) together

amounted to only 17% of the sample in the GMMC.

Fig. 6 Growth trajectories of three extracted classes using a covariance

pattern mixture model (top), as compared to the growth trajectories of

four extracted classes using a growth mixture model with all covariance

parameters constrained across classes (bottom)
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Differences in this empirical example mirror the findings

from the simulation study. Namely, the more theoretically de-

sirable GMM showed notable convergence problems, neces-

sitating a switch to a GMMC for the sake of achieving con-

vergence. Also as we saw in the simulation, the likely

misspecification present in the GMMC resulted in additional

extracted classes, which reflect the misspecification to the

covariance structure rather than a substantively motivated

class. In the CPMM, the class-specific marginal covariances

(e.g., Class 1 lag 1 = .076, Class 2 lag 1 = .205, Class 3 lag 1 =

.520) and class-specific residual variances (Class 1 = .186,

Class 2 = .308, Class 3 = .943) were quite different, suggesting

that the constraints applied in the GMMwere an inappropriate

methodological shortcut required in order to reach conver-

gence. The CPMM was fit and converged without issues,

allowing the desired model (without undesirable constraints)

to be fit and interpreted as intended.

Discussion

Though random-effect modeling is thoroughly engrained in psy-

chology, a growing body of literature is questioning its status as

the default method when considering the types of questions

being asked. In the context of mixture models for longitudinal

data, the random effects can make an already complex estima-

tion process more complex, leading to higher rates of conver-

gence issues and poor statistical properties of estimates, even if

the model is the exact true model and sample size is large.

Moreover, as we found in our review of PTSD mixture model

studies, the most concerning aspect of the universal random-

effect usage is that researchers are not using these quantities that

are responsible for making the estimation so demanding.

If the goal is to obtain the average growth trajectory in each

latent class, population-averaged models are the simplest type

of model that is capable of addressing these questions while

still accounting for the variances and covariances among the

repeated measures in a sensible manner. The CPMM present-

ed in this article is one such approach, and our results unam-

biguously support that CPMMs vastly improve convergence,

class enumeration, and class trajectories as compared to

GMMs. In this way, CPMMs align with the recommendations

in Wilkinson and the Task Force on Statistical Inference

(1999), which call for psychological researchers to choose a

minimally sufficient analysis (p. 598). The simpler,

population-averaged approach is just as capable as random-

effect models for answering research questions asked in the

empirical literature. Though GMMs (and the GMMC varia-

tion used to combat convergence issues) are currently being

used to address these questions, the model tends to be overly

complex for the intended purpose, which leads to convergence

issues, poor performance, and, commonly, the need for ques-

tionable cross-class constraints. Though convergence issues

can arise for a variety of reasons, a mismatch in model com-

plexity and data quality can be a primary culprit, and the oft-

noted convergence issues with GMMs are a strong indicator

that less complex alternatives are a fruitful avenue to explore.

One concern concomitant with the CPMM approach is that

the researcher must select the covariance structure, and might

not choose the optimal structure. However, the results from

the present investigation suggest that this may not be overly

important. In our simulation studies, we purposefully chose

the most misaligned covariance structure given the data gen-

eration, and even a noticeably misspecified CPMMwas clear-

ly superior to a GMM that was identical to the data generation

model and that used the population values as starting values,

as well as to the GMMC version of the model often used in

practice. In a relative sense, the more adverse issue is that

GMMs are too complex to be reasonably applied in most

contexts, rather than whether the CPMM covariance structure

is misspecified.

Furthermore, we want to emphasize that the GMM-

implied covariance structure is not necessarily correct in

empirical data in all cases, either. As we noted earlier (Eq.

9), GMMs pose a specific functional form to the model-

implied covariance, which may or may not adequately

summarize the variability among the repeated measures.

