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Abstract

Mean-field Variational Bayes (MFVB) is an approximate Bayesian posterior inference technique that is in-

creasingly popular due to its fast runtimes on large-scale data sets. However, even when MFVB provides

accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Further-

more, prior robustness measures have remained undeveloped for MFVB. By deriving a simple formula for the

effect of infinitesimal model perturbations on MFVB posterior means, we provide both improved covariance

estimates and local robustness measures for MFVB, thus greatly expanding the practical usefulness of MFVB

posterior approximations. The estimates for MFVB posterior covariances rely on a result from the classical

Bayesian robustness literature that relates derivatives of posterior expectations to posterior covariances and

includes the Laplace approximation as a special case. Our key condition is that the MFVB approximation

provides good estimates of a select subset of posterior means—an assumption that has been shown to hold in

many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast,

providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order

of magnitude faster than MCMC.

Keywords: Variational Bayes; Bayesian robustness; Mean field approximation; Linear response theory;

Laplace approximation; Automatic differentiation

1. Introduction

Most Bayesian posteriors cannot be calculated analytically, so in practice we turn to approximations. Vari-

ational Bayes (VB) casts posterior approximation as an optimization problem in which the objective to be

minimized is the divergence, among a sub-class of tractable distributions, from the exact posterior. For

example, one widely-used and relatively simple flavor of VB is “mean field variational Bayes” (MFVB),

which employs Kullback-Leibler (KL) divergence and a factorizing exponential family approximation for the

tractable sub-class of posteriors (Wainwright and Jordan, 2008). MFVB has been increasingly popular as an

alternative to Markov Chain Monte Carlo (MCMC) in part due to its fast runtimes on large-scale data sets.

Although MFVB does not come with any general accuracy guarantees (except asymptotic ones in special

cases (Westling and McCormick, 2015; Wang and Blei, 2017)), MFVB produces posterior mean estimates of

certain parameters that are accurate enough to be useful in a number of real-world applications (Blei et al.,

2016). Despite this ability to produce useful point estimates for large-scale data sets, MFVB is limited as

an inferential tool; in particular, MFVB typically underestimates marginal variances (MacKay, 2003; Wang
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and Titterington, 2004; Turner and Sahani, 2011). Moreover, to the best of our knowledge, techniques for

assessing Bayesian robustness have not yet been developed for MFVB. It is these inferential issues that are

the focus of the current paper.

Unlike the optimization approach of VB, an MCMC posterior estimate is an empirical distribution formed

with posterior draws. MCMC draws lend themselves naturally to the approximate calculation of posterior

moments, such as those required for covariances. In contrast, VB approximations lend themselves naturally to

sensitivity analysis, since we can analytically differentiate the optima with respect to perturbations. However,

as has long been known in the Bayesian robustness literature, the contrast between derivatives and moments is

not so stark since, under mild regularity conditions that allow the exchange of integration and differentiation,

there is a direct correspondence between derivatives and covariance (Gustafson, 1996b; Basu et al., 1996;

Efron, 2015, Section 2.2 below).

Thus, in order to calculate local sensitivity to model hyperparameters, the Bayesian robustness liter-

ature re-casts derivatives with respect to hyperparameters as posterior covariances that can be calculated

with MCMC. In order to provide covariance estimates for MFVB, we turn this idea on its head and use the

sensitivity of MFVB posterior expectations to estimate their covariances. These sensitivity-based covariance

estimates are referred to as “linear response” estimates in the statistical mechanics literature (Opper and Saad,

2001), so we refer to them here as linear response variational Bayes (LRVB) covariances. Additionally, we

derive straightforward MFVB versions of hyperparameter sensitivity measures from the Bayesian robustness

literature. Under the assumption that the posterior means of interest are well-estimated by MFVB for all the

perturbations of interest, we establish that LRVB provides a good estimate of local sensitivities. In our exper-

iments, we compare LRVB estimates to MCMC, MFVB, and Laplace posterior approximations. We find that

the LRVB covariances, unlike the MFVB and Laplace approximations, match the MCMC approximations

closely while still being computed over an order of magnitude more quickly than MCMC.

In Section 2 we first discuss the general relationship between Bayesian sensitivity and posterior covari-

ance and then define local robustness and sensitivity. Next, in Section 3, we introduce VB and derive the

linear system for the MFVB local sensitivity estimates. In Section 4, we show how to use the MFVB local

sensitivity results to estimate covariances and calculate canonical Bayesian hyperparameter sensitivity mea-

sures. Finally, in Section 5, we demonstrate the speed and effectiveness of our methods with simple simulated

data, an application of automatic differentiation variational inference (ADVI), and a large-scale industry data

set.

2. Bayesian Covariances and Sensitivity

2.1 Local Sensitivity and Robustness

Denote an unknown model parameter by the vector θ ∈ R
K , assume a dominating measure for θ on R

K given

by λ, and denote observed data by x. Suppose that we have a vector-valued hyperparameter α ∈ A ⊆ R
D that

parameterizes some aspects of our model. For example, α might represent prior parameters, in which case

we would write the prior density with respect to λ as p (θ|α), or it might parameterize a class of likelihoods,

in which case we could write the likelihood as p (x|θ, α). Without loss of generality, we will include α in the

definition of both the prior and likelihood. For the moment, let pα (θ) denote the posterior density of θ given

x and α, as given by Bayes’ Theorem (this definition of pα (θ) will be a special case of the more general

Definition 2 below):

pα (θ) := p (θ|x, α) =
p (x|θ, α) p (θ|α)∫

p (x|θ′, α) p (θ′|α)λ (dθ′)
=
p (x|θ, α) p (θ|α)

p (x|α)
.

We will assume that we are interested in a posterior expectation of some function g (θ) (e.g., a parameter

mean, a posterior predictive value, or squared loss): Epα
[g (θ)]. In the current work, we will quantify

the uncertainty of g (θ) by the posterior variance, Varpα
(g (θ)). Other measures of central tendency (e.g.,

posterior medians) or uncertainty (e.g., posterior quantiles) may also be good choices but are beyond the

scope of the current work.
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Note the dependence of Epα
[g (θ)] on both the likelihood and prior, and hence on α, through Bayes’

Theorem. The choice of a prior and choice of a likelihood are made by the modeler and are almost invariably

a simplified representation of the real world. The choices are therefore to some extent subjective, and so

one hopes that the salient aspects of the posterior would not vary under reasonable variation in either choice.

Consider the prior, for example. The process of prior elicitation may be prohibitively time-consuming; two

practitioners may have irreconcilable subjective prior beliefs, or the model may be so complex and high-

dimensional that humans cannot reasonably express their prior beliefs as formal distributions. All of these

circumstances might give rise to a range of reasonable prior choices. A posterior quantity is “robust” to the

prior to the extent that it does not change much when calculated under these different prior choices.

Quantifying the sensitivity of the posterior to variation in the likelihood and prior is one of the central

concerns of the field of robust Bayes (Berger et al., 2000). (We will not discuss the other central concern,

which is the selection of priors and likelihoods that lead to robust estimators.) Suppose that we have deter-

mined that the hyperparameter α belongs to some open set A, perhaps after expert prior elicitation. Ideally,

we would calculate the extrema of Epα
[g (θ)] as α ranges over all of A. These extrema are a measure of

global robustness, and their calculation is intractable or difficult except in special cases (Moreno, 2000; Hu-

ber, 2011, Chapter 15). A more practical alternative is to examine how much Epα
[g (θ)] changes locally in

response to small perturbations in the value of α near some tentative guess, α0 ∈ A. To this end we define

the local sensitivity at α0 (Gustafson, 2000).

Definition 1 The local sensitivity of Epα
[g (θ)] to hyperparameter α at α0 is given by

Sα0
:=

dEpα
[g (θ)]

dα

∣∣∣∣
α0

. (1)

Sα0
, the local sensitivity, can be considered a measure of local robustness (Gustafson, 2000). Throughout the

paper we will distinguish between sensitivity, which comprises objectively defined quantities such as Sα0
,

and robustness, which we treat as a more subjective concept that may be informed by the sensitivity as well

as other considerations. For example, even if one knows Sα0 precisely, how much posterior change is too

much change and how much prior variation is reasonable remain decisions to be made by the modeler. For a

more in-depth discussion of how we use the terms sensitivity and robustness, see Appendix C.

The quantity Sα0
can be interpreted as measuring sensitivity to hyperparameters within a small region

near α = α0 where the posterior dependence on α is approximately linear. Then local sensitivity provides an

approximation to global sensitivity in the sense that, to first order,

Epα
[g (θ)] ≈ Epα0

[g (θ)] + S⊺

α0
(α− α0) .

Generally, the dependence of Epα
[g (θ)] on α is not given in any closed form that is easy to differentiate.

However, as we will now see, the derivative Sα0
is equal, under mild regularity conditions, to a particular

posterior covariance that can easily be estimated with MCMC draws.

2.2 Covariances and Sensitivity

We will first state a general result relating sensitivity and covariance and then apply it to our specific cases of

interest as they arise throughout the paper, beginning with the calculation of Sα0
from Section 2.1. Consider

a general base density p0 (θ) defined relative to λ and define ρ (θ, α) to be a λ-measurable log perturbation

function that depends on α ∈ A ⊆ R
D. We will require the following mild technical assumption:

Assumption 1 For all α ∈ A, ρ (θ, α) is continuously differentiable with respect to α, and, for a given λ-

measurable g (θ) there exist λ-integrable functions f0 (θ) and f1 (θ) such that |p0 (θ) exp (ρ (θ, α)) g (θ)| <
f0 (θ) and |p0 (θ) exp (ρ (θ, α))| < f1 (θ).

Under Assumption 1 we can normalize the log-perturbed quantity p0 (θ) exp (ρ (θ, α)) to get a density in θ
with respect to λ.
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Definition 2 Denote by pα (θ) the normalized posterior given α:

pα (θ) :=
p0 (θ) exp (ρ (θ, α))∫

p0 (θ′) exp (ρ (θ′, α))λ (dθ′)
. (2)

For example, pα (θ) defined in Section 2.1 is equivalent to taking p0 (θ) = p (θ|x, α0) and ρ (θ, α) =
log p (x|θ, α) + log p (θ|α)− log p (x|θ, α0)− log p (θ|α0).

For a λ-measurable function g (θ), consider differentiating the expectation Epα
[g (θ)] with respect to α:

dEpα
[g (θ)]

dα⊺
:=

d

dα

∫
pα (θ) g (θ)λ (dθ) . (3)

When evaluated at some α0 ∈ A, this derivative measures the local sensitivity of Epα
[g (θ)] to the index α

at α0. Define A0 ⊆ A to be an open ball containing α0. Under Assumption 1 we assume without loss of

generality that ρ (θ, α0) ≡ 0 so that p0 (θ) = pα0
(θ); if ρ (θ, α0) is non-zero, we can simply incorporate it

into the definition of p0 (θ). Then, under Assumption 1, the derivative in Eq. (3) is equivalent to a particular

posterior covariance.

Theorem 1 Under Assumption 1 ,

dEpα
[g (θ)]

dα⊺

∣∣∣∣
α0

= Covp0

(
g (θ) ,

∂ρ (θ, α)

∂α

∣∣∣∣
α0

)
. (4)

Theorem 1 is a straightforward consequence of the Lebesgue dominated convergence theorem; see Appendix

A for a detailed proof. Versions of Theorem 1 have appeared many times before; e.g., Diaconis and Freedman

(1986); Basu et al. (1996); Gustafson (1996b); Pérez et al. (2006) have contributed variants of this result to

the robustness literature.

By using MCMC draws from p0(θ) to calculate the covariance on the right-hand side of Eq. (4), one

can form an estimate of dEpα
[g (θ)] /dα⊺ at α = α0. One might also approach the problem of calculating

dEpα
[g (θ)] /dα⊺ using importance sampling as follows (Owen, 2013, Chapter 9). First, an importance

sampling estimate of the dependence of Epα
[g (θ)] on α can be constructed with weights that depend on α.

Then, differentiating the weights with respect to α provides a sample-based estimate of dEpα
[g (θ)] /dα⊺.

We show in Appendix B that this importance sampling approach is equivalent to using MCMC samples to

estimate the covariance in Theorem 1.

An immediate corollary of Theorem 1 allows us to calculate Sα0 as a covariance.

Corollary 1 Suppose that Assumption 1 holds for some α0 ∈ A, some g (θ), and for

ρ (θ, α) = log p (x|θ, α) + log p (θ|α)− log p (x|θ, α0)− log p (θ|α0) .

Then Theorem 1 implies that

Sα0 = Covp0

(
g (θ) ,

∂ρ (θ, α)

∂α

∣∣∣∣
α0

)
. (5)

Corollary 1 can be found in Basu et al. (1996), in which a version of Corollary 1 is stated in the proof of

their Theorem 1, as well as in Pérez et al. (2006) and Efron (2015). Note that the definition of ρ (θ, α) does

not contain any normalizing constants and so can typically be easily calculated. Given Ns MCMC draws

{θn}
Ns

n=1 from a chain that we assume to have reached equilibrium at the stationary distribution p0 (θ), one

can calculate an estimate of Sα0 using the sample covariance version of Eq. (4):

Ŝα0 :=
1

Ns

Ns∑

n=1

g (θn)
∂ρ (θn, α)

∂α

∣∣∣∣
α0

−

(
1

Ns

Ns∑

n=1

g (θn)

)(
1

Ns

Ns∑

n=1

∂ρ (θn, α)

∂α

∣∣∣∣
α0

)
(6)

for θn ∼ p0 (θ) , where n = 1, ..., Ns.
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3. Variational Bayesian Covariances and Sensitivity

3.1 Variational Bayes

We briefly review variational Bayes and state our key assumptions about its accuracy. We wish to find

an approximate distribution, in some class Q of tractable distributions, selected to minimize the Kullback-

Leibler divergence (KL divergence) between q ∈ Q and the exact log-perturbed posterior pα. We assume that

distributions in Q are parameterized by a finite-dimensional parameter η in some feasible set Ωη ⊆ R
Kη .

Definition 3 The approximating variational family is given by

Q := {q : q = q (θ; η) for η ∈ Ωη} . (7)

Given Q, we define the optimal q ∈ Q, which we call qα (θ), as the distribution that minimizes the KL

divergence KL (q (θ; η) ||pα (θ)) from pα (θ). We denote the corresponding optimal variational parameters

as η∗.

Definition 4 The variational approximation qα (θ) to pα (θ) is defined by

qα (θ) := q (θ; η∗) := argminq∈Q {KL (q (θ; η) ||pα (θ))} , (8)

where

KL (q (θ; η) ||pα (θ)) = Eq(θ;η) [log q (θ; η)− log pα (θ)] .

