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Abstract. This paper examines the potential benefits of applying next
best view planning to sequential 3D reconstruction from unordered im-
age sequences. A standard sequential structure-and-motion pipeline is
extended with active selection of the order in which cameras are resec-
tioned. To this end, approximate covariance propagation is implemented
throughout the system, providing running estimates of the uncertainties
of the reconstruction, while also enhancing robustness and accuracy. Ex-
periments show that the use of expensive global bundle adjustment can
be reduced throughout the process, while the additional cost of propa-
gation is essentially linear in the problem size.

Keywords: Structure and motion, covariance propagation, next best
view planning.

1 Introduction

Three-dimensional reconstruction from unordered image sequences is a well-
studied problem in the computer vision literature, see e.g. [1,2,3,4,5]. Part of
the challenge is that little is known about the input data at the outset in terms
of scene coverage or camera calibration. Active sensor planning, on the other
hand, is the problem of finding the optimal input data to a reconstruction algo-
rithm, given full control over image acquisition (see [6] for an overview). In the
photogrammetry literature this is known as the ‘camera network design’ prob-
lem. For example, in [7] a genetic algorithm is used to search a high-dimensional
parameter space of camera placements to find the optimal measurement setup,
given a limited number of cameras. In a serial acquisition process, the ‘next best
view’ (NBV) problem asks from which viewpoint to capture the next image,
given a partial reconstruction, to minimize some objective such as the recon-
struction error. NBV planning is most effective when the user has full control
over image acquisition, and has been applied to vision metrology using cameras
mounted on robotic arms [8,9], and autonomous robot exploration [10,11].

This paper applies view planning to the unordered image reconstruction prob-
lem; although we are not free to choose any viewpoint, there is usually a choice
between a subset of the images at every step of a sequential algorithm. The

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part II, LNCS 7573, pp. 545–556, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.maths.lth.se


546 S. Haner and A. Heyden

aim is to choose the image giving the smallest error, which we approximate as
the trace of the camera covariance matrix times the reprojection error. To be
able to determine the covariance, it is necessary to know the uncertainty of the
observed geometry. In the following sections, it is shown how this is achieved
by propagating covariances when resectioning cameras and triangulating points,
and how as a side effect the algorithms gain robustness and better approximate
the maximum likelihood estimate.

2 Estimation from Uncertain Geometry

The cornerstones of sequential structure-and-motion are triangulation and cam-
era pose estimation. Usually, one attempts to find the maximum likelihood so-
lution given noisy image measurements, but assuming that all other parameters
are known exactly. This is of course rarely the case, since points and cameras
are triangulated and resectioned using noisy data. Below, we derive algorithms
that also take the uncertainty of the 3D structure or camera parameters into
account.

2.1 Pose Estimation

Consider the problem of camera pose estimation givenN 3D point coordinatesX
and their measured projections in one image, x̃. Assuming there are errors in the
image measurements, the problem is to find the maximum likelihood solution,
i.e. the camera parameters θ∗ satisfying

θ∗ = argmax
θ

L(θ) , (1)

where

L(θ) = L(θ | x̃, X) = p(x̃ | θ,X) (2)

is the likelihood function. In this formulation it is assumed that the structure pa-
rameters X are precisely known. More generally, given a probability distribution
of X , the problem is to maximize

L(θ) =

∫

R3N

p(x̃ | θ,X)p(X) dX . (3)

We restrict our attention to the case of Gaussian distributions. Then we have

L(θ) ∝

∫

R3N

e−‖x̃−f(X,θ)‖2
R · e−‖X−X̄‖2

Q dX , (4)

where f(X, θ) is the projection of the points X using camera parameters θ, R
the measurement error covariance, Q and X̄ are the covariance matrix and mean
of the distribution of X and ‖y‖2Σ = y⊤Σ−1y the squared Mahalanobis distance.
Next, we project the distribution ofX onto the image plane, by integrating along
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the light rays. Formally, for a given θ we parametrize each 3D point by its image
projection x = f(X, θ) and depth ρ, so that

L(θ) ∝

∫

R2N

e−‖x̃−x‖2
R

(
∫

RN

e−‖(x,ρ)−X̄‖2
Q dρ

)

dx . (5)

The right-hand factor is a distribution on the 2N -dimensional generalized image
plane, and may be seen as the projection of a random variable, i.e. f

(

N (X̄,Q), θ
)

.