This could possibly lead to some misspecification, espe-

cially given that the model-implied covariance similarly

requires the researcher to select the appropriate structures

of Ψ and Θ, similar to CPMMs. The most general, parsi-

monious form of the covariance structure isΣ =D1/2PD1/2,

where the variance matrix, D, can have its own structure

uncoupled from the correlational (off-diagonal) structure in

P (see Harring & Blozis, 2014). Covariance structures in

either CPMMs and GMMs can be seen as restricted ver-

sions of this most general structure. CPMMs are not nec-

essarily more misspecified than GMMs—both are at risk of

misspecification based on researchers’ modeling decisions.

CPMMs happened to be (intentionally) more misspecified

in our simulation study, because the generating model was

a GMM, so GMM or GMMC could degrade even further if

the covariance structure were not properly specified.

Nonetheless, if researchers continue to be concerned about

possible covariance structure misspecification in CPMMs,

such traditional choices as compound symmetry, Toeplitz, or

autoregressive can be sidestepped if they are deemed insuffi-

cient. An alternative method would be to inspect the observed

covariance or correlation matrix of the repeated measures for

guidance about the appropriate structure. If the structure does

not appear to follow one of the traditional structures, the flex-

ibility of the structural equation modeling framework under

which CPMMs fall makes custom covariance structures easy

to specify (Grimm & Widaman, 2010). For example, the ob-

served marginal correlation matrix from the NLSY data has a

form that could deviate from traditional structures:
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1

:66 1

:54 :78 1

:45 :76 :80 1

2

6

6

4

3

7

7

5

:

One could customize a marginal structure in which the (3,

2), (4, 2), and (4, 3) elements (.78, .76, and .80, respectively)

are captured by one parameter, while the (2, 1), (3, 1), and (4,

1) elements (.66, .54, and .45, respectively) are each captured

by unique parameters, so the marginal correlation structure

would be

1

ρ1 1

ρ3 ρ2 1

ρ4 ρ2 ρ2 1

2

6

6

4

3

7

7

5

:

This does not adhere to one of the traditional forms, but in

terms of implementation, it is no more difficult to fit in soft-

ware than the traditional forms, and it could help further re-

duce the risk of misspecification (exampleMplus code for this

structure is provided in the Appendix).

Concluding remarks for empirical researchers

Random-effect models are the default method for longitudinal

data analysis in psychology. Though the reasons for this prefer-

ence are defensible in the context of data without latent classes

(e.g., Grimm & Stegmann, 2019), the role of within-class ran-

dom effects is much reduced in latent-class models. The classes

provide the primary latent information for the research questions,

by qualitatively grouping would-be continuous random effects,

thereby reducing the dimensionality of the solution. This makes

the extra latent information provided by the within-class random

effects of little utility in many cases, beyond properly specifying

the marginal covariance. Though not incorrect, using random

effects solely to pattern the marginal covariance is inefficient as

compared to approaches taken by population-averaged models.

In naturally complex models such as mixture models for

longitudinal data, unnecessarily employing within-class ran-

dom effects leads to exceedingly high levels of nonconvergence

and inadmissible solutions. The present method to circumvent

these issues is to apply cross-class constraints; however, though

this does improve convergence, it also raises additional issues,

and typically results in highly biased class trajectories and poor

class enumeration. Much of the computational complexity of

GMMs can be avoided with more theoretically aligned

CPMMs,which avoid thewithin-class random effects but retain

the flexibility to properly model the covariance structure.

Model choice in mixture modeling should operate in the

same way as in any other model: The simplest model that

can answer the question at hand should be preferred. We en-

courage researchers to consider which questions they wish to

answer and to think critically about which is the simplest mod-

el capable of answering these questions. In our view, GMMs

are rarely the answer to this question if CPMMs are simulta-

neously considered.

