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Abstract

Maximum likelihood is an attractive method of estimating covariance pa-

rameters in spatial models based on Gaussian processes. However, calculating

the likelihood can be computationally infeasible for large datasets, requiring

O(n3) calculations for a dataset with n observations. This article proposes the

method of covariance tapering to approximate the likelihood in this setting. In

this approach, covariance matrices are “tapered,” or multiplied element-wise by

a sparse correlation matrix. The resulting matrices can then be manipulated

using efficient sparse matrix algorithms. We propose two approximations to

the Gaussian likelihood using tapering. One simply replaces the model covari-

ance with a tapered version; the other is motivated by the theory of unbiased

estimating equations. Focusing on the particular case of the Matérn class of co-

variance functions, we give conditions under which estimators maximizing the

tapering approximations are, like the maximum likelihood estimator, strongly

consistent. Moreover, we show in a simulation study that the tapering estima-

tors can have sampling densities quite similar to that of the maximum likelihood

estimate, even when the degree of tapering is severe. We illustrate the accuracy

and computational gains of the tapering methods in an analysis of yearly total

precipitation anomalies at weather stations in the United States.

Keywords: Gaussian process, covariance estimation, compactly supported corre-

lation function, estimating equations
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1 Introduction

This article addresses the problem of estimating the covariance function of a spa-

tially correlated Gaussian process when the set of observations is large and irregularly

spaced. Maximum likelihood estimation has been used for some time by the geostatis-

tical community (Kitanidis, 1983; Mardia and Marshall, 1984). However, evaluating

the likelihood requires order n3 operations for a dataset of size n, making these meth-

ods computationally intractable for large n. We introduce two approximations to

the likelihood using the method of covariance tapering. These approximations sig-

nificantly reduce the computation of the likelihood for moderate sample sizes, and

they make possible otherwise infeasible calculations for large sample sizes. (The def-

initions of “moderate” and “large” are system dependent, but for example, a “large”

dataset on a desktop computer with 2 GB of RAM would be about ten thousand

data points.) In addition to their computational benefits, the estimators maximiz-

ing our approximations share some desirable properties with the maximum likelihood

estimator (MLE). We give conditions under which they are, like the MLE, strongly

consistent, and we demonstrate via simulation that their sampling distributions can

be quite similar to that of the MLE, even when the approximation is severe.

We consider the commonly used model that the data are drawn from an underlying

Gaussian process Z = {Z(s), s ∈ S ⊂ <d}. To streamline our development, we assume

that the mean of the process is zero and the covariance function is stationary and

isotropic. Write K(x; θ) to represent the covariance between any two observations

whose locations are x units distant from one another. K is assumed known up to

the parameter vector θ ∈ <p, which must be estimated based on a finite number

of observations Z = (Z(s1), . . . , Z(sn))′. For example, one commonly used isotropic

covariance function is the exponential function K(x; σ2, ρ) = σ2 exp{−x/ρ}.
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The vector Z has multivariate normal distribution, with log-likelihood function

`(θ) = −1

2
log |Σ(θ)| − 1

2
Z′Σ(θ)−1Z (1)

(ignoring a constant), where Σ(θ)ij = K(||si − sj||; θ), i, j = 1, . . . , n.

The advantage of using a Gaussian process model, rather than simply specifying

the finite set of observations to be multivariate normal and estimating the covariance

matrix, is that the Gaussian process distribution implies a joint distribution for the

observations Z and the process at any unobserved location s∗. Deriving predictions

for Z(s∗) according to its conditional expectation given Z is a canonical problem in

geostatistics, called kriging (see e.g. Stein, 1999). This computation is also expensive

for large n. Furrer et al. (2006) suggested using covariance tapering to ease the

computational burden of kriging large datasets. However, these authors assumed the

covariance parameters were known, while we focus on their estimation.

The computational difficulty of finding the MLE was recognized by some of its ear-

liest advocates (Mardia and Marshall, 1984; Vecchia, 1988). Efficient computational

techniques have been developed mainly for datasets in which the sampling locations

form a regular lattice. In this case, the covariance matrix has a special structure

that can be exploited computationally (Whittle, 1954; Zimmerman, 1989). There are

fewer techniques for irregularly spaced data. Fuentes (2007) developed an approxi-

mation to the likelihood based on integrating a spatial process over grid cells, so as to

obtain a lattice structure that can be modeled in the spectral domain. Vecchia (1988)

proposed a likelihood approximation in the spatial domain, later extended by Stein

et al. (2004). One partitions Z into subvectors Z1, . . . ,Zb, then writes the likelihood

as a product of conditional densities p(Zj|Z(j−1); θ), where Z(j)
′ = (Z1

′, . . . ,Zj
′). One

then replaces the full conditioning sets Z(j−1) with smaller subsets Z̃(j−1) ⊆ Z(j−1), so
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that the densities in the product are easier to evaluate. Vecchia (1988) chose Z̃(j) to

consist of nearest neighbors within Z(j). Stein et al. (2004) extended Vecchia’s idea

to restricted maximum likelihood estimators and examined more flexible choices of

conditioning sets. The intuition behind this approach is that correlations between

pairs of distant locations often are nearly zero, so there is little information lost in

taking them to be conditionally independent given intermediate locations. A similar

idea motivates the covariance tapering approach we explore in this paper.

2 Likelihood Approximation Using Tapering

If we have reason to believe that distant pairs of observations are independent, we

can model this structure using a compactly supported covariance function (Gneiting,

2002). Then Σ(θ) then contains zeroes corresponding to these distant pairs, and

sparse matrix algorithms (see e.g. Pissanetzky, 1984) can be used to evaluate the

likelihood efficiently. Even if we do not believe the underlying process possesses such

a covariance function, we can use this idea for computational purposes. The goal

is to set to zero certain elements of the covariance matrix, such that the resulting

matrix is positive definite and retains the original properties of Σ(θ) for proximate

locations. To this end, consider taking the product of the original covariance function

K0(x; θ) and a tapering function Ktaper(x; γ), an isotropic correlation function which

is identically zero whenever x ≥ γ. Denote this tapered covariance function by

K1(x; θ, γ) = K0(x; θ)Ktaper(x; γ), x > 0. (2)

The tapered covariance matrix is denoted Σ(θ) ◦T(γ), where T(γ)ij = Ktaper(||si −

sj||; γ). The “◦” notation refers to the element-wise matrix product, also called the

Schur or Hadamard product. Some relevant properties of the Schur product are listed
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in Appendix A. Notably, the Schur product of two covariance matrices is again a valid

covariance matrix. In addition, requiring Ktaper to be a correlation function ensures

the marginal variance of the process Z is the same under K0 and K1. It is important

to note the equivalence of tapering the covariance matrix and tapering the covariance

function: [Σ(θ) ◦T(γ)]ij = K1(||si − sj||; θ, γ).