By Taylor expansion about X̄, f can be approximated by f̃(X, θ) = f(X̄, θ) +
J(X − X̄), and for affine functions f̃

(

N (µ,Σ), θ
)

= N
(

f̃(µ, θ), JXΣJ⊤
X

)

with

JX = ∂f
∂X

∣

∣

θ
. We now have

L(θ) ∝∼

∫

R2N

e−‖x̃−x‖2
R · e

−‖f(X̄,θ)−x‖2

JQJ⊤ dx , (6)

which is just the convolution N (x̃, R) ∗ N (0, JQJ⊤) = N (x̃, R+ JQJ⊤). Maxi-
mizing

L(θ) ∝∼ e
−‖x̃−f(X̄,θ)‖2

R+JQJ⊤ (7)

is then equivalent to minimizing

− logL(θ) ∝∼ ‖x̃− f(X̄, θ)‖2R+JQJ⊤ , (8)

which can be solved using an iteratively reweighted nonlinear least-squares algo-
rithm. In fact, only a minor modification to a standard algorithm for minimizing
the reprojection error is required. For example, a Levenberg-Marquardt opti-
mization loop would be modified to

while not converged do

· · ·
W ← (R+ JXQJ⊤

X)−1

δθ ← (J⊤
θ WJθ + λI)−1J⊤

θ Wb
· · ·

end while

where Jθ = ∂f
∂θ

∣

∣

θ
and JX as above. After convergence, the covariance matrix

of the recovered camera parameters θ∗ can be estimated by the inverse of the
Hessian matrix evaluated at the minimum, Σθ ≈ (Jθ∗W ∗J⊤

θ∗)−1 [12,13].
Of course, a good initial guess is required to start the iterative algorithm,

and can be obtained using standard minimal or linear solvers. The general effect
of taking the distribution of X into account is to give more weight to well-
determined 3D points than uncertain ones when finding the camera pose.

2.2 Triangulation

Handling uncertainty in camera parameters when triangulating 3D structure
is completely analogous to the pose estimation case. The linearized problem
formulation is to find

θ∗ = argmin
θ

‖x̃− f(θ, P̄ )‖2R+JSJ⊤ , (9)
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Fig. 1. Resectioning: the uncertainties of the 3D points are projected onto the image
plane and convolved with the image measurement uncertainty giving the reprojection
error metric. Note that the projections are not necessarily independent; however, in
this work inter-point covariances are discarded for computational reasons.

where θ now represents the 3D structure, P̄ is the mean of the distribution of
the cameras with covariance S and J = ∂f

∂P

∣

∣

θ
.

2.3 Complexity

The introduction of the weight matrix W in the algorithms above inevitably
incurs extra computational costs. In particular, if the input variables are corre-
lated, W will be a full matrix and the natural sparsity of the problems is lost. To
mitigate this, we will assume no correlation between pairs of cameras or points,
so that W is block diagonal. Such simplification is also necessary since the full
covariance matrix of even a moderately sized reconstruction problem would oc-
cupy hundreds of gigabytes of memory. Furthermore, it may not be necessary
to recompute W every iteration, since the projection is not expected to change
significantly given a good initialization.

3 Covariance Propagation

The proposed algorithms open the possibility of covariance propagation through-
out the reconstruction process. Uncertainties in 3D points are transferred to
uncertainty in resectioned cameras, which in turn transfer uncertainty to trian-
gulated points, and so on. In this manner, a rough estimate of the covariances
is available at any time and can be used, for example, to improve reconstruc-
tion accuracy and for next best view planning, which we exploit to reduce error
accumulation.

Below we detail a system for 3D reconstruction from unordered image se-
quences and show the benefits that can be gained.



Covariance Propagation and NBV Planning for 3D Reconstruction 549

3.1 Selecting the Seed

In choosing the set of images on which to initialize the reconstruction, we strive
for the following: the initial reconstruction should be stable, contain many struc-
ture points and it should be near the center of the camera graph (the graph with
each camera a vertex and edges between cameras observing common features).
The latter is motivated by the fact that error accumulation is a function of the
distance from the seed; if the ‘degrees of separation’ from the seed is kept low, er-
ror accumulation can be minimized. We therefore wish to minimize the distance
of every camera to the seed. For our purposes we define the center as any vertex
of the camera connectivity graph with minimal farness, the sum of shortest dis-
tances from the node to all others. We define the edge weights of the graph as
1/max(0, nc − 4), where nc is the number of observed points common to both
cameras. This heuristic, while ignoring the actual two-view geometry, is based on
the assumption that cameras sharing many observed points are well-determined
relative to each other. The maximum imposes a 5 point overlap threshold, needed
to determine relative motion between views. Now, all shortest paths in the graph
can be computed and summed for each camera, the k lowest scoring yielding a
set of candidate images. For each candidate, an adjacent view with a balance
between many common image points and good parallax is selected as in [1], i.e.
each pairing is scored according to the proportion of outliers to a homography
fit. The top-scoring pair is selected, and standard two-view reconstruction is
performed, followed by bundle adjustment.