Open Sciences Practices Statement All simulated data sets,

simulation code, and simulation data management code are

provided and are publically available on the Open Science

Framework (OSF). The anonymized link to access this infor-

m a t i o n i s h t t p s : / / o s f . i o / y h 6 k f / ? v i ew _ o n l y =

d2ed0cc33d0c423a9a9193c718109c7c. The data used for

the empirical example, as well as all software code used to

analyze the empirical-example data, are also accessible via the

same OSF link. No aspects of this simulation study were

preregistered.

Appendix: Mplus code for fitting covariance
pattern mixture models

To specify a covariance pattern matrix in general structural

equation modeling software such as Mplus, the general strat-

egy is to set the factor variances of the growth factors (e.g.,

intercept, slope) to 0 and then to apply the covariance pattern

to the residual variances at each time point. Growth models in

this framework are treated in a multivariate manner, such that

each repeated measure is treated as a unique dependent vari-

able. This can make the covariance pattern a little tricky to

apply, because each element of the matrix must be pro-

grammed with a separate statement.

The challenge of specifying the covariance pattern depends

on whether the residual variances at each time point are ho-

mogeneous (i.e., variances are equal for each repeated mea-

sure) or heterogeneous (i.e., the variances are uniquely esti-

mated for each repeated measure). The covariance pattern is

easier to specify with homogeneous variances; with heteroge-

neous variances, model constraints are necessary, to ensure

that the correlations follow the desired pattern.

The following pages show the Mplus code for fitting co-

variance pattern mixture models with compound symmetry,

first-order autoregressive, Toeplitz, unstructured covariance

matrices, and a custom structure, as mentioned in the

Discussion section. All code will assume that two classes are

being extracted, but the number of classes can be changed

without affecting the general idea of the code. To provide some

context, we will use the NLSY data; these data can be

downloaded from http://www.joophox.net/mlbook2/MLbook.

htm or from the first author’s Open Science Framework page

for this project (https://osf.io/yh6kf/). These data have four

repeated measures, but the code can be extended to

accommodate any number of repeated measures. We start

with the homogeneous variance structures first, and then

proceed to the heterogeneous variance structures.
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Mplus code for covariance pattern mixture models is not

appreciably different from standard growth mixture models.

The primary difference stems from how the covariance matri-

ces are modeled. Other options are not changed in Mplus

when using a covariance pattern mixture model than for a

standard growth mixture model.

Homogeneous variances, exchangeable structure

The exchangeable structure models all covariances as being

equal, regardless of how far apart the measures are in time. It is

also referred to as an exchangeable or equicorrelated structure. A

covariance pattern model with an exchangeable structure is

equivalent to a random-intercept model. Though parsimonious,

in that all covariances are modeled with a single parameter, it can

be too simplistic for some types of data in which the repeated

measures are less related as they become further apart in time.

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2

σ2ρ σ2

σ2ρ σ2ρ σ2

σ2ρ σ2ρ σ2ρ σ2

2

6

6

4

3

7

7

5

:

data:

  FILE IS[DATA LOCATION]

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1% !model for Class 1;

  I S Q| read1@0 read2@1 read3@2 read4@3;!mean structure for Class 1;

  read1 with read2 (a);!using same label constrains estimates to be equal;

  read1 with read3 (a);

  read1 with read4 (a);

  read2 with read3 (a);

  read2 with read4 (a);

  read3 with read4 (a);

  read1-read4 (var1); !constrain residual variances to be equal across time;

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 1;

  read1 with read2 (b); );

!use different label as in Class 1 so estimates are class specific;

  read1 with read3 (b);

  read1 with read4 (b);

  read2 with read3 (b);

  read2 with read4 (b);

  read3 with read4 (b);

  read1-read4 (var2); !constrain residual variances to be equal across time;

  I@0; S@0; Q@0; !set all growth factor variances to 0;
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Homogeneous variances, autoregressive structure

The autoregressive structure allows for observations to be less

related as the observations grow further apart. To maintain

parsimony, the autoregressive structure only estimates a single

covariance parameter ρ. The covariance at lag 1 is equal to ρ,

lag 2’s is equal to ρ
2

, lag 3’s is equal to ρ
3

, and so forth. This

structure requires model constraints to ensure that only the

single ρ is estimated.

