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Summary. We present theoretical results on the random wavelet coefficients covariance structure.
We use simple properties of the coefficients to derive a recursive way to compute the within- and
across-scale covariances. We point out a useful link between the algorithm proposed and the two-
dimensional discrete wavelet transform. We then focus on Bayesian wavelet shrinkage for estimating
a function from noisy data. A prior distribution is imposed on the coefficients of the unknown
function. We show how our findings on the covariance structure make it possible to specify priors
that take into account the full correlation between coefficients through a parsimonious number of
hyperparameters. We use Markov chain Monte Carlo methods to estimate the parameters and
illustrate our method on bench-mark simulated signals.
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1. Introduction

Wavelets are now well established in the literature and have been successfully applied in
many areas, such as mathematics, engineering and statistics. This paper develops models and
theoretical results for the wavelet coefficients’ covariance structure. Our main contribution is
the development of a recursive algorithm to compute within- and across-scale covariances.
The algorithm proposed has an interesting link to the two-dimensional discrete wavelet
transform (DWT), making computations feasible. Our results are generally applicable in
many problems that involve wavelet coefficient modelling. We use them in the context of
wavelet shrinkage, a well-known application of wavelets to attempt the recovery of a signal
from noisy data. Originally proposed by Donoho and Johnstone (1994, 1995, 1998) and
Donoho et al. (1995), wavelet shrinkage has recently been considered within a Bayesian
framework where a prior distribution is imposed on the wavelet coefficients of the unknown
signal. Existing work (Chipman et al., 1997; Clyde et al., 1998; Abramovich et al., 1998)
assumes independent coefficients. We adopt an approach suggested by Vidakovic and Miiller
(1995) to incorporate correlation. Our recursive covariance structure gives rise to a model
that allows for full correlation between coefficients. A different approach, allowing for partial
correlation between coefficients, is proposed by Crouse et al. (1998).
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In addition to the theoretical appeal of totally relaxing the independence assumption, our
proposal has the advantage of incorporating knowledge about stochastic relationships
between wavelet coefficients. The practical implication of this is a model that depends on a
parsimonious number of hyperparameters.

Inference is performed via Markov chain Monte Carlo methods, simulation techniques
widely used in Bayesian statistics to produce samples from a posterior distribution. Here we
use a hybrid algorithm, combining in a cycle Gibbs and Metropolis steps, as described by
Chib and Greenberg (1994) and Miiller (1992). Wavelet coefficients are then estimated by
averaging over the simulated values.

The paper is organized as follows: Section 2 briefly reviews basic concepts about wavelets
and wavelet shrinkage. Section 3 states the results about the wavelet coefficients’ covariance
structure. Section 4 presents the Bayesian shrinkage model. Applications to bench-mark
signals are given in Section 5. In Section 6 a hierarchical structure is introduced and inference
on the parameters of interest is made via a hybrid Markov chain Monte Carlo method.
Section 7 provides further examples and Section 8 some concluding remarks.

2. Preliminaries and notation

2.1. Orthonormal wavelet bases and wavelet transforms
Wavelets are families of functions that can accurately describe other functions in a parsim-
onious way: see Daubechies (1992) and Meyer (1992), among others. In L*(R), for example, a
wavelet basis is obtained by translations and dilations of a scaling function ¢, constructed as a
solution of a dilation equation

() =23 h o2t = 1), (1)

leZ

and a mother wavelet 1, defined from ¢ as (1) = /2 X, g, #(2t — I), with filter coefficients g,
often defined as g, = (—1)'4,_,. The wavelet collection is obtained by translations and dila-
tions as ¢; (1) = 212 $(2't — k) and (1) = 272 4p(2/t — k) and the family of wavelets {10,
Jj, k € Z) forms an orthonormal basis in L*(R). Any L*(R) function f can then be represented
by a wavelet series as f(f) = I, ycz d; ;. ¥; 1 (f) With wavelet coeflicients

dig = fi ) = J £ (1)

that describe features of the function fat the spatial location 27k and frequency proportional
to 2/ (or scale j).

