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Covariance Structure Maximum Likelihood

Estimates in Compound Gaussian Noise :

Existence and Algorithm Analysis

Frédéric Pascal, Yacine Chitour, Jean-Philippe Ovarlez, Philippe Forster and Pascal Larzabal

Abstract

Recently, a new adaptive scheme [1], [2] has been introduced for covariance structure matrix estima-

tion in the context of adaptive radar detection under non Gaussian noise. This latter has been modelled

by compound-Gaussian noise, which is the product c of the square root of a positive unknown variable

τ (deterministic or random) and an independent Gaussian vector x, c =
√
τ x.

Because of the implicit algebraic structure of the equation to solve, we called the corresponding

solution, the Fixed Point (FP) estimate. When τ is assumed deterministic and unknown, the FP is the

exact Maximum Likelihood (ML) estimate of the noise covariance structure, while when τ is a positive

random variable, the FP is an Approximate Maximum Likelihood (AML).

This estimate has been already used for its excellent statistical properties without proofs of its

existence and uniqueness. The major contribution of this paper is to fill these gaps. Our derivation is

based on some Likelihood functions general properties like homogeneity and can be easily adapted

to other recursive contexts. Moreover, the corresponding iterative algorithm used for the FP estimate

practical determination is also analyzed and we show the convergence of this recursive scheme, ensured

whatever the initialization.
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France (e-mail: jean-philippe.ovarlez@onera.fr).
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I. INTRODUCTION

The basic problem of detecting a complex signal embedded in an additive Gaussian noise has been

extensively studied these last decades. In these contexts, adaptive detection schemes required an estimate

of the noise covariance matrix generally obtained from signal free data traditionally called secondary

data or reference data. The resulting adaptive detectors, as those proposed by [7] and [8], are all based

on the Gaussian assumption for which the Maximum Likelihood (ML) estimate of the covariance matrix

is given by the sample covariance matrix. However, these detectors may exhibit poor performance when

the additive noise is no more Gaussian [6].

This is the case in radar detection problems where the additive noise is due to the superposition of

unwanted echoes reflected by the environment and traditionally called the clutter. Indeed, experimental

radar clutter measurements showed that these data are non-Gaussian. This fact arises for example when

the illuminated area is non-homogeneous or when the number of scatterers is small. This kind of non-

Gaussian noises is usually described by distributions such as K-distribution, Weibull, ... Therefore, this

non-Gaussian noise characterization has gained a lot of interest in the radar detection community.

One of the most general and elegant non-Gaussian noise model is the compound-Gaussian process

which includes the so-called Spherically Invariant Random Vectors (SIRV). These processes encompass

a large number of non-Gaussian distributions mentioned above and include of course Gaussian processes.

They have been recently introduced, in radar detection, to model clutter for solving the basic problem

of detecting a known signal. This approach resulted in the adaptive detectors development such as the

Generalized Likelihood Ratio Test-Linear Quadratic (GLRT-LQ) in [1], [2] or the Bayesian Optimum

Radar Detector (BORD) in [3], [4]. These detectors require an estimate of the covariance matrix of the

noise Gaussian component. In this context, ML estimates based on secondary data have been introduced

in [11], [12], together with a numerical procedure supposed to obtain them. However, as noticed in [12]

p.1852, ”existence of the ML estimate and convergence of iteration [...] is still an open problem”.

To the best of our knowledge, the proofs of existence, uniqueness of the ML estimate and convergence

of the algorithm proposed in [1] have never been established. The main purpose of this paper is to fill

these gaps.

The paper is organized as follows. In the Section II, we present the two main models of interest in

our ML estimation framework. Both models lead to ML estimates which are solution of a transcendental
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equation. Section IV presents the main results of this paper while a proofs outline is given in Section V:

for presentation clarity, full demonstrations are provided in Appendices. Finally, Section VI gives some

simulations results which confirm the theoretical analysis.

II. STATE OF THE ART AND PROBLEM FORMULATION

A compound-Gaussian process c is the product of the square root of a positive scalar quantity τ

called the texture and a m-dimensional zero mean complex Gaussian vector x with covariance matrix

M = E(xxH) usually normalized according to Tr(M) = m, where H denotes the conjugate transpose

operator and Tr(.) stands for the trace operator:

c =
√
τ x . (1)

This general model leads to two distinct approaches: the well-known SIRV modeling where the texture

is considered random and the case where the texture is treated as an unknown nuisance parameter.

Generally, the covariance matrix M is not known and an estimate M̂ is required for the Likelihood

Ratio (LR) computation. Classically, such an estimate M̂ is obtained from Maximum Likelihood (ML)

theory, well known for its good statistical properties. In this problem, estimation of M must respect the

previous M-normalization, Tr(M̂) = m. This estimate M̂ will be built using N independent realizations

of c denoted ci =
√
τi xi for i = 1, . . . , N .

It straightforwardly appears that the Likelihood will depend on the assumption relative to texture. The

two most often met cases are presented in the two following subsections.

A. SIRV case

Let us recap that a SIRV [5] is the product of the square root of a positive random variable τ (texture)

and a m-dimensional independent complex Gaussian vector x (speckle) with zero mean normalized

covariance matrix M. This model led to many investigations [1], [2], [3], [4].

To obtain the ML estimate of M, with no proofs of existence and uniqueness, Gini et al. derived in

[12] an Approximate Maximum Likelihood (AML) estimate M̂ as the solution of the following equation

M̂ = f(M̂) , (2)

where f is given by

f(M̂) =
m

N

N∑

i=1

ci cHi

cHi M̂
−1

ci

. (3)
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B. Unknown deterministic τ case

This approach has been developed in [13] where the τi’s are assumed to be unknown deterministic

quantities. The corresponding Likelihood function to maximize with respect to M and τi’s, is given by

pC(c1, . . . , cN ;M, τ1, . . . , τN ) =
1

(π)mN |M|N
N∏

i=1

1

τmi
exp

(
−cHi M−1 ci

τi

)
, (4)

where |M| denotes the determinant of matrix M.

Maximization with respect to τi’s, for a given M, leads to τ̂i =
cHi M−1 ci

m
, and then by replacing the

τi’s in (4) by their ML estimates τ̂i’s , we obtain the reduced likelihood function

p̂C(c1, . . . , cN ;M) =
1

(π)mN |M|N
N∏

i=1

mm exp(−m)

(cHi M−1 ci)m
.

Finally, maximizing p̂C(c1, . . . , cN ;M) with respect to M is equivalent to maximize the following

function F , written in terms of xi’s and τi’s thanks to (1)

F (M) =
1

|M|N
N∏

i=1

1

τmi (xHi M−1 xi)m
. (5)

By cancelling the gradient of F with respect to M, we obtain the following equation

M̂ = f(M̂) , (6)

where f is given again by (3) and whose solution is the Maximum Likelihood Estimator in the deter-

ministic texture framework.

Note that f can be rewritten from (1) as

f(M̂) =
m

N

N∑

i=1

xi xHi

xHi M̂
−1

xi

. (7)

Equation (7) shows that f(M̂) does not depend on the texture τ but only on the Gaussian vectors xi’s.

C. Problem Formulation

It has been shown in [12], [13] that estimation schemes developed under both the stochastic case

(Section II-A) and the deterministic case (Section II-B) lead to the analysis of the same equation ((2) and

(6)), whose solution is a fixed point of f (7). A first contribution of this paper is to establish the existence
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and the uniqueness, up to a scalar factor, of this fixed point M̂FP which is is the Approximate Maximum

Likelihood (AML) estimate under the stochastic assumption and the exact ML under the deterministic

assumption.