In the KL divergence, the (generally intractable) normalizing constant for pα (θ) does not depend on q (θ)
and so can be neglected when optimizing. In order for the KL divergence to be well defined, we assume

that both p0 (θ) and q (θ) are given with respect to the same base measure, λ, and that the support of q (θ) is

contained in the support of pα (θ). We will require some additional mild regularity conditions in Section 3.2

below.

A common choice for the approximating family Q in Eq. (7) is the “mean field family” (Wainwright and

Jordan, 2008; Blei et al., 2016),

Qmf :=

{
q (θ) : q (θ) =

∏

k

q (θk; ηk)

}
, (9)

where k indexes a partition of the full vector θ and of the parameter vector η. That is, Qmf approximates

the posterior pα (θ) as a distribution that factorizes across sub-components of θ. This approximation is

commonly referred to as “MFVB,” for “mean field variational Bayes.” Note that, in general, each function

q (θk; ηk) in the product is different. For notational convenience we write q (θk; ηk) instead of qk (θk; ηk)
when the arguments make it clear which function we are referring to, much as the same symbol p is used to

refer to many different probability distributions without additional indexing.

One may additionally assume that the components q (θk; ηk) are in a convenient exponential family.

Although the exponential family assumption does not in general follow from a factorizing assumption, for

compactness we will refer to both the factorization and the exponential family assumption as MFVB.

In an MFVB approximation, Ωη could be a stacked vector of the natural parameters of the exponential

families, or the moment parameterization, or perhaps a transformation of these parameters into an uncon-

strained space (e.g., the entries of the log-Cholesky decomposition of a positive definite information matrix).

For more concrete examples, see Section 5. Although all of our experiments and much of our motivating

intuition will use MFVB, our results extend to other choices of Q that satisfy the necessary assumptions.
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3.2 Variational Bayes sensitivity

Just as MCMC approximations lend themselves to moment calculations, the variational form of VB approxi-

mations lends itself to sensitivity calculations. In this section we derive the sensitivity of VB posterior means

to generic perturbations—a VB analogue of Theorem 1. In Section 4 we will choose particular perturbations

to calculate VB prior sensitivity and, through Theorem 1, posterior covariances.

In Definition 4, the variational approximation is a function of α through the optimal parameters η∗ (α),
i.e., qα (θ) = q (θ, η∗ (α)). In turn, the posterior expectation Eqα [g (θ)] is also a function of α, and its

derivative at α0—the local sensitivity of the variational approximation to α—has a closed form under the

following mild technical conditions. As with p0, define q0 := qα0
, and define η∗0 := η∗ (α0).

All the following assumptions are intended to hold for a given pα (θ), approximating class Q, λ-measurable

function g (θ), and to hold for all α ∈ A0 and all η in an open neighborhood of η∗0 .

Assumption 2 The KL divergence at KL (q (θ; η) ||p0 (θ)) and expected log perturbation Eq(θ;η) [ρ (θ, α)]
are twice continuously differentiable in η and α.

Assumption 3 There exists a strict local minimum, η∗ (α), of KL (q (θ; η) ||pα (θ)) in Eq. (8) such that

η∗ (α) is interior to Ωη .

Assumption 4 The expectation Eq(θ;η) [g (θ)] is a continuously differentiable function of η.

We define the following quantities for notational convenience.

Definition 5 Define the following derivatives of variational expectations evaluated at the optimal parame-

ters:

Hηη := ∂2KL(q(θ;η)||p0(θ))
∂η∂η⊺

∣∣∣
η=η∗

0

fαη :=
∂2

Eq(θ;η)[ρ(θ,α)]

∂α∂η⊺

∣∣∣
η=η∗

0 ,α=α0

gη :=
∂Eq(θ;η)[g(θ)]

∂η⊺

∣∣∣
η=η∗

0

.

Since g (θ), α, and η are all vectors, the quantities Hηη , fαη , and gη are matrices. We are now ready to state

a VB analogue of Theorem 1.

Theorem 2 Consider a variational approximation qα (θ) to pα (θ) as given in Definition 4 and a λ-measurable

function g (θ). Then, under Assumptions 1–4 , using the definitions given in Definition 5, we have

dEqα [g (θ)]

dα⊺

∣∣∣∣
α0

= gηH
−1
ηη f

⊺

αη. (10)

A proof of Theorem 2 is given in Appendix D. As with Theorem 1, by choosing the appropriate ρ (θ, α) and

evaluating fαη , we can use Theorem 2 to calculate the exact sensitivity of VB solutions to any arbitrary local

perturbations that satisfy the regularity conditions. Assumptions 1–4 are typically not hard to verify. For an

example, see Appendix E, where we establish Assumptions 1–4 for a multivariate normal target distribution

and a mean-field approximation.

Eq. (10) is formally similar to frequentist sensitivity estimates. For example, the pioneering paper of Cook

(1986) contains a formula for assessing the curvature of a marginal likelihood surface (Cook, 1986, Equation

15) that, like our Theorem 2, represents the sensitivity as a linear system involving the Hessian of an objective

function at its optimum. The geometric interpretation of local robustness suggested by Cook (1986) has been

extended to Bayesian settings (see, for example, Zhu et al. (2007, 2011)). In addition to generality, one

attractive aspect of their geometric approach is its invariance to parameterization. Investigating geometric

interpretations of the present work may be an interesting avenue for future research.

3.3 Approximating with Variational Bayes

Recall that we are ultimately interested in Epα
[g (θ)]. Variational approximations and their sensitivity mea-

sures will be useful to the extent that both the variational means and sensitivities are close to the exact means

and sensitivities. We formalize these desiderata as follows.
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Condition 1 Under Assumptions 1–4 and the quantities defined therein, we additionally have, for all α ∈ A,

Eqα [g (θ)] ≈ Epα
[g (θ)] and (11)

dEqα [g (θ)]

dα⊺

∣∣∣∣
α0

≈
dEpα

[g (θ)]

dα⊺

∣∣∣∣
α0

(12)

We will not attempt to be precise about what we mean by the “approximately equal” sign, since we are

not aware of any practical tools for evaluating quantitatively whether Condition 1 holds other than running

both VB and MCMC (or some other slow but accurate posterior approximation) and comparing the results.

However, VB has been useful in practice to the extent that Condition 1 holds true for at least some parameters

of interest. We provide some intuition for when Condition 1 might hold in Section 5.1, and will evaluate

Condition 1 in each of our experiments below by comparing the VB and MCMC posterior approximate

means and sensitivities.

Since Condition 1 holds only for a particular choice of g (θ), it is weaker than the assumption that qα is

close to pα in KL divergence, or even that all the posterior means are accurately estimated. For example,

as discussed in Appendix B of Giordano et al. (2015) and in Section 10.1.2 of Bishop (2006), a mean-field

approximation to a multivariate normal posterior produces inaccurate covariances and may have an arbitrarily

bad KL divergence from pα, but Condition 1 holds exactly for the location parameters. We discuss the

multivariate normal example further in Section 4.1 and Section 5.1 below.

4. Calculation and Uses of Sensitivity

In this section, we discuss two applications of Theorem 1 and Theorem 2: calculating improved covariance

estimates and prior sensitivity measures for MFVB. Throughout this section, we will assume that we can

apply Theorem 1 and Theorem 2 unless stated otherwise.

4.1 Covariances for Variational Bayes

Consider the mean field approximating family, Qmf , from Section 3.1 and a fixed exact posterior p0 (θ). It

is well known that the resulting marginal variances also tend to be under-estimated even when parameters

means are well-estimated (see, e.g., (MacKay, 2003; Wang and Titterington, 2004; Turner and Sahani, 2011;

Bishop, 2006, Chapter 10)). Even more obviously, any q ∈ Qmf yields zero as its estimate of the covariance

between sub-components of θ that are in different factors of the mean field approximating family. It is

therefore unreasonable to expect that Covq0 (g (θ)) ≈ Covp0
(g (θ)). However, if Condition 1 holds, we

may expect the sensitivity of MFVB means to certain perturbations to be accurate by Condition 1, and, by

Theorem 1, we expect the corresponding covariances to be accurately estimated by the MFVB sensitivity. In

particular, by taking ρ (θ, α) = α⊺g (θ) and α0 = 0, we have by Condition 1 that

dEqα [g (θ)]

dα⊺

∣∣∣∣
α=0

≈
dEpα

[g (θ)]

dα⊺

∣∣∣∣
α=0

= Covp0
(g (θ)) . (13)

We can consequently use Theorem 2 to provide an estimate of Covp0
(g (θ)) that may be superior to Covq0 (g (θ)).

With this motivation in mind, we make the following definition.

Definition 6 The linear response variational Bayes (LRVB) approximation, CovLR
q0

(g (θ)), is given by

CovLR
q0

(g (θ)) := gηH
−1
ηη g

⊺

η . (14)

Corollary 2 For a given p0 (θ), class Q, and function g (θ), when Assumptions 1–4 and Condition 1 hold for

ρ (θ, α) = α⊺g (θ) and α0 = 0, then

CovLR
q0

(g (θ)) ≈ Covp0
(g (θ)) .

7
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The strict optimality of η∗0 in Assumption 3 guarantees that Hηη will be positive definite and symmetric, and,

as desired, the covariance estimate CovLR
q0

(g (θ)) will be positive semidefinite and symmetric. Since the op-

timal value of every component of Eqα [g (θ)] may be affected by the log perturbation α⊺g (θ), CovLR
q0

(g (θ))
can estimate non-zero covariances between elements of g (θ) even when they have been partitioned into sep-

arate factors of the mean field approximation.

Note that CovLR
q0

(g (θ)) and Covq0 (g (θ)) differ only when there are at least some moments of p0 that

q0 fails to accurately estimate. In particular, if qα provided a good approximation to pα for both the first and

second moments of g (θ), then we would have CovLR
q0

(g (θ)) ≈ Covq0 (g (θ)) since, for q0 and p0,

Eq0 [g (θ)] ≈ Ep0
[g (θ)] and

Eq0 [g (θ) g (θ)
⊺
] ≈ Ep0

[g (θ) g (θ)
⊺
] ⇒

Covq0 (g (θ)) ≈ Covp0
(g (θ)) ,

and, for qα and pα,

Eqα [g (θ)] ≈ Epα
[g (θ)] ⇒

CovLR
q0

(g (θ)) ≈ Covp0 (g (θ)) .

Putting these two approximate equalities together, we see that, when the first and second moments of qα
approximately match those of pα,

Covq0 (g (θ)) ≈ CovLR
q0

(g (θ)) .

However, in general, CovLR
q0

(g (θ)) 6= Covq0 (g (θ)). In this sense, any discrepancy between CovLR
q0

(g (θ))
and Covq0 (g (θ)) indicates an inadequacy of the variational approximation for at least the second moments

of g (θ).
Let us consider a simple concrete illustrative example which will demonstrate both how Covq0 (g (θ)) can

be a poor approximation to Covp0
(g (θ)) and how CovLR

q0
(g (θ)) can improve the approximation for some

moments but not others. Suppose that the exact posterior is a bivariate normal,

p0 (θ) = N (θ|µ,Σ) , (15)

where θ = (θ1, θ2)
⊺

, µ = (µ1, µ2)
⊺

, Σ is invertible, and Λ := Σ−1. One may think of µ and Σ as known

functions of x via Bayes’ theorem, for example, as given by a normal-normal conjugate model. Suppose we

use the MFVB approximating family

Qmf = {q (θ) : q (θ) = q (θ1) q (θ2)} .

One can show (see Appendix E) that the optimal MFVB approximation to pα in the family Qmf is given by

q0 (θ1) = N
(
θ1|µ1,Λ

−1
11

)

q0 (θ2) = N
(
θ2|µ2,Λ

−1
22

)
.

Note that the posterior mean of θ1 is exactly estimated by the MFVB procedure:

Eq0 [θ1] = µ1 = Ep0
[θ1] .

However, if Σ12 6= 0, then Λ−1
11 < Σ11, and the variance of θ1 is underestimated. It follows that the

expectation of θ21 is not correctly estimated by the MFVB procedure:

Eqα

[
θ21
]
= µ2

1 +Λ−1
11 < µ2

1 +Σ11 = Epα

[
θ21
]
.

8
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An analogous statement holds for θ2. Of course, the covariance is also mis-estimated if Σ12 6= 0 since, by

construction of the MFVB approximation,

Covq0 (θ1, θ2) = 0 6= Σ12 = Covp0
(θ1, θ2) .

Now let us take the log perturbation ρ (θ, α) = θ1α1+θ2α2. For all α in a neighborhood of zero, the log-

perturbed posterior given by Eq. (2) remains multivariate normal, so it remains the case that, as a function of

α, Eqα [θ1] = Epα
[θ1] and Eqα [θ2] = Epα

[θ2]. Again, see Appendix E for a detailed proof. Consequently,

Condition 1 holds with equality (not approximate equality) when g (θ) = θ. However, since the second

moments are not accurate (irrespective of α), Condition 1 does not hold exactly when g (θ) =
(
θ21, θ

2
2

)⊺
, nor

when g (θ) = θ1θ2. (Condition 1 may still hold approximately for second moments when Σ12 is small.) The

fact that Condition 1 holds with equality for g (θ) = θ allows us to use Theorem 1 and Theorem 2 to calculate

CovLR
q0

(g (θ)) = Covp0 (g (θ)), even though Ep0 [θ1θ2] and Ep0

[(
θ21, θ

2
2

)⊺]
are mis-estimated.

In fact, when Condition 1 holds with equality for some θi, then the estimated covariance in Eq. (14)

for all terms involving θi will be exact as well. Condition 1 holds with equality for the means of θi in

the bivariate normal model above, and in fact holds for the general multivariate normal case, as described

in Appendix E. Below, in Section 5, in addition to robustness measures, we will also report the accuracy

of Eq. (14) for estimating posterior covariances. We find that, for most parameters of interest, particularly

location parameters, CovLR
q0

(g (θ)) provides a good approximation to Covp0 (g (θ)).

4.2 Linear Response Covariances in Previous Literature

The application of sensitivity measures to VB problems for the purpose of improving covariance estimates has

a long history under the name “linear response methods.” These methods originated in the statistical physics

literature (Tanaka, 2000; Opper and Saad, 2001) and have been applied to various statistical and machine

learning problems (Kappen and Rodriguez, 1998; Tanaka, 1998; Welling and Teh, 2004; Opper and Winther,

2004). The current paper, which builds on this line of work and on our earlier work (Giordano et al., 2015),

represents a simplification and generalization of classical linear response methods and serves to elucidate the

relationship between these methods and the local robustness literature. In particular, while Giordano et al.

(2015) focused on moment-parameterized exponential families, we derive linear-response covariances for

generic variational approximations and connect the linear-response methodology to the Bayesian robustness

literature.