Interesting recursive relationships hold between the coefficients d;, and the scaling co-
efficients ¢;;, = (f, ¢;x) = | f(1) ¢;,(¢) dz; see Mallat (1989). For example, using equation (1),
coefficients at scale j can be obtained from scaling coefficients at the finer scale j+ 1 as

Cj.k = Z hm—2k6f+l.my
meZ

2)
dj,k = Z 8m—2kCi+1,m-
meZ
These equations can be written using signal processing terminology. Let F indicate a linear
filter defined by an infinite sequence f, of coefficients and acting as (Fa), = Z,cz fri@n»
with a, an infinite sequence. In this paper we are concerned with Daubechies (1992) wave-
lets. These wavelets have compact support, implying filters with a finite number of non-zero
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coefficients f;, and issues of convergence do not arise. The filter H, defined by the sequence #;,
is a low pass filter capturing low frequency components, whereas G, defined by the sequence
g5, 18 a high pass filter capturing high frequency components. Now let D, indicate the down-

sampling operator (Dya); = a,; that chooses every other element of a sequence. With & and
d? indicating the coefﬁc1ent vectors at scale j, equations (2) can be expressed as
D = H,p I,
(3)

i (+1
aV = Gj+16(] )’

where H;,, and G;,, are the linear functions corresponding to the application of the filters
D,H and D,G. Index j + 1 indicates that the dimensions of the matrices change with the scale,
owing to the down-sampling operation. Equations (2) are used in wavelet theory to derive a
fast algorithm, known as the DWT, for decomposing a function into a set of wavelet co-
efficients. The algorithm for the inverse construction is called the inverse wavelet transform
(IWT). See Strang (1989) for a detailed exposition of these algorithms.

2.2. Wavelet shrinkage
Let y;, ..., y,, n=2", be a sequence of observations modelled as

yi=ft) + e, i=1,...n, 4)

where f'is a function to be estimated, #; = i/n are equally spaced points and ¢; are independent
and identically distributed normal random variables with zero mean and variance o>. The
wavelet shrinkage of Donoho and Johnstone (1994, 1995, 1998) and Donoho et al. (1995) is a
technique consisting of three steps: firstly, the DWT is applied to the data y; to obtain a
vector d of empirical wavelet coefficients. Since the DWT is linear and orthogonal, d can still
be modelled as

d =d+¢, (5)

where d is the vector of wavelet coefficients of the unknown function f'and € is Gaussian white
noise with mean 0 and variance—covariance matrix o>/. Secondly, the noise is suppressed from
the empirical coefficients by using a thresholding (and/or shrinkage) method. See Donoho
and Johnstone (1994, 1995) for their hard and soft threshold policies. Finally, the IWT is
applied, leading to an estimate of the unknown function. Donoho and Johnstone (1998)
showed that wavelet shrinkage estimators are nearly minimax for a wide set of functional
classes and a large class of loss functions. Johnstone and Silverman (1997) extended these
results to the case of correlated noise. Several different thresholding rules have been proposed.
Among others, Nason (1996) and Wang (1996) adjusted the well-known cross-validation
criterion to choose the threshold.

An important choice is the coarsest level of the DWT. Thresholding (and/or shrinkage)
methods, in fact, are not applied to all the coefficients. Donoho and Johnstone called the
coarsest level low resolution cut-off j,, pointing out its interpretation as a bandwidth. Hall and
Patil (1995) discussed the importance of this parameter on mean-squared error performance
and proposed choosing j, to increase with n.

3. Random coefficients’ covariances

Here we consider f as a realization of a stochastic process {X,, t € R} and investigate the
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statistical properties of random coefficients o, = [ X() 1, (1) dt and ¢;;, = [ X(7) ¢; (1) dt.
We assume X(7) to be a stochastic process with existing first and second moments. The results
of the next section do not require any additional assumptions.

3.1. Recursive structure

We prove a result about the wavelet coefficients’ covariances and use it to develop a recursive
algorithm to calculate the within- and across-scales coefficients’ covariances. To clarify the
terminology, we call within scale the covariances between coefficients that belong to the same
scale and across scales those between coefficients that belong to different scales.