Moreover, a second contribution is to analyze an algorithm based on the key equation (6), which

defines M̂FP . The convergence of this algorithm will be established. Then, numerical results of Section

VI will illustrate the computational efficiency of the algorithm for obtaining the FP estimate.

Finally, the complete statistical properties investigation of the corresponding ML estimate will be

addressed in a forthcoming paper.

III. STATEMENT OF THE MAIN RESULT

We first provide some notations. Let m and N be positive integers such that m < N . We use R
+∗

to denote the set of strictly positive real scalars, Mm(C) to denote the set of m×m complex matrices,

and G, the subset of Mm(C) defined by the positive definite Hermitian matrices. For M ∈ Mm(C) ,

||M|| := Tr
(

MHM

)1/2
the Frobenius norm of M which is the norm associated to an inner product on

Mm(C). Moreover, from the statistical independence hypothesis of the N complex m-vectors xi, it is

natural to assume the following

(H): Let us set xi = x
(1)
i + jx

(2)
i . Any 2m distinct vectors taken in






x

(1)
1

x
(2)
1


 , . . . ,


x

(1)
N

x
(2)
N


 ,


−x

(2)
1

x
(1)
1


 , . . . ,


−x

(2)
N

x
(1)
N







are linearly independent.

From (5) and (7), one has

F : G −→ R
+∗

M −→ F (M) =
1

|M|N
N∏

i=1

1

τmi

(
xHi M−1 xi

)m,

and

f : G −→ G

M −→ f(M) =
m

N

N∑

i=1

xi xHi

xHi M−1 xi
.
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Theorem III.1

(i) There exists M̂FP ∈ G with unit norm such that, for every α > 0, f admits a unique fixed point of

norm α > 0 equal to α M̂FP . Moreover, F reaches its maximum over G only on L̂MFP

, the open

half-line spanned by M̂FP .

(ii) Let (S)dis be the discrete dynamical system defined on D by

(S)dis : Mk+1 = f(Mk). (8)

Then, for every initial condition M0 ∈ G, the resulting sequence (Mk)k≥0 converges to a fixed point

of f , i.e. to a point where F reaches its maximum;

(iii) Let (S)cont be the continuous dynamical system defined on G by

(S)cont : Ṁ = ∇F (M). (9)

Then, for every initial condition M(0) = M0 ∈ G, the resulting trajectory M(t), t ≥ 0, converges

when t tends to +∞, to the point ‖M0‖ M̂FP , i.e. to a point where F reaches its maximum.

Consequently to (i), M̂FP is the unique positive definite m×m matrix of norm one satisfying

M̂FP =
m

N

N∑

i=1

xi xHi

xHi M̂
−1

FP xi

. (10)

Proof: The same problem and the same result can be formulated with real numbers instead of

complex numbers and symmetric matrices instead of hermitian matrices, while hypothesis (H) becomes

hypothesis (H2) stated below (just before Remark IV.1). The proof of Theorem III.1 breaks up into two

stages. We first show in Appendix I how to derive Theorem III.1 from the corresponding real results.

Then, the rest of the paper is devoted to the study of the real case.

IV. NOTATIONS AND STATEMENTS OF THE RESULTS IN THE REAL CASE

A. Notations

In this paragraph, we introduce the main notations of the paper for the real case. Notations already

defined in the complex case are translated in the real one. Moreover, real results will be valid for every

integer m. For every positive integer n, J1, nK denotes the set of integers {1, . . . , n}. For vectors of Rm,

the norm used is the Euclidean one. Throughout the paper, we will use several basic results on square

matrices, especially regarding diagonalization of real symmetric and orthogonal matrices. We refer to

[14] for such standard results.

We use Mm(R) to denote the set of m×m real matrices, SO(m) to denote the set of m×m orthogonal

matrices and M⊤, the transpose of M. We denote the identity matrix of Mm(R) by Im.
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We next define and list the several sets of matrices used in the sequel:

∗ D, the subset of Mm(R) defined by the symmetric positive definite matrices;

∗ D, the closure of D in Mm(R), i.e. the subset of Mm(R) defined by the symmetric non negative

matrices;

∗ For every α > 0,





D(α) = {M ∈ D| ||M|| = α}
D(α) =

{
M ∈ D| ||M|| = α

} .

It is obvious that D(α) is compact in Mm(R).

For M ∈ D, we use LM to denote the open-half line spanned by M in the cone D, i.e. the set of points

λM, with λ > 0. Recall that the order associated with the cone structure of D is called the Loewner

order for symmetric matrices of Mm(R) and is defined as follows. Let A,B be two symmetric m×m

real matrices. Then A ≤ B (A < B respectively) means that the quadratic form defined by B − A is

non negative (positive definite respectively), i.e., for every non zero x ∈ R
m, x⊤ (A − B) x ≤ 0, (> 0

respectively). Using that order, one has M ∈ D (∈ D respectively) if and and only if M > 0 (M ≥ 0

respectively).

As explained in Appendix I, we will study in this section the applications F and f (same notations

as in the complex case) defined as follows:

F : D −→ R
+∗

M −→
1

|M|N
N∏

i=1

1

τmi

(
x⊤i M−1 xi

)m,

and

f : D −→ D

M −→
m

N

N∑

i=1

xi x⊤i

x⊤i M−1 xi
.

Henceforth, F and f stay for the real formulation. In the above, the vectors (xi), 1 ≤ i ≤ N , belong to

R
m and verify the next two hypothesis:

• (H1) : ‖xi‖ = 1, 1 ≤ i ≤ N ;

• (H2) : For any m two by two distinct indices i(1) < ... < i(m) chosen in J1, NK, the vectors

xi(1), . . . , xi(m) are linearly independent.

Consequently, the vectors c1, . . . , cm verify (H2).

Hypothesis (H1) stems from the fact that function f does not depend on xi’s norm.

Let us already emphasize that hypothesis (H2) is the key assumption for getting all our subsequent

results. Hypothesis (H2) has the following trivial but fundamental consequence that we state as a remark.
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Remark IV.1

For every n vectors xi(1), . . . , xi(n) (respectively ci(1), . . . , ci(n)) with 1 ≤ n ≤ m, 1 ≤ i ≤ N , the vector

space generated by xi(1), . . . , xi(n) (respectively ci(1), . . . , ci(n)) has dimension n.

In the sequel, we use fn, n ≥ 1, to denote the n-th iterate of f i.e., fn := f ◦ ... ◦ f , where f is

repeated n times. We also adopt the following standard convention f0 := IdD.

The two functions F and f are related by the following relation, which is obtained after an easy

computation. For every M ∈ D, let ∇F (M) be the gradient of F at M ∈ D i.e. the unique symmetric

matrix verifying, for every matrix M ∈ S ,

∇F (M) = N F (M)M−1
(
f(M)− M

)
M−1.

Clearly M is a fixed point of f if and only if M is a critical point of the vector field defined by ∇F on

D.

B. Statements of the results

The goal of this paper is to establish the following theorems whose proofs are outlined in the next

Section.

Theorem IV.1

There exists M̂FP ∈ D with unit norm such that, for every α > 0, f admits a unique fixed point of norm

α > 0 equal to α M̂FP . Moreover, F reaches its maximum over D only on L̂MFP

, the open half-line

spanned by M̂FP .

Consequently, M̂FP is the unique positive definite m×m matrix of norm one satisfying

M̂FP =
m

N

N∑

i=1

xi x⊤i

x⊤i M̂
−1

FP xi

. (11)

Remark IV.2

Theorem IV.1 relies on the fact that F reaches its maximum on D. Roughly speaking, that issue is proved

as follows. The function F is continuously extended by the zero function on the boundary of D, excepted

on the zero matrix. Since F is positive and bounded on D, we conclude. Complete argument is provided in

Appendix II.