Bickel and Levina (2007) developed estimators of a covariance matrix by banding

the sample covariance matrix and noted that, although banding does not guarantee

positive definiteness, tapering does. Furrer and Bengtsson (2006) also used tapering

as a regularization technique for the ensemble Kalman filter. However, these two

papers differ from the present context in that they are concerned with estimating the

covariance matrix, rather than the parameters of a particular covariance function.

We propose two approximations to the log-likelihood (1) using covariance tapering.

The first simply replaces the model covariance matrix Σ(θ) with Σ(θ) ◦T(γ), giving

`1taper(θ) = −1

2
log |Σ(θ) ◦T(γ)| − 1

2
Z′ [Σ(θ) ◦T(γ)]−1 Z. (3)

This is equivalent to using a model in which the process Z is Gaussian with mean

zero and covariance function (2). The effects of misspecifying the covariance function

have been widely studied with respect to kriging (see Section 4.3 of Stein, 1999), but

the implications for estimation have not been as well studied.

One possible objection to this approximation is that the corresponding “score”

function is biased. That is, E
[

∂
∂θ

`1taper(θ)
]
6= 0. This means there is no guarantee

that the estimator maximizing (3) is asymptotically unbiased. Moreover, in our ex-

perience, this estimator can sometimes display sizable bias in practice, especially if

the taper range is small relative to the correlation range of the process.

To remedy the bias, one can take an estimating equations approach to formulating
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a tapered version of this problem. Essentially, we taper both the covariance matrix

and the sample covariance matrix. First, note that one can rewrite the quadratic

form in (1) as a trace involving the sample covariance matrix Σ̂ = ZZ′ :

Z′Σ(θ)−1Z = tr
{
Z′Σ(θ)−1Z

}
= tr

{
ZZ′Σ(θ)−1

}
= tr

{
Σ̂Σ(θ)−1

}
. (4)

Replacing both the model and sample covariance matrices with tapered versions gives

`2tapers(θ) = −1

2
log |Σ(θ) ◦T(γ)| − 1

2
tr
{[

Σ̂ ◦T(γ)
]
[Σ(θ) ◦T(γ)]−1

}
= −1

2
log |Σ(θ) ◦T(γ)| − 1

2
Z′ ([Σ(θ) ◦T(γ)]−1 ◦T(γ)

)
Z. (5)

The second form of the expression follows from the trace equality in Appendix A and

a reversal of the reasoning in (4). Maximizing `2tapers(θ) then corresponds to solving

an unbiased estimating equation for θ. That is, E
[

∂
∂θ

`2tapers(θ)
]

= 0.

In both approximations, small values of γ correspond to more severe tapering.

When γ = 0, observations are treated as independent, and not all parameters may

be estimable, whereas as γ → ∞, one approaches the full likelihood. However, γ

can be chosen to be quite small in `2tapers and still give efficient estimators, as we

demonstrate in the simulation study of Section 5.

We refer to (3) and (5) as the one taper and two taper approximations, respec-

tively, and to the estimators maximizing them as the one and two taper estimators.

The choice of approximation is context dependent. The one taper approximation

is computationally more efficient, as it involves solving the sparse system of equa-

tions [Σ(θ) ◦T(γ)]−1 Z, whereas the two taper approximation requires the inverse

of a sparse matrix to compute
(
[Σ(θ) ◦T(γ)]−1 ◦T(γ)

)
Z. In addition, asymptotic

results are more straightforward for the one taper approximation, as we discuss in
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the following section. However, maximizing the two taper approximation has the ad-

vantages of solving an unbiased estimating equation: the bias tends to be smaller in

practice, and we describe how one can estimate sampling variability using the robust

information criterion (Heyde, 1997). Therefore, we prefer the two taper approxima-

tion in practice, unless the range of the process is clearly small enough to produce

little bias in the one taper approximation. We return to this question in Section 6,

in which we illustrate the tapering methods on a large spatial dataset.

3 Asymptotic Results

Two commonly used asymptotic frameworks in spatial statistics are “increasing do-

main” and “fixed domain” asymptotics (see e.g. Cressie, 1993, Section 5.8). Under

increasing domain asymptotics, the sampling region increases without bound, while

the minimum distance between sampled locations is bounded below by a positive con-

stant. Under fixed domain asymptotics, the sampling region is fixed and bounded, and

sampling locations become increasingly dense within this region. We focus primarily

on fixed domain asymptotics, under which Zhang (2004) recently showed almost sure

convergence of the MLE under the Matérn covariance model.

The Matérn covariance function is widely used in practice and has easily inter-

pretable parameters (Matérn, 1986; Stein, 1999). This function is defined by

K(x; σ2, ρ, ν) =
σ2(x/ρ)ν

Γ(ν)2ν−1
Kν(x/ρ), x ≥ 0, σ2, ρ, ν > 0 (6)

whereKν is the modified Bessel function of order ν (see Abromowitz and Stegun, 1967,

Section 9.6). The parameter σ2 is the marginal variance of the process, ρ controls

how quickly the correlation decays with distance, and ν controls the smoothness of

the process (see Stein, 1999, Section 2.7, for details).
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Zhang (2004) proved several important results about the Matérn class. The first

concerns the equivalence of two mean-zero Gaussian measures G(K0) and G(K1).

(Throughout, let G(K) denote the mean zero Gaussian measure with covariance func-

tion K.) Recall that two probability measures P0 and P1 on the same measurable

space (Ω,F) are called equivalent if P0(A) = 0 if and only if P1(A) = 0, for all A ∈ F .

