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Abstract

We present a covariant form for the dynamics of a canonical GA of arbitrary cardinal-
ity, showing how each genetic operator can be uniquely represented by a mathematical
object - a tensor - that transforms simply under a general linear coordinate trans-
formation. For mutation and recombination these tensors can be written as tensor
products of the analogous tensors for one-bit strings thus giving a greatly simplified
formulation of the dynamics. We analyse the three most well known coordinate sys-
tems — string, Walsh and Building Block — discussing their relative advantages and
disadvantages with respect to the different operators, showing how one may transform
from one to the other, and that the associated coordinate transformation matrices can
be written as a tensor product of the corresponding one-bit matrices. We also show
that in the Building Block basis the dynamical equations for all Building Blocks can
be generated from the equation for the most fine-grained block (string) by a certain
projection (“zapping”).
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1 Introduction

It is well known that the description of a system and/or its dynamics may be much more
amenable to analysis and possible solution in one coordinate system than in another —
this is a common occurence in physics, engineering and chemistry, among other fields.
For instance, the dynamics of a set of coupled oscillators has a simpler description in
terms of the normal modes of the system, rather than the positions of the oscillators.
This is true also of the dynamics of complicated molecules in chemistry. Underlying the
dynamics, there is often a set of “fundamental” degrees of freedom, for instance, in the
above examples, the deviations of the oscillators, or the atoms in the molecule, from their
equilibrium positions. However, the dynamics, more often than not, is complicated in
terms of these fundamental degrees of freedom, and so one searches for a description in
terms of more appropriate “effective” degrees of freedom1. As another simple example:

1The term “effective” might carry an implication of coarse-graining, i.e., loss of information in the
description. We emphasize that this is not the case here, rather, we use “effective degrees of freedom”
the way, e.g., “normal modes” is used in mechanics.
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the dynamics of a system of particles is often simplified when one introduces the center-
of-mass coordinates and the relative separation of the particles.

Although the search for a more appropriate description of a system can be under-
stood, in a dynamical setting, in terms of the search for effective degrees of freedom,
the general concept, of course, goes well beyond this. Principal Components Analysis,
for instance, is based on the same notion. The place where coordinate transformations
play a truly fundamental role though, is in the theory of relativity in physics. An im-
portant concept there is the concept of covariance, which is most naturally discussed in
the language of tensors2, mathematical objects with simple transformation properties
under linear coordinate transformations. The idea behind covariance in physics is that
the “laws of physics” should have the same form in any coordinate system. This has
the mathematical implication that such laws should be expressible in terms of equations
among tensors, the transformation properties of the latter guaranteeing form invari-
ance, or “covariance”. To write dynamical equations in covariant form means that all
the power of the tensor machinery can be brought to bear, so that the “book-keeping”
associated with how the equations and their solutions change from one coordinate system
to another is taken care of. Covariance also implies that, if one can generate a solution
of the dynamics in covariant form in one coordinate system, then the solution in any
other system can be obtained by a simple linear transformation. Having advertised the
charms of the tensor formulation, we should also assure the reader unfamiliar with the
subject that our use of it in this paper amounts to no more than standard multilinear
algebra — the intricacies of tensor analysis do not show up in our approach.

So, what has this to do with genetic dynamics? It has been known for some time
now that certain genetic operators are most naturally associated with a particular co-
ordinate system. Selection, for instance, is “simple” in the string basis, in that each
of the unnormalized string frequencies, yI , evolves independently from the others. The
only non-linearity comes from an overall normalization constant which is implicit in the
relation PI = yI/

∑

J yJ between the unnormalized variables yI and the string frequen-
cies PI . This is an old result, quite well known across several different communities.
In the context of EC one may consult, for example, (Reeves and Rowe, 2003). Muta-
tion, on the other hand, couples strings together by actually converting one string into
another. However, it is well known that in the Walsh basis (Bethke, 1980; Goldberg,
1989a; Goldberg, 1989b; Vose and Wright, 1998a; Vose and Wright, 1998b) the mutation
operator is diagonal, with a consequent simplification of the analysis. In this case, the
effective degrees of freedom are the Walsh modes rather than the strings. Finally, recom-
bination is, in general, a more complicated operator than selection or mutation. It has
been found recently though (Stephens, 2002; Chryssomalakos and Stephens, 2004) that
it, too, admits a simpler description in a particular coordinate system — the Building
Block (BB) basis, where the effective degrees of freedom are not strings but particular
schemata — Building Block schemata. The BB basis has already been found useful in
concrete calculations (McPhee and Crane, 2005), as well as being interestingly related
to geometric quantities in the theory of information (Toussaint, 2004).