As a consequence of Theorem IV.1, one obtains the next result.
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Theorem IV.2

• Let (S)dis be the discrete dynamical system defined on D by

(S)dis : Mk+1 = f(Mk). (12)

Then, for every initial condition M0 ∈ D, the resulting sequence (Mk)k≥0 converges to a fixed point of f ,

i.e. to a point where F reaches its maximum;

• Let (S)cont be the continuous dynamical system defined on D by

(S)cont : Ṁ = ∇F (M). (13)

Then, for every initial condition M(0) = M0 ∈ D, the resulting trajectory M(t), t ≥ 0, converges, when t

tends to +∞, to the point ‖M0‖ M̂FP , i.e. to a point where F reaches its maximum.

The last theorem can be used to characterize numerically the points where F reaches its maximum and

the value of that maximum.

Notice that algorithm defined by (12) does not allow the control of the FP norm. Therefore, for practical

convenient, we propose a slightly modified algorithm in which the M-normalization is applied at each

iteration. This is summarized in the following corollary:

Corollary IV.1

The following scheme

M′
k+1 =

f(M′
k)

Tr
(
f(M′

k)
). (14)

yields the matrices sequence {M′
0, . . . ,M′

k} which is related to the matrices sequence {M0, . . . ,Mk},

provided by (12), by, for 1 ≤ i ≤ k ,

M′
i =

Mi

Tr(Mi)
.

This algorithm converges to M̂FP up to a scaling factor which is:
1

Tr(M̂FP )
.

As a consequence of Theorem IV.1, we can prove a matrix inequality which is interesting on its

own. It simply expresses that the Hessian computed at a critical point of F is non positive. We also

provide an example showing that, in general, the Hessian is not definite negative. Therefore, in general,

the convergence rate to the critical points of F for the dynamical systems (S)dis and (S)cont is not

exponential.
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Proposition IV.1

Let m,N be two positive integers with m < N and x1, . . . , xN be unit vectors of Rm subject to (H2) and

such that

m

N

N∑

i=1

xi x⊤i = Im. (15)

Then, for every matrix M of Mm(R), we have

m

N

N∑

i=1

(x⊤i M xi)
2 ≤ ‖M‖2. (16)

Assuming Theorem IV.1, the proof of the proposition is short enough to be provided next.

We may assume M to be symmetric since it is enough to prove the result for
(
M + MT

)
/2, the

symmetric part of M. Applying Theorem IV.1, it is clear that the function F associated to the xi’s

reaches its maximum over D at Im. The expression of HIm
, the Hessian of F at Im is the following.

For every symmetric matrix M, we have

HIm
(M,M) = N F (Im)

(m
N

N∑

i=1

(x⊤i M xi)
2 − ‖M‖2

)
.

Since HIm
is non positive, (16) follows. Note that a similar formula can be given if, instead of (15), the

xi’s verify the more general equation (11).

Because of the homogeneity properties of F and f and in order to prove that the rates of convergence

of both (S)dis and (S)cont are not exponential, one must prove that the Hessian HIm
is not negative

definite on the orthogonal to Im in the set of all symmetric matrices. The latter is simply the set of

symmetric matrices with null trace. We next provide a numerical example describing that situation. Here,

m = 3, N = 4 and

x1 =




2
√
2

3

0

1

3




, x2 =




−
√
2

3√
2

√
3

1

3




, x3 =




−
√
2

3

−
√
2

√
3

1

3




, x4 =




0

0

1


 .

Then, hypotheses (H1), (H2) and (15) are satisfied. Moreover, it is easy to see that, for every diagonal

matrix D, we have equality in (16).

V. PROOFS OUTLINE

In that Section, we give Theorem IV.1 proof and Theorem IV.2 one. Each proof is decomposed in a

sequence of lemmas and propositions whose arguments are postponed in the Appendices.
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A. Proof of Theorem IV.1

Theorem conclusions are the consequences of several propositions whose statements are listed below.

First of all, it is clear that F is homogeneous of degree zero and f is homogeneous of degree one,

i.e., for every λ > 0 and M ∈ D, one has

F (λM) = F (M), f(λM) = λf(M).

The first proposition is the following.

Proposition V.1

The supremum of F over D is finite and is reached at a point M̂FP ∈ D with ‖M̂FP‖ = 1. Therefore, f

admits the open-half line L̂MFP

as fixed points.

Proof: See Appendix II

It remains to show that there are no other fixed points of f except L̂MFP

. For that purpose, one must

study the function f . We first establish the following result.

Proposition V.2

The function f verifies the following properties.

• (P1) : For every M,Q ∈ D, if M ≤ Q, then f(M) ≤ f(Q) (also true with strict inequalities);

• (P2) : for every M,Q ∈ D, then

f(M + Q) ≥ f(M) + f(Q), (17)

and equality occurs if and only if M and Q are colinear.

Proof: See Appendix III

The property of f described in the next proposition turns out to be basic for the proofs of both theorems.

Proposition V.3

The function f is eventually strictly increasing, i.e. for every Q,P ∈ D such that Q ≥ P and Q 6= P , then

fm(Q) > fm(P).

Proof: See Appendix IV

We next proceed by establishing another property of f , which can be seen as an intermediary step

towards the conclusion.

Recall that the orbit of f associated to M ∈ D is the trajectory of (S)dis (12) starting at M.
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Proposition V.4

The following statements are equivalent.

(A) f admits a fixed point;

(B) f has one bounded orbit in D;

(C) every orbit of f is bounded in D.

Proof: See Appendix V

From proposition V.1, f admits a fixed point. Thus, proposition V.4 ensures that every orbit of f is

bounded in D.

Finally, using Proposition V.3, we get the following corollary, which concludes the proof of Theo-

rem IV.1.

Corollary V.1

Assume that every orbit of f is bounded in D. The following holds true.

• (C1) : Let P ∈ D and n ≥ 1 such that P can be compared with fn(P), i.e. P ≥ fn(P) or P ≤ fn(P).

Then, P = fn(P). In particular, if P ≥ f(P) or P ≤ f(P), then P is a fixed point of f ;

• (C2) : All the fixed points of f are colinear.

Proof: See Appendix VI

To summarize, proposition V.1 establishes the existence of a fixed point while corollary V.1 ensures

the uniqueness of the unit norm fixed point.

B. Proof of Theorem IV.2

1) Convergence results for (S)dis: In the previous Section, we already proved several important facts

relative to the trajectories of (S)dis defined by (12), i.e. the orbits of f . Indeed, since f has fixed points,

then all the orbits of f are bounded in D. It remains to show now that each of them is convergent to a

fixed point of f .

For that purpose, we consider, for every M ∈ D, the positive limit set ω(M) associated to M, i.e., the

set made of the cluster points of the sequence (Mk)k≥0, where Mk+1 = f(Mk) with M0 = M. Since

the orbit of f associated to M is bounded in D, the set ω(M) is a compact of D and is invariant by f :

for every P ∈ ω(M), f(P) ∈ ω(M). It is clear that the sequence (Mk)k≥0 converges if and only if ω(M)

reduces to a single point.

The last part of the proof is divided into two lemmas, whose statements are given below.
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Lemma V.1

For every M ∈ D, ω(M) contains a periodic orbit of f (i.e. contain a finite number of points).

Proof: See Appendix VII

Lemma V.2

Let M1 and M2 ∈ D be such that their respective orbits are periodic. Then M1 and M2 are colinear and are

both fixed points of f .

Proof: See Appendix VIII

We now complete the proof of theorem IV.2 in the discrete case.

