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Abstract

We develop a differential calculus on the quantum hyperplane covariant with respect to
the action of the quantum group GLg(n).

This is a concrete example of noncommutative differential geometry. We describe the
general constraints for a noncommutative differential calculus and verify that the example given
here satisfies all these constraints. We also discuss briefly the integration over the quantum
plane.
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1. INTRODUCTION. -

it is known, through the work of Woronowiczl,
that one can define a consistent differential calculus
on the noncommutative space of.a quantum group.
Thus quantum groups provide a concrete example
of noncommutative differential geometry2. In this
paper we.  give .a simpler example of
noncommutative differential - geometry by
establishing a differential calculus on the quantum
{hyper-) plane. This example is simpler because the
operators Qg defined in Section 2. map the variables
linearly, while for a quantum group the map is non
linear. As a consequence all formulas are very
simple and can be given quite explicitly in terms of
the R matrix of GLqg(n).

The quantum plane is defined, according to
Kobyzev and Manin3, in terms of n variables
(coordinates) xi, i = 1, 2;..n, which satisfy the
commutation relations -

xixje=qxixi, i<j, (1.1

where q is a complex number” . One also intraduces
variables &i which satisfy

gy=-z88  i<i (12)

As explained by those authors, the quantum
matrices of GLg(n) can be defined as linear
transformations of the variables xi and &i which
preserve the commutation relations {1.1) and (1.2)
(the elements of the matrices must be taken as
commuting with xf and with ).

For q=1 the x's commute and the &'s
anticommute. it is therefore natural to ask whether
one can interpret the £'s as the differentials of the x's

* Manin uses % where we use q, following the usage of the

Leningrad school 4,

dxi=l . - . - (1.3

To define the . differgntial caleulus it is
necessary then to give the commutation relations
between x's and £'s. In Sectign 3 we give these
commutation relations and also those of the now
noncommuting derivatives with:the x's, with the £'s
and with themselves.. All' these relations are
expressed in.a simple form in terms of the R'matrix-of
GLq(n) and the entire calculus is covariant under the
action of this: quantum group, in the same sense as
{1.1) and {1.2) are.

In Section 4 we write explicitly all relaticns for the
two dimensional case (n=2) and explain that the
calculus can be considered as a deformation of the
phase space for a quantum mechanical system.

Before considering the quanturm :plane we
describe, in Section 2, the general constraints for a
noncommutative differential caleufus.It is remarkable
that, when the operators Oy map linearly the
variables, the Yang-Baxter braid equation emerges
naturally from the requirément of consistency. '

't is possible to definei psaudodifferential
operators; which are functions of the. variables and
of the derivatives of the quantum! plare and which
act on the plane like the infinitesimal transformations
of GLq(n). These operators satisfy the commutation
relations of the deformed Lie algsbhra. We shall
describe these rasults in a forthcoming publication.

In this paper we deal mainly with the real
guantum plane, but the analysis c&n be generalized
to the complex quantum plane, in which case one
must'give' also the commutation relations between
the variables and their conjugates. The matrices of
the complex quantum group are required to
preserve the quantum structure of the complex
plane, in the sense explained above for the real



plane. This gives, for general n, the commutation
relations between the elements of the matrix and
their complex conjugates, a generalization of a
result given by Woronowicz and Podless for
SL4(2, C). These results will also be described in a
forthcoming publication.

It is a pleasure to dedicate this paper to
Raymond Stora on the occasion of his 60t birthday.
This is especially appropriate because of his help
during the development of our work through
discussions, advice and even computations.

2, NONCOMMUTATIVE DIFFERENTIAL
CALCULUS.