In experiments, the effect of choosing a seed near the center of the graph turns
out to be relatively small, so this step is not essential.

3.2 Fixing the Gauge

Reconstruction from image measurements only is subject to global translation,
rotation and scale ambiguity. Unlike [14], which measured pairwise covariances
in local coordinate systems, we need globally referenced covariances and so must
compute these for the seed reconstruction. For the covariances to be defined we
must fix the gauge, especially the scale, since the dimension of the nullspace of
the Hessian matches the number of degrees of freedom of the system. From a
theoretical standpoint, taking the pseudoinverse of the unconstrained Hessian
is the most satisfying solution [12,13], however it can be computationally very
expensive if the seed views share many points (i.e. > 1000). An alternative
approach is to constrain the parameters of the system by adding penalties to
the cost function, making the Hessian full rank so it can be inverted without
finding an SVD. Different constraints lead to somewhat different estimates of the
covariance; one way is to lock the first camera and impose a distance constraint
on the mean of the structure points, as was done in [14], or one can simply fix the
distance between the first and second camera. The first prior gives results closer
to the pseudoinverse, but also destroys the sparsity of the Hessian matrix making
inversion more expensive. In cases where the pseudoinverse is too expensive we
choose the second option which preserves sparsity.
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After fixing the scale, there is still a difficulty in quantifying just how large
an uncertainty is, since it must be put in relation to the overall size of the
reconstruction. The scale is unknown in the beginning, since there is no guarantee
that the distance between the seed cameras is representative of the whole scene.
This has implications for the various outlier rejection thresholds used in the
reconstruction pipeline.

4 Next Best View Planning

View planning in a sequential reconstruction process aims to actively choose
the most favorable sensor configuration (i.e. camera position and orientation)
to achieve a certain goal, in this case geometric accuracy. In each iteration, we
can choose which camera to resection among those observing a sufficient num-
ber of triangulated points. Usually, the camera observing the largest number of
triangulated points is chosen first. However, if the geometry is such that the
pose is poorly determined, triangulations using the image will have larger er-
rors, propagating to subsequently resectioned cameras, etc. It therefore makes
sense to minimize the error accumulation in every step. To this end, we propose
to select the camera with lowest estimated reconstruction error, by exhaustive
search among candidate images. The covariance is computed by first resection-
ing the camera using a linear or minimal solver and taking the inverse of the
Hessian, Σcam ≈ (JθWJ⊤

θ )−1 as defined in section 3. As a scalar measure of
reconstruction error we use trace(Σcam) · ǫrp, where ǫrp is the mean reprojec-
tion error. This turns out to give better results than the covariance alone; a
small estimated covariance does not necessarily imply a low reprojection error,
and a well-determined camera should ideally have both. Note that the score can
be cached for each camera between iterations and need only be recomputed if
more points in the camera’s view have been triangulated. While the number of
views that need to be resectioned in each iteration is dependent on the particular
data set and could theoretically grow with the number of triangulated points,
in practice this number is found to be approximately constant throughout the
reconstruction process and typically between 10 and 50.

5 Reconstruction Pipeline

We apply NBV planning and covariance propagation to the problem of recon-
struction from unordered image collections. We will assume that matching and
tracking of image features has been performed and is outlier free. If not, the
proposed method is easily integrated with outlier detection schemes such as
RANSAC. The algorithm is mainly standard fare:

1. Find initial seed views (section 3.1).
2. Reconstruct and bundle adjust the seed geometry.
3. Compute the covariance of the seed (section 3.2).
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4. Choose a camera to resect following section 4. Resect using a linear method;
if it fails (i.e. large reprojection error or points behind the camera) try an
L∞ formulation [15] instead. If that also fails, choose another camera and try
again. Else, refine the camera pose by minimizing (8) and store its covariance.

5. Triangulate all points seen by at least two resectioned cameras using a linear
method. Compute an approximate uncertainty by evaluating the Hessian of
the standard reprojection error and taking the trace of the inverse. Well-
determined points, i.e. with low covariance and reprojection error, as speci-
fied by thresholds, are kept and further refined by minimizing (9). Store the
covariance derived from this reprojection error.

6. If possible, goto 4) and find the next view, else terminate.

Note that global optimization is only performed on the seed. In real use, bundle
adjustment cannot be avoided, but as one aim of this algorithm is to reduce the
need for this relatively expensive operation, this step has been left out in the
experiments that follow to illustrate the reduction in error accumulation possible
with the proposed method.