A very reasonable approach to address the inadequacy of MFVB covariances is simply to increase the

expressiveness of the model class Q—although, as noted by Turner and Sahani (2011), increased expressive-

ness does not necessarily lead to better posterior moment estimates. This approach is taken by much of the

recent VB literature (e.g., Tran et al., 2015a,b; Ranganath et al., 2016; Rezende and Mohamed, 2015; Liu and

Wang, 2016). Though this research direction remains lively and promising, the use of a more complex class

Q sometimes sacrifices the speed and simplicity that made VB attractive in the first place, and often without

the relatively well-understood convergence guarantees of MCMC. We also stress that the current work is not

necessarily at odds with the approach of increasing expressiveness. Sensitivity methods can be a supple-

ment to any VB approximation for which our estimators, which require solving a linear system involving the

Hessian of the KL divergence, are tractable.

4.3 The Laplace Approximation and Linear Response Covariances

In this section, we briefly compare linear response covariances to the Laplace approximation (Gelman et al.,

2014, Chapter 13). The Laplace approximation to p0 (θ) is formed by first finding the “maximum a posteri-

ori” (MAP) estimate,

θ̂Lap := argmax
θ

p0 (θ) , (16)

9
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and then forming the multivariate normal posterior approximation

HLap := −
∂2p0 (θ)

∂θ∂θ⊺

∣∣∣∣
θ̂Lap

(17)

CovLap
qLap

(θ) := H−1
Lap

qLap (θ) := N
(
θ|θ̂Lap,Cov

Lap
qLap

(θ)
)
. (18)

Since both LRVB and the Laplace approximation require the solution of an optimization problem (Eq. (8) and

Eq. (16) respectively) and the estimation of covariances via an inverse Hessian of the optimization objective

(Eq. (14) and Eq. (17) respectively), it will be instructive to compare the two approaches.

Following Neal and Hinton (1998), we can, in fact, view the MAP estimator as a special variational

approximation, where we define

QLap :=
{
q (θ; θ0) :

∫
q (θ; θ0) log p0 (θ)λ (dθ) = log p0 (θ0) and

∫
q (θ; θ0) log q (θ; θ0)λ (dθ) = Constant

}
,

where the Constant term is constant in θ0. That is, QLap consists of “point masses” at θ0 with constant en-

tropy. Generally such point masses may not be defined as densities with respect to λ, and the KL divergence

in Eq. (8) may not be formally defined for q ∈ QLap. However, if QLap can be approximated arbitrarily well

by well-defined densities (e.g., normal distributions with variance fixed at an arbitrarily small number), then

we can use QLap as a heuristic tool for understanding the MAP estimator.

Since QLap contains only point masses, the covariance of the variational approximation is the zero ma-

trix: CovqLap
(θ) = 0. Thus, as when one uses the mean field assumption, CovqLap

(θ) underestimates the

marginal variances and magnitudes of the covariances of Covp0 (θ). Of course, the standard Laplace approx-

imation uses CovLap
qLap

(θ), not CovqLap
(θ), to approximate Covp0 (θ). In fact, CovLap

qLap
(θ) is equivalent to a

linear response covariance matrix calculated for the approximating family QLap:

KL (q (θ; θ0) ||p0 (θ)) = − log p0 (θ0)− Constant⇒

θ̂Lap = argmax
θ

p0 (θ) = argmin
θ0

KL (q (θ; θ0) ||p0 (θ)) = θ∗0

HLap = −
∂2p0 (θ)

∂θ∂θ⊺

∣∣∣∣
θ̂Lap

= −
∂2KL (q (θ; θ0) ||p0 (θ))

∂θ0∂θ
⊺

0

∣∣∣∣
θ∗

0

= Hηη.

So θ̂Lap = θ∗0 , HLap = Hηη , and CovLap
qLap

(θ) = CovLR
q0

(θ) for the approximating family QLap.

From this perspective, the accuracy of the Laplace approximation depends precisely on the extent to which

Condition 1 holds for the family of point masses QLap. Typically, VB approximations use a Q that is more

expressive than QLap, and we might expect Condition 1 to be more likely to apply for a more expressive

family. It follows that we might expect the LRVB covariance estimate CovLR
q0

for general Q to be more

accurate than the Laplace covariance approximation CovLap
qLap

. We demonstrate the validity of this intuition

in the experiments of Section 5.

4.4 Local Prior Sensitivity for MFVB

We now turn to estimating prior sensitivities for MFVB estimates—the variational analogues of Sα0
in Defi-

nition 1. First, we define the variational local sensitivity.

Definition 7 The local sensitivity of Eqα [g (θ)] to prior parameter α at α0 is given by

Sq
α0

:=
dEqα [g (θ)]

dα

∣∣∣∣
α0

.

10
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Corollary 3 Suppose that Assumptions 1–4 and Condition 1 hold for some α0 ∈ A and for

ρ (θ, α) = log p (x|θ, α) + log p (θ|α)− log p (x|θ, α0)− log p (θ|α) .

Then Sq
α0

≈ Sα0
.

Corollary 3 states that, as with the covariance approximations in Section 4.1, Sq
α0

is a useful approximation to

Sα0
to the extent that Condition 1 holds—that is, to the extent that the MFVB means are good approximations

to the exact means for the prior perturbations α ∈ A0.

Under the ρ (θ, α) given in Corollary 3, Theorem 2 gives the following formula for the variational local

sensitivity:

Sq
α0

= gηH
−1
ηη

∂

∂η⊺
Eq(θ;η)

[
∂ρ (θ, α)

∂α

∣∣∣∣
α0

]∣∣∣∣∣
η∗

0

. (19)

We now use Eq. (19) to reproduce MFVB versions of some standard robustness measures found in the

existing literature. A simple case is when the prior p (θ|α) is believed to be in a given parametric family,

and we are simply interested in the effect of varying the parametric family’s parameters (Basu et al., 1996;

Giordano et al., 2016). For illustration, we first consider a simple example where p (θ|α) is in the exponential

family, with natural sufficient statistic θ and log normalizer A (α), and we take g (θ) = θ. In this case,

log p (θ|α) = α⊺θ −A (α)

fαη =
∂

∂η⊺
Eq(θ;η)

[
∂

∂α
(α⊺θ −A (α))

∣∣∣∣
α0

]∣∣∣∣∣
η∗

0

=

(
∂

∂η⊺
Eq(θ;η) [θ]−

∂

∂η⊺
∂A (α)

∂α

∣∣∣∣
α0

)∣∣∣∣∣
η∗

0

=
∂

∂η⊺
Eq(θ;η) [θ]

∣∣∣∣
η∗

0

= gη.

Note that when fαη = gη , Eq. (19) is equivalent to Eq. (14). So we see that

Sq
α0

= CovLR
q0

(θ) .

In this case, the sensitivity is simply the linear response covariance estimate of the covariance, CovLR
q0

(θ).
By the same reasoning, the exact posterior sensitivity is given by

Sα0
= Covp0

(θ) .

Thus, Sq
α0

≈ Sα0 to the extent that CovLR
q0

(θ) ≈ Covp0 (θ), which again holds to the extent that Condition 1

holds. Note that if we had used a mean field assumption and had tried to use the direct, uncorrected response

covariance Covq0 (θ) to try to evaluate Sq
α0

, we would have erroneously concluded that the prior on one

component, θk1
, would not affect the posterior mean of some other component, θk2

, for k2 6= k1.

Sometimes it is easy to evaluate the derivative of the log prior even when it is not easy to normalize it. As

an example, we will show how to calculate the local sensitivity to the concentration parameter of an LKJ prior

(Lewandowski et al., 2009) under an inverse Wishart variational approximation. The LKJ prior is defined as

follows. Let Σ (as part of θ) be an unknown K ×K covariance matrix. Define the K ×K scale matrix M

such that

Mij =

{√
Σij if i = j

0 otherwise.

11
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Using M, define the correlation matrix R as

R = M−1ΣM−1.

The LKJ prior on the covariance matrix R with concentration parameter α > 0 is given by:

pLKJ (R|α) ∝ |R|α−1
.

The Stan manual recommends the use of pLKJ, together with an independent prior on the diagonal entries of

the scaling matrix M, for the prior on a covariance matrix that appears in a hierarchical model (Stan Team,

2015, Chapter 9.13).

Suppose that we have chosen the variational approximation

q (Σ) := InverseWishart (Σ|Ψ, ν) ,

where Ψ is a positive definite scale matrix and ν is the number of degrees of freedom. In this case, the

variational parameters are η = (Ψ, ν). We write η with the understanding that we have stacked only the

upper-diagonal elements of Ψ since Ψ is constrained to be symmetric and η∗ must be interior. As we show

in Appendix G,

Eq [log pLKJ (R|α)] = (α− 1)

(
log |Ψ| − ψK

(ν
2

)
−

K∑

k=1

log

(
1

2
Ψkk

)
+Kψ

(
ν −K + 1

2

))
+ Constant,

where Constant contains terms that do not depend on α, and where ψK denotes the multivariate digamma

function. Consequently, we can evaluate

fαη =
∂

∂η⊺
Eq(θ;η)

[
∂

∂α
log p (Σ|α)

]∣∣∣∣
η=η∗

0 ,α=α0

=
∂

∂η⊺

(
log |Ψ| − ψK

(n
2

)
−

K∑

k=1

log

(
1

2
Ψkk

)
+Kψ

(
n−K + 1

2

))∣∣∣∣∣
η∗

0

. (20)

This derivative has a closed form, but the bookkeeping required to represent an unconstrained parameteri-

zation of the matrix Ψ within η would be tedious. In practice, we evaluate terms like fαη using automatic

differentiation tools (Baydin et al., 2018).

Finally, in cases where we cannot evaluate Eq(θ;η) [log p (θ|α)] in closed form as a function of η, we

can use numerical techniques as described in Section 4.5. We thus view Sq
α0

as the exact sensitivity to an

approximate KL divergence.

4.5 Practical Considerations when Computing the Sensitivity of Variational Approximations

We briefly discuss practical issues in the computation of Eq. (10), which requires calculating the product

gηH
−1
ηη (or, equivalently, H−1

ηη g
⊺

η since Hηη is symmetric). Calculating Hηη and solving this linear system

can be the most computationally intensive part of computing Eq. (10).

We first note that it can be difficult and time consuming in practice to manually derive and implement

second-order derivatives. Even a small programming error can lead to large errors in Theorem 2. To en-

sure accuracy and save analyst time, we evaluated all the requisite derivatives using the Python autograd

automatic differentiation library (Maclaurin et al., 2015) and the Stan math automatic differentiation library

(Carpenter et al., 2015).

Note that the dimension of Hηη is as large as that of η, the parameters that specify the variational distribu-

tion q (θ; η). Many applications of MFVB employ many latent variables, the number of which may even scale

with the amount of data—including several of the cases that we examine in Section 5. However, these appli-

cations typically have special structure that render Hηη sparse, allowing the practitioner to calculate gηH
−1
ηη

12
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quickly. Consider, for example, a model with “global” parameters, θglob, that are shared by all the individual

datapoint likelihoods, and “local” parameters, θloc,n, associated with likelihood of a single datapoint indexed

by n. By “global” and “local” we mean the likelihood and assumed variational distribution factorize as

p (x, θglob, θloc,1, ..., θloc,N ) = p (θglob)

N∏

n=1

p (x|θloc,n, θglob) p (θloc,n|θglob) (21)

q (θ; η) = q (θglob; ηglob)
N∏

n=1

q (θloc,n; ηn) for all q (θ; η) ∈ Q.

In this case, the second derivatives of the variational objective between the parameters for local variables

vanish:

for all n 6= m,
∂2KL (q (θ; η) ||p0 (θ))

∂ηloc,n∂η
⊺

loc,m

= 0.

The model in Section 5.3 has such a global / local structure; see Section 5.3.2 for more details. Additional

discussion, including the use of Schur complements to take advantage of sparsity in the log likelihood, can

be found in Giordano et al. (2015).

When even calculating or instantiating Hηη is prohibitively time-consuming, one can use conjugate gradi-

ent algorithms to approximately compute H−1
ηη g

⊺

η (Wright and Nocedal, 1999, Chapter 5). The advantage of

conjugate gradient algorithms is that they approximate H−1
ηη g

⊺

η using only the Hessian-vector product Hηηg
⊺

η ,

which can be computed efficiently using automatic differentiation without ever forming the full Hessian Hηη .

See, for example, the hessian vector product method of the Python autograd package (Maclaurin

et al., 2015). Note that a separate conjugate gradient problem must be solved for each column of g⊺

η , so if the

parameter of interest g (θ) is high-dimensional it may be faster to pay the price for computing and inverting

the entire matrix Hηη . See 5.3.2 for more discussion of a specific example.

In Theorem 2, we require η∗0 to be at a true local optimum. Otherwise the estimated sensitivities may not

be reliable (e.g., the covariance implied by Eq. (14) may not be positive definite). We find that the classical

MFVB coordinate ascent algorithms (Blei et al. (2016, Section 2.4)) and even quasi-second order methods,

such as BFGS (e.g., Regier et al., 2015), may not actually find a local optimum unless run for a long time

with very stringent convergence criteria. Consequently, we recommend fitting models using second-order

Newton trust region methods. When the Hessian is slow to compute directly, as in Section 5, one can use the

conjugate gradient trust region method of Wright and Nocedal (1999, Chapter 7), which takes advantage of

fast automatic differentiation Hessian-vector products without forming or inverting the full Hessian.

5. Experiments

We now demonstrate the speed and effectiveness of linear response methods on a number of simulated and

real data sets. We begin with simple simulated data to provide intuition for how linear response methods

can improve estimates of covariance relative to MFVB and the Laplace approximation. We then develop

linear response covariance estimates for ADVI and apply them to four real-world models and data sets

taken from the Stan examples library (Stan Team, 2017). Finally, we calculate both linear response co-

variances and prior sensitivity measures for a large-scale industry data set. In each case, we compare linear

response methods with ordinary MFVB, the Laplace approximation, and MCMC. We show that linear re-

sponse methods provide the best approximation to MCMC while still retaining the speed of approximate

methods. Code and instructions to reproduce the results of this section can be found in the git repository

rgiordan/CovariancesRobustnessVBPaper.

5.1 Simple Expository Examples

In this section we provide a sequence of simple examples comparing MFVB and LRVB with Laplace ap-

proximations. These examples provide intuition for the covariance estimate CovLR
q0

(g (θ)) and illustrate how
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the sensitivity analysis motivating CovLR
q0

(g (θ)) differs from the local posterior approximation motivating

CovLap
qLap

(g (θ)).
For each example, we will explicitly specify the target posterior p0 (θ) using a mixture of normals. This

will allow us to define known target distributions with varying degrees of skewness, over-dispersion, or

correlation and compare the truth with a variational approximation. Formally, for some fixed Kz , component

indicators zk, k = 1, ...,Kz , component probabilities πk, locations µk, and covariances Σk, we set

p (z) =

Kz∏

k=1

πzk
k

p0 (θ) =
∑

z

p (z) p (θ|z) =
∑

z

p (z)

Kz∏

k=1

N (θ;mk,Σk)
zk .