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2

σ2ρ σ2

σ2ρ2 σ2ρ σ2

σ2ρ3 σ2ρ2 σ2ρ σ2

2

6

6

4

3

7

7

5

:

data:

  FILE IS [DATA LOCATION];

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1- read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 1;

  read1 with read2 (a1); !all A1 labels are 1 lag apart, A2 are 2 lags, etc.; 

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a1);

  read2 with read4 (a2);

  read3 with read4 (a1);

  read1-read4 (var1); !constrain residual variances to be equal across time;

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same coding scheme as lass 1 with different labels; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b1);

  read2 with read4 (b2);

  read3 with read4 (b1);

  read1-read4 (var2); !constrain residual variances to be equal across time;

  I@0; S@0; Q@0;

Model Constraint:

new(rho1); ! create autoregressive parameter for class 1;

new(rho2); ! create autoregressive parameter for class 2;

a1= rho1; ! 1 lag apart equal rho;

a2= rho1*rho1; ! 2 lags apart equals rho squared;

a3= rho1*rho1*rho1; !3 lags apart equal rho cubed;

b1= rho2; ! same scheme as with a1,a2, and a3 but with rho2 so that Class 2 

is unconstrained;

b2= rho2*rho2;

b3= rho2*rho2*rho2; 
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Homogenous variances, Toeplitz structure

The main idea of a Toeplitz structure is that the covariances at

equivalent lags are equal but that unequal lags are freely esti-

mated. So, the covariances for time points that are one lag

apart are constrained to be the same; the same is true for

covariances of time points that are two lags apart. However,

unlike in an autoregressive structure, the lag 1 covariance is

completely unrelated to the lag 2 covariance (e.g., the lag 2

covariance is not the square of the lag 1 covariance, as with the

autoregressive structure).

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2

σ2ρ1 σ2

σ2ρ2 σ2ρ1 σ2

σ2ρ3 σ2ρ2 σ2ρ1 σ2

2

6

6

4

3

7

7

5

:

data:

  FILE IS [DATA LOCATION];

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 1;

  read1 with read2 (a1); !all A1 labels are 1 lag apart, A2 are 2 lags, etc.;

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a1);

  read2 with read4 (a2);

  read3 with read4 (a1);

  read1-read4 (var1) ; !constrain residual variances to be equal across time;

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same coding scheme as lass 1 with different labels; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b1);

  read2 with read4 (b2);

  read3 with read4 (b1);

  read1-read4 (var2) ; !constrain residual variances to be equal across time;

  I@0; S@0; Q@0; !set all growth factor variances to 0;

!no MODEL CONSTRAINT statement needed because the different lags are not a 

function of each other; 
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Homogeneous variances, unstructured structure

An unstructured matrix is the most flexible but the least par-

simonious option. Every element of the covariance matrix is

uniquely estimated, so if there are many repeated measures or

many latent classes, this can quickly lead to a large number of

parameters. Reaching convergence with an unstructured ma-

trix can be difficult and often requires a very large sample. If

the model converges, it can sometimes provide a good initial

idea for alternative structures that could be more parsimonious

(e.g., if the estimates look approximately equal down the di-

agonals, perhaps an autoregressive or Toeplitz structure could

provide a similar fit with fewer parameters).