6 Experiments

Figure 2 shows a simple synthetic example of the dependence on the seed of the
propagated covariances. Although the relative uncertainties between all cameras
remain the same in our linearized Gaussian propagation model, in reality the
reconstruction errors depend heavily on the path taken.

Fig. 2. Toy example of camera array observing a wall illustrating the covariance esti-
mation results depending on which seed is chosen (from left to right, cameras 1 and 2,
19 and 20, 39 and 40). The points and cameras are color coded by the trace of their
covariance, with green through blue to red for increasing uncertainty. Choosing the
seed in the middle reduces the maximum camera uncertainty with respect to the seed.



552 S. Haner and A. Heyden

Fig. 3. Resulting point cloud reconstruction of the ‘Spilled blood’ dataset using the
proposed algorithm, color coded by estimated covariance. No bundle adjustment has
been performed. The dataset has 781 images, 162,521 points and 2,541,736 feature
measurements.
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Fig. 4. Comparison between the proposed algorithm and a ‘plain’ method on the
‘Spilled blood’ dataset. In the plain method the standard reprojection error is min-
imized instead, and the next camera is chosen by the maximum overlap principle.
Running times were 22 and 13 min respectively. There is no absolute scale on the top
graph since it depends on the overall scale of the reconstruction, which is arbitrary.

Next, the algorithm is applied to a dataset extracted from photos of the
‘Spilled blood’ church in St. Petersburg. The reconstruction and a comparison
with a standard method is shown in figures 3 and 4. The comparison shows
the mean standard reprojection error and the ground truth deviation, defined
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Fig. 5. Results for the Trafalgar dataset (256 images). Running times were 83 and 138
s respectively.

Fig. 6. Resulting point cloud reconstruction of the Trafalgar dataset

as the mean distance of each triangulated point from its ground truth position,
after the two point clouds have been aligned using a Procrustes transformation.
The ‘ground truth’ in this case has been obtained from the system described in
[4]. The plain method, without covariance propagation or NBV planning, runs
into trouble around iteration 300 and does not manage to resection all cameras,
whereas the proposed algorithm does and is generally more robust and accurate.
A similar comparison is made for the ‘Trafalgar’ dataset of [16] in figure 5.

Finally, we compare three variants of the proposed algorithm on the Lund
Cathedral dataset. The covariance propagation and next best view-planning can
be used independently, i.e. the next image can be chosen by maximum overlap
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while propagating covariances, or the next view can be chosen based on camera
uncertainty calculated using zero point covariances, with no propagation. As
figure 7 shows, using NBV planning alone doesn’t work well at all and the process
breaks down, like the plain method. Propagation without planning works almost
as well as both combined, and is probably the greatest contributing factor.

(a) Plain (b) NBV, no propagation

(c) Propagation only (d) Propagation and NBV

Fig. 7. Lund Cathedral dataset (1060 images, 45770 points, 408625 projections) re-
constructed using the baseline algorithm, next best view-planning only without propa-
gating covariances, propagating covariances but using the maximum overlap principle,
and the proposed algorithm, using both NBV planning and propagation
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Fig. 8. Error plots for the Lund Cathedral dataset

6.1 Bundle Adjustment

In real use, bundle adjustment would be performed locally and/or globally at
regular intervals during the reconstruction process. Unfortunately, after bundling
the estimated covariances are no longer valid and need to be updated. Inverting
the whole BA Hessian matrix is infeasible, but it is possible to compute only the
block diagonal of the inverse quite efficiently, given the full covariance of only
the camera parameters. The dominating cost is computing this as the inverse of
the Schur complement of the camera block of the Hessian, a cost cubic in the
number of cameras. As more cameras are resectioned, updating the covariances
this way eventually becomes time-consuming and thus pointless.

Preliminary results indicate that the proposed algorithm still outperforms the
standard method on datasets with outliers, where regular local bundle adjust-
ment with a robust cost function and outlier removal is applied, even without
updating the covariances at all. Nevertheless, an efficient mechanism for com-
puting the new covariances is still needed and is the subject of future research.

7 Conclusion

The proposed method increases robustness to errors such as poorly resectioned
cameras and poorly triangulated points, reduces error accumulation and also
provides estimates of reconstruction accuracy which could be further processed
for outlier detection etc. This comes at a cost of up to a twofold increase in run-
ning time. However, this cost is practically linear in the problem size, whereas
iterated bundle adjustment costs between O(n3) and O(n4), depending on prob-
lem structure. Thus, trading less frequent bundling for covariance propagation
and next best view planning should pay off for large problems.
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