Proposition 1. Given a wavelet basis in L*(R), the following results hold:

(a) Cov(dj,kdj’,/c’) = Z Z Em—2k8n—2k COV(Cijlmej/H,n)’

m n

(b) cov(¢jxCix) = D2 D Mpaihn—oir COV(Cipt mCirsrn)s

m n

(©) COV(Cj,kdjckf) =3 > My & COV(CjH,ij’H,n)’

with j, j/, k and k" integers.
Proof. The proof is straightforward given relationships (2). O

Assume that the within-scale variance—covariance matrix of scaling coefficients ¢/ at

scale j + 1 is known and denote that matrix by CCYT/ ™1 We state the following results in
filter notation (see equation (3)). The within-scale covariances at the coarser scale j can be
easily computed as

DDUJ} — GHI[CC”“"””]G]TH, (6)
CClil = g, [CCUHH I T, (7
CDV = Gy [CCVT I, ®

where DD/} indicates the within-scale variance—covariance matrix of wavelet coefficients at
scale j and CD"Y/' the within-scale variance-covariance matrix of scaling and wavelet co-
efficients at scale j. Moreover, the across-scales covariances between scales j — 1 and j are

cpli-tit — HjHjH[CC{jJrLJ'Jrl}]GjTH’ 9)
pDULI — GjHjH[CC{.i+1,./+1]]G;l'+l’ (10)

with €DV} the across-scales variance-covariance matrix of scaling coefficients at scale
j— 1 and wavelet coefficients at scale j, and DDV} the across-scales variance—covariance
matrix of wavelet coefficients at scales j — 1 and j.

These formulae can be applied to the matrix CC'/! to obtain the within-scale covariances
at the coarser scale j — 1 and the across-scales covariances between scales j — 2 and j — 1, and
so on until a desired scale is reached. Fig. 1 shows the algorithm for the first two scales j and
j — 1. The resultant matrix is symmetric.
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ccti-ti=1 — pcli-ti-1 — cpli-lit —
H,»[CC”‘”]H,T I_Ij[cc(/'-/')]G;r H/‘I‘Ij_*_][CC(HI‘H”]G;:H
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UL GlecHe; GH[CCHT NG,
N —
[CD(f—l./)]T [DD(/'—U)]T DDV —
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(@) (b)

Fig. 1. (a) Variance—covariance matrix of the vector ¢U*" and (b) variance—covariance matrix of (cU~", dU-",
d\)) obtained from cCcl*t"/+1

H[BIH] H|[BIG
H/‘+1 [C]G/T«H
G|[B1H] G|BIG]
C —
Gi[CIH Gi[C1G

Fig. 2. Two-dimensional DWT (B = H,-H[C]H,-Tﬂ)

3.2. Link to the two-dimensional discrete wavelet transform

To understand further the algorithm described, consider the two-dimensional DWT. Given
C, a 2/ x 27! matrix of pixels, a wavelet decomposition of the matrix can be calculated; this
results in first applying the linear filters to the rows of the matrix C, obtaining two matrices
H;,[C] and G,;[C], and then to the columns of H, ,[C] and G,,[C], obtaining four
matrices H,,[C1H},,, H,,,[C]G},,, G;,,[C]1H},, and G;,,[C]G},, of dimensions 2/ x 2/. This
procedure can be repeated with the matrix B = H,,,[C]H},, (Fig. 2), and so on until a desired
scale is reached.

Our recursive algorithm has an interesting link to the two-dimensional DWT. A com-
parison of Figs 1 and 2 shows that, having applied the two-dimensional DWT to the matrix
CccUt - the diagonal blocks will correspond to the within-scale variance—covariance
matrices; moreover, the across-scales variance—covariance matrices will be obtained by
suitably applying the one-dimensional DWT to the rows of the non-diagonal blocks. Since
CCU'H s a symmetric matrix, the matrices G, [CCY""H], | and H,,,[CCVTMG]
are transposes of each other. This link to the two-dimensional DWT makes the imple-
mentation of our algorithm extremely simple in any of the available wavelet packages.