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2

σ21 σ2

σ31 σ32 σ2

σ41 σ42 σ43 σ2

2

6

6

4

3

7

7

5

:

data:

  FILE IS [DATA LOCATION];

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 1;

  read1 with read2 ; !list all possible pairwise covariances with NO label 

constraints;

  read1 with read3 ;

  read1 with read4 ;

  read2 with read3 ;

  read2 with read4 ;

  read3 with read4 ;

  read1-read4 (var1);

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 ; !list all possible pairwise covariances with NO label 

constraints;

  read1 with read3 ;

  read1 with read4 ;

  read2 with read3 ;

  read2 with read4 ;

  read3 with read4 ;

  read1-read4 (var2);

  I@0; S@0; Q@0; !set all growth factor variances to 0;
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Homogeneous variances, custom structure

As we mentioned in the Discussion section, the flexibility of

the structural equation modeling framework means that essen-

tially any marginal structure can be specified. The observed

correlation matrix of the four repeated measures is

1

:66 1

:54 :78 1

:45 :76 :80 1

2

6

6

4

3

7

7

5

:

So let’s imagine that the (3, 2), (4, 2), and (4, 3) elements

look close enough to constrain to be equal but the (2, 1), (3, 1),

and (4, 1) elements should be uniquely estimated. The mar-

ginal covariance to be estimated would then be

σ2

ρ1 σ2

ρ3 ρ2 σ2

ρ4 ρ2 ρ2 σ2

2

6

6

4

3

7

7

5

:

This structure has only one additional parameter relative to

the Toeplitz structure, but one could argue that the structure

makes more efficient use of the parameters that are estimated

(provided that the structure is roughly equal in each class).

  %c#1%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 1;

  read1 with read2 (a1); !(2,1) entry – unique estimate;

  read1 with read3 (a3); !(3,1) entry – unique estimate;

  read1 with read4 (a4); !(4,1) entry – unique estimate;

  read2 with read3 (a2); !(3,2) entry – constrained estimate;

  read2 with read4 (a2); !(4,2) entry – constrained estimate;

  read3 with read4 (a2); !(4,3) entry – constrained estimate;

  read1-read4 (var1);

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !(2,1) entry – unique estimate;

  read1 with read3 (b3); !(3,1) entry – unique estimate;

  read1 with read4 (b4); !(4,1) entry – unique estimate;

  read2 with read3 (b2); !(3,2) entry – constrained estimate;

  read2 with read4 (b2); !(4,2) entry – constrained estimate;

  read3 with read4 (b2); !(4,3) entry – constrained estimate;

  read1-read4 (var2);

  I@0; S@0; Q@0; !set all growth factor variances to 0;

data:

  FILE IS [DATA LOCATION];

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;
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General difference with heterogeneous variances

When the variances are uniquely estimated at each time point,

the structure gets a little more complicated to ensure that the

correlation for constrained off diagonals are in fact equal. If

the same structures as the homogeneous case were used, the

correlation could vary for constrained elements depending on

the magnitude of the variance at the two time points of interest

(this can be seen visual by allowing the variances to be

uniquely estimated and requesting the STDXY standardized

output in Mplus—the off-diagonal terms will be constrained

but the correlations will be different to the extent that the

variances differ). Therefore, the square root of the variances

at each time point must be included in the off diagonal ele-

ments to appropriately scale these elements and ensure that all

elements have equal correlations. Heterogeneous variances

require a model constraint is nearly all cases so that elements

are appropriately scaled.

Heterogeneous variances, compound symmetry

For the NLSY data, the marginal covariance matrix for this

structure would be

data:

  FILE IS[DATA LOCATION]

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1% !model for Class 1;

  I S Q| read1@0 read2@1 read3@2 read4@3;!mean structure for Class 1;

  read1 with read2 (a1);!give every covariance pair a unique label;

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a4);

  read2 with read4 (a5);

  read3 with read4 (a6);

  read1 (var1a); !write each individual residual variance with unique label;

  read2 (var2a);

  read3 (var3a);

  read4 (var4a); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same scheme but different labels so Class 2 is 

uniquely estimated and not constrained to Class 1; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b4);

  read2 with read4 (b5);

  read3 with read4 (b6);

  read1 (var1b); !write each individual residual variance with unique label;

  read2 (var2b);

  read3 (var3b);

  read4 (var4b); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;
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a5=rho1*sqrt(var2a)*sqrt(var4a);

a6=rho1*sqrt(var3a)*sqrt(var4a);