Consider variables xi, fori = 1§, 2, ..n,
belonging to an associative algebra, which satisfy
the commutation relations

rli¢x) = xixi — Bl xkx! = 0. @

We assume that these commutation relations are
sufficient to order in some standard way an arbitrary
monomial (2 product of the basic variables elevated
to arbitrary powers). Functions of the variables xi
are defined as formal power series. We wish to
define an exterior differential d satisfying the usual
properties such as

d2=0 2.2
and the Leibniz rule
dfg) = (df)g + £ dg. 2.3)

In general the differentials of the hasic
variables

Ei = dxi 2.4

will not commute with the variables or with functions
of them. We introduce linear operators O which
satisfy

£(x) & = £k Oy f(x) 2.5)

(sum over repeated indices). These operators define
the differential calculus and must satisfy certain
consistency conditions. Applying (2.5) to the product
of two functions f(x) and g(x)

fgli=fER O g=E (O D) Ou 2)
=t Oj (fg), (2.6)

we see that it must be
Qi (fg) = (O ) (OJ ). 2.7

This formula, plus the linearity, shows that it is
sufficient to know the action of the operators O; on
the basic variables. The action on any function,
defined as a formal power series, is then
determined. Applied to the basic variables (2.5)
gives their commutation relations with the
differentials

xi & = Bk Oy xi, (2.8)
One can introduce derivatives

d D
aiE‘a";i' , @0 e 8 2.9)

in the standard way through
d= Ei 3. (2.10)

In general the derivatives do not satisfy the
simple Leibniz rule of commutative algebra. Indeed

difg) = Eia Hg+f8di g
=13 Hg+E 0N g=E k(). @11



Therefore
I (fg) = Oxf) g + (Ol ) 9; &. (2.12)
From the associativity of the algebra of functions
9; (f(gh)) = 9; ((fa)h) (213)
we obtain again {(2.7).

As already mentioned, the operators Of must
satisfy certain consistency conditions. If one
differentiates the left hand side of the basic relations
(2.1), one must require that the result vanish, at least
as a consequence _of the basic relations themselves.
We shall call an equality, which is valid in virtue of
the basic refations, a weak equality and employ the
symbol =. Using

O (Kxl) = g xl+ Ol xk (2.14)

we find

am rlj =
(&' 8) — Bligp) (B x1 + Ol xK) = 0. (2.15)

This is a consistency condition for the operators 0Oy,
which we call the "linear condition™.

The basic relations are valid also when
muitiplied by a function

ri(x) f(x) = 0 (2.16)
Differentiating this we see that it must be
(OmtV) f + (Om? 1) 9y f = 0 .17

In virtue of the linear relation the first term vanishes.
Since the function f is arbitrary, it must be

Omn rij =
(Bl i) — Bliy) (OmP x0) (QpP x) =0.  (2.18)

We shall call this the "quadratic consistency
condition® for the operators Oi. In terms of
differentials the linear condition {ollows simply from

drii(x) = 0, .(2.19)

while the quadratic consistency condition comes
from ‘ o :

i 0 = (EM O rif) = 0. (2.20)

Quantum groups provide an example of
noncommutative differential calcuius. The variables
xi are the quantized group parameters. In this case
the expressions 0 xk are non linear functions of the
variables x and it is convenient, folowing
Woronowicz!, to work with the right {or left) invariant
differential forms which satisly simpler commutation
relations with the group parameters than the
differentials of the parameters. :

Another example is the. quantum. (hyper-)
plane, which we describe in the next section, where
the expressions Oj xk are linear ' in the variables.
With that example in mind we shall assume for the
rest of this section that :

O; xk=Ckigxt L 22D

are linear functions of the variables, the C's being
suitable numericat coefficients.

Using the standard tensor product notation,
one can then write the linear condition (2,15} as

(E12— B2} (E12 + C12).= 40, ©(2.22)

where E is the unit matrix. This is now a strong
relation. The quadratic condition becomes



(E12 - B12) Cn3 Cl? xz%x3=0. (2.23)
Using (2.1), in the form
xax3-Bayxax320, (2.24)
this ¢an be written as
(By2 C23 C12—~C23Cr2 By x2x3 0. (2.25)
This equation is satisfied if the Yang-Baxter aquation
B12C23 C12= C23 C12B23 (2.26)
holds.