3.3.  Further results
Let us now assume f a realization of a stochastic process X(¢) having finite (constant) mean
E[X(?)] = ¢ (i.e. ¢ = 0 without loss of generality) and finite E[X(¢) X(s)]. The following result
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states that, using minimum phase Daubechies (1992) wavelets, within- and across-scale
covariance matrices have zero entries outside diagonal bands that depend on the number of
vanishing moments of the wavelet family. Similar arguments can be made for different
Daubechies wavelet families.

Proposition 2. Consider the Daubechies minimum phase wavelets. Then, at fixed integer
scales j and ;' with j* — j = [, where /is a positive integer, scaling coefficients c;; and ¢;,;, are
uncorrelated for integer k and &’ such that &’ — 2'k > 2/(2N — 1) or kK’ — 2’k < 1 — 2N, and
wavelet coefficients d;; and d;, are uncorrelated for k and k" such that k' — 2k >
(14+2ON—1 or k' = 2'k < 2' — (1 +2")N, where N is the number of vanishing moments
of the wavelet family.

Proof. Note that
Eleixcpe] = E{ J X() (1) dt J X(5) e (s) ds]
- J j ELX(1) X(5)] (1) by e(s) ds .

Daubechies minimum phase wavelets satisfy

k 2N—1+k
supp(sb,-,k):{ u]

2i° 2J

and E[c;;c; ] will be 0 when ¢, and ¢, have disjoint support, i.e. for kK'— 2k >
22N —1)or k' —2'k < 1 —2N with j/ — j = [, and similarly for the d; ., considering that

O

l1-N+k N+k
supp(¢;) = [ TY, } :
We remark here that more specific results can be derived if X(¢) is more precisely specified.
The decay properties of the coefficients’ correlation are now well known for a large variety of
stationary and non-stationary stochastic processes. In the non-stationary case, for example,
the coefficients’ correlation structure has been investigated for the class of fractional Brownian
motions, non-stationary zero-mean Gaussian processes with stationary increments: among
others, Tewfik and Kim (1992) and Dijkerman and Mazumdar (1994) proved that the
correlation between coefficients decreases exponentially fast across scales and hyperbolically
fast through time. Flandrin (1992) studied the variance structure and showed that it is scale
dependent.

4. Bayesian wavelet shrinkage

Recently, Bayesian approaches to wavelet shrinkage have attracted much attention in the
literature. A common feature of the existing proposals is that the coefficient vector d in
equation (5) is assumed to be a random variable and a prior distribution is imposed on it. The
shrinkage step then becomes the result of deriving a Bayes rule from the posterior distri-
bution of d. Vidakovic (1998), Chipman et al. (1997), Clyde et al. (1998) and Abramovich et
al. (1998) explored different ways to specify the priors. All these contributions share the
assumption that the components of d are independent.
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The results of Section 3 can be brought to bear in developing algorithms for Bayesian
wavelet shrinkage that do not rely on the assumption of independence. The first approach
that takes into account the coefficients’ correlation structure was proposed by Vidakovic and
Muiiller (1995) in the context of density estimation and applied by Vannucci (1996) to denoise
data. We shall refer to it as the VM model.

4.1. The Vidakovic—Miiller model
According to equation (5), uncertainty about the empirical coefficients is described by

d\d, o> ~ N(d, o°I). (11)

A closed form learning procedure about the ds can be achieved (see, for example, O’Hagan
(1994)), assuming

d, o ~NTIG,, \(c, 6, m, T) (12)

where N'ZG, ., denotes the multivariate normal-inverse gamma distribution with dimension
n+ 1. The model requires the specification of the hyperparameters «, 8, m and X. Since
the marginal prior distribution of ¢” is an inverse gamma ZG(a/2, §/2) distribution, the
parameters « and § can be used to specify beliefs about the noise scale, considering that
E[0’] = /(6 —2) and

202

Var(O' ) :m

Moreover, for a given o7, the prior conditional distribution of d given ¢” is a multivariate
normal distribution with mean vector m and covariance matrix o°¥. The posterior distri-
bution for d and o7 is

d» 0-2|J ~ NIg)1+l(a*’ 6*’ m*y E*)r (13)
with updated parameters
»E=I+32)7,

; (14)
m* = ¥(d + 7 'm)

and o* = a4+ m"'S'm+d " d + m* =¥ 'm* and &* = 6+ n.