!constrain each covariance pair to the class-specific RHO times the standard

deviation of the errors at the two time-points involved in the covariance 

pair;

b1=rho2*sqrt(var1b)*sqrt(var2b);

b2=rho2*sqrt(var1b)*sqrt(var3b);

b3=rho2*sqrt(var1b)*sqrt(var4b);

b4=rho2*sqrt(var2b)*sqrt(var3b);

b5=rho2*sqrt(var2b)*sqrt(var4b);

b6=rho2*sqrt(var3b)*sqrt(var4b);

!Same as above but with the Class 2 parameters;

Model constraint:

New (rho1); ! Rho parameter for Class 1;

New (rho2); ! Rho parameter for Class 2; 

a1=rho1*sqrt(var1a)*sqrt(var2a);

a2=rho1*sqrt(var1a)*sqrt(var3a);

a3=rho1*sqrt(var1a)*sqrt(var4a);

a4=rho1*sqrt(var2a)*sqrt(var3a);
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Heterogeneous variances, autoregressive structure

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2
1

ρσ2σ1 σ2
2

ρ2σ3σ1 ρσ3σ2 σ2
3

ρ3σ4σ1 ρ2σ4σ2 ρσ4σ3 σ2
4

2

6

6

4

3

7

7

5

:

data:

  FILE IS[DATA LOCATION]

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1% !model for Class 1;

  I S Q| read1@0 read2@1 read3@2 read4@3;!mean structure for Class 1;

  read1 with read2 (a1);!give every covariance pair a unique label;

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a4);

  read2 with read4 (a5);

  read3 with read4 (a6);

  read1 (var1a); !write each individual residual variance with unique label;

  read2 (var2a);

  read3 (var3a);

  read4 (var4a); 
  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same scheme but different labels so Class 2 is 

uniquely estimated and not constrained to Class 1; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b4);

  read2 with read4 (b5);

  read3 with read4 (b6);

  read1 (var1b); !write each individual residual variance with unique label;

  read2 (var2b);

  read3 (var3b);

  read4 (var4b); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;

Model constraint:

New (rho1); ! Rho parameter for Class 1;

New (rho2); ! Rho parameter for Class 2; 

a1=rho1*sqrt(var1a)*sqrt(var2a);

a2=rho1*rho1*sqrt(var1a)*sqrt(var3a); !2 rho1 terms for 2 lags;

a3=rho1*rho1*rho1*sqrt(var1a)*sqrt(var4a); ); !3 rho1 terms for 3 lags;

a4=rho1*sqrt(var2a)*sqrt(var3a);
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a5=rho1*rho1*sqrt(var2a)*sqrt(var4a); !2 rho1 terms for 2 lags;

a6=rho1*sqrt(var3a)*sqrt(var4a);

!constrain each covariance pair to the class-specific RHO times the standard 

deviation of the errors at the two time-points involved in the covariance 

pair;

b1=rho2*sqrt(var1b)*sqrt(var2b);

b2=rho2*rho2*sqrt(var1b)*sqrt(var3b); !2 rho2 terms for 2 lags;

b3=rho2* rho2* rho2*sqrt(var1b)*sqrt(var4b); !3 rho2 terms for 3 lags;

b4=rho2*sqrt(var2b)*sqrt(var3b);

b5=rho2* rho2*sqrt(var2b)*sqrt(var4b); !2 rho2 terms for 2 lags;

b6=rho2*sqrt(var3b)*sqrt(var4b);

!Same as above but with the Class 2 parameters;
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Heterogeneous variances, Toeplitz structure

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2
1

ρ1σ2σ1 σ2
2

ρ2σ3σ1 ρ1σ3σ2 σ2
3

ρ3σ4σ1 ρ2σ4σ2 ρ1σ4σ3 σ2
4

2

6

6

4

3

7

7

5

:

data:

  FILE IS[DATA LOCATION]