The values π, m and Σ will be chosen to achieve the desired shape for each example using up to Kz = 3
components. There will be no need to state the precise values of π, m, and Σ; rather, we will show plots of

the target density and report the marginal means and variances, calculated by Monte Carlo.1

We will be interested in estimating the mean and variance of the first component, so we take g (θ) = θ1.

Consequently, in order to calculate CovLR
q0

(θ1), we will be considering the perturbation ρ (θ, α) = αθ1 with

scalar α and α0 = 0.

For the variational approximations, we will use a factorizing normal approximation:

Qmf =

{
q (θ) : q (θ) =

K∏

k=1

N
(
θk;µk, σ

2
k

)
}
.

In terms of Eq. (7), we take η = (µ1, ..., µK , log σ1, ..., log σK)
⊺

. Thus Eq(θ;η) [g (θ)] = Eq(θ;η) [θ1] = µ1.

In the examples below, we will use multiple distinct components in the definition of p0 (θ), so that p0 (θ) is

non-normal and p0 (θ) /∈ Qmf .

Since the expectation Eq(θ;η) [log p (θ)] is intractable, we replace the exact KL divergence with a Monte

Carlo approximation using the “re-parameterization trick” (Kingma and Welling, 2013; Rezende et al., 2014;

Titsias and Lázaro-Gredilla, 2014). Let ◦ denote the Hadamard (component-wise) product. Let ξm
iid
∼

N (0, IK) for m = 1, ...,M . We define

θm := σ ◦ ξm + µ

KLapprox (q (θ; η) ||p0 (θ)) := −
1

M

M∑

m=1

log p0 (θm)−
K∑

k=1

log σk,

which is a Monte Carlo estimate of KL (q (θ; η) ||p0 (θ)). We found M = 10000 to be more than adequate

for our present purposes of illustration. Note that we used the same draws ξm for both optimization and for

the calculation of Hηη in order to ensure that the η∗0 at which Hηη was evaluated was in fact an optimum.

This approach is similar to our treatment of ADVI; see Section 5.2 for a more detailed discussion.

5.1.1 MULTIVARIATE NORMAL TARGETS

If we take only a single component in the definition of p0 (θ) (Kz = 1), then pα (θ) is a multivariate normal

distribution for all α, and the Laplace approximation qLap (θ) is equal to pα (θ) for all α. Furthermore, as

discussed in Section 4.1 and Appendix E, the variational means Eqα [θ] = µ are exactly equal to the exact

posterior mean Epα
[θ] = m1 for all α (even though in general Covq0 (θ) 6= Σ1). Consequently, for all α,

1. MFVB is often used to approximate the posterior when the Bayesian generative model for data x is a mixture model (e.g., Blei et al.

(2003)). By contrast, we note for clarity that we are not using the mixture model as a generative model for x here. E.g., z is not one

of the parameters composing θ, and we are not approximating the distribution of z in the variational distribution q (θ). Rather, we

are using mixtures as a way of flexibly defining skewed and over-dispersed targets, p (θ).
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Figure 1: A univariate skewed distribution. Vertical lines show the location of the means.

Metric Exact LRVB MFVB Laplace

mean 1.253 1.345 0.111

var 2.872 3.245 2.599 0.849

Figure 2: Effect of tilting on a univariate skew distribution.

the variational approximation, the Laplace approximation, and the exact p0 (θ) all coincide in their estimates

of E [θ], and by, Corollary 2, Σ = Covp0 (θ) = CovLR
q0

(θ) = CovLap
qLap

(θ). Of course, if Σ is not diagonal,

Covq0 (θ) 6= Σ because of the mean field assumption. Since this argument holds for the whole vector θ, it

holds a fortiori for our quantity of interest, the first component g (θ) = θ1.

In other words, the Laplace approximation will differ only from the LRVB approximation when p0 (θ) is

not multivariate normal, a situation that we will now bring about by adding new components to the mixture;

i.e., by increasing Kz .

5.1.2 A UNIVARIATE SKEWED DISTRIBUTION

If we add a second component (Kz = 2), then we can make p0 (θ) skewed, as shown (with the approx-

imations) in Fig. 1. In this case, we expect Eqα [θ1] to be more accurate than the Laplace approximation

EqLap
[θ1] because Qmf is more expressive than QLap. This intuition is born out in the left panel of Fig. 1.

Since θ̂Lap uses only information at the mode, it fails to take into account the mass to the right of the mode,

and the Laplace approximation’s mean is too far to the left. The MFVB approximation, in contrast, is quite

accurate for the posterior mean of θ1, even though it gets the overall shape of the distribution wrong.

This example also shows why, in general, one cannot naively form a “Laplace approximation” to the

posterior centered at the variational mean rather than at the MAP. As shown in the left panel of Fig. 1, in

this case the posterior distribution is actually convex at the MFVB mean. Consequently, a naive second-order

approximation to the log posterior centered at the MFVB mean would imply a negative variance.
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Figure 3: A univariate over-dispersed distribution. Vertical lines show the location of the means.

The perturbation ρ (θ, α) = αθ1 is sometimes also described as a “tilting,” and the right panel of Fig. 1

shows the effect of tilting on this posterior approximation. Tilting increases skew, but the MFVB approxima-

tion remains accurate, as shown in Fig. 2. Since local sensitivity of the expectation of θ1 to α is the variance

of θ1 (see Eq. (13)), we have in Fig. 2 that:

• The slope of the exact distribution’s line is Covp0
(θ1);

• The slope of the MFVB line is the LRVB variance CovLR
q0

(θ1); and

• The slope of the Laplace line is CovLap
qLap

(θ1).

Since the MFVB and exact lines nearly coincide, we expect the LRVB variance estimate to be quite accurate

for this example. Similarly, since the slope of the Laplace approximation line is lower, we expect the Laplace

variance to underestimate the exact variance. This outcome, which can be seen visually in the left-hand panel

of Fig. 2, is shown quantitatively in the corresponding table in the right-hand panel. The columns of the table

contain information for the exact distribution and the three approximations. The first row, labeled “mean,”

shows E [θ1] and the second row, labeled “var,” shows Cov (θ1). (The “LRVB” entry for the mean is blank

because LRVB differs from MFVB only in covariance estimates.) We conclude that, in this case, Condition 1

holds for Qmf but not for QLap.

5.1.3 A UNIVARIATE OVER-DISPERSED DISTRIBUTION

Having seen how MFVB can outperform the Laplace approximation for a univariate skewed distribution,

we now apply that intuition to see why the linear response covariance can be superior to the Laplace ap-

proximation covariance for over-dispersed but symmetric distributions. Such a symmetric but over-dispersed

distribution, formed with Kz = 3 components, is shown in Fig. 3 together with its approximations. By sym-

metry, both the MFVB and Laplace means are exactly correct (up to Monte Carlo error), as can be seen in

the left panel of Fig. 3.

However, the right panel of Fig. 3 shows that symmetry is not maintained as the distribution is tilted.

For α > 0, the distribution becomes skewed to the right. Thus, by the intuition from the previous section,

we expect the MFVB mean to be more accurate as the distribution is tilted and α increases from zero. In

particular, we expect that the Laplace approximation’s mean will not shift enough as α varies, i.e., that the

Laplace approximation variance will be underestimated. Fig. 4 shows that this is indeed the case. The slopes

in the left panel once again correspond to the estimated variances shown in the table, and, as expected the

LRVB variance estimate is superior to the Laplace approximation variance.
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Metric Exact LRVB MFVB Laplace

mean -0.001 0.027 -0.000

var 4.218 4.153 4.161 1.107

Figure 4: Effect of tilting on a univariate over-dispersed distribution.

Figure 5: A bivariate over-dispersed distribution.

In this case, Condition 1 holds for Qmf . For the Laplace approximation, EqLap
[g (θ)] = Ep0 [g (θ)] for

α = 0, so QLap satisfies Eq. (11) of Condition 1 for α near zero, the derivatives of the two expectations with

respect to α are quite different, so Eq. (12) of Condition 1 does not hold for QLap.

5.1.4 A BIVARIATE OVER-DISPERSED DISTRIBUTION

In the previous two examples the mean field approximation in Q did not matter, since the examples were

one-dimensional. The only reason that the variational approximation was different from the exact p0 (θ)
was the normal assumption in Qmf . Indeed, the tables in Fig. 2 and Fig. 4 show that the MFVB variance

estimate is also reasonably close to the exact variance. In order to demonstrate why the LRVB variance can be

better than both the Laplace approximation and the MFVB approximation, we turn to a bivariate, correlated,

over-dispersed p0 (θ). For this we use Kz = 3 correlated normal distributions, shown in the left panel of

Fig. 5. The right panel of Fig. 5 shows the marginal distribution of θ1, in which the over-dispersion can be

seen clearly. As Fig. 5 shows, unlike in the previous two examples, the mean field approximation causes

q0 (θ) to dramatically underestimate the marginal variance of θ1. Consequently, the MFVB means will also

be under-responsive to the skew introduced by tilting with α. Though the Laplace approximation has a larger

marginal variance, it remains unable to take skewness into account. Consequently, as seen in Fig. 6, the

LRVB variance, while not exactly equal to the correct variance, is still an improvement over the Laplace

covariance, and a marked improvement on the badly under-estimated MFVB variance.
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Metric Exact LRVB MFVB Laplace

mean 0.005 -0.002 -0.000

var 1.635 0.976 0.241 0.684

Figure 6: Effect of tilting on a bivariate over-dispersed distribution.

One might say, in this case, that Condition 1 does not hold for either Qmf or QLap, or, if it does, it is

with a liberal interpretation of the “approximately equals” sign. However, the expressiveness of Qmf allows

LRVB to improve on the Laplace approximation, and the linear response allows it to improve over the MFVB

approximation, and so LRVB gives the best of both worlds.

Thinking about problems in terms of these three simple models can provide intuition about when and

whether Condition 1 might be expected to hold in a sense that is practically useful.

5.2 Automatic Differentiation Variational Inference (ADVI)

In this section we apply our methods to automatic differentiation variational inference (ADVI) (Kucukelbir

et al., 2017). ADVI is a “black-box” variational approximation and optimization procedure that requires only

that the user provide the log posterior, log p0 (θ), up to a constant that does not depend on θ. To achieve this

generality, ADVI employs:

• A factorizing normal variational approximation,2

• An unconstraining parameterization,

• The “re-parameterization trick,” and

• Stochastic gradient descent.

ADVI uses a family employing the factorizing normal approximation

Qad :=

{
q (θ) : q (θ) =

K∏

k=1

N (θk|µk, exp (2ζk))

}
.

That is, Qad is a fully factorizing normal family with means µk and log standard deviations ζk. Because we

are including exponential family assumptions in the definition of MFVB (as described in Section 3.1), Qad

is an instance of a mean-field family Qmf . In the notation of Eq. (7),

η = (µ1, ..., µK , ζ1, ..., ζK)
⊺
, (22)

2. Kucukelbir et al. (2017) describe a non-factorizing version of ADVI, which is called “fullrank” ADVI in Stan. The factorizing

version that we describe here is called “meanfield” ADVI in Stan. On the examples we describe, in the current Stan implementation,

we found that fullrank ADVI provided much worse approximations to the MCMC posterior means than the meanfield version, and

so we do not consider it further.
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Ωη = R
2K , λ is the Lebesgue measure, and the objective function Eq. (8) is

KL (q (θ; η) ||p0 (θ)) = −

∫
N (θk|µk, exp (2ζk)) log p0 (θ)λ (dθ)−

K∑

k=1

ζk,

where we have used the form of the univariate normal entropy up to a constant.

The unconstraining parameterization is required because the use of a normal variational approximation

dictates that the base measure on the parameters θ ∈ R
K be supported on all of RK . Although many param-

eters of interest, such as covariance matrices, are not supported on R
K , there typically exist differentiable

maps from an unconstrained parameterization supported on R
K to the parameter of interest. Software pack-

ages such as Stan automatically provide such transforms for a broad set of parameter types. In our notation,

we will take these constraining maps to be the function of interest, g (θ), and take θ to be unconstrained. Note

that, under this convention, the prior p (θ|α) must be a density in the unconstrained space. In practice (e.g.,

in the Stan software package), one usually specifies the prior density in the constrained space and converts

it to a density p (θ|α) in the unconstrained space using the determinant of the Jacobian of the constraining

transform g (·).
The re-parameterization trick allows easy approximation of derivatives of the (generally intractable) ob-

jective KL (q (θ; η) ||p0 (θ)). By defining zk using the change of variable

zk := (θk − µk)/ exp (ζk) , (23)

KL (q (θ; η) ||p0 (θ)) can be re-written as an expectation with respect to a standard normal distribution. We

write θ = exp (ζ) ◦ z + µ by using the component-wise Hadamard product ◦. Then

KL (q (θ; η) ||p0 (θ)) = −Ez [log p0 (exp (ζ) ◦ z + µ)]−
K∑

k=1

ζk + Constant.

The expectation is still typically intractable, but it can be approximated using Monte Carlo and draws from

a K-dimensional standard normal distribution. For a fixed number M of draws z1, ..., zM from a standard

K-dimensional normal, we can define the approximate KL divergence

K̂L (η) := −
1

M

M∑

m=1

log p0 (exp (ζ) ◦ zm + µ)−
K∑

k=1

ζk + Constant. (24)

For any fixed M ,

E

[
∂

∂η
K̂L (η)

]
=

∂

∂η
KL (q (θ; η) ||p0 (θ)) ,

so gradients of K̂L (η) are unbiased for gradients of the exact KL divergence. Furthermore, for fixed draws

z1, ..., zM , K̂L (η) can be easily differentiated (using, again, the re-parameterization trick). Standard ADVI

uses this fact to optimize KL (q (θ; η) ||p0 (θ)) using the unbiased gradient draws ∂
∂η
K̂L (η) and a stochastic

gradient optimization method, where the stochasticity comes from draws of the standard normal random

variable z. Note that stochastic gradient methods typically use a new draw of z at every gradient step.