Denote this by P0 ≡ P1. If the true covariance K0 is Matérn with parameters σ2
0, ρ0,

and ν, and K1 is Matérn with parameters σ2
1, ρ1, and ν, then G(K0) ≡ G(K1) on the

paths of {Z(s), s ∈ T} for any bounded infinite subset T ∈ <d with d ≤ 3, if and only

if σ2
0/ρ

2ν
0 = σ2

1/ρ
2ν
1 (Zhang, 2004).

This result has immediate consequences for estimation. Under the fixed domain

asymptotics with d ≤ 3, there cannot exist consistent estimators of both σ2 and ρ.

However, the ratio c = σ2/ρ2ν is consistently estimable. In particular, for known ν and

for any fixed ρ∗, the estimator σ̂2
n obtained by maximizing the likelihood Ln(σ2, ρ∗)

is such that σ̂2
n/ρ

∗2ν → σ2
0/ρ

2ν
0 almost surely under G(K0) (Zhang, 2004).

3.1 Equivalent Measures Under Tapering

Zhang (2004) used the equivalence of Gaussian measures with different Matérn covari-

ance functions to prove almost sure convergence of his estimator of c. This technique

translates a difficult problem under one measure into an easy problem under a differ-

ent, but equivalent, measure. The same principle can be used to develop a consistent

estimator of c which maximizes the one taper approximation (3). The following the-

orem gives some conditions on the tapering function Ktaper under which the tapered

and untapered Matérn covariance functions give equivalent mean zero Gaussian mea-

sures. Throughout, Z represents a stochastic process on <d.

Theorem 1. Let K0 be the Matérn covariance function on <d, d ≤ 3, with parameters

σ2, ρ, and ν, and let K1 = K0Ktaper, where Ktaper is an isotropic correlation function
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on <d. Suppose the spectral density ftaper = (2π)−d
∫
<d exp{−iω′x}Ktaper(x)dx exists

and there exist ε > 0 and Mε < ∞ such that ftaper(ω) ≤ Mε/(1 + ||ω||2)ν+d/2+ε, with

ε > max{d/4, 1 − ν}. Then G(K0) ≡ G(K1) on the paths of {Z(s), s ∈ T}, for any

bounded subset T ⊂ <d.

Proofs of all results are given in Appendix B.

One can choose a function to satisfy the conditions of Theorem 1 from the family of

compactly supported functions constructed by Wendland (1995, 1998) and suggested

as tapering functions by Furrer et al. (2006). The Wendland function φd,k(||x||) is

positive definite on <d. For ||x|| ∈ [0, 1) it is a polynomial of degree bd/2c+3k+1. For

||x|| > 1, φd,k(||x||) = 0. If fd,k is the spectral density corresponding to φd,k, Wendland

(1998) showed that there exists a positive constant M such that fd,k(||ω||) ≤ M/(1+

||ω||2)d/2+k+1/2. Therefore, φd,k(||x||/γ) satisfies the conditions of Theorem 1 for all

ν ≤ ν ′ whenever k > max{1/2, ν ′ + (d − 2)/4}. For example, when ν = 1/2 (the

exponential covariance), the Wendland function φd,1(||x||/γ) is a valid taper for d ≤ 3.

3.2 Convergence of the Tapering Estimators

Theorem 1 can now be used to prove almost sure convergence of the one taper esti-

mator, a direct analogue of the result for the MLE given by Zhang (2004).

Theorem 2. Let K0 be the Matérn covariance function on <d, d ≤ 3 with known

parameter ν and unknown parameters σ2 and ρ. Let {Sn}∞n=1 be an increasing sequence

of finite subsets of <d such that
⋃∞

n=1 Sn is bounded and infinite. Let `n,1taper be

the one taper approximation (3) based on observations of Z at locations in Sn, with

Ktaper satisfying the conditions of Theorem 1. Fix ρ∗ > 0, and let σ̂2
n,1taper maximize

`n,1taper(σ
2, ρ∗). Then σ̂2

n,1taper/ρ
∗2ν → σ2/ρ2ν almost surely under G(K0) as n →∞.

Note that the specification of this theorem takes the taper function to be constant
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with n. This allows the number of pairs of observations within the taper range to go

to infinity. If we view the role of an asymptotic result as providing some intuition

about estimators when n is “large” in some sense, we are here defining “largeness”

relative to the taper range, rather than allowing the taper range to shrink with n and

defining “largeness” in an absolute sense.

Unlike `1taper, `2tapers does not correspond to altering the distribution for the

process Z. Therefore, the equivalence result in Theorem 1 is not applicable. Instead,

the next theorem considers the case in which the covariance function K0(x; σ2) =

σ2C0(x), where C0(x) is a known correlation function. In this case it is possible

to solve for σ̂2
n,2tapers explicitly, and to use this expression to determine conditions

necessary for convergence. However, it is also possible to use this result to prove

convergence in the case that both σ2 and ρ of the Matérn covariance function are

unknown. This result is given as a corollary directly following Theorem 3.

Theorem 3. Let K0(x; σ2) = σ2C0(x), where C0(x) is a known correlation function

on <d and σ2 is unknown. Let {Sn}∞n=1 be a sequence of finite subsets of <d. Let

`n,2tapers(σ
2) be the two taper approximation (5) based on observations of Z at locations

in Sn. For all n, define the matrix Wn = [(Γn ◦Tn)−1 ◦Tn]Γn, where (Γn)ij =

C0(||si−sj||) and (Tn)ij = Ktaper(||si−sj||; γ), i, j = 1, . . . , n. Denote by {λn,i}n
i=1 the

eigenvalues of Wn. Suppose either supn

(
n−1

∑n
i=1 λq

n,i

)1/q
< ∞ for some 1 < q ≤ ∞,

or limn(supi≤n λn,i)n
−1 log n = 0. Then σ̂2

n,2tapers → σ2 almost surely under G(K0) as

n →∞.