Vidakovic and Miiller (1995) chose m = 0 and structured ¥ as a block diagonal matrix,
assuming that the components of d at different scales are independent, but allowing for
coefficients at the same scale to be correlated. They suggested o, = o _k/‘, |p| < 1, as entries
for the diagonal blocks. This is a parsimonious and attractive choice which leads to a within-
scale correlation structure that is inversely proportional to the distance between coefficients.
Moreover, each diagonal block was multiplied by a scale-dependent parameter );. They
suggested the choice of an exponentially decreasing sequence of As. This model specification
and the adoption of a squared error loss function lead to the posterior mean m* = £°d as a
Bayes estimator of d. Thus, the IWT can be applied to m* to obtain the function estimate.
Note that this estimation procedure does not require the specification of « and 6.

4.2. Recursive specification of ¥
Here we use the results of Section 3 to motivate a different way for specifying ¥. We first
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specify the covariance matrix X, 4 of scaling coefficients at scale J and then derive the matrix
¥ from X, according to the recursive algorithm described in Sections 3.1 and 3.2.

Section 3.3 provides insights about correlation structures for large classes of common
processes that may generate /. In the Daubechies wavelets case, the results given in proposition
2 impose zero covariances outside a certain diagonal band which depends on the number of
vanishing moments. Within the diagonal band, we may specify a covariance structure that
decreases in inverse proportion to the distance between coeficients, as intuitively suggested
by Vidakovic and Miiller (1995). Thus, we propose specifying X, , as oy, = MR for
|k — k'l <2N — 1 and 0, = 0 otherwise. Because of the recursive structure, we have within-
and across-scale band covariance matrices at each scale.

Our specification of ¥ has several additional features compared with the original proposal
of Vidakovic and Miiller (1995): it incorporates knowledge about the wavelet coefficients’
correlation structure; it allows within- and across-scale correlation modelling; it leads to a
remarkable reduction in the number of parameters implied in the model. The matrix %, , (and
hence X) depends in fact only on the two parameters A and p, and on the basis of the
construction above we can write 3 (A, p) = A X(p). The parameter )\ is a smoothing parameter.
Smaller values of A imply a more precise prior, i.e. greater shrinkage of the wavelet coefficients
towards the prior mean m. Suitable values for p are those that imply a (semi)positive definite
matrix X, ,, i.e. a positive minimum eigenvalue. In Appendix A we find |p| < C(N, n) where
C(N, n) i1s a constant depending on N, the wavelet number, and n, the dimension of the
matrix. Exact results are given for N = 1, whereas numerical techniques are employed for
larger values of N, given the complex structure of %, ;.

As an illustration, Fig. 3 shows the covariance matrix ¥ obtained for /=9, A =1 and
p = 0.5 using Daubechies minimum phase wavelets with six vanishing moments. Wavelet
transforms have been applied with coarsest scale equal to 4. The scales are graphed from

Wavelet coefficient
n
[
o
-
N

4501

500 ) ) ) %

50 100 150 200 250 300 350 400 450 500
Wavelet coefficient

Fig. 3. Wavelet coefficients’ covariance matrix (A, p) with A = 1 and p = 0.5 for Daubechies minimum phase
wavelets with six vanishing moments: the highest grey scales values of the images correspond to the largest
entries of the matrices; the coefficients are ordered from coarse to fine
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coarse to fine. Plots were obtained by using the MATLAB (MathWorks, 1996) function
imagesc that displays a matrix as an image. Each element of the matrix specifies the colour
of a rectilinear patch in the image. The highest grey scale values of the image correspond to
the largest entries of the matrix. Fig. 3 highlights the existence of non-zero covariances
between coeflicients at different scales.

5. Examples: simulated signals

To illustrate our Bayesian shrinkage strategy we use the functions HeaviSine, Blocks, Bumps
and Doppler of Donoho and Johnstone (1994, 1995) as representative of signals with different
characteristics which arise in several scientific fields. Fig. 4 shows the four signals (512 obser-
vations) and Fig. 5 the same signals corrupted by additive Gaussian white noise N(0, %) with
signal-to-noise ratio SNR = sd( f)/o equal to 5.