5.2.1 LINEAR RESPONSE FOR ADVI (LR-ADVI)

Since ADVI uses a factorizing normal approximation, the intuition from Section 5.1 may be expected to

apply. In particular, we might expect that the ADVI means µ̂ might be a good approximation to Ep0
[θ],

that the ADVI variances exp
(
2ζ̂
)

would be under-estimates of the posterior variance Covp0
(θ), so that

using CovLR
q0

(θ) could improve the approximations to the posterior variance. We refer to LRVB covariances

calculated using an ADVI approximation as LR-ADVI.
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To apply linear response to an ADVI approximation, we need to be able to approximate the Hessian of

KL (q (θ; η) ||p0 (θ)) and to be assured that we have found an optimal η∗0 . But, by using a stochastic gradient

method, ADVI avoids ever actually calculating the expectation in KL (q (θ; η) ||p0 (θ)). Furthermore even if

a stochastic gradient method finds an point that is close to the optimal value of KL (q (θ; η) ||p0 (θ)) it may

not be close to an optimum of K̂L (η) for a particular finite M . Indeed, we found that, even for very large

M , the optimum found by ADVI’s stochastic gradient method is typically not close enough to an optimum

of the approximate K̂L (η) for sensitivity calculations to be useful. Sensitivity calculations are based on

differentiating the fixed point equation given by the gradient being zero (see the proof in Appendix D), and

do not apply at points for which the gradient is not zero either in theory nor in practice.

Consequently, in order to calculate the local sensitivity, we simply eschew the stochastic gradient method

and directly optimize K̂L (η) for a particular choice of M . (We will discuss shortly how to choose M .) We

can then use K̂L (η) in Eq. (10) rather than the exact KL divergence. Directly optimizing K̂L (η) both frees

us to use second-order optimization methods, which we found to converge more quickly to a high-quality

optimum than first-order methods, and guarantees that we are evaluating the Hessian Hηη at an optimum of

the objective function used to calculate Eq. (10).

AsM approaches infinity, we expect the optimum of K̂L (η) to approach the optimum ofKL (q (θ; η) ||p0 (θ))
by the standard frequentist theory of estimating equations (Keener, 2010, Chapter 9). In practice we must

fix a particular finite M , with larger M providing better approximations of the true KL divergence but at

increased computational cost. We can inform this tradeoff between accuracy and computation by considering

the frequentist variability of η∗0 when randomly sampling M draws of the random variable z used to approx-

imate the intractable integral in K̂L (η). Denoting this frequentist variability by Covz (η
∗
0), standard results

(Keener, 2010, Chapter 9) give that

Covz (η
∗
0) ≈ H−1

ηη Covz

(
∂

∂η
K̂L (η)

∣∣∣∣
η∗

0

)
H−1

ηη . (25)

A sufficiently largeM will be one for which Covz (η
∗
0) is adequately small. One notion of “adequately small”

might be that the ADVI means found with K̂L (η) are within some fraction of a posterior standard deviation

of the optimum of KL (q (θ; η) ||p0 (θ)). Having chosen a particular M , we can calculate the frequentist

variability of µ∗ using CovLR
q0

(g (θ)) and estimate the posterior standard deviation using Eq. (14). If we find

that each µ∗ is probably within 0.5 standard deviations of the optimum of KL (q (θ; η) ||p0 (θ)), we can keep

the results; otherwise, we increase M and try again. In the examples we consider here, we found that the

relatively modest M = 10 satisfies this condition and provides sufficiently accurate results.

Finally, we note a minor departure from Eq. (14) when calculating CovLR
q0

(g (θ)) from Hηη . Recall

that, in this case, we are taking g (·) to be ADVI’s constraining transform, and that Eq. (14) requires the

Jacobian, gη , of this transform. At the time of writing, the design of the Stan software package did not readily

support automatic calculation of gη , though it did support rapid evaluation of g (θ) at particular values of θ.

Consequently, we used linear response to estimate CovLR
q0

(θ), drew a large numberNs of Monte Carlo draws

from θn ∼ N
(
µ,CovLR

q0
(θ)
)

for n = 1, ..., Ns, and then used these draws to form a Monte Carlo estimate

of the sample covariance of g (θ). Noting that Eqα [θ] = µ, and recalling the definition of η for ADVI in

Eq. (22), by Eq. (14) we have

CovLR
q0

(θ) =
∂Eqα [θ]

∂η⊺
H−1

ηη

∂Eqα [θ⊺]

∂η
=

(
IK 0
0 0

)
H−1

ηη

(
IK 0
0 0

)
,

which is the upper-left quarter of the matrix H−1
ηη . In addition to obviating the need for gη , this approach also

allowed us to take into account possible nonlinearities in g (·) at little additional computational cost.

5.2.2 RESULTS

We present results from four models taken from the Stan example set, namely the models election88

(“Election model”), sesame street1 (“Sesame Street model”), radon vary intercept floor (“Radon
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Figure 7: Election model

model”), and cjs cov randeff (“Ecology model”). We experimented with many models from the Stan

examples and selected these four as representative of the type of model where LR-ADVI can be expected

to provide a benefit—specifically, they are models of a moderate size. For very small models, MCMC runs

quickly enough in Stan that fast approximations are not necessary, and for very large models (with thousands

of parameters) the relative advantages of LR-ADVI and the Laplace approximation diminish due to the need

to calculate Hηη or HLap using automatic differentiation.3 The size of the data and size of the parameter

space for our four chosen models are shown in Fig. 11. We also eliminated from consideration models where

Stan’s MCMC algorithm reported divergent transitions or where Stan’s ADVI algorithm returned wildly in-

accurate posterior mean estimates.

For brevity, we do not attempt to describe the models or data in any detail here; rather, we point to the

relevant literature in their respective sections. The data and Stan implementations themselves can be found

on the Stan website (Stan Team, 2017) as well as in Appendix F.

To assess the accuracy of each model, we report means and standard deviations for each of Stan’s model

parameters as calculated by Stan’s MCMC and ADVI algorithms and a Laplace approximation, and we report

the standard deviations as calculated by CovLR
q0

(g (θ)). Recall that, in our notation, g (·) is the (generally

nonlinear) map from the unconstrained latent ADVI parameters to the constrained space of the parameters

of interest. The performance of ADVI and Laplace vary, and only LR-ADVI provides a consistently good

approximation to the MCMC standard deviations. LR-ADVI was somewhat slower than a Laplace approxi-

mation or ADVI alone, but it was typically about five times faster than MCMC; see Section 5.2.7 for detailed

timing results.

5.2.3 ELECTION MODEL ACCURACY

We begin with election88, which models binary responses in a 1988 poll using a Bernoulli hierarchical

model with normally distributed random effects for state, ethnicity, and gender and a logit link. The model

and data are described in detail in Gelman and Hill (2006, Chapter 14). Fig. 7 shows that both the Laplace

3. We calculated Hηη using a custom branch of Stan’s automatic differentiation software (Carpenter et al., 2015) that exposes Hessians

and Hessian-vector products in the Rstan modelfit class. When this custom branch is merged with the main branch of Stan, it

will be possible to implement LR-ADVI for generic Stan models.
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Figure 8: Sesame Street model

approximation and ADVI do a reasonable job of matching to MCMC, though LR-ADVI is slightly more

accurate for standard deviations.

5.2.4 SESAME STREET MODEL ACCURACY

Next, we show results for sesame street1, an analysis of a randomized controlled trial designed to

estimate the causal effect of watching the television show Sesame Street on a letter-recognition test. To

control for different conditions in the trials, a hierarchical model is used with correlated multivariate outcomes

and unknown covariance structure. The model and data are described in detail in Gelman and Hill (2006,

Chapter 23).

As can be seen in Fig. 8, the MAP under-estimates the variability of the random effects ag, and, in turn,

under-estimates the variance parameter sigma a. Because the MAP estimate of sigma a is close to zero,

the log posterior has a very high curvature with respect to the parameter ag at the MAP, and the Hessian

used for the Laplace approximation is numerically singular. ADVI, which integrates out the uncertainty

in the random effects, provides reasonably good estimates of the posterior means but underestimates the

posterior standard deviations due to the mean-field assumption. Only LR-ADVI provides accurate estimates

of posterior uncertainty.

5.2.5 RADON MODEL ACCURACY

We now turn to radon vary intercept floor, a hierarchical model of radon levels in Minnesota

homes described in Gelman and Hill (2006, Chapters 16 and 21). This model is relatively simple, with

univariate normal observations and unknown variances. Nevertheless, the Laplace approximation again pro-

duces a numerically singular covariance matrix. The ADVI means are reasonably accurate, but the standard

deviations are not. Only LR-ADVI produces an accurate approximation to the MCMC posterior standard

deviations.

5.2.6 ECOLOGY MODEL ACCURACY
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Figure 9: Radon model

Figure 10: Ecology model

Finally, we consider a more complicated mark-recapture model from ecology known as the Cormack-Jolly-

Seber (CJS) model. This model is described in detail in Kéry and Schaub (2011, Chapter 7), and discussion

of the Stan implementation can be found in Stan Team (2015, Section 15.3).

The Laplace approximation is again degenerate, and the ADVI standard deviations again deviate consid-

erably from MCMC. In this case, the ADVI means are also somewhat inaccurate, and some of the LR-ADVI

standard deviations are mis-estimated in turn. However, LR-ADVI remains by far the most accurate method

for approximating the MCMC standard errors.
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Figure 11: Comparision of timing in ADVI experiments

5.2.7 TIMING RESULTS

Detailed timing results for the ADVI experiments are shown in Fig. 11. Both the Laplace approximation and

ADVI alone are faster than LR-ADVI, which in turn is about five times faster than MCMC. We achieved the

best results optimizing K̂L (η) by using the conjugate gradient Newton’s trust region method (trust-ncg

of scipy.optimize), but the optimization procedure still accounted for an appreciable proportion of the

time needed for LR-ADVI.

5.3 Criteo Dataset

We now apply our methods to a real-world data set using a logistic regression with random effects, which is

an example of a generalized linear mixed model (GLMM) (Agresti and Kateri, 2011, Chapter 13). This data

and model have several advantages as an illustration of our methods: the data set is large, the model contains

a large number of imprecisely-estimated latent variables (the unknown random effects), the model exhibits

the sparsity of Hηη that is typical in many MFVB applications, and the results exhibit the same shortcomings

of the Laplace approximation seen above. For this model, we will evaluate both posterior covariances and

prior sensitivities.

5.3.1 DATA AND MODEL

We investigated a custom subsample of the 2014 Criteo Labs conversion logs data set (Criteo Labs, 2014),

which contains an obfuscated sample of advertising data collected by Criteo over a period of two months.

Each row of the data set corresponds to a single user click on an online advertisement. For each click, the

data set records a binary outcome variable representing whether or not the user subsequently “converted”

(i.e., performed a desired task, such as purchasing a product or signing up for a mailing list). Each row

contains two timestamps (which we ignore), eight numerical covariates, and nine factor-valued covariates.

Of the eight numerical covariates, three contain 30% or more missing data, so we discarded them. We then

applied a per-covariate normalizing transform to the distinct values of those remaining. Among the factor-

valued covariates, we retained only the one with the largest number of unique values and discarded the others.
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These data-cleaning decisions were made for convenience. The goal of the present paper is to demonstrate

our inference methods, not to draw conclusions about online advertising.

Although the meaning of the covariates has been obfuscated, for the purpose of discussion we will imag-

ine that the single retained factor-valued covariate represents the identity of the advertiser, and the numeric

covariates represent salient features of the user and/or the advertiser (e.g., how often the user has clicked

or converted in the past, a machine learning rating for the advertisement quality, etc.). As such, it makes

sense to model the probability of each row’s binary outcome (whether or not the user converted) as a function

of the five numeric covariates and the advertiser identity using a logistic GLMM. Specifically, we observe

binary conversion outcomes, yit, for click i on advertiser t, with probabilities given by observed numerical

explanatory variables, xit, each of which are vectors of length Kx = 5. Additionally, the outcomes within

a given value of t are correlated through an unobserved random effect, ut, which represents the “quality” of

advertiser t, where the value of t for each observation is given by the factor-valued covariate. The random

effects ut are assumed to follow a normal distribution with unknown mean and variance. Formally,

yit|pit ∼ Bernoulli (pit) , for t = 1, ..., T and i = 1, ..., Nt

pit :=
eρit

1 + eρit
where ρit := xTitβ + ut

ut|µ, τ ∼ N
(
µ, τ−1

)
.

Consequently, the unknown parameters are θ = (β⊺, µ, τ, u1, ..., uT )
⊺

. We use the following priors:

µ|µ0, τµ ∼ N
(
µ0, τ

−1
µ

)

τ |ατ , βτ ∼ Gamma (ατ , βτ )

β|β0, τβ , γβ ∼ N







β0
...

β0


 ,




τβ γβ γβ

γβ
. . . γβ

γβ γβ τβ




−1

 .

Note that we initially take γβ = 0 so that the prior information matrix on β is diagonal. Nevertheless, by

retaining γβ as a hyperparameter we will be able to assess the sensitivity to the assumption of a diagonal

prior in Section 5.3.6. The remaining prior values are given in Appendix H. It is reasonable to expect that

a modeler would be interested both in the effect of the numerical covariates and in the quality of individual

advertisers themselves, so we take the parameter of interest to be g (θ) = (β⊺, u1, ..., uT )
⊺

.

To produce a data set small enough to be amenable to MCMC but large and sparse enough to demonstrate

our methods, we subsampled the data still further. We randomly chose 5000 distinct advertisers to analyze,

and then subsampled each selected advertiser to contain no more than 20 rows each. The resulting data set

had N = 61895 total rows. If we had more observations per advertiser, the “random effects” ut would have

been estimated quite precisely, and the nonlinear nature of the problem would not have been important; these

changes would thus have obscured the benefits of using MFVB versus the Laplace approximation. In typical

internet data sets a large amount of data comes from advertisers with few observations each, so our subsample

is representative of practically interesting problems.

5.3.2 INFERENCE AND TIMING

We estimated the expectation and covariance of g (θ) using four techniques: MCMC, the Laplace approxi-

mation, MFVB, and linear response (LRVB) methods. For MCMC, we used Stan (Stan Team, 2015), and to

calculate the MFVB, Laplace, and LRVB estimates we used our own Python code using numpy, scipy, and

autograd (Jones et al., 2001; Maclaurin et al., 2015). As described in Section 5.3.3, the MAP estimator

did not estimate Ep0 [g (θ)] very well, so we do not report standard deviations or sensitivity measures for the

Laplace approximations. The summary of the computation time for all these methods is shown in Table 1,

with details below.
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Method Seconds

MAP (optimum only) 12

VB (optimum only) 57

VB (including sensitivity for β) 104

VB (including sensitivity for β and u) 553

MCMC (Stan) 21066

Table 1: Timing results

For the MCMC estimates, we used Stan to draw 5000 MCMC draws (not including warm-up), which

took 351 minutes. We estimated all the prior sensitivities of Section 5.3.6 using the Monte Carlo version of

the covariance in Eq. (5).