Corollary 1. Let K0 be the Matérn covariance function on <d, d ≤ 3 with known

parameter ν and unknown parameters σ2 and ρ. Fix ρ∗ > 0, and let σ̂2
n,2taper max-

imize `n,2tapers(σ
2, ρ∗). Define Wn as in Theorem 3, but with (Γn)ij = σ−2K0(||si −

sj||; σ2, ρ∗, ν). Suppose the eigenvalues of Wn satisfy one of the conditions in Theorem

3. Then σ̂2
n,2tapers/ρ

∗2ν → σ2/ρ2ν almost surely under G(K0) as n →∞.
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3.3 Example

The conditions in Theorem 3 depend on the correlation function, the tapering func-

tion, and the sampling locations. These conditions can be difficult to check in practice.

The following Lemma allows one to ignore the choice of tapering function, using a

bound that depends only on the correlation function of the process.

Lemma 1. Let Γ and T be correlation matrices, and W =
[
(Γ ◦T)−1 ◦T

]
Γ. Then

λmax{W} ≤ λmax{Γ}/λmin{Γ}, where λmin and λmax refer to minimum and maxi-

mum eigenvalues.

We illustrate the use of this lemma in a simple example. Suppose the pro-

cess lies in <, with correlation function C0(x) = exp{−|x|/ρ} and ρ > 0 known.

Suppose the sampling locations are equally spaced, with si = i∆, i = 1, . . . , n.

Then Γn has symmetric Toeplitz form. Define f(λ) = 1 + 2
∑∞

k=1 e−k∆/ρ cos(kλ) =

sinh(∆/ρ)/[cosh(∆/ρ)− cos(λ)], for λ ∈ [0, 2π]. Then for all n, the eigenvalues τn,k of

Γn satisfy ess inf f ≤ τn,k ≤ ess sup f (applying Gray, 2006, Lemma 4.1). Therefore,

by Lemma 1, λmax{Wn} ≤ λmax{Γn}/λmin{Γn} ≤ ess sup f/ess inf f. Since f(λ) has

a maximum at 0 of coth(∆/(2ρ)) and a minimum at π of tanh(∆/(2ρ)),

λmax{Wn} ≤
λmax{Γn}
λmin{Γn}

≤ coth2

(
∆

2ρ

)
< ∞ (7)

whenever ρ < ∞ and ∆ > 0. Because λmax{Wn} is bounded for all n, the second

condition of Theorem 3 is satisfied, so σ̂2
n,2tapers converges almost surely.

Now consider the case that ∆ is not fixed but depends on n. In particular, suppose

∆n = ∆/nk for some k. The case k = 0 corresponds to increasing domain sampling.

The case k = 1 gives sampling locations {0, ∆/n, . . . , (n− 1)∆/n} always contained

within [0, ∆), an instance of fixed domain sampling. For k between 0 and 1, we have a

type of sampling intermediate between the usual fixed domain and increasing domain
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cases. The derivation of the bound in (7) still holds replacing ∆ by ∆n, and the

second condition of Theorem 3 is satisfied if

coth2

(
∆n

2ρ

)
log n

n
=

(
e−∆n/ρ + 1

e−∆n/ρ − 1

)2
log n

n
→ 0 as n →∞. (8)

We’ve shown (8) holds when k = 0; now consider k ∈ (0, 1]. Because k >

0, e−∆/ρnk → 1 as n →∞. Also, writing (e−∆/ρnk − 1)2 = ∆2

ρ2n2k (1 + o(1)),

lim
n→∞

(
e−∆/ρnk

+ 1

e−∆/ρnk − 1

)2
log n

n
= lim

n→∞

4ρ2n2k

∆2(1 + o(1))

log n

n
= lim

n→∞

4ρ2

∆2

log n

n1−2k
,

which is zero whenever k < 1/2. Note this does not include fixed domain sampling.

4 Estimating Sampling Variability

Recall that maximizing the two taper approximation (5) corresponds to solving an

unbiased estimating equation for θ. This suggests an estimator of sampling variability

in the two taper estimator, based on the robust information criterion (Heyde, 1997).

Let U(Z; θ) be an unbiased estimating function for θ; that is, Eθ [U(Z; θ)] = 0

for all possible values of θ. The robust information matrix corresponding to U is

E(U) = E
[
U̇
]′

E [UU′]−1 E
[
U̇
]
, where U̇ is the matrix of derivatives of the vector

U with respect to θ (Heyde, 1997). Under certain conditions, norming by the sam-

ple equivalent of E(U)−1 gives asymptotic normality of the estimator θ̂n obtained

by maximizing U(Zn; θ) (Heyde, 1997, Section 2.5). Although these conditions do

not hold in the case of irregularly spaced observations under the fixed domain sam-

pling scheme, the diagonal elements of E(U)−1 can still give reasonable estimates of

sampling variability. For example, Stein et al. (2004) suggested this use of the ro-

bust information matrix for estimators maximizing their subsetting approximations.
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Let U2tapers be the vector whose ith entry is the partial derivative of `2tapers(θ) with

respect to θi. The two matrices needed to calculate E(U2tapers) have entries

E
[
U̇2tapers

]
i,j

= −1

2
tr

{[
∂Σ

∂θi

◦T

]
[Σ ◦T]−1

[
∂Σ

∂θj

◦T

]
[Σ ◦T]−1

}
(9)

E
[
U2tapersU

′
2tapers

]
ij

=
1

2
tr

{[(
[Σ ◦T]−1

[
∂Σ

∂θi

◦T

]
[Σ ◦T]−1

)
◦T

]
Σ (10)[(

[Σ ◦T]−1

[
∂Σ

∂θj

◦T

]
[Σ ◦T]−1

)
◦T

]
Σ

}

Note that the derivatives in (9) and (10) are matrix quantities depending on the

sampling locations, so in general the entries of E(U2tapers)
−1 do not have closed form

expressions. However, it is computationally straightforward to calculate both (9)

and (10), as all inverses involve sparse matrices. To construct variance estimates for

θ̂2tapers, one can plug the estimator into (9) and (10), calculate E(U2tapers), then take

the diagonal elements of the inverse. In the next section, we show via simulation that

this procedure gives reasonable variance estimates in practice.