Let M ∈ D. Using both lemmas, it is easy to deduce that ω(M) contains a fixed point of f , which

will be denoted by Q. Notice that there exists a compact K containing both the orbit of f associated to

M and ω(M). We next prove that, for every ε > 0, there exists a positive integer nε > 0 such that

(
1− ε

)
Q ≤ fnε(M) ≤

(
1 + ε

)
Q. (18)

Indeed, since Q ∈ ω(M), for every ε > 0, there exists a positive integer nε > 0 such that

‖fnε(M)− Q‖ ≤ ε.

After standard computations, one can see that there exists a constant K > 0, only depending on the

compact K, such that, for ε > 0 small enough,

(1−Kε)Q ≤ fnε(M) ≤ (1 +Kε)Q.

The previous inequality implies at once (18).

Applying f l, l ≥ 0 , to (18), and taking into account that Q is a fixed point of f , one deduces that

(
1− ε

)
Q ≤ f l+nε(M) ≤

(
1 + ε

)
Q.

This is nothing else but the definition of the convergence of the sequence (f l(M))l≥0 to Q.

2) Convergence results for (S)cont: Let t → M(t), t ≥ 0, be a trajectory of (S)cont with initial

condition M0 ∈ D.

Thanks to equation (II.27) which appears in the proof of proposition V.1 in Appendix II, we have for

every trajectory M(t) of (S)cont

d

dt
‖M‖2 = 2Tr(MṀ) = 2Tr

(
∇F (M).M

)
= 0.
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Then, for every t ≥ 0, M(t) keeps a constant norm equal to ‖M0‖. Moreover, one has for every t ≥ 0

F (M(t))− F (M(0)) =

∫ t

0

d

dt
F (M) =

∫ t

0
‖∇F (M)‖2 > 0.

Since F is bounded over D(‖M0‖) , we deduce that

∫ +∞

0
‖∇F (M)‖2 < +∞. (19)

In addition, since t → F (M(t)) is an increasing function, then M(t) remains in a compact subset K
of D(‖M0‖) which is independent of the time t. As D(‖M0‖) contains a unique equilibrium point of

(S)cont, we proceed by proving theorem IV.2 in the continuous case

∀M0 ∈ D,M(t) −−−−→
t→+∞

‖M0‖ M̂FP . (20)

Without loss of generality, we assume that ‖M0‖ = 1. Let F0 be the limit of F (M(t)) as t tends to +∞.

Thanks to Theorem IV.1 and the fact that ‖M(t)‖ is constant, it is easy to see that (20) follows if one

can show that F0 = F (M̂FP ). We assume the contrary and will reach a contradiction.

Indeed, if we assume that F0 < F (M̂FP ) then there exists ε0 such that ‖M(t) − M̂FP‖ ≥ ε0 , for

every t ≥ 0 . This implies together with the fact that M̂FP is the unique fixed point of f in D(1)

and ‖∇F (M)‖ is continuous, that there exists C0 such that ‖∇F (M)‖ ≥ C0 , for every t ≥ 0. Then,∫ +∞

t0

‖∇F (M)‖2 = +∞, which contradicts (19). Therefore, (20) holds true.

VI. SIMULATIONS

The main purpose of this section is to give some tools for computing of the FP estimate regardless of its

statistical properties; in particular, we investigate the numerical accuracy and the algorithm convergence

in different contexts for the complex case.

The two algorithms presented in section IV will be compared:

• the discrete case algorithm of theorem IV.2, called algorithm 1 in the sequel, defined by (12) and

whose convergence to the FP estimate has been proved in Section V;

• the normalized algorithm, called algorithm 2 in the sequel, defined by (14).

The first purpose of simulations is to compare the two algorithms in order to choose the best one in

terms of convergence speed.

Secondly, we study the parameters influence in the retained algorithm: the order m of matrix M, the

number N of reference data (c1, . . . , cN ) and the algorithm starting point. Note that the distribution of the

ci’s has no influence on the simulations because of the independence of equation (3) (which completely
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defines the FP estimate) with respect to the distribution of the τi’s. Thus, without loss of generality, the

Gaussian distribution will be used in the sequel.

Convergence will be analyzed by evaluating the widely used criterion C

C(k) =
‖M̂k+1 − M̂k‖

‖M̂k‖
(21)

as a function of algorithm iteration k. The numerical limit of C (when algorithm has converged) is called

the floor level.

The first subsection compares algorithms 1 and 2 while the second subsection studies parameters

influence.

A. Comparison of the two Algorithms

This section is devoted to the comparison of Algorithm 1 and 2 for Toeplitz matrices which are met

when the processes are stationary. We will use the set of Toeplitz matrices M defined by the following

widely used structure:

Mij = ρ|i−j| , (22)

for 1 ≤ i, j ≤ m and for 0 < ρ < 1 . Notice that the covariance matrix M is fully defined by the

parameter ρ, which characterizes the correlation of the data.

1) Convergence behavior for different values of ρ: Fig. 1 displays the criterion C(k) versus the

iterations number k for the following set of parameters: m = 10, N = 20 and the starting point M0 = Im.

Three typical cases are investigated: weak correlation (ρ = 10−5, Fig. 1.a), medium correlation (ρ = 0.9,

Fig. 1.b) and strong correlation (ρ = 1− 10−5, Fig. 1.c).

Fig. 1 leads to four main comments.

• For a given of ρ, both algorithms numerical convergence occurs for the same iteration number.

Moreover, algorithm 2 always presents a better accuracy (in terms of floor level).

• Higher the ρ, faster the convergence is; for ρ = 10−5, convergence is reached around 90 iterations,

for ρ = 0.9, 60 iterations are enough and for ρ = 1− 10−5, only 20 iterations are required.

• Stronger the correlation, lower the limit accuracy is.

• The improvement of algorithm 2 in term of accuracy increases with ρ.

With this first analysis, we infer that algorithm 2 is better than algorithm 1.

On Fig. 2, we have plotted the criterion C versus ρ when the convergence has occurred. Floor level

is evaluated at the 150th iteration. Both algorithms exhibit the same behavior: the floor level gets worth
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(b) ρ = 0.9
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(c) ρ = 1− 10−5

Fig. 1. Convergence to the FP for three different ρ. a) ρ = 10−5, b) ρ = 0.9, c) ρ = 1− 10−5

when correlation parameter ρ increases. Floor level is always better for the normalized algorithm than

for the algorithm 1. Moreover, the distance between the two curves increases with ρ.

Fig. 3 shows the required iteration number k to achieve a relative error C equal to 10−5. Plots are given

as a function of correlation parameter ρ. Algorithm 1 is quite insensitive to the correlation parameter

influence. The number of iteration k is always close to 21. Conversely, for algorithm 2, the iteration

number k decreases with ρ, starting at k = 20 for small ρ and ending at k = 8 for ρ close to 1.

Surprisingly, more the data are correlated, faster the convergence is (but according to Fig. 1.c, the floor

level gets worse).

These results allow to conclude that algorithm 2 (normalized algorithm) is the best in all situations.
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Fig. 3. Required iteration number k to achieve the relative error C = 10−5

That is why, in the sequel, we will study parameters influence on the normalized algorithm.

B. Parameters influence

This section studies the influence on the normalized algorithm of the starting point M0 and the number

N of reference data.

Fig. 4.a shows the criterion C(k) for four different initial conditions M0 and a medium correlation

parameter ρ = 0.9: the well known Sample Covariance Matrix Estimate (SCME), the true covariance

matrix M, a random matrix whose elements are uniformly distributed and the identity matrix Im. Floor

level and convergence speed are independent of the algorithm initialization, after 10 iterations, all the
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Fig. 4. Convergence to the fixed point. a) C(k) as a function of k for different starting points M0. b) C(k) as a function of

k for various values of N : 20, 200, 2000 and 4000

curves merge. Fig. 4.b represents C(k) for various values of N : 20, 200, 2000 and 4000. Notice that

convergence speed increases with N , while the floor level is almost independent of N .