We need to apply the DWT to the noisy data, to calculate the updated variance—covariance
matrix X* and posterior mean m* as in equations (14) and to apply the inverse wavelet
transform to m* to obtain the smoothed data. We specify the vector m by centring wavelet
coefficients on 0 and scaling coefficients at the coarsest scale on the empirical values. Our
recursive specification of X requires choosing A and p. Using an empirical Bayes approach, we
search over a grid for the values that minimize a general measure of discrepancy. A suitable
score, that measures the goodness of fit of the wavelet estimator, is the mean-squared error

1o o
i fy

A more realistic method, that learns about A and p using a Bayesian hierarchical model, will
be presented in the next section.

4
4
2
5 33
c c
2 o
[z
s 0 o2
2 2
-2 1
0
-4
0.2 0.4 0.6 0.8 1 02 04 0.6 08 1
time time
(a) (b)
6
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4
0.2
e 3
=] 5 0
@ 0 @
Q o
2 2 -02
-2 =
-0.4
-4
% -0.6
0.2 0.4 0.6 0.8 1 02 0.4 0.6 0.8 1
time time
() (d)

Fig. 4. Test signals (a) Blocks, (b) Bumps, (c) HeaviSine and (d) Doppler
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Fig. 5. Test signals corrupted by Gaussian white noise with signal-to-noise ratio SNR = sd(f)/o equal to 5: (a)
Blocks; (b) Bumps; (c) HeaviSine; (d) Doppler

Fig. 6 shows the smoothed signals. The Daubechies minimum phase wavelet family with
seven vanishing moments was used for the HeaviSine, Doppler and Bumps signals. The Haar
family was chosen for the Blocks signal. The selected values of A and p were (A, p) = (1/ 3%,
0.8) for the HeaviSine signal, (A, p) = (1/2, 0.5) for the Bumps signal, (A, p) = (1/3, 0.8) for
the Doppler signal and (), p) = (1/2*, 0.5) for the Blocks signal. Among different values of
the coarsest scale j, of the DWT, those that gave the best results were j, = 6 in the Bumps
case and j, = 5 otherwise. In the assessment of j,, cross-validation techniques may be used;
alternatively, a fully Bayesian model could include uncertainty about j, over the small
number of possible integer values.

To highlight the fact that allowing for across-scales correlation between coefficients gives a
better reconstruction of the signals, we compare our results with those obtained by using the
VM model in the original formulation of Vidakovic and Miiller (1995). The sequence of As
was chosen as [100, 277] with j ranging from the coarsest to the finest scale. We used 7 = 2*
for the Bumps and Doppler signals and 7 = 2° otherwise. The value 100 is simply a large
value that avoids the shrinkage of scaling coefficients at the coarsest scale. Numerical
summaries can help in comparing the two methods. Ratios of the mean-squared errors

1 n N )
W 2= f

of our estimates over those of Vidakovic and Miiller were 0.8269 (HeaviSine), 0.8813
(Blocks), 0.4327 (Doppler) and 0.4116 (Bumps). Ratios of the mean absolute errors

12 .
2=

were 0.9747 (HeaviSine), 0.9308 (Blocks), 0.7138 (Doppler) and 0.6569 (Bumps).
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Fig. 6. Signals reconstructed by using the VM model with the proposed recursive specification of matrix ¥ (the
true signals are superimposed): (a) Blocks; (b) Bumps; (c) HeaviSine; (d) Doppler

6. Learning about )\ and p

Because results can be sensitive to the choice of A and p, it can be attractive to include them
in the inferential process. A possible solution is to specify a third scale in the VM model.
Empirical coefficients d are still modelled through distribution (11) with prior distribution on
d and o® expressed in the conjugate form (12). Then, A and p are also random and can be
assumed independent and a priori distributed as

A~1G(p/2, q/2), (15)

where ZG denotes the inverse gamma distribution, and

p(p) o< (C—p)""(C+p)"7", lpl < C, (16)

such that (C — p)/2C is proportional to a beta distribution with parameters r; and r,. The
constant C takes into account the constraints on the support of p, as discussed in Section 4.2
and Appendix A.