For the MFVB approximation, we use the following mean field exponential family approximations:

q (βk) = N (βk; ηβk
) , for k = 1, ...,Kx

q (ut) = N (ut; ηut
) , for t = 1, ..., T

q (τ) = Gamma (τ ; ητ )

q (µ) = N (µ; ηµ)

q (θ) = q (τ) q (µ)

Kx∏

k=1

q (βk)

T∏

t=1

q (ut) .

With these choices, evaluating the variational objective requires the following intractable univariate varia-

tional expectation:

Eq(θ;η) [log (1− pit)] = Eq(θ;η)

[
log

(
1−

eρit

1 + eρit

)]
.

We used the re-parameterization trick and four points of Gauss-Hermite quadrature to estimate this integral

for each observation. See Appendix H for more details.

We optimized the variational objective using the conjugate gradient Newton’s trust region method, trust-ncg,

of scipy.optimize. One advantage of trust-ncg is that it performs second-order optimization but

requires only Hessian-vector products, which can be computed quickly by autograd without constructing

the full Hessian. The MFVB fit took 57 seconds, roughly 370 times faster than MCMC with Stan.

With variational parameters for each random effect ut, Hηη is a 10014 × 10014 dimensional matrix.

Consequently, evaluating Hηη directly as a dense matrix using autograd would have been prohibitively

time-consuming. Fortunately, our model can be decomposed into global and local parameters, and the Hes-

sian term Hηη in Theorem 2 is extremely sparse. In the notation of Section 4.5, take θglob = (β⊺, µ, τ)
⊺
,

take θloc,t = ut, and stack the variational parameters as η =
(
η⊺glob, ηloc,1, ..., ηloc,T

)⊺
. The cross terms in

Hηη between the local variables vanish:

∂2KL (q (θ; η) ||pα (θ))

∂ηloc,t1∂ηloc,t2
= 0 for all t1 6= t2.

Equivalently, note that the full likelihood in Appendix H, Eq. (31), has no cross terms between ut1 and ut2
for t1 6= t2. As the dimension T of the data grows, so does the length of η. However, the dimension of ηglob
remains constant, and Hηη remains easy to invert. We show an example of the sparsity pattern of the first few

rows and columns of Hηη in Fig. 12 .

Taking advantage of this sparsity pattern, we used autograd to calculate the Hessian of the KL diver-

gence one group at a time and assembled the results in a sparse matrix using the scipy.sparse Python
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Figure 12: Sparsity pattern of top-left sub-matrix of Hηη for the logit GLMM model. The axis numbers

represent indices within η, and black indicates non-zero entries of Hηη .

package. Even so, calculating the entire sparse Hessian took 323 seconds, and solving the system H−1
ηη g

⊺

η

using scipy.sparse.linalg.spsolve took an additional 173 seconds. These results show that the

evaluation and inversion of Hηη was several times more costly than optimizing the variational objective itself.

(Of course, the whole procedure remains much faster than running MCMC with Stan.)

We note, however, that instead of the direct approach to calculating H−1
ηη g

⊺

η one can use the conjugate

gradient algorithm of sp.sparse.linalg.cg (Wright and Nocedal, 1999, Chapter 5) together with the

fast Hessian-vector products of autograd to query one column at a time of H−1
ηη g

⊺

η . On a typical column

of H−1
ηη g

⊺

η in our experiment, calculating the conjugate gradient took only 9.4 seconds (corresponding to 81
Hessian-vector products in the conjugate gradient algorithm). Thus, for example, one could calculate the

columns of H−1
ηη g

⊺

η corresponding to the expectations of the global variables β in only 9.4 × Kx = 46.9
seconds, which is much less time than it would take to compute the entire H−1

ηη g
⊺

η for both β and every

random effect in u.

For the Laplace approximation, we calculated the MAP estimator and HLap using Python code similar to

that used for the MFVB estimates. We observe that the MFVB approximation to posterior means would be

expected to improve on the MAP estimator only in cases when there is both substantial uncertainty in some

parameters and when this uncertainty, through nonlinear dependence between parameters, affects the values

of posterior means. These circumstances obtain in the logistic GLMM model with sparse per-advertiser data

since the random effects ut will be quite uncertain and the other posterior means depend on them through the

nonlinear logistic function.

5.3.3 POSTERIOR APPROXIMATION RESULTS

In this section, we assess the accuracy of the MFVB, Laplace, and LRVB methods as approximations to

Ep0
[g (θ)] and Covp0

(g (θ)). We take the MCMC estimates as ground truth. Although, as discussed in

Section 5.3, we are principally interested in the parameters g (θ) = (β⊺, u1, ..., uT )
⊺

, we will report the

results for all parameters for completeness. For readability, the tables and graphs show results for a random

selection of the components of the random effects u.

5.3.4 POSTERIOR MEANS

We begin by comparing the posterior means in Table 2, Fig. 13, and Fig. 14. We first note that, despite

the long running time for MCMC, the β1 and µ parameters did not mix well in the MCMC sample, as is

reflected in the MCMC standard error and effective number of draws columns of Table 2. The xit data

corresponding to β1 contained fewer distinct values than the other columns of x, which perhaps led to some

co-linearity between β1 and µ in the posterior. This co-linearity could have caused both poor MCMC mixing
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Parameter MCMC MFVB MAP MCMC std. err. Eff. # of MCMC draws

β1 1.454 1.447 1.899 0.02067 33

β2 0.031 0.033 0.198 0.00025 5000

β3 0.110 0.110 0.103 0.00028 5000

β4 -0.172 -0.173 -0.173 0.00016 5000

β5 0.273 0.273 0.280 0.00042 5000

µ 2.041 2.041 3.701 0.04208 28

τ 0.892 0.823 827.724 0.00051 1232

u1431 1.752 1.757 3.700 0.00937 5000

u4150 1.217 1.240 3.699 0.01022 5000

u4575 2.427 2.413 3.702 0.00936 5000

u4685 3.650 3.633 3.706 0.00862 5000

Table 2: Results for the estimation of the posterior means

Figure 13: Comparison of MCMC and MFVB means

and, perhaps, excessive measured prior sensitivity, as discussed below in Section 5.3.6. Although we will

report the results for both β1 and µ without further comment, the reader should bear in mind that the MCMC

“ground truth” for these two parameters is somewhat suspect.

The results in Table 2 and Fig. 13 show that MFVB does an excellent job of approximating the posterior

means in this particular case, even for the random effects u and the related parameters µ and τ . In contrast,

the MAP estimator does reasonably well only for certain components of β and does extremely poorly for

the random effects parameters. As can be seen in Fig. 14, the MAP estimate dramatically overestimates the

information τ of the random effect distribution (that is, it underestimates the variance). As a consequence, it

estimates all the random effects to have essentially the same value, leading to mis-estimation of some location

parameters, including both µ and some components of β. Since the MAP estimator performed so poorly at

estimating the random effect means, we will not consider it any further.

5.3.5 POSTERIOR COVARIANCES

We now assess the accuracy of our estimates of Covp0
(g (θ)). The results for the marginal standard devia-

tions are shown in Table 3 and Fig. 15. We refer to the standard deviations of Covq0 (g (θ)) as the “uncor-

rected MFVB” estimate, and of CovLR
q0

(g (θ)) as the “LRVB” estimate. The uncorrected MFVB variance

estimates of β are particularly inaccurate, but the LRVB variances match the exact posterior closely.

In Fig. 16, we compare the off-diagonal elements of CovLR
q0

(g (θ)) and Covp0 (g (θ)). These covariances

are zero, by definition, in the uncorrected MFVB estimates Covq0 (g (θ)). The left panel of Fig. 16 shows the
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Figure 14: Comparison of MCMC and Laplace means

Parameter MCMC LRVB Uncorrected MFVB

β1 0.118 0.103 0.005

β2 0.018 0.018 0.004

β3 0.020 0.020 0.004

β4 0.012 0.012 0.004

β5 0.029 0.030 0.004

µ 0.223 0.192 0.016

τ 0.018 0.033 0.016

u1431 0.663 0.649 0.605

u4150 0.723 0.707 0.662

u4575 0.662 0.649 0.615

u4685 0.610 0.607 0.579

Table 3: Standard deviation results

estimated covariances between the global parameters and all other parameters, including the random effects,

and the right panel shows only the covariances amongst the random effects. The LRVB covariances are quite

accurate, particularly when we recall that the MCMC draws of µ may be inaccurate due to poor mixing.

5.3.6 PARAMETRIC SENSITIVITY RESULTS

Finally, we compare the MFVB prior sensitivity measures of Section 4.4 to the covariance-based MCMC

sensitivity measures of Section 2.1. Since sensitivity is of practical interest only when it is of comparable or-

der to the posterior uncertainty, we report sensitivities normalized by the appropriate standard deviation. That

is, we report Ŝα0/

√
diag

(
ˆCovp0 (g (θ))

)
, and Sq

α0
/
√

diag
(
CovLR

q0
(g (θ))

)
, etc., where diag (·) denotes the

diagonal vector of a matrix, and the division is element-wise. Note that we use the sensitivity-based variance

estimates CovLR
q0

, not the uncorrected MFVB estimates Covq0 , to normalize the variational sensitivities. We

refer to a sensitivity divided by a standard deviation as a “normalized” sensitivity.

The comparison between the MCMC and MFVB sensitivity measures is shown in Fig. 17. The MFVB and

MCMC sensitivities correspond very closely, though the MFVB means appear to be slightly more sensitive to

the prior parameters than the MCMC means. This close correspondence should not be surprising. As shown

in Section 5.3.3, the MFVB and MCMC posterior means match quite closely. If we assume, reasonably, that

they continue to match to first order in a neighborhood of our original prior parameters, then Condition 1 will

hold and we would expect Ŝα0
≈ Sq

α0
.

29



GIORDANO, BRODERICK, AND JORDAN

Figure 15: Comparison of MCMC, MFVB, and LRVB standard deviations

Figure 16: Comparison of MCMC and LRVB off-diagonal covariances

Table 4 shows the detailed MFVB normalized sensitivity results. Each entry is the sensitivity of the

MFVB mean of the row’s parameter to the column’s prior parameter. One can see that several parameters

are quite sensitive to the information parameter prior τµ. In particular, Epα
[µ] and Epα

[β1] are expected to

change approximately −0.39 and −0.35 standard deviations, respectively, for every unit change in τµ. This

size of change could be practically significant (assuming that such a change in τµ is subjectively plausible).

To investigate this sensitivity further, we re-fit the MFVB model at a range of values of the prior parameter

τµ, assessing the accuracy of the linear approximation to the sensitivity. The results are shown in Fig. 18.

Even for very large changes in τµ—resulting in changes to Epα
[µ] and Epα

[β1] far in excess of two standard

deviations—the linear approximation holds up reasonably well. Fig. 18 also shows a (randomly selected)

random effect to be quite sensitive, though not to a practically important degree relative to its posterior

standard deviation. The insensitivity of Epα
[β2] is also confirmed. Of course, the accuracy of the linear

approximation cannot be guaranteed to hold as well in general as it does in this particular case, and the quick
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β0 τβ γβ µ0 τµ ατ βτ
µ 0.0094 -0.1333 -0.0510 0.0019 -0.3920 0.0058 -0.0048

τ 0.0009 -0.0086 -0.0142 0.0003 -0.0575 0.0398 -0.0328

β1 0.0089 -0.1464 -0.0095 0.0017 -0.3503 0.0022 -0.0018

β2 0.0012 -0.0143 -0.0113 0.0003 -0.0516 0.0062 -0.0051

β3 -0.0035 0.0627 -0.0081 -0.0006 0.1218 -0.0003 0.0002

β4 0.0018 -0.0037 -0.0540 0.0004 -0.0835 0.0002 -0.0002

β5 0.0002 0.0308 -0.0695 0.0002 -0.0383 0.0011 -0.0009

u1431 0.0028 -0.0397 -0.0159 0.0006 -0.1169 0.0018 -0.0015

u4150 0.0026 -0.0368 -0.0146 0.0005 -0.1083 0.0022 -0.0018

u4575 0.0028 -0.0406 -0.0138 0.0006 -0.1153 0.0011 -0.0009

u4685 0.0028 -0.0409 -0.0142 0.0006 -0.1163 0.0003 -0.0002

Table 4: MFVB normalized prior sensitivity results

Figure 17: Comparison of MCMC and MFVB normalized parametric sensitivity results

and reliable evaluation of the linearity assumption without re-fitting the model remains interesting future

work.

Since we started the MFVB optimization close to the new, perturbed optimum, each new MFVB fit took

only 27.2 seconds on average. Re-estimating the MCMC posterior so many times would have been extremely

time-consuming. (Note that importance sampling would be useless for prior parameter changes that moved

the posterior so far from the original draws.) The considerable sensitivity of this model to a particular prior

parameter, which is perhaps surprising on such a large data set, illustrates the value of having fast, general

tools for discovering and evaluating prior sensitivity. Our framework provides just such a set of tools.

6. Conclusion

By calculating the sensitivity of MFVB posterior means to model perturbations, we are able to provide two

important practical tools for MFVB posterior approximations: improved variance estimates and measures of

prior robustness. When MFVB models are implemented in software that supports automatic differentiation,

our methods are fast, scalable, and require little additional coding beyond the MFVB objective itself. In our

experiments, we were able to calculate accurate posterior means, covariances, and prior sensitivity measures

orders of magnitude more quickly than MCMC.
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Figure 18: MFVB sensitivity as measured both by linear approximation (blue) and re-fitting (red)
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Appendices

Appendix A. Proof of Theorem 1

In this section we prove Theorem 1.

Proof Under Assumption 1, we can exchange differentiation and integration in ∂
∂α⊺

∫
p0 (θ) exp (ρ (θ, α)) g (θ)λ (dθ)

and ∂
∂α⊺

∫
p0 (θ) exp (ρ (θ, α))λ (dθ) by Fleming (1965, Chapter 5-11, Theorem 18), which ultimately de-

pends on the Lebesgue dominated convergence theorem. By Assumption 1, Epα
[g (θ)] is well-defined for

α ∈ A0 and

∂p0 (θ) exp (ρ (θ, α))

∂α
= p0 (θ) exp (ρ (θ, α))

∂ρ (θ, α)

∂α
λ-almost everywhere.

Armed with these facts, we can directly compute

dEpα
[g (θ)]

dα⊺

∣∣∣∣
α0

=
d

dα⊺

∫
g (θ) p0 (θ) exp (ρ (θ, α))λ (dθ)∫
p0 (θ) exp (ρ (θ, α))λ (dθ)

∣∣∣∣
α0

=

∂
∂α⊺

∫
g (θ) p0 (θ) exp (ρ (θ, α))λ (dθ)

∣∣
α0∫

p0 (θ) exp (ρ (θ, α0))λ (dθ)
− Ep0

[g (θ)]

∂
∂α⊺

∫
p0 (θ) exp (ρ (θ, α))λ (dθ)

∣∣
α0∫

p0 (θ) exp (ρ (θ, α0))λ (dθ)

=

∫
g (θ) p0 (θ) exp (ρ (θ, α))

∂ρ(θ,α)
∂α

∣∣∣
α0

λ (dθ)
∫
p0 (θ) exp (ρ (θ, α0))λ (dθ)

− Ep0 [g (θ)]Ep0

[
∂ρ (θ, α)

∂α

∣∣∣∣
α0

]

= Covp0

(
g (θ) ,

∂ρ (θ, α)

∂α

∣∣∣∣
α0

)
.