The transformation to the BB basis, in fact, leads to dynamical equations that are
identical to those found via a coarse-graining (Stephens and Waelbroeck, 1997; Stephens
and Waelbroeck, 1999; Stephens, 2001), and that have been extended to variable-length
linear representations and trees (Poli, 2000; Poli, 2001a; Poli 2001b). Such formula-
tions have led to many new results, including new exact Schema theorems for Genetic

2We will introduce in what follows all the needed concepts regarding tensors — further information
can be found in (Akivis and Goldberg, 1977).
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Algorithms (GAs) and Genetic Programming (GP). This, in its turn, has led (Lang-
don and Poli, 2002; Stephens and Poli, 2004; Stephens and Zamora, 2003) to a more
unified point of view of Evolutionary Computation (EC). Other coordinate systems,
besides these three principal ones, have also been considered, such as the Taylor basis
(Weinberger, 1991) in the context of the analysis of fitness functions. Unlike the Walsh
basis, however, no real gain or insight seems to have been gleaned in this latter basis.
Toussaint has given an interesting picture (Toussaint, 2004) of how bases that naturally
appear in the dynamics of GAs also appear as natural bases for the space of probability
distributions.

Given the importance of different coordinate systems for different genetic operators
it is clear that a mathematical formulation of the dynamics that is covariant would be
very useful, facilitating calculations as well as giving greater insight into the mathemat-
ical structure underlying the dynamics. The “laws of physics” alluded to above, that
must remain the same in any coordinate system, have their analog in genetic dynam-
ics, in that the intrinsic dynamics of a population, in evolutionary terms, should be
independent of the coordinate system that we use to analyze it. Hence, in this paper,
extending greatly the preliminary work in (Stephens, 2002; Stephens and Zamora, 2003;
Chryssomalakos and Stephens, 2004) , we present for a first time a tensorial formulation
of the dynamics of an arbitrary cardinality GA with any homologous crossover, arbi-
trary selection and point mutation within which transformations between the different
coordinate bases on the configuration space of length-N , cardinality-K strings may be
considered.

The format of the paper is as follows: in Sect. 2 we introduce necessary math-
ematical preliminaries, concerning characteristic functions, vector spaces, their duals,
arbitrary tensors, and tensor products. We emphasize, in particular, how tensors trans-
form under linear coordinate transformations. Note that the use of tensor product spaces
in the theory of GAs is common, as the configuration space for a finite population can
be naturally written as a tensor product of the configuration spaces of the individual
strings in the population. For example, in (Schmitt, 2004), a tensor product construction
is used for the configuration space of populations, in the case of crossover and mutation,
and for the configuration space of an individual string, in the case of mutation. However,
there is no analysis of crossover as a tensor product on the latter space and, moreover,
there is no discussion of the tensorial nature of either crossover or mutation with respect
to coordinate transformations and the related concept of covariance.

In Sect. 3 we introduce the three principal bases — string, Walsh and Building
Block — in the context of characteristic functions for binary strings. We show that
the Walsh and BB bases can be obtained from the string basis by linear coordinate
transformations, writing the associated transformation matrices as tensor products of
the corresponding one-bit matrices. In Sect. 4 we introduce the duals of these bases,
and find that the Taylor and BB bases are dual to each other. In Sect. 5 we extend
these results from the binary alphabet case to that of arbitrary cardinality. 3. In Sect.
6 we present a covariant form of the evolution equation for a canonical GA, showing
how it is constructed of three tensors, one for each of the genetic operators — selection,
mutation and recombination.

In Sect. 7 we use this covariant formulation to show how the dynamical equa-
tions look in the different coordinate systems for the different genetic operators, and
discuss the relative advantages and disadvantages of each coordinate system for ana-

3There is a great deal of literature on GAs extended to the case of arbitrary cardinality, see for
example, (Koehler et al, 1997; Rowe et al 2004)
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lyzing a given operator. We pay particular attention to the most complicated operator
— recombination. We emphasize especially the benefits of the BB basis in the analysis
of recombination. We also explicitly show how, by writing solutions of the dynamical
equations, found in a particular coordinate system, in a covariant form, one can find
the solutions in any other coordinate system via an appropriate linear transformation.
We show then, for cardinality-K alphabets, that the fundamental tensors that govern
mutation and recombination can be written as tensor products of 1-Kit tensors (we use
“Kit” as the natural upgrade of “bit” in the higher cardinality case). Although this is
well known in the case of mutation (see for example, (Griffiths and Tavaré, 1997)), to our
knowledge it is a new result in the case of crossover. The beauty of this is that it tells us
that the mutation and recombination of N -Kit strings can be understood very simply
from that of 1-Kit strings. Although this is somewhat intuitive and, as mentioned, is
known for mutation, it is less so for recombination. As the coordinate transformation
matrices can also be generated as Kit-wise tensor products we show that the entire
apparatus of transforming coordinate system to another can very naturally be built up
by taking tensor products. An important result that can be simply gleaned from the
covariant nature of our equations is the ”skew-diagonal” nature of the recombination
tensor. This has been derived and discussed previously (Stephens, 2002; Stephens and
Zamora, 2003; Chryssomalakos and Stephens, 2004) and is implicit in the nature of
the coarse-grained evolution equations for Exact Schema theorems. Here, we explicitly
identify for the first time the origin of this skew-diagonalization. Finally, we show that
it is possible to generate the dynamical equation for any BB schema from that of an
arbitrary string by acting on the latter with a “zapping” operator that also has a natural
tensor product structure. In Sect. 8 we draw some conclusions.