We have the commutation relations (2.1)
among the variables and those between variables
and-differentials, given by (2.8) or

xi & = Ci Ek xL, 227

The Leibniz rule (2.3) gives the commutation
relations between the variables and the derivatives,
considered as operators, -

g xi = 8l + Cikjl x! 9. (2.28)

Can one complete the algebra by giving
commutation relations between derivatives and
differentials ? We try a relation of the form

9 &l - Dikj Eldy =0, . - (2.29)

where the tensor D is to be dotermined.
It we multiply-the left hand side by x* from the
right, we can commute xf through to the left, using

(2.28) and the inverse of (2.27), i.e.

gk x! = (C-L)}; xi & S (230

One finds terms linear in & which must cancel
separately. This requires D=C-1, i.e.

Dijyy Cklg = Cliyg DKlys = 8 g, (2.31)

With this choice for D one finds, after some
simplifications

(aj gi - Dikjl gl ) xT=
Dirg CSUjy x¥ (3 &8 — Dyn £ Om). (2.32)

So far our new relation (2.29) appears to be
consistent with our previous relations.

‘One must still perform various consistency
checks. For instance, multiply (2.27) from the left with
3; and commute this derivative through to the right
using (2.28) and {2.29). With a little algebra one can
see that this requires the Yang-Baxter equation

C12Ca3Cr2=C3 Cr2 C23.. (2.33)

Differentiating (2.27) we find the commutation
retation among the differentials

Ei Ej =~ Cliyy gk &l (2.34)

(E12+C12) §1 &2=0. (2.35)

Finally we may ask for the commutation
relations among the derivatives. We try

9i0j— Flkj; 3 =0 (2.36)

291 -d291 Fiz=0. (2.37)

Multiplying this equation from the right by xr

. and commuting-x* through to the left we find terms



linear in the derivatives which must cancel
separately. This requires

(E12 +C12) (E12 -F12)=0. (2.38)

It is not hard to see that the remaining terms will also
cancel if

Ci2 C23 F12=F23Cy2 Co3. (2.39)

3. CALCULUS ON THE QUANTUM PLANE. .

The quantum (hyper-)plane provides a simple
example in which all consistency conditions
necessary for a differential calculus are satisfied.
The variables satisfy the commutation relationsd

xixf=qxixi, i<j. .1)
These relations can be cast in the form (2.1) by
means of the R-matrix for the quantum group GLq(n),

which is4

Ry = & 8k (1+ (q—l) 5ii)
+ @) 8 810G, 3.2)

where
- 1 i
0= 19 ig (3.3)
It is more convenient to work with

R =pPR (3.4)

where P is the permutation matrix. Explicitly

Rig =Rity (3.5)

It is easy to check that (3.1) is equivalent to

(Exz'-é-ﬁiz) x) x3=40. (3.6)
The matrix ﬁ is symmetric
.. A
Rig=Rky (3.7)
and satisfies the equation (E is again the unit matrix)
1A A
(E-aR) (E+gR) =0, (3.8

which shows that its eigenvalues are q and —:—l

Equivalently, one can write

5 . : L
R2=E+(q-a)R . 3.9
or
A A i .
R—1=R+(a—q)E. (3.10).
The matrices
1A
A=E-- R 3.11)
q
and
. A . E
S=E+qR' - 3.12)

are orthogonal projections (relative to the
eigenvalues —‘—l-'and q respectively)

A5=52=0 3.13)
al=d +$) a,  (3.14)

$2=(1+g)s, - (315)



which could be easily normalized? . Finally we recall
that, in terms of R, the Yang-Baxter equation takes
the form
A A
B2 Ry3 Rz = Ros Rpp Ra. (3.16)

It is now obvious that, if we take

1A A
B=F=_R, C=4qR, 317

all consistency conditions described in the previous
saction are satigfied. In particular, the Yang-Baxter

equations (2.26), (2.33) and (2.39) reduce to the

single equation (3.16). If one computes the
commutation relations for the operation d one finds,
as expected,

dx—xd=§ (3.18)
and

g€ + Ed = 0, (3.19)
but

ddi=q2did (3.20)

This perhaps unexpected result is, however,
perfectly cansistent. For instance

d2=dEid=-81dd;
=-q2 £19;d = q2d2 (3.21)

which is consistent with (2.2).

t The projections 2 and § are the quantum analogues of the
classical antisymmetrizer and symmetrizer for tensors with two
indices. For the two-dimensional case, nN=2, Michael Schiieker
and Markus Scholl have developed a complete quantum tensor
calculus in which these projections play a crucial roteS.