VII. CONCLUSION

In this work we have considered the problem of covariance matrix estimation for adaptive radar

detection in compound-Gaussian clutter. The corresponding ML estimate of the covariance matrix built

with secondary data is known to be the solution (if such a solution exists and is unique) of an equation for

which no closed form solution is available. We have established in this paper a sound demonstration of the

existence and uniqueness of this ML estimate, called FPE (Fixed Point Estimator). We have also derived

two algorithms for obtaining the FPE. The convergence of each algorithm has been theoretically proved

and emphasized by extensive simulations which have shown the superiority of one of them, the so-called

normalized algorithm. The numerical behavior of the two algorithms in realistic scenario has been also

investigated as a function of main parameters, correlation and number of reference data, highlighting

their fast convergence and therefore their great practical interests. These important results will allow the

use of the FPE in real radar detection scheme [15]. It remains now to analyze the statistical behavior of

the FPE, preliminary results in that direction have been already obtained in [16].
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APPENDIX I

REDUCTION OF THE COMPLEX CASE TO THE REAL CASE

Let G be the set of m×m definite positive Hermitian matrices and S the set of 2m× 2m symmetric

matrices. Let us define the function g by

g : G −→ D̃ = g(G) ⊂ S

M −→ g(M) =


M(1) −M(2)

M(2) M(1)


 ,

where M = M(1) + j M(2) with M(1), symmetric matrix, the real part of M and M(2), antisymmetric

matrix, the imaginary part. It is obvious that g is a bijection between G and D̃. Moreover, we have the

following proposition

Proposition I.1

∀M ∈ G , g(f(M)) = fR(g(M)) ,

where f is given by (7) and fR by

fR(Mr) =
m

N

2N∑

i=1

wi w⊤
i

w⊤
i M−1

r wi
,

with Mr ∈ D̃ , and the 2m-vectors w1 , . . . ,w2N are defined by

• for the N first vectors w1 , . . . ,wN (called ui for clarity), wi = ui =


x

(1)
i

x
(2)
i


 ,

• for the N last vectors wN+1 , . . . ,w2N (called vi), wN+i = vi =


−x

(2)
i

x
(1)
i


 .

Proof: We have

g(f(M)) =
m

N

N∑

i=1

g(xi xHi )

xHi M−1 xi
.

Thanks to the following results: g(M−1) =
(
g(M)

)−1
, g(xi xHi ) = ui u⊤

i + vi v⊤i and xHi M−1xi =

u⊤
i g(M−1)ui = v⊤i g(M−1) vi , Proposition I.1 follows straightforwardly.

Hypothesis (H) of Section III implies hypothesis (H2) (just before Remark IV.1) of linear indepen-

dence for the real problem just defined in R
2m. Thanks to Theorem IV.1, there exists a unique fixed point

MFP
R (up to scalar factor) in S . Thus, it remains to show that MFP

R belongs to D̃. Thanks to Proposition

I.1, if initialization of algorithm defined in Theorem IV.2, Eqn. (12), belongs to D̃, the resulting sequence
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{M0, . . . ,Mk} obviously belongs to D̃. Since this sequence converges in S , by elementary topological

considerations, the limit belongs to D̃.

Now, since fR admits a unique fixed point MFP
R (up to a scalar factor) in D̃, the proof of Theorem III.1

is completed. Indeed, there exists a unique matrix MFP (up to a scalar factor) which verifies

MFP = g−1
(

MFP
R

)
= g−1

(
fR

(
MFP

R

))
= g−1

(
fR

(
g(MFP )

))
= g−1

(
g
(
f(MFP )

))
= f(MFP ) .

APPENDIX II

PROOF OF PROPOSITION V.1

If such a M̂FP exists, then for every λ > 0, λ M̂FP is also a fixed point of f , since f is homogeneous

of degree one. We start by demonstrating the following lemma.

Lemma II.1

The function F can be extended as a continuous function of D\{0} so that, for every non invertible M ∈
D\{0}, F (M) = 0.

Proof: It is enough to show that, for every non invertible M ∈ D\{0}, and every sequence (Q(k))k≥0

in D converging to zero and so that M + Q(k) is invertible, we have

∀Q ∈ D, lim
k→∞

F (M + Q(k)) = 0.

Since F is smooth, we may assume that Q(k) ∈ D for every k ≥ 0. We introduce the notation F c for

the function F in order to emphasize the dependence of F with respect to the N -tuple c = (c1, . . . , cN ).

If R is an invertible matrix, let R.c be the N -tuple R.c := (Rc1, . . . ,RcN ). Clearly one has for every

M ∈ D,

F c(M) = |R|2NFR.c(R M RT ).

Fix now a symmetric matrix M such that M ≥ 0 and the rank of M, rk(M), is equal to l, with 0 < l < m.

Thanks to the previous equation, we may assume that M = Jl, with Jl := diag(Il 0 · · · 0), where 0 is

repeated m− l times. For i ∈ [1, N ], we write ci as

ci =


c1i

c2i


 , with c1i ∈ Im(Jl) and c2i ∈ Ker(Jl).

According to that orthogonal decomposition, we write Q(k) by blocks,

Q(k) =


Q

(k)
1 (Q

(k)
2 )T

Q
(k)
2 Q

(k)
3


 .
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Then,

M + Q(k) =


Il + Q

(k)
1 (Q

(k)
2 )T

Q
(k)
2 Q

(k)
3


 .

For every k ≥ 0, set Pk := (Il + Q
(k)
1 )−1 , and Rk := Q

(k)
3 − Q

(k)
2 Pk(Q

(k)
2 )T . Then, for every k ≥ 0,

one has, after standard computations using the Schur complement formula (cf. [14] for instance), that

(M + Q(k))−1 =


Pk + Pk(Q

(k)
2 )TR−1

k Q
(k)
2 Pk −Pk(Q

(k)
2 )TR−1

k

−R−1
k Q

(k)
2 Pk R−1

k


 ,

and

∣∣∣M + Q(k)
∣∣∣ =

∣∣∣Il + Q
(k)
1

∣∣∣ |Rk|. We next compute cTi (M + Q(k))−1ci for i ∈ [1, N ] and k ≥ 0. We

get

cTi (M + Q(k))−1ci = (c1i )
T (Pk + Pk(Q

(k)
2 )T R−1

k Q
(k)
2 Pk)c

1
i − 2(c1i )

T Pk(Q
(k)
2 )T R−1

k c2i + (c2i )
T R−1

k c2i .

(II.23)

Lemma II.2

With the above notations, we have

lim
k→∞

Pk + Pk(Q
(k)
2 )TR−1

k Q
(k)
2 Pk = Il,

and, if c2i 6= 0, then,

lim
k→∞

cTi (M + Q(k))−1ci

c2i R−1
k c2i

= 1. (II.24)

Proof: Both results are a consequence of the following fact,

lim
k→∞

Pk(Q
(k)
2 )TR−1

k Q
(k)
2 Pk = 0. (II.25)

To see that, first recall that Sk := Q
(k)
3 − Q

(k)
2 (Q

(k)
1 )−1(Q

(k)
2 )T is definite positive since Q(k) is positive

definite. Next, we write

Rk = Sk + Q
(k)
2 (Q

(k)
1 )−1(Q

(k)
2 )T − Q

(k)
2 Pk(Q

(k)
2 )T = Q

(k)
2 (Q

(k)
1 )−1Pk(Q

(k)
2 )T ,

and we then have and we then have

Pk(Q
(k)
2 )TR−1

k Q
(k)
2 Pk = P

1/2
k (Q

(k)
1 )1/2BT

k (Il + BkBT
k )

−1Bk(Q
(k)
1 )1/2P

1/2
k ,

where Bk := S
−1/2
k Q

(k)
2 (Q

(k)
1 )−1/2P

1/2
k .
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It is now clear that (II.25) holds true if the l × l symmetric non negative matrix BT
k (Il + BkBT

k )
−1Bk

is bounded. Computing the norm, we end up with

‖BT
k (Il + BkBT

k )
−1Bk‖2 = ‖(Il + Tk)

−1Tk‖2,

where Tk := BkBT
k ∈ D. Since (Il + Tk)

−1Tk ≤ Il, we conclude the proof of Lemma II.2.