Appendix B. Comparison With MCMC Importance Sampling

In this section, we show that using importance sampling with MCMC samples to calculate the local sensitivity

in Eq. (1) is precisely equivalent to using the same MCMC samples to estimate the covariance in Eq. (4)

directly. For this section, will suppose that Assumption 1 holds. Further suppose, without loss of generality,

we have samples θi drawn IID from p0 (θ):

θn
iid
∼ p0 (θ) , for n = 1, ..., Ns

Ep0 [g (θ)] ≈
1

Ns

Ns∑

n=1

g (θn) .

Typically we cannot compute the dependence of the normalizing constant
∫
p (θ′) exp (ρ (θ′, α))λ (dθ′) on

α, so we use the following importance sampling estimate for Epα
[g (θ)] (Owen, 2013, Chapter 9):

wn = exp (ρ (θn, α)− ρ (θn, α0))

w̃n :=
wn∑Ns

n′=1 wn′

Epα
[g (θ)] ≈

Ns∑

n=1

w̃ng (θn) .
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Note that w̃n|α0
= 1

Ns
, so the importance sampling estimate recovers the ordinary sample mean at α0. The

derivatives of the weights are given by

∂wn

∂α
= wn

∂ρ (θn, α)

∂α

∂w̃n

∂α
=

∂wn

∂α∑Ns

n′=1 wn′

−
wn

∑Ns

n′=1
∂wn′

∂α(∑Ns

n′=1 wn′

)2

=
wn∑Ns

n′=1 wn′

∂ρ (θn, α)

∂α
−

wn∑Ns

n′=1 wn′

Ns∑

n′=1

wn∑Ns

n′=1 wn′

∂ρ (θn′ , α)

∂α

= w̃n

∂ρ (θn, α)

∂α
− w̃n

Ns∑

n′=1

w̃n′

∂ρ (θn′ , α)

∂α
.

It follows that

∂

∂α

Ns∑

n=1

w̃ng (θn)

∣∣∣∣∣
α0

=

Ns∑

n=1

(
w̃n

∂ρ (θn, α)

∂α
− w̃n

Ns∑

n′=1

w̃n′

∂ρ (θn′ , α)

∂α

)∣∣∣∣∣
α0

g (θn)

=
1

Ns

Ns∑

n=1

∂ρ (θn, α)

∂α

∣∣∣∣
α0

g (θn)−

[
1

Ns

Ns∑

n=1

∂ρ (θn, α)

∂α

∣∣∣∣
α0

][
1

Ns

Ns∑

n=1

g (θn)

]
,

which is precisely the sample version of the covariance in Theorem 1.

Appendix C. Our Use of the Terms “Sensitivity” and “Robustness”

In this section we clarify our usage of the terms “robustness” and “sensitivity.” The quantity S⊺

α0
(α− α0)

measures the sensitivity of Epα
[g (θ)] to perturbations in the direction ∆α. Intuitively, as sensitivity increases,

robustness decreases, and, in this sense, sensitivity and robustness are opposites of one another. However,

we emphasize that sensitivity is a clearly defined, measurable quantity and that robustness is a subjective

judgment informed by sensitivity, but also by many other less objective considerations.

Suppose we have calculated Sα0 from Eq. (1) and found that it has a particular value. To determine

whether our model is robust, we must additionally decide

1. How large of a change in the prior, ||α− α0||, is plausible, and

2. How large of a change in Epα
[g (θ)] is important.

The set of plausible prior values necessarily remains a subjective decision.4 Whether or not a particular

change in Epα
[g (θ)] is important depends on the ultimate use of the posterior mean. For example, the

posterior standard deviation can be a guide: if the prior sensitivity is swamped by the posterior uncertainty

then it can be neglected when reporting our subjective uncertainty about g (θ), and the model is robust.

Similarly, even if the prior sensitivity is much larger than the posterior standard deviation but small enough

that it would not affect any actionable decision made on the basis of the value of Epα
[g (θ)], then the model

is robust. Intermediate values remain a matter of judgment. An illustration of the relationship between

sensitivity and robustness is shown in Fig. 19.

Finally, we note that if A is small enough that Epα
[g (θ)] is roughly linear in α for α ∈ A, then calculating

Eq. (1) for all α ∈ A and finding the worst case can be thought of as a first-order approximation to a global

robustness estimate. Depending on the problem at hand, this linearity assumption may not be plausible except

4. This decision can be cast in a formal decision theoretic framework based on a partial ordering of subjective beliefs (Insua and

Criado, 2000).
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Figure 19: The relationship between robustness and sensitivity

for very small A. This weakness is inherent to the local robustness approach. Nevertheless, even when

the perturbations are valid only for a small A, these easily-calculable measures may still provide valuable

intuition about the potential modes of failure for a model.

If g (θ) is a scalar, it is natural to attempt to summarize the high-dimensional vector Sα0 in a single easily

reported number such as

Ssup
α0

:= sup
α:‖α−α0‖≤1

∣∣S⊺

α0
(α− α0)

∣∣ .

For example, the calculation of Ssup
α0

is the principal ambition of Basu et al. (1996). The use of such sum-

maries is also particularly common in work that considers function-valued perturbations (e.g., Gustafson,

1996b; Roos et al., 2015). (Function-valued perturbations can be connected to the finite-dimensional per-

turbations of the present work through the notion of the Gateaux derivative (Huber, 2011, Chapter 2.5), the

elaboration of which we leave to future work.) Although the summary Ssup
α0

has obvious merits, in the present

work we emphasize the calculation only of Sα0 in the belief that its interpretation is likely to vary from ap-

plication to application and require some critical thought and subjective judgment. For example, the unit

ball ‖α− α0‖ ≤ 1 (as in Basu et al. (1996)) may not make sense as a subjective description of the range of

plausible variability of p (θ|α). Consider, e.g.: why should the off-diagonal term of a Wishart prior plausibly

vary as widely as the mean of some other parameter, when the two might not even have the same units? This

problem is easily remedied by choosing an appropriate scaling of the parameters and thereby making the unit

ball an appropriate range for the problem at hand, but the right scaling will vary from problem to problem

and necessarily be a somewhat subjective choice, so we refrain from taking a stand on this decision. As

another example, the worst-case function-valued perturbations of Gustafson (1996a,b) require a choice of a

metric ball in function space whose meaning may not be intuitively obvious, may provide worst-case pertur-

bations that depend on the data to a subjectively implausible degree, and may exhibit interesting but perhaps

counter-intuitive asymptotic behavior for different norms and perturbation dimensions. Consequently, we

do not attempt to prescribe a particular one-size-fits-all summary measure. The local sensitivity Sα0 is a

well-defined mathematical quantity. Its relationship to robustness must remain a matter of judgment.

Appendix D. Proof of Theorem 2

In this section we prove Theorem 2.
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Proof For notational convenience, we will define

KL (η, α) := KL (q (θ; η) ||pα (θ)) .

By Assumption 3, η∗ (α) is both optimal and interior for all α ∈ A0, and by Assumption 2, KL (η, α) is

continuously differentiable in η. Therefore, the first-order conditions of the optimization problem in Eq. (8)

give:

∂KL (η, α)

∂η

∣∣∣∣
η=η∗(α)

= 0 for all α ∈ A0. (26)

∂2KL(η,α)
∂η∂η⊺

∣∣∣
α0

is positive definite by the strict optimality of η∗ in Assumption 3, and
∂2KL(η,α)

∂η∂α⊺ is continuous

by Assumption 2. It follows that η∗ (α) is a continuously differentiable function of α by application of the

implicit function theorem to the first-order condition in Eq. (26) (Fleming, 1965, Chapter 4.6). So we can use

the chain rule to take the total derivative of Eq. (26) with respect to α.

d

dα

(
∂KL (η, α)

∂η

∣∣∣∣
η=η∗(α)

)
= 0 for all α ∈ A0 ⇒

∂2KL (η, α)

∂η∂η⊺

∣∣∣∣
η=η∗(α)

dη∗ (α)

dα⊺
+
∂2KL (η, α)

∂η∂α⊺

∣∣∣∣
η=η∗(α)

= 0 for all α ∈ A0.

The strict optimality of KL (η, α) at η∗ (α) in Assumption 3 requires that
∂2KL(η,t)
∂η∂ηT

∣∣∣
η=η∗(α)

be invertible.

So we can evaluate at α = α0 and solve to find that

dη∗ (α)

dα⊺

∣∣∣∣
α0

= −

(
∂2KL (η, α)

∂η∂η⊺

)−1
∂2KL (η, α)

∂η∂α⊺

∣∣∣∣∣
η=η∗

0 ,α=α0

.

Eqα [g (θ)] is a continuously differentiable function of η∗ (α) by Assumption 4. So by the chain rule and

Assumption 2, we have that

dEq(θ;η) [g (θ)]

dα⊺

∣∣∣∣
α0

=
∂Eq(θ;η) [g (θ)]

∂η

dη∗ (α)

dα⊺

∣∣∣∣
η=η∗

0 ,α=α0

.

Finally, we observe that

KL (η, α) = Eq(θ;η) [log q (θ; η)− log p (θ)− ρ (θ, α)] + Constant⇒

∂2KL (η, α)

∂η∂α⊺

∣∣∣∣
η=η∗

0 ,α=α0

= −
∂2Eq(θ;η) [ρ (θ, α)]

∂η∂α⊺

∣∣∣∣
η=η∗

0 ,α=α0

.

Here, the term Constant contains quantities that do not depend on η. Plugging in gives the desired result.

Appendix E. Exactness of Multivariate Normal Posterior Means

In this section, we show that the MFVB estimate of the posterior means of a multivariate normal with known

covariance is exact and that, as an immediate consequence, the linear response covariance recovers the exact

posterior covariance, i.e., CovLR
q0

(θ) = Covp0
(θ).

Suppose we are using MFVB to approximate a non-degenerate multivariate normal posterior, i.e.,

p0 (θ) = N (θ;µ,Σ)
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for full-rank Σ. This posterior arises, for instance, given a multivariate normal likelihood p (x|µ) =
∏

n=1:N N (xn|θ,Σx)
with known covariance Σx and a conjugate multivariate normal prior on the unknown mean parameter

θ ∈ R
K . Additionally, even when the likelihood is non-normal or the prior is not conjugate, the posterior

may be closely approximated by a multivariate normal distribution when a Bayesian central limit theorem

can be applied (Le Cam and Yang, 2012, Chapter 8).

We will consider an MFVB approximation to p0 (θ). Specifically, let the elements of the vector θ be given

by scalars θk for k = 1, ...,K, and take the MFVB normal approximation with means mk and variances vk:

Q =

{
q (θ) : q (θ) =

K∏

k=1

N (θk;mk, vk)

}
.

In the notation of Eq. (9), we have ηk = (mk, vk)
⊺

with Ωη = {η : vk > 0, ∀k = 1, ...,K}. The optimal

variational parameters are given by η∗k = (m∗
k, v

∗
k)

⊺
.

Lemma 1 Let p0 (θ) = N (θ;µ,Σ) for full-rank Σ and let Q =
{
q (θ) : q (θ) =

∏K
k=1 N (θk;mk, vk)

}
be

the mean field approximating family. Then there exists an η∗ = (m∗, v∗) that solves

η∗ = argmin
η:q(θ;η)∈Q

KL (q (θ; η) ||pα (θ))

with m∗ = µ.

Proof Let diag (v) denote the K ×K matrix with the vector v on the diagonal and zero elsewhere. Using

the fact that the entropy of a univariate normal distribution with variance v is 1
2 log v plus a constant, the

variational objective in Eq. (8) is given by

KL (q (θ; η) ||pα (θ)) = Eq(θ;η)

[
1

2
(θ − µ)

⊺
Σ−1 (θ − µ)

]
−

1

2

∑

k

log vk + Constant

=
1

2
trace

(
Σ−1

Eq(θ;η) [θθ
⊺]
)
− µ⊺Σ−1

Eq(θ;η) [θ]−
1

2

∑

k

log vk + Constant

=
1

2
trace

(
Σ−1 (mm⊺ + diag (v))

)
− µ⊺Σ−1m−

1

2

∑

k

log vk + Constant

=
1

2
trace

(
Σ−1diag (v)

)
+

1

2
m⊺Σ−1m− µ⊺Σ−1m−

1

2

∑

k

log vk + Constant.

(27)

The first-order condition for the optimal m∗ is then

∂KL (q (θ; η) ||p0 (θ))

∂m

∣∣∣∣
m=m∗,v=v∗

= 0 ⇒

Σ−1m∗ −Σ−1µ = 0 ⇒

m∗ = µ.

The optimal variances follow similarly:

∂KL (q (θ; η) ||p0 (θ))

∂vk

∣∣∣∣
m=m∗,v=v∗

= 0 ⇒

1

2

(
Σ−1

)
kk

−
1

2

1

v∗k
= 0 ⇒

v∗k =
1(

Σ−1
)
kk

.
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Since v∗k > 0, we have η∗ ∈ Ωη .

Lemma 1 can be also be derived via the variational coordinate ascent updates (Bishop (2006, Section

10.1.2) and Giordano et al. (2015, Appendix B)).

Next, we show that Lemma 1 holds for all perturbations of the form ρ (θ, α) = α⊺θ with α0 = 0 and that

Assumptions 1–4 are satisfied for all finite α.

Lemma 2 Under the conditions of Lemma 1, let pα (θ) be defined from Eq. (2) with ρ (θ, α) = α⊺θ and

α0 = 0. Take g (θ) = θ. Then, for all finite α, Assumptions 1–4 are satisfied, and Condition 1 is satisfied

with equality.

Proof Up to a constant that does not depend on θ, the log density of pα (θ) is

log pα (θ) = −
1

2
(θ − µ)

⊺
Σ−1 (θ − µ) + α⊺θ + Constant

= −
1

2
θ⊺Σ−1θ −

1

2
µ⊺Σ−1µ+

(
µ⊺Σ−1 + α⊺

)
θ + Constant.

Since θ is a natural sufficient statistic of the multivariate normal distribution and the corresponding natural

parameter of pα (θ) , Σ−1µ + α, is interior when Σ is full-rank, pα (θ) is multivariate normal for any finite

α. Assumption 1 follows immediately.