5 Simulation Study

We used Monte Carlo simulation to investigate three issues concerning the tapering

estimators. First, how does their performance compare to that of the MLE? Sec-

ond, how should one choose the taper range γ? Finally, are the variance estimators

proposed in Section 4 good estimators of sampling variability?

We simulated 1000 datasets, each consisting of a multivariate normal vector of

length 300. Each dataset was generated using the same 300 locations, consisting

of a random selection of perturbed gridpoints. To obtain the perturbed gridpoints,

we first generated a two dimensional grid over [0, 1]2 with increments of 0.03. To

each gridpoint, we added a random amount of noise in each coordinate, uniformly
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distributed on [−0.01, 0.01]. Therefore, each perturbed gridpoint is at least 0.01

units distant from any its neighbors. This avoids numerical singularities due to the

sampling locations being too close together (Stein et al., 2004).

The covariance function was exponential with σ2 = 1 and ρ = 0.2. With this

choice, pairs of observations have negligible (<0.05) correlation when their locations

are more than 0.6 units distant from each other. We call this the effective range of

the process, and it provides a point of comparison for the choice of taper range.

We maximized the likelihood (1) for each dataset to obtain σ̂2
n and ρ̂n, and we

formed ĉn = σ̂2
n/ρ̂n. Likewise, we estimated σ2, ρ, and c by maximizing `1taper and

`2tapers over σ2 and ρ. Although existing results under the fixed domain asymptotics

consider fixing ρ and maximizing only over σ2, this type of joint maximization is

most commonly used in practice. Indeed, the simulation study in Zhang (2004) used

joint maximization, even though the asymptotic results concerned a fixed ρ. Kaufman

(2006) showed that fixing ρ at a value far from its true value can significantly bias

estimates of c, whereas joint maximization does not have this drawback.

We used the Wendland tapering function with k = 1 and two different values of

the taper range, γ = 0.6 and γ = 0.2. Thus, we are able to compare the tapering

estimates when the taper range is equal to the effective range of the process or only

a fraction of it. In this example, when γ = 0.6, 37% of off-diagonal elements in Σ ◦T

are zero; when γ = 0.2, the number climbs to 89%.

Figure 1 shows boxplots of the estimates. As γ decreases, the bias in the one taper

estimates increases. In contrast, we see negligible bias and only a small increase in the

variance of the two taper estimates. While the one taper approximation is appropriate

whenever the taper range can be chosen to be at least as large as the effective range of

the process (a rough estimate of which can be obtained by eye or by subsampling the

data), the two taper approximation is more accurate for highly correlated processes.
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Figure 1: Boxplots of sampled estimates in the simulation study. Horizontal lines
indicate the median of the distribution for the MLE in each case.

We have shown the tapering estimators can be comparable to the MLE when the

covariance is exponential. In an extended version of this simulation study, Kaufman

(2006) showed this result holds across a variety of Matérn covariance functions. We

have also shown that larger values of the taper range γ produce smaller bias and vari-

ance. Therefore, it is advisable to choose the largest value of γ for which calculations

are computationally feasible.

Because the true sampling variances are well-approximated with a sample of 1000,

we can use the empirical variances of the estimates in the simulation to assess the

accuracy of the information based variance estimators described in Section 4. For

each iteration of the simulation study, we calculated variance estimates for the MLE

based on the Fisher information matrix, and we calculated variance estimates for

the two taper estimator based on the robust information matrix, plugging in the

corresponding estimates from that iteration. Table 1 compares the means of these

variance estimates to the simulated variances. Results are shown for the more severe

taper range of γ = 0.2. For σ2 and ρ, the estimated variances tend to be higher

than the simulated variances, although the two taper versions are inflated more. For
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c, the estimated variances are much closer to the simulated variances. This is not

surprising, because the variance estimates are based on normal approximations that

are clearly less appropriate for the skewed distributions of the estimators of σ2 and ρ.

Table 1: Estimated and simulated sample variances for estimators.

σ̂2 σ̂2
2taper ρ̂ ρ̂2taper ĉ ĉ2taper

Mean of estimated variances 0.131 0.148 0.006 0.007 0.202 0.275
Simulated variances 0.100 0.094 0.005 0.004 0.210 0.271

Ratio 1.309 1.571 1.300 1.558 0.960 1.014

6 Data Example

Sizable computational gains can be achieved when applying the tapering methods

to large datasets. An example of a large, irregularly spaced spatial dataset is the

collection of observations from weather stations in the United States. We consider

precipitation data from the National Climatic Data Center (NCDC) for the years

1895 to 1997. This dataset was examined in detail by Johns et al. (2003), who

focused on imputing missing observations. In this analysis, we consider yearly total

precipitation anomalies, that is, yearly totals standardized by the long-run mean and

standard deviation for each station.

We chose to illustrate the tapering methods using the precipitation anomalies from

1962, because this year had one of the most complete data records, with 7352 stations.

In addition, it showed no obvious nonstationarity or anisotropy, which would require

a more careful choice of tapering function. To calculate the anomalies, we included

the full dataset computed by Johns et al. (2003). However, our analysis considers the

anomalies from only those stations with a complete observational record. The data

and computer code needed to carry out the analysis in the example are available at
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http://www.image.ucar.edu/Data/Taper/.

We fit a Gaussian process model to the data, with exponential covariance func-

tion. In this case, with 7352 observations, evaluating the likelihood is quite slow,

although still possible. We found the maximum likelihood estimates for σ2 and ρ, as

well as the corresponding tapering estimators. When tapering, we used the Wend-

land function φ2,1, as described in Section 3.1, with a taper range of 50 miles. The

resulting matrices are quite sparse, with only 0.33% non-zero off-diagonal entries. For

sparse matrix calculations, we used the spam package in R, available at http://cran.r-

project.org/src/contrib/PACKAGES.html.

For any value of ρ, the maximizing value of σ2 is available in closed form. There-

fore, one can minimize the profile versions of the log likelihood and tapering approx-

imations, which are functions only of ρ. These are shown computed over a grid in

Figure 2. Vertical lines indicate the minimizing values, which we found using the

optimize function in R. The taper range is small relative to the correlation range

of the process, so it is not surprising that the one taper estimate is further from the

MLE than is the two taper estimate.