We next consider the diagonalization of Rk in an orthonormal basis, given by

Rk = UT
k DkUk, for k ≥ 0,

with Uk ∈ SO(m − l) and Dk = diag (ε
(l+1)
k , · · · , ε(m)

k ). By definition, lim
k→∞

ε
(j)
k = 0+, for every j ∈

[l+1,m], and, with no loss of generality, we will assume that ε
(m)
k = min

l+1≤j≤m
ε
(j)
k and lim

k→∞
Uk = U ∈

SO(m− l) .

We next establish the following lemma.

Lemma II.3

Let Em = (0 · · · 0 1)T with 0 repeated m− l− 1 times. With the previous notations, there exist C > 0 and

i∗ ∈ [1, N ] such that, for k ≥ 0 large enough, we have

|ET
mUkc2i∗ | ≥ C. (II.26)

Proof: By a continuity argument, it is enough to show the existence of an index i∗ so that ET
mUc2i∗ 6=

0. Moreover, according to hypothesis (H2), it is not possible to find m vectors ci(1), · · · , ci(m) linearly

independent such that

eTmUci = ET
mUc2i = 0,

where em = (0 · · · 0 1)T ∈ R
m and U = diag(Il,U). (Otherwise, there exist m vectors ci(1), · · · , ci(m)

linearly independent belonging to the orthogonal of Uem, which has dimension m− 1.)

By a simple counting argument, the index i∗ therefore exists. Indeed, otherwise the N vectors ci’s,

with i /∈ S, verify eTmUci = 0, meaning that all the vectors ci, 1 ≤ i ≤ N , are orthogonal to U
T

em,

which is impossible. The proof of Lemma II.3 is complete.

We can now finish the proof of Lemma II.1. Let c∗ be the (N − 1)-tuple made of the ci’s for i ∈
[1, N ]/{i∗}. For every k ≥ 0, we have

F c(M + Q(k)) =
1∣∣∣M + Q(k)

∣∣∣


 1

cTi∗(M + Q(k))−1ci∗




m

F c∗

(M + Q(k)).
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Since N − 1 ≥ m, we apply the result of [13] which states that the supremum of F c∗

over D is

finite, i.e., there exists a positive constant C∗ such that, for every R ∈ D, F c∗

(R) ≤ C∗. Therefore, the

conclusion holds true if

lim
k→∞

1∣∣∣M + Q(k)
∣∣∣


 1

cTi∗(M + Q(k))−1ci∗




m

= 0.

Thanks to (II.24), that amounts to show that

lim
k→∞

1

|Dk|

(
1

(c2i∗)
T (Rk)−1c2i∗

)m

= 0.

It is clear that |Dk| ≥ (ε
(m)
k )m−l. In addition, by using Lemma II.3, we can write

(c2i∗)
T (Rk)

−1c2i∗ = (Ukc2i∗)
T (Dk)

−1Ukc2i∗ = ξk
(ET

mUkc2i∗)
2

ε
(m)
k

,

where ξk is bounded below and above by positive constants independent on k. We finally get that

1

|Dk|

(
1

(c2i∗)
T (Rk)−1c2i∗

)m

≤ C(ε
(m)
k )l,

with a positive constant C independent of k. By letting k go to infinity, we conclude the proof of

Lemma II.1.

End of the proof of Proposition V.1:

Recall that D(1) is a compact subset of D\{0}. Then F is well-defined on D(1) and is continuous. The

application F reaches its maximum over D(1) at a point M̂FP . Since F is strictly positive on D(1) and

equal to zero on D(1)\D(1), then F (M̂FP ) > 0, implying that M̂FP ∈ D(1). We complete the proof of

Proposition V.1 by establishing the next lemma.

Lemma II.4

Let M̂FP ∈ D(1) be defined as previously. Then, ∇F (M̂FP ) = 0, which implies that M̂FP is a fixed point

of f .

Proof: By definition of M̂FP , one has F (M̂FP ) = max
M∈D(1)

F (M). By standard calculus, it results

that ∇F (M̂FP ) and ∇N (M̂FP ) are colinear, where N (M) = ‖M‖2 for every M ∈ D. Since M̂FP ∈ D,

there exists a real number µ such that ∇F (M̂FP ) = µ M̂FP . Recall that, since F is homogeneous of

degree zero, then,

∀M ∈ D, ∇(M).M = 0. (II.27)

One deduces that µ = µ ‖M̂FP‖2 = ∇F (M̂FP ).M̂FP = 0. The proof of Lemma II.4 is complete.
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APPENDIX III

PROOF OF PROPOSITION V.2

We start by establishing (P1). Let M,Q ∈ D with M ≤ Q. Then, M−1 ≥ Q−1 and, for every

1 ≤ i ≤ N , we have

1

c⊤i M−1 ci
≤

1

c⊤i Q−1 ci
.

The reasoning for the case with strict inequalities is identical. Then, clearly, (P1) follows.

We next turn to the proof of (P2). We first recall that, for every unit vector c ∈ R
m, ‖c‖ = 1 and

M ∈ D, then

1

c⊤ M−1 c
= inf

z⊤ c6=0

z⊤ M z

(c⊤ z)2
, (III.28)

and the infimum is reached only on the line generated by M−1 c.

Let M,Q ∈ D . Then, one has

f(M + Q) =
m

N

N∑

i=1

min
z⊤ ci 6=0

z⊤ (M + Q) z

(c⊤i z)2
=

m

N

N∑

i=1

min
z⊤ci 6=0

(
z⊤ M z

(c⊤i z)2
+

z⊤ Q z

(c⊤i z)2

)
.

More generally, the following holds true,

min
z∈A

(
f1(z) + f2(z)

)
≥ min

z∈A
f1(z) + min

z∈A
f2(z),

for every functions f1, f2 and set A giving a sense to the previous inequality. Then, (P2) clearly holds

true. It remains to study when equality occurs in (P2). That happens if and only if, for every 1 ≤ i ≤ N ,

one has

min
z⊤ ci 6=0

(
z⊤ M z

(c⊤i z)2
+

z⊤ Q z

(c⊤i z)2

)
= min

z⊤ ci 6=0

z⊤ M z

(c⊤i z)2
+ min

z⊤ci 6=0

z⊤ Q z

(c⊤i z)2
. (III.29)

Let us first show that equality occurs in (III.29) if and only if there exists some µi > 0 such that

M−1ci =
1

µi
Q−1ci. (III.30)

Indeed, for every vector z ∈ R
m with z⊤ci 6= 0, we have

z⊤ (M + Q) z

(c⊤i z)2
≥

1

c⊤i M−1 ci
+

z⊤ Q z

(c⊤i z)2
.