By inspection of Eq. (27), Assumption 2 is satisfied. Because Ωη is an open set and Σ is positive defi-

nite, Assumption 3 is satisfied. Since Eq(θ;η) [g (θ)] = m, Assumption 4 is satisfied. Finally, by Lemma 1,

Eqα [θ] = Epα
[θ] , so Condition 1 is satisfied with equality.

It now follows immediately from Definition 6 that the linear response variational covariance exactly repro-

duces the exact posterior covariance for the multivariate normal distribution.

Corollary 4 Under the conditions of Lemma 2, CovLR
q0

(θ) = Covp0 (θ).

Appendix F. ADVI Model Details

This section reports the Stan code for the models used in Section 5.2. For details on how to interpret the

models as well as the unconstraining transforms, see the Stan manual (Stan Team, 2015). For the associated

data, see the Stan example models wiki (Stan Team, 2017).

F.1 Election Model (election88.stan)

Listing 1: election88.stan

1 data {

2 int<lower=0> N;

3 int<lower=0> n_state;

4 vector<lower=0,upper=1>[N] black;

5 vector<lower=0,upper=1>[N] female;

6 int<lower=1,upper=n_state> state[N];

7 int<lower=0,upper=1> y[N];

8 }

9 parameters {

10 vector[n_state] a;

11 vector[2] b;

12 real<lower=0,upper=100> sigma_a;

13 real mu_a;

14 }
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15 transformed parameters {

16 vector[N] y_hat;

17

18 for (i in 1:N)

19 y_hat[i] <- b[1] * black[i] + b[2] * female[i] + a[state[i]];

20 }

21 model {

22 mu_a ˜ normal(0, 1);

23 a ˜ normal (mu_a, sigma_a);

24 b ˜ normal (0, 100);

25 y ˜ bernoulli_logit(y_hat);

26 }

F.2 Sesame Street Model (sesame street1)

Listing 2: sesame street1.stan

1 data {

2 int<lower=0> J;

3 int<lower=0> N;

4 int<lower=1,upper=J> siteset[N];

5 vector[2] yt[N];

6 vector[N] z;

7 }

8 parameters {

9 vector[2] ag[J];

10 real b;

11 real d;

12 real<lower=-1,upper=1> rho_ag;

13 real<lower=-1,upper=1> rho_yt;

14 vector[2] mu_ag;

15 real<lower=0,upper=100> sigma_a;

16 real<lower=0,upper=100> sigma_g;

17 real<lower=0,upper=100> sigma_t;

18 real<lower=0,upper=100> sigma_y;

19 }

20 model {

21 vector[J] a;

22 vector[J] g;

23 matrix[2,2] Sigma_ag;

24 matrix[2,2] Sigma_yt;

25 vector[2] yt_hat[N];

26

27 //data level

28 Sigma_yt[1,1] <- pow(sigma_y,2);

29 Sigma_yt[2,2] <- pow(sigma_t,2);

30 Sigma_yt[1,2] <- rho_yt*sigma_y*sigma_t;

31 Sigma_yt[2,1] <- Sigma_yt[1,2];

32

33 // group level

34 Sigma_ag[1,1] <- pow(sigma_a,2);

35 Sigma_ag[2,2] <- pow(sigma_g,2);
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36 Sigma_ag[1,2] <- rho_ag*sigma_a*sigma_g;

37 Sigma_ag[2,1] <- Sigma_ag[1,2];

38

39 for (j in 1:J) {

40 a[j] <- ag[j,1];

41 g[j] <- ag[j,2];

42 }

43

44 for (i in 1:N) {

45 yt_hat[i,2] <- g[siteset[i]] + d * z[i];

46 yt_hat[i,1] <- a[siteset[i]] + b * yt[i,2];

47 }

48

49 //data level

50 sigma_y ˜ uniform (0, 100);

51 sigma_t ˜ uniform (0, 100);

52 rho_yt ˜ uniform(-1, 1);

53 d ˜ normal (0, 31.6);

54 b ˜ normal (0, 31.6);

55

56 //group level

57 sigma_a ˜ uniform (0, 100);

58 sigma_g ˜ uniform (0, 100);

59 rho_ag ˜ uniform(-1, 1);

60 mu_ag ˜ normal (0, 31.6);

61

62 for (j in 1:J)

63 ag[j] ˜ multi_normal(mu_ag,Sigma_ag);

64

65 //data model

66 for (i in 1:N)

67 yt[i] ˜ multi_normal(yt_hat[i],Sigma_yt);

68

69 }

F.3 Radon Model (radon vary intercept floor)

Listing 3: radon vary intercept floor.stan

1 data {

2 int<lower=0> J;

3 int<lower=0> N;

4 int<lower=1,upper=J> county[N];

5 vector[N] u;

6 vector[N] x;

7 vector[N] y;

8 }

9 parameters {

10 vector[J] a;

11 vector[2] b;

12 real mu_a;

13 real<lower=0,upper=100> sigma_a;
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14 real<lower=0,upper=100> sigma_y;

15 }

16 transformed parameters {

17 vector[N] y_hat;

18

19 for (i in 1:N)

20 y_hat[i] <- a[county[i]] + u[i] * b[1] + x[i] * b[2];

21 }

22 model {

23 mu_a ˜ normal(0, 1);

24 a ˜ normal(mu_a, sigma_a);

25 b ˜ normal(0, 1);

26 y ˜ normal(y_hat, sigma_y);

27 }

F.4 Ecology Model (cjs cov randeff)

Listing 4: cjs cov randeff.stan

1 // This models is derived from section 12.3 of "Stan Modeling Language

2 // User’s Guide and Reference Manual"

3

4 functions {

5 int first_capture(int[] y_i) {

6 for (k in 1:size(y_i))

7 if (y_i[k])

8 return k;

9 return 0;

10 }

11

12 int last_capture(int[] y_i) {

13 for (k_rev in 0:(size(y_i) - 1)) {

14 // Compoud declaration was enabled in Stan 2.13

15 int k = size(y_i) - k_rev;

16 // int k;

17 // k = size(y_i) - k_rev;

18 if (y_i[k])

19 return k;

20 }

21 return 0;

22 }

23

24 matrix prob_uncaptured(int nind, int n_occasions,

25 matrix p, matrix phi) {

26 matrix[nind, n_occasions] chi;

27

28 for (i in 1:nind) {

29 chi[i, n_occasions] = 1.0;

30 for (t in 1:(n_occasions - 1)) {

31 // Compoud declaration was enabled in Stan 2.13

32 int t_curr = n_occasions - t;

33 int t_next = t_curr + 1;
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34 /*
35 int t_curr;

36 int t_next;

37

38 t_curr = n_occasions - t;

39 t_next = t_curr + 1;

40 */

41 chi[i, t_curr] = (1 - phi[i, t_curr])

42 + phi[i, t_curr] * (1 - p[i, t_next - 1]) * chi[

i, t_next];

43 }

44 }

45 return chi;

46 }

47 }

48

49 data {

50 int<lower=0> nind; // Number of individuals

51 int<lower=2> n_occasions; // Number of capture occasions

52 int<lower=0,upper=1> y[nind, n_occasions]; // Capture-history

53 vector[n_occasions - 1] x; // Covariate

54 }

55

56 transformed data {

57 int n_occ_minus_1 = n_occasions - 1;

58 // int n_occ_minus_1;

59 int<lower=0,upper=n_occasions> first[nind];

60 int<lower=0,upper=n_occasions> last[nind];

61 vector<lower=0,upper=nind>[n_occasions] n_captured;

62

63 // n_occ_minus_1 = n_occasions - 1;

64 for (i in 1:nind)

65 first[i] = first_capture(y[i]);

66 for (i in 1:nind)

67 last[i] = last_capture(y[i]);

68 n_captured = rep_vector(0, n_occasions);

69 for (t in 1:n_occasions)

70 for (i in 1:nind)

71 if (y[i, t])

72 n_captured[t] = n_captured[t] + 1;

73 }

74

75 parameters {

76 real beta; // Slope parameter

77 real<lower=0,upper=1> mean_phi; // Mean survival

78 real<lower=0,upper=1> mean_p; // Mean recapture

79 vector[n_occ_minus_1] epsilon;

80 real<lower=0,upper=10> sigma;

81 // In case a weakly informative prior is used

82 // real<lower=0> sigma;

83 }
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84

85 transformed parameters {

86 matrix<lower=0,upper=1>[nind, n_occ_minus_1] phi;

87 matrix<lower=0,upper=1>[nind, n_occ_minus_1] p;

88 matrix<lower=0,upper=1>[nind, n_occasions] chi;

89 // Compoud declaration was enabled in Stan 2.13

90 real mu = logit(mean_phi);

91 // real mu;

92

93 // mu = logit(mean_phi);

94 // Constraints

95 for (i in 1:nind) {

96 for (t in 1:(first[i] - 1)) {

97 phi[i, t] = 0;

98 p[i, t] = 0;

99 }

100 for (t in first[i]:n_occ_minus_1) {

101 phi[i, t] = inv_logit(mu + beta * x[t] + epsilon[t]);

102 p[i, t] = mean_p;

103 }

104 }

105

106 chi = prob_uncaptured(nind, n_occasions, p, phi);

107 }

108

109 model {

110 // Priors

111 // Uniform priors are implicitly defined.

112 // mean_phi ˜ uniform(0, 1);

113 // mean_p ˜ uniform(0, 1);

114 // sigma ˜ uniform(0, 10);

115 // In case a weakly informative prior is used

116 // sigma ˜ normal(5, 2.5);

117 beta ˜ normal(0, 100);

118 epsilon ˜ normal(0, sigma);

119

120 for (i in 1:nind) {

121 if (first[i] > 0) {

122 for (t in (first[i] + 1):last[i]) {

123 1 ˜ bernoulli(phi[i, t - 1]);

124 y[i, t] ˜ bernoulli(p[i, t - 1]);

125 }

126 1 ˜ bernoulli(chi[i, last[i]]);

127 }

128 }

129 }

130

131 generated quantities {

132 real<lower=0> sigma2;

133 vector<lower=0,upper=1>[n_occ_minus_1] phi_est;

134
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135 sigma2 = square(sigma);

136 // inv_logit was vectorized in Stan 2.13

137 phi_est = inv_logit(mu + beta * x + epsilon); // Yearly survival

138 /*
139 for (t in 1:n_occ_minus_1)

140 phi_est[t] = inv_logit(mu + beta * x[t] + epsilon[t]);

141 */

142 }

Appendix G. LKJ Priors for Covariance Matrices in Mean Field Variational

Inference

In this section we briefly derive closed-form expressions for using an LKJ prior with a Wishart variational

approximation.

Proposition 3 Let Σ be a K×K positive definite covariance matrix. Define the K×K matrix M such that

Mij =

{√
Σij if i = j

0 otherwise.

Define the correlation matrix R as

R = M−1ΣM−1.

Define the LKJ prior on R with concentration parameter ξ (Lewandowski et al., 2009):

pLKJ (R|ξ) ∝ |R|ξ−1
.

Let q
(
Σ|V−1, ν

)
be an inverse Wishart distribution with matrix parameter V−1 and ν degrees of freedom.

Then

Eq [log |R|] = log
∣∣V−1

∣∣− ψK

(ν
2

)
−

K∑

k=1

log
((
V−1

)
kk

)
+Kψ

(
ν −K + 1

2

)
+ Constant

Eq [log pLKJ (R|ξ)] = (ξ − 1)Eq [log |R|] + Constant,

where Constant does not depend on V or ν. Here, ψK is the multivariate digamma function.

Proof First note that

log |Σ| = 2 log |M|+ log |R|

= 2

K∑

k=1

log
√

Σkk + log |R|

=

K∑

k=1

logΣkk + log |R| ⇒

log |R| = log |Σ| −
K∑

k=1

logΣkk. (28)

By Eq. B.81 in (Bishop, 2006), a property of the inverse Wishart distribution is the following relation.

Eq [log |Σ|] = log
∣∣V−1

∣∣− ψK

(ν
2

)
−K log 2, (29)
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where ψK is the multivariate digamma function. By the marginalization property of the inverse Wishart

distribution,

Σkk ∼ InverseWishart
((
V−1

)
kk
, ν −K + 1

)
⇒

Eq [logΣkk] = log
((
V−1

)
kk

)
− ψ

(
ν −K + 1

2

)
− log 2. (30)

Plugging Eq. (29) and Eq. (30) into Eq. (28) gives the desired result.

Appendix H. Logistic GLMM Model Details

In this section we include extra details about the model and analysis of Section 5. We will continue to use

the notation defined therein. We use Constant to denote any constants that do not depend on the prior

parameters, parameters, or data. The log likelihood is

log p (yit|ut, β) = yit log

(
pit

1− pit

)
+ log (1− pit)

= yitρ+ log (1− pit) + Constant

log p (u|µ, τ) = −
1

2
τ

T∑

t=1

(ut − µ)
2 −

1

2
T log τ

= −
1

2
τ

T∑

t=1

(
u2t − µut + µ2

)
−

1

2
T log τ + Constant

log p (µ, τ, β) = −
1

2
σ−2
µ

(
µ2 + 2µµ0

)
+

(1− ατ ) τ + βτ log τ +

−
1

2

(
trace

(
Σ−1

β ββT
)
+ 2trace

(
Σ−1

β β0β
T
))

. (31)

The prior parameters were taken to be

µ0 = 0.000

σ−2
µ = 0.010

β0 = 0.000

σ−2
β = 0.100

ατ = 3.000

βτ = 3.000.

Under the variational approximation, ρit is normally distributed given xit, with

ρit = xTitβ + ut

Eq [ρit] = xTitEq [β] + Eq [ut]

Varq (ρit) = Eq

[
βTxitx

T
itβ
]
− Eq [β]

T
xitx

T
itEq [β] + Varq (ut)

= Eq

[
tr
(
βTxitx

T
itβ
)]

− tr
(
Eq [β]

T
xitx

T
itEq [β]

)
+ Varq (ut)

= tr
(
xitx

T
it

(
Eq

[
ββT

]
− Eq [β]Eq [β]

T
))

+ Varq (ut) .

45



GIORDANO, BRODERICK, AND JORDAN

We can thus use nMC = 4 points of Gauss-Hermite quadrature to numerically estimate Eq

[
log
(
1− eρ

1+eρ

)]
:

ρit,s :=
√

Varq (ρit)zs + Eq [ρit]

Eq

[
log

(
1−

eρit

1 + eρit

)]
≈

1

nMC

nMC∑

s=1

log

(
1−

eρit,s

1 + eρit,s

)

We found that increasing the number of points used for the quadrature did not measurably change any of

the results. The integration points and weights were calculated using the numpy.polynomial.hermite

module in Python (Jones et al., 2001).
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