We computed variance estimates using the Fisher information matrix and the

robust information matrix for the two-taper approximation, as described in Section

4, and we used these to form approximate 95% confidence intervals. For ρ, the MLE

was 40.96, with confidence interval (37.15, 44.78); the two taper estimate was 37.60,

with confidence interval (33.91, 41.30). These are also indicated in Figure 2. For σ2,

the MLE was 0.723, with confidence interval (0.663, 0.783); the two taper estimate

was 0.786, with confidence interval (0.721, 0.851). Note that both sets of confidence

intervals overlap.

We now compare the computation time required for each method. All calculations

were carried out on a 3.2 GHz dual processor compute node with 4 GB of memory.
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Figure 2: Curves represent the profile negative log likelihood (—), one taper ap-
proximation (- - -), and two taper approximation (· · · ). The mean of each function
has been subtracted to allow comparison of curvature. The corresponding vertical
lines indicate the minimum of each function. The MLE and two taper estimate both
have information-based confidence intervals, and these are indicated by the horizontal
brackets.

Each method requires first calculating the distance matrix, which for this dataset took

about 40 seconds. In addition, the tapering methods require pre-computing the taper

matrix, which took about 20 seconds. Because the number of evaluations needed to

then minimize each function will vary in practice, Table 2 reports the computation

times for a single evaluation of each function, broken down into its component steps.

These were calculated by averaging over ten repetitions of each function evaluation.

There is some initial savings in calculating Γ◦T rather than Γ, because one needs only

to compute the correlation for those distances less than the taper range. However,

the most sizable savings come in calculating the Cholesky decomposition, which is
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three orders of magnitude faster for the tapered correlation matrix than it is for the

full matrix. The two taper approximation requires that we compute (Γ ◦ T)−1 ◦ T

rather than simply backsolving using the Cholesky decomposition, which in this case

adds an additional 42 seconds.

Table 2: Seconds required for each step in evaluating the log-likelihood and tapering
approximations.

No taper One taper Two tapers
Γ or Γ ◦T 3.35 0.05 0.05

Cholesky decomposition 578.32 0.70 0.70
Log determinant 0.27 0.00 0.00

Backsolve 1.08 0.02 —–
Full solve —– —– 41.96

Second taper —– —– 0.02
Quadratic form 0.00 0.00 0.13

Total 583.02 0.77 42.86

7 Discussion

We have proposed two approximations to the likelihood for use in large spatial

datasets. The one taper approximation (3) replaces the model covariance matrix by

a tapered version, while the two taper approximation (5) tapers both the model and

sample covariance matrices. Both approximations provide significant computational

gains over the full likelihood. The one taper approximation is more computationally

efficient than the two taper approximation, but it suffers from bias when the taper

range is small relative to the correlation range of the process. In contrast, the two

taper approximation shows little bias and only slightly increased variance.

We have given conditions for almost sure convergence of the tapering estimators of

the Matérn covariance. The conditions on the one taper estimator are straightforward,
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relying on the equivalence of the Gaussian measures with tapered and untapered

covariance. The conditions on the two taper estimator are less straightforward, and

it would be worthwhile to study whether a simpler set of conditions might be sufficient.

One might follow the estimating equations approach as in Heyde (1997), but we have

not been able to make progress along these lines, because an important assumption,

that the sequence of estimating functions is a martingale, does not hold in this case.

In finite samples, we showed the two taper estimators can have sampling distribu-

tions close to those of the MLEs. Both the bias and variance remain comparable to

that of the MLE, even when γ is small. The estimator of sampling variability for the

two taper estimators based on the robust information matrix performs comparably

to the Fisher information based estimate for the MLE, although both tend to over-

estimate the variance in the two taper estimators of σ2 and ρ, at least for the small

sample size we examined in the simulation study.

The one taper estimators displayed sizable bias in our simulation study when γ

was small relative to the correlation range of the process. However, one instance

in which we anticipate the one taper approximation to perform well for a variety of

taper ranges is in plug-in prediction. The interpolation of a random field is beyond

the scope of this paper, but when the dataset is large enough to warrant tapering

in the estimation of model parameters, it is also typically large enough to warrant it

for interpolation. Some preliminary work suggests that when tapering is used in the

kriging procedure, it is better to plug in the one taper estimators, rather than the two

taper estimators. This is intuitively plausible, because it uses the same covariance

model for both estimation and prediction. However, the two taper approximation

does give more efficient estimates of the covariance parameters under the original

model, without the large bias observed in the one taper estimates.

The tapering estimators we have developed may be extended in several ways.

20



First consider the case that the mean is not zero but is a linear function, so that

Z ∼ MV N(Xβ,Σ(θ)), where X is an n× p fixed regression matrix and β is a vector

of p unknown coefficients. Then one may approximate the log-likelihood by

`2tapers(θ, β) = −1

2
log |Σ(θ) ◦T(γ)|

−1

2
(Z−Xβ)′

(
[Σ(θ) ◦T(γ)]−1 ◦T(γ)

)
(Z−Xβ)

This choice gives unbiased estimating equations in both β and θ. Another extension

of these ideas would be to non-isotropic or non-stationary covariance functions. One

possible approach to this problem would be to consider the class of random fields

which are stationary and isotropic subject to some transformation of the underlying

space on which the process is defined, as in Sampson and Guttorp (1992). In this case,

tapering with a stationary and isotropic correlation function in the transformed space

would have the effect of differentially tapering in the original space. We anticipate

that tapering may be used to simplify the computation in a wide class of spatial

models, perhaps guided by some of the theoretical concerns presented here.

Appendix A: Properties of the Schur Product

This section collects some relevant results on the Schur product. The interested reader

should refer to Horn and Johnson (1991, Chapter 5) for more details.

1. Definition Two m×n matrices A and B have Schur product A◦B = {aijbij}.

2. The Schur Product Theorem If A and B are positive semidefinite n × n

matrices, then so is A ◦B. If, in addition, B is positive definite and A has no

diagonal entry equal to 0, then A ◦B is positive definite. In particular, if both

A and B are positive definite, then so is A ◦B.
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3. Commutivity Unlike the standard matrix product, A ◦B = B ◦A.