Note that throughout the paper small white squares denote the end of an example,
whereas small black ones the end of a proof.

2 Mathematical Preliminaries

2.1 Sets and characteristic functions

Consider a discrete, finite set A and the commutative algebra FA of real-valued functions
on A. We will refer to the elements of A as points. To each subset B of A there
corresponds the characteristic function (CF) fB ∈ FA, which takes the value 1 on each
element of B and is zero elsewhere. Conversely, every function f ∈ FA, with values in
{0, 1}, defines a subset of A as the locus of the points where it takes the value 1. Thus,
one can denote subsets of A by listing the collection of points that make up the subset
or by giving the corresponding characteristic function.

2.2 Dual vector spaces and the canonical element

Given an n-dimensional vector space V , with basis BV = {f1, . . . , fn}, an arbitrary
vector a in V can be written as a =

∑n
i=1 aif

i, ai being the component of a along
the basis vector f i. Note that the superscript i in f i does not refer to a component
of a vector but rather labels the n basis vectors of BV . As sums over indices occur
frequently when dealing with tensors we will use throughout the Einstein summation
convention, wherein the appearance of a repeated index, once upper and once lower,
implies a summation over that index. Thus, for example, the vector a above can be
written as a = aif

i.
The set V ∗ of real-valued linear functionals on V is also an n-dimensional vector

space, called the dual of V . Elements of V ∗, in analogy with elements of V , are known
as covectors. Formally, two vector spaces V , V ∗, are dual to each other if there exists a

4 Evolutionary Computation Volume x, Number x



Covariant Genetic Dynamics

nondegenerate bilinear inner product,

〈·, ·′〉 : V ∗ ⊗ V → R , x ⊗ a 7→ 〈x, a〉 ≡ x(a) , (1)

i.e., given a covector x ∈ V ∗ and a vector a ∈ V , a real number 〈x, a〉 is assigned which
is linear in each of the arguments. The “nondegenerate” qualification above refers to the
requirement that if a vector has zero inner products with all covectors then that vector
must be zero (and similarly for covectors). Also, the tensor product sign ⊗ appearing
in (1) denotes cartesian product modulo the relation λx ⊗ a = x ⊗ λa, for any number
λ (see Sect. 2.3). A basis BV ∗ = {e1, . . . , en} is called dual to BV if

〈

ei, f
j
〉

= δj
i . The

element C = ei ⊗ f i ∈ V ∗ ⊗ V is called the canonical element and satisfies

〈ei, a〉 f i = a ,
〈

x, f i
〉

ei = x , (2)

for all a in V , x in V ∗. This implies that the components ai of a and xi of x are given
by ai = 〈ei, a〉 and xi =

〈

x, f i
〉

respectively. The inner product 〈x, a〉 can be expressed
as follows

〈x, a〉 =
〈

xiei, ajf
j
〉

= xiaj

〈

ei, f
j
〉

= xiajδ
j

i = xiai . (3)

Under a linear change of basis of V , effected by an invertible matrix Λ, f and its dual
basis e transform as

f → f ′ = Λf e → e′ = eΛ−1 , (4)

where f is the column vector (f1, . . . , fn)T and e is the row vector (e1, . . . , en). One

easily checks that
〈

ei′ , f
j′
〉

= δ j′

i′ , i.e., the transformation law (4) preserves duality of

the bases. Given that vectors and covectors are geometrical entities that do not depend
on the coordinate system used to describe them, we must have v = vif

i = (v′)j(f
′)j ≡

vj′f
j′ , for v ∈ V , which shows that vector components transform as

vi′ = vj(Λ
−1)j

i′ , (5)

while, similarly, covector components satisfy (a ∈ V ∗)

ai′ = Λi′

ja
j . (6)

Notice the slight abuse of notation by which, e.g., vi′ (rather than (v′)i) denotes the i-th
component of v in the primed frame.