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1% !model for Class 1;

  I S Q| read1@0 read2@1 read3@2 read4@3;!mean structure for Class 1;

  read1 with read2 (a1);!give every covariance pair a unique label;

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a4);

  read2 with read4 (a5);

  read3 with read4 (a6);

  read1 (var1a); !write each individual residual variance with unique label;

  read2 (var2a);

  read3 (var3a);

  read4 (var4a); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same scheme but different labels so Class 2 is 

uniquely estimated and not constrained to Class 1; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b4);

  read2 with read4 (b5);

  read3 with read4 (b6);

  read1 (var1b); !write each individual residual variance with unique label;

  read2 (var2b);

  read3 (var3b);

  read4 (var4b); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;

Model constraint:

New (rho1a); ! Lag1 rho for Class 1;

New (rho2a); ! Lag2 rho for Class 1; 

New (rho3a); ! Lag2 rho for Class 1;

New (rho1b); ! Lag1 rho for Class 2;

New (rho2b); ! Lag2 rho for Class 2; 

New (rho3b); ! Lag2 rho for Class 2; 
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a1=rho1a*sqrt(var1a)*sqrt(var2a); !Rho1a for 1 lag  apart;

a2=rho2a*sqrt(var1a)*sqrt(var3a); !Rho2a for 2 lags apart;

a3=rho3a*sqrt(var1a)*sqrt(var4a); !Rho3a for 3 lags apart;

a4=rho1a*sqrt(var2a)*sqrt(var3a); !Rho1a for 1 lag  apart;

a5=rho2a*sqrt(var2a)*sqrt(var4a); !Rho2a for 2 lags apart;

a6=rho1a*sqrt(var3a)*sqrt(var4a); !Rho1a for 1 lag  apart;

!constrain each covariance pair to the class-specific RHO for the relevant

lag and multiply by the standard deviation of the errors at the two time-

points involved in the covariance pair;

b1=rho1b*sqrt(var1b)*sqrt(var2b); !Rho1b for 1 lag  apart;

b2=rho2b*sqrt(var1b)*sqrt(var3b); !Rho2b for 2 lags apart;

b3=rho2b*sqrt(var1b)*sqrt(var4b); !Rho3b for 2 lags apart; 

b4=rho1b*sqrt(var2b)*sqrt(var3b); !Rho1b for 1 lag  apart;

b5=rho2b*sqrt(var2b)*sqrt(var4b); !Rho2b for 2 lags apart;

b6=rho1b*sqrt(var3b)*sqrt(var4b); !Rho1b for 1 lag  apart;

!Same as above but with the Class 2 parameters;
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Heterogeneous variances, unstructured structure

For the NLSY data, the marginal covariance matrix for this

structure would be

σ2
1

σ21 σ2
2

σ31 σ32 σ2
3

σ41 σ42 σ43 σ2
4

2

6

6

4

3

7

7

5

:

Because the unstructured structure does not set constraints

in the off-diagonal, transitioning from homogeneous vari-

ances to heterogeneous variances does not have an effect on

how the model is specified. That is, the heterogeneous vari-

ances do not affect the correlation of constrained elements

because there are no constrained elements. The only differ-

ence to the above code for the homogeneous structure is that

the parameter constraint labels (i.e., var1 and var2) need to be

removed from the residual variances. Because there is no other

difference, we will not write out all of the code again with this

one minor alteration.

Heterogeneous variances, custom structure

Again using the observed correlationmatrix of the four repeat-

ed measures, which is

1

:66 1

:54 :78 1

:45 :76 :80 1

2

6

6

4

3

7

7

5

:

If we still wanted to constrain the (3, 2), (4, 2), and (4, 3)

elements but freely estimate the (2, 1), (3, 1), and (4, 1) ele-

ments, while allowing the variances to be heterogeneous, the

marginal covariance to be estimated would then be

σ21
ρ1σ2σ1 σ2

2

ρ3σ3σ1 ρ2σ3σ2 σ2
3

ρ4σ4σ1 ρ2σ4σ2 ρ2σ4σ3 σ2
4

2

6

6

4

3

7

7

5

:

data:

  FILE IS[DATA LOCATION]

   VARIABLE:

        Names are Anti1-anti4 read1-read4 sex momage kidage homecog homeemo;

           Usevariables are read1-read4;

  CLASSES = c(2);

     Missing are .