4. Eigenvalue Inequalities If A and B are n×n positive semi-definite matrices,

then any eigenvalue λ(A ◦B) of A ◦B satisfies

[
min

1≤i≤n
aii

]
λmin(B) ≤ λ(A ◦B) ≤

[
max
1≤i≤n

aii

]
λmax(B), (11)

where {aii} are the diagonal entries of A and λmin(B) and λmax(B) are the

minimum and maximum eigenvalues of B.

5. Trace For square matrices A, B, and C, with B symmetric, tr {(A ◦B)C} =

tr {A(B ◦C)} .

Appendix B: Proofs

Proof of Theorem 1

Let f1 be the spectral density corresponding to K1. The Fourier transform of the

product of two functions is the convolution of their Fourier transforms, so we may

write f1(ω) =
∫
<d f0(x)ftaper(ω − x) dx, where f0(x) = σ2M0(ρ

−2 + ||ω||2)−ν−d/2 is

the spectral density corresponding to the Matérn covariance function K0.

Stein (2004, Theorem A.1) provides the following two conditions for the equiva-

lence of G(K0) and G(K1) on the paths of Z for bounded subsets: first, that there

exists η > d such that f0(ω)||ω||η is bounded away from 0 and ∞ as ||ω|| → ∞, and

second, that there exists c < ∞ such that

∫
||ω||>c

{
f1(ω)− f0(ω)

f0(ω)

}2

dω < ∞. (12)
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The Matérn spectral density f0 satisfies the first condition when η = 2ν+d. Rewriting

the integral in (12) using polar coordinates gives

∫
Sd

∫ ∞

c

{
f1(ru)− f0(ru)

f0(ru)

}2

rd−1 dr dU(u),

where Sd is the surface of the unit sphere in <d and U is the uniform probability

measure on the sphere. To show (12) holds, it is therefore sufficient to show that

∣∣∣∣f1(ru)

f0(ru)
− 1

∣∣∣∣ = O(r−ξ), for some ξ > d/2 (13)

for all u ∈ Sd. (Throughout, let f(r) = O(g(r)) indicate that f(r) ≥ 0 and there

exist positive finite constants L and c such that f(r) ≤ Lg(r) for all r ≥ c.)

Let u be an arbitrary unit vector. Then for all r > 0, define Nr = {x ∈ <d :

||ru− x|| ≤ rk}, where k will be specified later. Then

∣∣∣∣f1(ru)

f0(ru)
− 1

∣∣∣∣ ≤

∣∣∣∣∣
∫

Nc
r
f0(x)ftaper(ru− x)dx

f0(ru)

∣∣∣∣∣+ (14)∣∣∣∣∣
∫

Nr
f0(x)ftaper(ru− x)dx

f0(ru)
− 1

∣∣∣∣∣ . (15)

Because d ≤ 3 and ε > d/4, we may choose ξ ∈ (d/2, min{2, 2ε}). Then choose

k ∈ ((d + 2ν + ξ)/(d + 2ν + 2ε), 1) . The remainder of the proof will show that with

this choice of k, both (14) and (15) are O(r−ξ), so (13) holds.

First consider (14). When x ∈ N c
r , ||ru − x|| > rk, so using the bound in the

theorem, we have

ftaper(ru− x) ≤ Mε

(1 + ||ru− x||2)ν+d/2+ε
≤ Mε

(1 + r2k)ν+d/2+ε
.
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Also note that
∫
<d f0(x)dx = σ2, so

∫
Nc

r
f0(x)ftaper(ru− x)dx

f0(ru)
≤ Mε

M0

(ρ−2 + r2)ν+d/2

(1 + r2k)ν+d/2+ε
,

and (14) is O(r−ξ) because we chose k > d+2ν+ξ
d+2ν+2ε

.

Now consider (15). Expanding f0(x) about ru, we have

∣∣∣∣∣
∫

Nr
f0(x)ftaper(ru− x)dx

f0(ru)
− 1

∣∣∣∣∣ ≤∣∣∣∣1− ∫
Nr

ftaper(ru− x)dx

∣∣∣∣+ (16)∣∣∣∣ 1

f0(ru)

∫
Nr

(x− ru)′[∇f0(ru)]ftaper(ru− x)dx

∣∣∣∣+ (17)∣∣∣∣ 1

2f0(ru)

∫
Nr

(x− ru)′[∇2f0(mx,r)](x− ru)ftaper(ru− x)dx

∣∣∣∣ (18)

where ∇f0(ru) is the vector of derivatives of f0 evaluated at ru and ∇2f0(mx,r) is

the matrix of second derivatives evaluated at a point mx,r lying between x and ru,

hence in Nr.

Because Ktaper is a correlation function, ftaper is a probability density, and so

1−
∫

Nr

ftaper(ru− x)dx =

∫
||y||>rk

ftaper(y)dy

≤
∫
||y||>rk

Mε(1 + ||y||2)−ν−d/2−εdy

≤
∫
||y||>rk

Mε||y||−2(ν+d/2+ε)dy

=
2Mεπ

d/2

Γ(d/2)

∫ ∞

rk

s−2(ν+d/2+ε)sd−1ds

=
Mεπ

d/2

Γ(d/2)(ν + ε)
r−2k(ν+ε).

Therefore, (16) is O(r−ξ) because ξ < 2ε and ν > 0 imply k > ξ
2(ν+ε)

.
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The integral in (17) is equal to zero because ftaper is isotropic. That is, for each

x ∈ Nr,∃y ∈ Nr such that x− ru = −(y − ru), but ftaper(ru− x) = ftaper(ru− y).

Therefore, we can divide Nr into two regions, whose integrals have opposite sign.