6.1. The inference strategy

The complex structure of (), p) does not allow for inference in closed form. A sample from
the posterior distribution of the parameters can be obtained by a Markov chain Monte Carlo
method. The Metropolis—Hastings algorithm of Metropolis et al. (1953) and Hastings (1970)
can be considered the archetype of this large variety of algorithms. Values are sampled from
proposal distributions and accepted on the basis of suitable acceptance rules. The Gibbs
sampler (see, for example, Tierney (1994) and Smith and Roberts (1993)) is a special case.
Proposal distributions are represented by full conditional distributions of the parameters and
sampled values are always accepted. Hybrid algorithms can be used when intractable full



982 M. Vannucci and F. Corradi

conditional distributions arise for some of the parameters, as described by Chib and
Greenberg (1994) and Miiller (1992).

In our model we can easily calculate the full conditional distributions of d, o and )\,
whereas it is more difficult to specify the full conditional distribution of p. Consequently, the
chain is simulated by combining in a cycle Gibbs steps for the parameters d, o> and X with a
Metropolis step for p. More precisely, given starting values for o°, A and p, we sample the
parameters in the following order. The vector d is simulated from

d\d, o*, A\, p ~ N (m*, 0° T%) (17)

with o* = {I4+ X' 2(p)"'} " and m* = £*{d + X' ©(p) 'm}. This is done in a single step to
exploit the correlation structure and to improve the speed of convergence. The variance noise
o’ is simulated from

o’ld, d, \, p~TG(a*/2, 6%/2) (18)

with o* = a +(d—m)" X" Z(p) '(d—m)+(d —d)"(d — d) and 6* = 6+ 2n. The param-
eter \ is simulated from

Nd, o*, p~IG(p*/2, q*/2) (19)

with p* = p 4+ {(d — m)" 2(p)”'(d — m)}/o” and ¢* = q + n. Finally, choosing N (p|p"", o),
p < |C|, as a proposal distribution, we simulate p by

(a) sampling p from N (p|p"”, 0,2]), p < |C|, with p' the sample value generated from the
previous cycle,
(b) computing

[ p(pld, ot M)
- 1, LS9, A
¢ mm{ (P AN

(c) accepting p if 0 < U(0, 1) < a.

After running the transient phase of the chain, the mean vector of d can be estimated by
averaging over the simulated samples of the ds. Finally, the IWT can be applied to obtain the
function estimate.

7. An example

We illustrate the performance of the hierarchical model of Section 6 on the Blocks signal.

To obtain a posteriori inferences we need to choose the hyperparameters m, «, 6, p, q, 1,
and r, and the starting values o3, X, and p,. We specify the mean vector m as described in
Section 5. We assume ignorance about o” by setting o and é equal to 0 and we set o to the
estimate suggested by Donoho and Johnstone (1994), i.e. the median absolute deviation of
the wavelet coefficients at the finest scale, divided by a constant. We specify the prior distri-
bution on A so that the variability is large: we use (p, ¢) = (1/32, 4) and starting value
Ao = 0.5. Consider now p. Previous experience has shown that the positive part of the param-
eter space supports most of the probability mass. We use Haar wavelets, requiring C = 0.5;
we set (1, r,) = (3, 12) and starting value p, = 0.3.

We simulated 256 observations and applied the DWT with coarsest scale equal to 5. A
chain was run for 5000 iterations. Metropolis steps on p were performed using o, = 0.005, a
value that turned out to be a good compromise between two needs: exploring the whole
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Fig. 7. Blocks signal-Markov chain Monte Carlo output analysis: (a) 5000 simulated values of the parameters ),
p and ¢%; (b) corresponding posterior density estimates (last 3000 values)

parameter space and obtaining an acceptance ratio of at least 40% (for the simulation
presented here the exact acceptance ratio was 68%). Sampled values for the nuisance
parameters o2, A and p are shown in Fig. 7. The transient phase for these parameters seems to
last for 400-500 iterations so the choice of a burn-in of 2000 iterations is conservative.
Posterior density estimates are also given in Fig. 7. We produced the autocorrelation plots of
values selected every 2, 5, 10 and 15 iterations of the last 3000 and decided to take one
simulated value every 10 iterations. The autocorrelation becomes negligible after lag 4 for the
A- and p-parameters and at lag 2 for o”. To assess whether there was a lack of convergence we
used some of the diagnostics implemented in the CODA software. The variables passed the
Heidelberger and Welch (1983) stationary test. Furthermore, values of the Geweke (1992) Z-
score diagnostic were —0.35 (A\), 1.07 (p) and 1.62 (o), providing no evidence against con-
vergence. In case problems in the convergence of the chain arise, modelling log(p), rather
than p, may help.