  ANALYSIS:

  TYPE = MIXTURE;

  STARTS = 50 10;

  STITERATIONS = 100;

  ITERATIONS = 1000;

  SDITERATIONS = 250;

  MITERATIONS = 500;

  MCONVERGENCE = 1E-5;

  MODEL:

  %overall%

  I S Q| read1@0 read2@1 read3@2 read4@3;

  %c#1% !model for Class 1;

  I S Q| read1@0 read2@1 read3@2 read4@3;!mean structure for Class 1;

  read1 with read2 (a1);!give every covariance pair a unique label;

  read1 with read3 (a2);

  read1 with read4 (a3);

  read2 with read3 (a4);

  read2 with read4 (a5);

  read3 with read4 (a6);

  read1 (var1a); !write each individual residual variance with unique label;

  read2 (var2a);

  read3 (var3a);

  read4 (var4a); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;

  %c#2%

  I S Q| read1@0 read2@1 read3@2 read4@3; !mean structure for Class 2;

  read1 with read2 (b1); !same scheme but different labels so Class 2 is 

uniquely estimated and not constrained to Class 1; 

  read1 with read3 (b2);

  read1 with read4 (b3);

  read2 with read3 (b4);

  read2 with read4 (b5);

  read3 with read4 (b6);

  read1 (var1b); !write each individual residual variance with unique label;

  read2 (var2b);

  read3 (var3b);

  read4 (var4b); 

  I@0; S@0; Q@0; !set all growth factor variances to 0;
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New (rho3b); ! (3,1) elements for Class 2;

New (rho4b); ! (4,1) elements for Class 2;

a1=rho1a*sqrt(var1a)*sqrt(var2a); !(2,1) element, Class 1;

a2=rho3a*sqrt(var1a)*sqrt(var3a); !(3,1) element, Class 1;

a3=rho4a*sqrt(var1a)*sqrt(var4a); !(4,1) element, Class 1;

a4=rho2a*sqrt(var2a)*sqrt(var3a); !(3,2) element, Class 1;

a5=rho2a*sqrt(var2a)*sqrt(var4a); !(4,2) element, Class 1;

a6=rho2a*sqrt(var3a)*sqrt(var4a); !(4,3) element, Class 1;

!constrain each covariance pair to the class-specific RHO and multiply by the 

standard deviation of the errors at the two time-points involved in the 

covariance pair;

b1=rho1b*sqrt(var1b)*sqrt(var2b); !(2,1) element, Class 2;

b2=rho3b*sqrt(var1b)*sqrt(var3b); !(3,1) element, Class 2;

b3=rho4b*sqrt(var1b)*sqrt(var4b); !(4,1) element, Class 2; 

b4=rho2b*sqrt(var2b)*sqrt(var3b); !(3,2) element, Class 2;

b5=rho2b*sqrt(var2b)*sqrt(var4b); !(4,2) element, Class 2;

b6=rho2b*sqrt(var3b)*sqrt(var4b); !(4,3) element, Class 2;

!Same as above but with the Class 2 parameters;

Model constraint:

New (rho1a); ! (2,1) element for Class 1;

New (rho2a); ! (3,2), (4,2), and (4,3) element for Class 1;; 

New (rho3a); ! (3,1) elements for Class 1;

New (rho4a); ! (4,1) elements for Class 1;

New (rho1b); ! (2,1) element for Class 2;

New (rho2b); ! (3,2), (4,2), and (4,3) element for Class 2;
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