Finally, considering (18), first note that for each r > 0 and x ∈ Nr,

(x− ru)′[∇2f0(mx,r)](x− ru) = ||x− ru||2v′[∇2f0(mx,r)]v, where ||v|| = 1

≤ ||x− ru||2 sup
||v||=1

v′[∇2f0(mx,r)]v

= ||x− ru||2λmax{∇2f0(mx,r)},

where λmax{∇2f0(mx,r)} represents the maximum eigenvalue of ∇2f0(mx,r). Since

f0 is isotropic, one can show

∇2f0(m) =
1

||m||2

[
g′′(||m||)− g′(||m||)

||m||

]
mm′ +

g′(||m||)
||m||

Id, (19)

where g(r) = σ2M0(ρ
−2 + r2)−(ν+d/2). The two matrices in (19) are symmetric, so the

maximum eigenvalue of their sum is less than or equal to the sum of their maximum

eigenvalues (Horn and Johnson, 1991, 3.4.11a). We have

λmax{∇2f0(m)} ≤ λmax

{
1

||m||2

[
g′′(||m||)− g′(||m||)

||m||

]
mm′

}
+ λmax

{
g′(||m||)
||m||

Id

}
= g′′(||m||)− g′(||m||)

||m||
+

g′(||m||)
||m||

= g′′(||m||)

=
σ2M0(2ν + d)

(ρ−2 + ||m||2)ν+d/2+1

[
(2ν + d + 2)||m||2

ρ−2 + ||m||2
− 1

]

This function is eventually decreasing with ||m||. Also, note ||mx,r|| > r − rk, since

(r − rk)u is the point on the boundary of Nr which is closest to the origin and

mx,r was defined to be in Nr. Because k < 1, r − rk → ∞, and so eventually
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g′′(||mx,r||) ≤ g′′(r − rk) for all x ∈ Nr. Therefore, for sufficiently large r,

1

2f0(ru)

∫
Nr

(x− ru)′[∇2f0(mx,r)](x− ru)ftaper(ru− x)dx

≤ g′′(r − rk)

2g(r)

∫
Nr

||x− ru||2ftaper(ru− x)dx

Using the bound on ftaper given in the theorem,

∫
Nr

||x− ru||2ftaper(ru− x)dx =

∫
||y||≤rk

||y||2ftaper(y)dy

≤
∫
||y||≤rk

||y||2 Mε

(1 + ||y||2)ν+d/2+ε
dy

≤
∫
<d

||y||2 Mε

(1 + ||y||2)ν+d/2+ε
dy

∝ E
(
||Y||2

)
,

where Y ∼ td,2(ν+ε)/
√

2(ν + ε). But (ν + ε) > 1, so this term is finite. Therefore,

we only need to consider g′′(r − rk)/g(r). But this is O(r−ξ) because k ∈ (0, 1) and

ξ < 2.

Proof of Theorem 2

By Theorem 2 of Zhang (2004), we may find a σ2∗ > 0 such that G(K0) ≡ G(K∗
0),

where K∗
0 is Matérn with parameters σ2∗, ρ∗, and ν. By Theorem 1, G(K∗

0) ≡ G(K∗
1),

where K∗
1 = K∗

0Ktaper. Therefore, to show σ̂2
n,1taper/ρ

∗2ν → σ2/ρ2ν a.s. [G(K0)],

it is sufficient to show σ̂2
n,1taper → σ2∗ a.s. [G(K∗

1)]. Because ρ∗ and ν are fixed,

σ̂2
n,1taper = Zn [Γ∗n ◦Tn]−1 Zn/n, where Γ∗n = {K∗

0(||si − sj||; σ2∗, ρ∗, ν)} /σ2∗ and T =

{Ktaper(||si − sj||)} . Under G(K∗
1), Z ∼ MV N(0, σ2∗Γ∗n ◦ Tn), so σ̂2

n,1taper is dis-

tributed as σ2∗/n times a χ2 random variable with n degrees of freedom. Therefore,

σ̂2
n,1taper → σ2∗ a.s. [G(K∗

1)] by the Strong Law of Large Numbers.
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Proof of Theorem 3

Write Γn = RnRn
′. Then 1

σ
Rn

−1Zn ∼ MV N(0, In), so

σ̂2
n,2tapers = Zn

′ ([Γn ◦Tn]−1 ◦Tn

)
Zn/n

=
1

n
Xn

′ [(σRn)′
[
(Γn ◦Tn)−1 ◦Tn

]
(σRn)

]
Xn, where Xn ∼ MV N(0, In)

=
σ2

n

n∑
i=1

λn,iχ
2
i , (20)

where χ2
i are iid χ2

1 random variables and λni
is the ith eigenvalue of Rn

′ [(Γn ◦Tn)−1 ◦Tn

]
Rn,

which is the same as the ith eigenvalue of Wn = [(Γn ◦Tn)−1 ◦Tn]Γn.

Cuzick (1995) gave conditions for the almost sure convergence of weighted sums of

iid random variables. Specifically, let Yn =
∑n

i=1 an,iXi, where Xi are iid with mean

zero and {an,i} is an array of constants. Then if supn (n−1
∑n

i=1 |an,i|q)1/q
< ∞ for

some 1 < q ≤ ∞, and E|X|p < ∞, p−1 + q−1 = 1, Yn/n → 0 almost surely. (The case

q = 0 is interpreted to mean the an, i are uniformly bounded.) The result also holds

when q = 1 under the additional assumption that lim supi≤n |an,i|n−1 log n. Finish the

proof by applying these results to (20), with Xi = χ2
i − 1 and an,i = λn,i.

Proof of Corollary 1

By Theorem 2 of Zhang (2004), one may find σ2∗ > 0 such that G(K0) ≡ G(K∗
0),

where K∗
0 is Matérn with parameters σ2∗, ρ∗, and ν. That is, let σ2∗ = σ2

0(ρ0/ρ
∗)2ν .

Now, it is sufficient to show σ̂2∗
n,2tapers/ρ

∗2ν → σ2
0/ρ

2ν
0 a.s.[G(K∗

0)]. This follows directly

from the conditions on Wn and Theorem 3.
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Proof of Lemma 1

λmax

{[
(Γ ◦T)−1 ◦T

]
Γ
}

≤ λmax

{[
(Γ ◦T)−1 ◦T

]}
λmax {Γ}

≤ λmax

{
(Γ ◦T)−1}λmax {Γ}

=
λmax {Γ}

λmin {(Γ ◦T)}

≤ λmax {Γ}
λmin {Γ}

Here we have used (11) in the second and last lines.
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