Choosing z = (M + Q)−1 ci yields

1

c⊤i M−1 ci
+

1

c⊤i Q−1 ci
=

1

c⊤i (M + Q)−1 ci
≥

1

c⊤i M−1 ci
+

c⊤i (M + Q)−1 Q (M + Q)−1 ci

(c⊤i (M + Q)−1 ci)2
.
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Therefore, the function of z given by
z⊤ Q z

(c⊤i z)2
reaches its minimum value

1

c⊤i M−1 ci
at z = (M+Q)−1 ci.

Using (III.28), we get that (M + Q)−1 ci is colinear to Q−1 ci. Exchanging M and Q and proceeding as

above yields that (M+Q)−1 ci is also colinear to M−1 ci, which finally implies that M−1 ci and Q−1 ci

are themselves colinear. (III.30) is proved.

To finish the proof, one must show that all the (µi)’s, 1 ≤ i ≤ N , as defined in (III.30), are equal.

Set D := diag(µ1, . . . , µm) for the first m indices of J1, NK. Since
(

c1, . . . , cm

)
is a basis of Rn and

M−1 − D−1 Q−1 is equal to 0 on that basis, we deduce that M−1 = D−1Q−1. Consider now another

basis of Rm defined by
(

c2, . . . , cm+1

)
and set D̃ = diag

(
µ2, . . . , µm+1

)
. Reasoning as previously, we

obtain that M−1 = D̃
−1

Q−1 , which firstly implies that D̃ = D and, secondly, that µ1 = µ2, µ2 = µ3,

..., µm = µm+1. Repeating that reasoning for any pair of m-tuples of distinct indices (i1, · · · , im) of

J1, NK , we get that, for every i ∈ J1, NK, µi = µ, yielding D = µ Im.

APPENDIX IV

PROOF OF PROPOSITION V.3

We first establish the following fact. For every Q,P ∈ D, we have

If Q ≥ P and f(Q) = f(P), then Q = P. (IV.31)

Indeed, it is clear that Q ≥ P implies that P−1 − Q−1 ≥ 0. Therefore, for every 1 ≤ i ≤ N , we have

1

c⊤i Q−1 ci
≥

1

c⊤i P−1 ci
.

Assuming f(Q) = f(P) implies that, for every 1 ≤ i ≤ N , we have c⊤i Q−1 ci = c⊤i P−1 ci i.e.

c⊤i (P−1 − Q−1) ci = 0.

Since P−1 − Q−1 ≥ 0, the previous equality says that (P−1 − Q−1) ci = 0, for every 1 ≤ i ≤ N . By

(H2), the claim (IV.31) is proved.

We now turn to the proof of Proposition V.3. We consider Q,P ∈ D such that Q ≥ P and Q 6= P.

From what precedes, we also have that f(Q) ≥ f(P) and f(Q) 6= f(P). That implies the existence of

an index i0 ∈ J1, NK such that

ξi0 :=
m

N


 1

c⊤i0 Q−1 ci0
−

1

c⊤i0 P−1 ci0


 > 0.
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Up to a relabel, we may assume that i0 = 1. We then have

f(Q) ≥ f(P) + ξ1 c1 c⊤1 . (IV.32)

Next, we will show by induction on the index l ≤ m that there exist l positive real numbers ξk, 1 ≤ k ≤ l,

so that

f l(Q) ≥ f l(P) +

l∑

k=1

ξk ck c⊤k (IV.33)

In the previous equation, the vectors (ck)1≤k≤l only need to be two by two distinct among all the vectors

(ci)1≤i≤N . At each step of the induction, we will have the possibility to relabel the indices in Jl+1, NK

in such a way to get (IV.33). The induction starts for l = 1 and, in this case, (IV.33) reduces to (IV.32).

Therefore the induction is initialized. We then assume that (IV.33) holds true for some index l ≤ m− 1

and proceed in showing the same for the index l+1. It is clear that it will be a consequence of the next

lemma.

Lemma IV.1

Let 1 ≤ l ≤ m− 1,Q,P ∈ D such that

Q ≥ P +

l∑

k=1

ξk ck c⊤k , ξk > 0. (IV.34)

Then, there exists a vector of {cl+1, . . . , cN} (to be set equal to cl+1, up to a relabelling of {cl+1, . . . , cN} )

and a positive real number ξl+1 > 0 such that

f(Q) ≥ f(P) +

l+1∑

k=1

ξk ck c⊤k . (IV.35)

Proof: Using (IV.34), we have for every j ∈ J1, NK,

1

c⊤j Q−1 cj
= min

z⊤ cj 6=0

z⊤ Q z

(z⊤ cj)2
≥ min

z⊤ cj 6=0


 z⊤ P z

(z⊤ cj)2
+

l∑

k=1

ξk
(z⊤ ck)

2

(z⊤ cj)2


 . (IV.36)

Using the induction hypothesis, we also have for every 1 ≤ j ≤ l, that

1

c⊤j Q−1 cj
≥

1

c⊤j P−1 cj
+ ξj.

We next show the following claim

(C1) there exists two indices, one index j0 ∈ Jl + 1, NK and another one k0 ∈ J1, lK such that

c⊤k0
Q−1 cj0 6= 0.

Claim (C1) is proved reasoning by contradiction. Therefore, let us assume that c⊤k Q−1 cj = 0, for every

1 ≤ k ≤ l and l+ 1 ≤ j ≤ N . Since l < m, the vectors (Q−1 ck), 1 ≤ k ≤ l generate a vector space Vl
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of dimension l, we deduce that, for every j ∈ Jl + 1, NK, cj is orthogonal to Vl and, therefore, belongs

to an m− l-dimensional vector space of Rm. But there are N − l indices j verifying the previous fact.

According to (H2), these vectors (cj)l+1≤j≤N generate a vector space of dimension min(N − l,m) in

R
m. We finally get that min(N − l,m) ≤ m− l . This is impossible because N > m and claim (C1) is

proved.

We now finish the proof of Lemma IV.1. Choosing in (IV.36) z = Q−1 cj0 , we get

1

c⊤j0 Q−1 cj0
≥

(c⊤j0 Q−1)P (Q−1 cj0)

(c⊤j0 Q−1 cj0)
2

+ ξk0

(c⊤j0 Q−1 ck)
2

(c⊤j0 Q−1 cj0)
2
≥

1

c⊤j0 P−1 cj0
+ ξj0

with ξj0 > 0, thanks to claim (C1). It is clear that cj0 is the vector of {cl+1, . . . , cN} needed with ξj0

so that, up to relabelling, yields (IV.35). Proofs of Lemma IV.1 and Proposition V.3 are now complete.

APPENDIX V

PROOF OF PROPOSITION V.4

We first need to make precise a definition. An orbit (Mk)k≥0 is bounded in D if it is contained in a

compact subset of D, i.e., there exists M,P ∈ D such that, for every k ≥ 0, M ≤ Mk ≤ P.

We will show the following chain of implications (A) ⇒ (B) ⇒ (C) ⇒ (A).

(A) ⇒ (B): Trivial (simply M0 = P).

(B) ⇒ (C): Assume that f has a bounded orbit in D, starting at M. Then, there exists µ, µ′ > 0 such

that, for every k ≥ 0, µM ≤ Mk ≤ µ′ M , for every k ≥ 0.

Let Q be an arbitrary matrix of D. Then, there exists λ, λ′ > 0 such that λM ≤ Q ≤ λ′ M. Using the

homogeneity of degree one of f , property (P1) and the definition of an orbit of f , we get, after a trivial

induction, that λµM ≤ λMk ≤ Qk ≤ λ′ Mk ≤ λ′ µ′ M, for every k ≥ 0. Then, the orbit associated to

Q is bounded in D.

(C) ⇒ (A): Consider an orbit (Mk)k≥0 of f starting at M ∈ D and bounded in D. It is then contained

in a compact K of D. For l ≥ 1 , set

Ql :=
1

l

l∑

i=1

Mi.