There is a different choice which also
satisfies all consistency conditions. Just as above,
we take

A
R, (3.22)

but now

A
R-1, (3.23)

The existence of this second solution is not
surprising. The equations

E2 —é Riat@) x1 %2 =0 (3.24)
and

(Erz +qRi2(@) E182=0 (3.25)

go into themselves by the exchange of x; with x2 and
q with -é, in virtue of the identity

Riz (%1) = Ry (@) (3.26)

Here we have introduced explicitly the dependence
. A

of the matrix R(q) upon the quantum parameter, The

"intermediary” equation

x1 &2~ q R12(@ &1 x2 =0 (3.27)
goes into

x & -3 Rn @& x1 =0 (3.28)
i.e.

&2 x1-q R21(Q) x2 61 =0. (3.29)



In the following we shall work with the first solution
(3.17).

One can see immediately that all relations of
the differential calculus on the quantum plane
described above are covariant under the action of a
linear transformation

x-+Ax, & Ak (3.30)
or in components
xi = alj xj,' & — al; &, (3.31)

where the matrix elements alj of the matrix A are
assumed to commute with the variables xi and with
Ei, provided they satisfy

AL ARz =Ryp Aj Ag. (3.32)

This is just the condition for the matrices to belong to
the quantum group GLg(n). The calculus is invariant
under the action of the quantum group. The Yang-
Baxter equation for R, necessary for the quantum
group property, emerges also as a consistency
condition for the calculus.

Let us now consider the real quantum plane

X =xi, (3.33)
Since
xixi = x xi = x xi (3.34)
it must be
g=1i (3.35)
q ‘

In this case (3.26} can be written as

T A 7 -1 o .
Riz=Ry (3.36)

We may choose the differentials &i to be real

Ei=tl (337

in which case d is imaginary. One can check that the
entire scheme goes into itself under complex
conjugation provided one also takes

9i = — q2-i+1) 3, i=1, 2, ..n. (3.38)
For this computation, which we shall not reproduce

here, one must invert some of the commutation
relations. This is easily done if one observes that the

‘matrix X which satisfies

Xrig; (R-1yiky = (R-1yr; Xy - 18k (3.39)
is give'n by
Xrigj = R)itjs 2D = Ryis 2. (3.40)
Furthermore (sum over repeated indices)
’ Xiky = 8i; q g2G-1) (3.41)
and
Xkiy; = B q g%, (3.42)

The complex conjugation defined above is an
involution, its square is the identity. For the real
quantum plane the matrix elements ai; in (3.31) must,
of course be real. Finally, we observe that

q;l—i+1 0 =_gn-itly; ' (3.43)
are pure imaginary.



4. THE TWO-DIMENSIONAL CASE

In this section, as an illustration, we give
axplicitly the commutation relations of the differential
calculus on the two-dimensional quantum plane.
They are obtained immediately from the formulas of
the previous section. The R matrix is

SEREY
R=190g gq-qt! 10 “.1
0 0 0 q
and the matrix R = PR is
rq 0 . 0 0
A |0 q-q- 10
R=19 T 00 “4.2)
0 0 0 q

We denote the variables x and y, the differentials
dx=&, dy=n _ 4.3
and the derivatives
Lot 3= 4.4)
In addition to the well known relations
xy=qyx (4.5)
and

1o
§n=—an§ ‘ | (4.6)

woe have the commutation relation between the
derjvatives

ax ay = ‘-;‘ ay ax, (47)

the relations between variables and differentials *
xE=q2Ex
xn=qnx+{g2-1)8&y

(4.8)
yE=qfy
yn =q¢ ny
and those between variables and derivatives.
Bxx= 1 +q2x8x+(q2-1)y8y

dxy=ay ax
4.9

ay XK=GgX ay

ayy= I+q2yay.

To complete the scheme we give the reiations
between derivatives and differentials.