Before evaluating the smoothing performance on the signal, it is interesting to consider the
shrinkage on the wavelet coefficients. Fig. 8 compares the empirical coefficients with the
average over the simulated values of the ds. As was expected, shrinkage has a very moderate
effect on large coefficients whereas it reduces the smaller coefficients to values that are very
close to 0. A histogram of the 217 coefficients that would have been set to 0 by using the
SureShrink method of Donoho and Johnstone (1994, 1995) is also given in Fig. 8.

After averaging over the simulated values of the ds, we applied the IWT. Figs 9(a) and 9(b)
respectively show the noisy signal and the smoothed signal superimposed on the original.
Substantial smoothing has been performed.

8. Concluding remarks

We have investigated the correlation structure of wavelet coefficients and proposed a
recursive algorithm to calculate within- and across-scale covariances. Focusing on Bayesian
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Fig. 8. Blocks signal: (a) empirical wavelet coefficients, ordered from coarse to fine; (b) averages of the
simulated values of the ds; (c) histogram of the simulated values of the 217 coefficients that would have been set
to 0 by SureShrink
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Fig. 9. Blocks signal: (a) noisy signal; (b) reconstructed signal superimposed on the original

wavelet shrinkage, we have used these findings to motivate a model specification leading to a
parsimonious solution that depends only on two parameters. Inference on these parameters
has been made by using Markov chain Monte Carlo methods.

The results of Section 3 can be viewed in the more general context of modelling wavelet
coefficients which is implied in the nonparametric estimation of densities and regression
functions involving wavelets. Kovac and Silverman (1998) have independently explored the
recursive way of computing variances and covariances of wavelet coefficients. They con-
centrated only on variances and within-scale covariances and investigated the use of the
algorithm in wavelet regression methods with irregularly spaced data, regularly spaced data
sets of arbitrary size and correlated data. In the context of wavelet analysis of long memory
processes, Vannucci et al. (1998) employed the variance recursive algorithm to derive
Bayesian estimates of characteristic parameters of the process.
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Different implementations of our model need to be explored. Notably, under study is the
possibility of specifying two noise variance parameters for scaling and wavelet coefficients:
this solution allows modelling of different levels of corruption of the two kinds of coefficients.
Another possible improvement could derive from using a different way to model the dependence
of the within-scale covariances on the distance between coefficients.
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Appendix A

Here we discuss some properties of the eigenvalues of the matrix I, ,, ,(p) defined as o, = p"~*! for
|k — K'|< 2N — 1 and 0, ;, = 0 otherwise. The parameter N represents the wavelet number, N = 1,2, .. ..
Exact results can be proved for N = 1. Larger values of N lead to a very complex structure of the matrix
and we therefore employ numerical techniques.

If N = 11t is possible to prove (see, for example, Basilevsky (1983), p. 223) that the eigenvalues of the
matrix X, . ,(p) are

km
ANe=1+2 — k=1,...
£ + pcos(n+1), s > 1,

where 7 is the dimension of the matrix. The smallest eigenvalue is A, if p > 0 or A, if p < 0. Thus
¥, 11.6(p) is positive definite for each n if |p| < 1.
If N > 1, the eigenvalues have the analytical expression

km 5 2k ; Nk
=142 — - — N 2
A + {pcos(n+1>+p cos(n+1)+ +p COS(;1+1>} (20)

but to locate the smallest eigenvalue for this expression is far more difficult. Numerically, we found
that, given N and n, the minimum eigenvalue is a monotonic decreasing function of p, p > 0. Thus, the
highest value of p that gives a positive minimum eigenvalue can be found by using the bisection method.
A similar procedure can be used when p is negative.
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