Then, the sequence (Ql)l≥1 is bounded in D because every point Ql belongs to the convex hull of K,

which is itself a compact subset of D. For every l ≥ 1, we have by using Proposition V.2 that

f(Ql) =
1

l
f

(
l∑

i=1

Mi

)
≥

1

l

l+1∑

i=2

Mi =
1

l

(
l+1∑

i=1

Mi − M1

)
= Ql +

Ml+1 − M1

l
.
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Since (Ql)l≥1 is bounded in D, we have that, up to extracting a sub-sequence, that the sequence (Ql)

converges to Q, with Q ∈ D, as l tends to +∞. From the last equation, it follows that f(Q) ≥ Q .

We now consider the orbit of f starting at Q. It defines an increasing, bounded in D sequence. It is

therefore converging in D to a fixed point of f .

APPENDIX VI

PROOF OF COROLLARY V.1

The proof of (C1) goes by contradiction. Let P ∈ D with f l(P) ≥ P and f l(P) 6= P for some positive

integer l ≥ 1. According to Proposition V.3, we have

fn(f l(P)) > fn(P) ⇔ f l(fn(P)) > fn(P).

Set Q := fn(P) and g := f l. It is clear that g is a function from D to D, homogeneous of degree one

and verifies properties (P1) and (P2) of Proposition V.2. We will show that the orbit of g associated to

Q is not bounded, which will be the desired contradiction.

We have g(Q) > Q which is equivalent to g(Q) − Q being positive definite. By a simple continuity

argument, there exists εQ > 0 such that

εQQ ≤ f(Q)− Q ⇔ f(Q) ≥ (1 + εQ)Q.

By a trivial induction, we have fk(Q) ≥ (1 + εQ)k Q , for every k ≥ 0, with the right-hand side of

the above inequality tending to +∞ as k tends to ∞. Therefore, the orbit of f associated to M is not

bounded.

We now prove statement (C2). Let M̂FP and P2 be two fixed points of f . Applying (P2), we have

f(M̂FP + P2) ≥ f(M̂FP ) + f(P2) = M̂FP + P2,

According to (C1) above, we have that M̂FP + P2 is also a fixed point of f and therefore, we have

equality in (P2). It implies that M̂FP and P2 are colinear. The proofs of Corollary V.1 is complete and

it concludes the argument of Theorem IV.1.

APPENDIX VII

PROOF OF LEMMA V.1

The argument goes by contradiction. We thus assume that ω(M) does not contain any periodic orbit.

Let K be a compact subset of D containing both the orbit associated to M and ω(M).
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Let Q ∈ ω(M). Then, there exists a sequence (fnj(M))j≥0 converging to Q, as j tends to +∞, with

(nj)j≥0 a strictly increasing sequence of integers tending to +∞.

Let ε ∈ (0, 1) small enough and nj0 ∈ N such that ‖fnj0 (M) − Q‖ ≤ ε . It is easy to see that

there exists a constant K only depending on K such that (1 −Kε)Q ≤ fnj0 (M) ≤ (1 +Kε)Q . Using

Proposition V.2, we have for every p ≥ 0,

(1−Kε)fp(Q) ≤ fn0+p(M) ≤ (1 +Kε)fp(Q). (VII.37)

Since Q is a cluster point for the orbit associated to M, there exists nj1 ≥ 0 such that
(

1−
Kε

4

)
Q ≤ fn1(M) ≤

(

1 +
Kε

4

)
Q.

Using (VII.37) and the previous equation, there exists p large enough such that
(

1−
Kε

2

)
Q ≤ fp(Q) ≤

(

1 +
Kε

2

)
Q. (VII.38)

We set Q0 := Q and ε0 ”maximal” with respect to (VII.38), i.e., ε0 is the smallest positive real number

so that
(
1− ε0

)
Q0 ≤ fp(Q0) ≤

(
1 + ε0

)
Q0 holds true. Then, ε0 ≤

Kε

2
and one of the two previous

inequalities is not strict, by maximality of ε0. Moreover, ε0 > 0. Indeed, if it were not the case, then Q0

and fp(Q0) would be comparable and, according to Corollary V.1, the orbit associated to Q0 would be

periodic. We now consider the subset V of ω(M), made of the matrices P such that there exists ε(P) > 0

such that (
1− ε(P)

)
P ≤ fp(P) ≤

(
1 + ε(P)

)
P, (VII.39)

and ε(P) is ”maximal” with respect to (VII.39).

We showed previously that V is not empty since Q ∈ V . We next show that ε = inf
P∈V

ε(P) = 0 .

By definition of ε, there exists two sequences
(

Q(j)
)
j≥0

and
(
ε(Q(j))

)
j≥0

such that
(
ε(Q(j))

)
j≥0

converges to ε, as j tends to +∞. Up to considering a subsequence in the compact ω(M), we may

assume that
(

Q(j)
)
j≥0

converges to some Q ∈ ω(M). Passing to the limit in (VII.39), we get

(
1− ε

)
Q ≤ fp(Q) ≤

(
1 + ε

)
Q. (VII.40)

If ε > 0, then necessarily Q ∈ V and ε is ”maximal” with respect to (VII.40). Since f is eventually

strictly increasing, we get
(
1− ε

)
fn(Q) < fp

(
fn(Q)

)
<
(
1 + ε

)
fn(Q) . Setting Q̃ := fn(Q), then

Q̃ belongs to ω(M) since the latter is an invariant set with respect to f . Choosing ε̃ ”maximal” with

respect to (
1− ε̃

)
Q̃ ≤ fp(Q̃) ≤

(
1 + ε̃

)
Q̃,
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we first have that ε̃ > 0 (otherwise we would have a periodic orbit) and ε̃ < ε. We finally proved that

Q̃ ∈ V with 0 < ε̃ = ε(Q̃) < ε. This is a contradiction with the minimality of ε. Therefore, ε = 0, which

implies that Q = fp(Q), i.e. ω(M) contains a periodic orbit. Lemma V.2 is proved.

APPENDIX VIII

PROOF OF LEMMA V.2

Let M1,M2 ∈ D whose associated orbits are periodic, with respective (positive) periods l1 and l2.

We first show that M1 and M2 are colinear, which will imply that l1 = l2.

For i = 1, 2, the orbit associated to Mi is the set
{

Mi, f(Mi), . . . , f
li−1(Mi)

}
. Consider M :=

M1 + M2 and l := l1l2. Then, f(M) = f(M1 + M2) ≥ f(M1) + f(M2) and, for every k ≥ 0, we have

fk(M) ≥ fk(M1) + fk(M2).

It implies that f l(M) ≥ f l(M1)+ f l(M2) = M1+M2 = M . By Corollary V.1, we get that f l(M) = M.

It implies that all the previous inequalities must be in fact equalities and, in particular, we have f(M) =

f(M1) + f(M2). By (P2), we deduce that M1 and M2 are colinear. It remains to show that a periodic

orbit reduces to a single point.

Consider M ∈ D such that




l ≥ 1, f l(M) = M,

(if l = 1, no condition ) f l−1(M) 6= M.

We have to prove that l = 1.

Since the orbit associated to every f j(M), 0 ≤ j ≤ l, is again ω(M) and thus finite, we deduce that

f j(M) must be colinear to M, according to what precedes. Then, for every 0 ≤ j ≤ l − 1, we have

f j(M) = λjM , for some λj > 0. Obviously, λ0 = λl = 1. In particular, we have f(M) = λ1 M,

implying that, either f(M) ≤ M or f(M) ≥ M. By (C1) of Corollary V.1, we get that M is a fixed

point of f . The proof of Lemma V.1 is complete.
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