3x§=c‘112‘§3x
3 1
X, ﬂ=aﬂ3x
| (4.10)
3y& =383

dyn =Eli'“ dy + (c-:'i-* 1) §ox.

The exterior differential

* These explicit equations (4.8) for the two-dimensional plane
were derived first, from the requirements of consistency and
covariance under the action of tﬁe quantum group Glg{(2). The
observation that they can be written in the form
xp &1 = qRig &y x2 is due to Ame Schirrmacher.



d=E3x+ndy (4.11)

satisfies all usual refations, such as (2.2) and (2.3).
However, as in the general case

dx=q29xd , ddy=q2dyd - @1

All above relatlons correspond to the choice
{3.17). Had we taken (3 23) some of the relations
would change. For instance, instead of {4.8) one
would have

Ex=q2x§

| Ey=quf+@>Dxn (4.13)
nx = gxn’
ny =g2 yn.

The relation between these two solutions has
been explained in the previous section. For the rest
of this section we shall work with the first solution
{4.10}.

Using the commutation relation ‘(4.5)' one can
order monomials so that the variable y is before the
variable x, for instance. One can then compute the
derivative of an ordersd monomial, using (4 9), and
reorder the result One finds

ay(ynxm) = yn— xm lj.,f.

@.14)

Zm
ax(ynxm) = -yn xm-1 qn 1_'1".3151_ .

By linearity, these formulas give the derivatives of
ordered formal power series. Viceversa, one could
take this as the definition of the derivatives. It is easy
to see that the relations (4.9), {4.10) and then (4.8)
follow. In this way one sees very cleariy that the

calculus developed above cannot iead to
inconsistencies. A similar argurnent can be given for
the higher dimensional case of the previous section.

It is known that the relations (4.5) and (4.6)
are preserved under the action of a GLq(2) quantum
matrix whose elements commute with x, y, & and n
and, viceversa, that this requirement defines a
quantum matrix. The other commutation relations
given above are alse preserved, the caleulus is
"invariant” under the action of the quantum group.

_ For the real quantum plane x, y, & and n are
real, igl = 1 and

dx=—qtdx , Jy=-q2d. = (415

This conjugation operation changes the entire
scheme into itself and is an involution. We notice
that q20x and qdy are pure imaginary. If we define

Px=-ifq?d , py=-ijiqdy,  (416)

the quantities x, y, px and py are real and provide a
one parameter deformation of the ‘quantum
mechanical phase space for a two-dimensional
system (a two-parameter deformation of the classical
phase space). -

It is possible to define an integral over the real

gquantum plane which satisfies the quantum Stokes'
theorem

faw =0, @.17)

where w4 is a one-form which satisfies certain
regularlty condltlons Smce a two-form can always
be written as

a =Enixy), (4.18)



one can therefore define an integral for functions of x
and y. We use for the integral of functions the
notation < f >. Stokes' theorem (4.17) implies that

<axf> b <ayf> = 0, (419)
where 3¢ and dy are the quantum derivatives.

The integral is essentially defined by (4.19),
plus standard properties such as linearity etc.. Up to
a q-dependent factor, it turns out to be equal to the
integral of the classical function associated with the
quantum function by ordering it, for instance by
moving the variable y to the left of the variable x.
Therefore the conditions for the existence of the
quantum integral are the same as those for the
existence of the associated classical integral.

The g-dependent factor is the same for all
integrands and can be chosen so that
<f>=<f> (4.20)

One can then verily that

<ff>20 (4.21)
and vanishes if and only it
f=0. {4.22)
The Hermitean inner product
<flg>=<fg> (4.23)
makes the space of quantum functions into a

quantum Hilbert space. Formal Hermitean
conjugation is defined as usual

<fITg> = <TT £} g>. (4.24)

One can verify that, for the operators x, Y, Ox
and dy (or px and py), and for functions of them,
Hermitean conjugation coincides with the involution
defined above for the algebra in (4.15) and (4.16).
Questions of convergence and domains for the
quantum Hilbert space can be reduced to analogous
questions for the classical Hilbert space of square
integrable functions.
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