2.3 Tensor products

Given two vector spaces V and W , with bases BV = {f1, . . . , fm} and BW =
{f̃1, . . . , f̃n} respectively, one defines their tensor product V ⊗ W , as their carte-
sian product V × W , with the identification (λv, w) = (v, λw), λ ∈ R, so that
(λv) ⊗ w = v ⊗ (λw) = λ(v ⊗ w), v ∈ V , w ∈ W . Clearly, this is an intrinsic con-
struction since no particular basis is singled out in the definition. A standard basis in
V ⊗ W is

BV ⊗W = {f1 ⊗ f̃1, f1 ⊗ f̃2, . . . , f1 ⊗ f̃n, f2 ⊗ f̃1, . . . , fm ⊗ f̃n} ≡ {f ij ≡ f i ⊗ f̃ j} , (7)

which shows that dim(V ⊗ W ) = dim(V ) dim(W ) = mn. If v = (v1, . . . , vm), w =
(w1, . . . , wn) are two vectors in V and W respectively, then their tensor product is given
by z ≡ v ⊗ w = (vif

i) ⊗ (wj f̃
j) = viwj(f

i ⊗ f̃ j) ≡ zijf
ij , the last equation defining

the coordinates zij of z, where (ij) is a composite index, taking on the mn values
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11, 12, . . . , 1n, 21, 22, . . . , 2n, . . . , m1, m2, . . . , mn. In a similar fashion one can construct
tensor products of two covectors or of a vector with a covector.

Given linear transformations A : V → V , B : W → W , with corresponding matrices
(A j

i ), (B l
k ), so that, e.g., (Av)i = A j

i vj , one may define a new linear transformation,

their tensor product D = A ⊗ B : V ⊗ W → V ⊗ W , with (mn × mn)-matrix (D jl
ik )

given by D jl
ik = A j

i B l
k . For example, in the special case of 2 × 2 matrices,

A ⊗ B =

(

aB bB
cB dB

)

=









ax ay bx by
az aw bz bw
cx cy dx dy
cz cw dz dw









, (8)

A ≡
(

a b
c d

)

, B ≡
(

x y
z w

)

,

the ordering of the composite matrix indices being (11, 12, 21, 22).

2.4 Transformation law for tensors

Above we defined a covector as a linear functional on vectors, mapping a vector to a real
number. One can also think of a vector as a linear functional on covectors. We extended
these concepts to tensor products of vectors and covectors. A further generalization
is possible — to tensors, which are real-valued linear functionals on an arbitrary (but
fixed) number of vectors and covectors.

For example, a matrix (Aij) can be thought of as a linear functional on pairs of
vectors, assigning to (v1, v2) ∈ V ×V the number A(v1, v2) = Aij(v1)i(v2)j . Notice that
the above definition implies that A(λv1, v2) = A(v1, λv2), showing that A is actually
defined on the tensor square of V , V ⊗ V . In order for A to represent a geometrical
entity, whose action is independent of the coordinate system employed, its components
Ai′j′ in the primed frame must be related to those in the unprimed frame by

Ai′j′ = Λi′

iΛ
j′

j
Aij , (9)

so that A(v1, v2) = Aij(v1)i(v2)j = Ai′j′(v1)i′(v2)j′ . Similar remarks can be made for
a matrix (Ai

j), considered as a linear functional on V ⊗ V ∗. Invariance of its action
implies the transformation law

Ai′

j′ = Λi′

iA
i
j(Λ

−1)j
j′ . (10)

Notice that the upper index transforms with Λ, while the lower one with Λ−1, i.e.,
the position of the indices is a mnemonic device for their transformation properties.
More generally, linear functionals T may be introduced, which accept p vectors and q
covectors as arguments, T (v1, . . . , vp, a1, . . . , aq) ∈ R, vi ∈ V , aj ∈ V ∗. The components
of a tensor are obtained by evaluating it on basis vectors and covectors

T
i1...ip

j1...jq
= T (ej1 , . . . , ejq

, f i1 , . . . , f ip) . (11)

Linear functionals like T above are called (p, q)-tensors. According to this definition,
vectors are (0, 1)-tensors, covectors are (1, 0)-tensors, matrices (Aij) are (0, 2)-tensors4,
etc. Similarly, the tensor product of two vectors is a tensor of type (0, 2), while the tensor

4It goes without saying that the opposite convention is also well represented in the literature, e.g.,
vectors are elsewhere defined as (1, 0)-tensors etc.
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product of two covectors is a tensor of type (2, 0). More generally, the tensor product
of p vectors and q covectors, taken with a certain ordering, is a tensor of type (q, p). A
general tensor is a sum of tensor products of the above type.

The tensor product of matrices we saw above generalizes to arbitrary tensors. In
this case, it maps two tensors of type (q1, p1) and (q2, p2), respectively, to a tensor of
type (q1+q2, p1+p2). For example, the tensor product of the (0, 2)-tensor T = T ijei⊗ej

and the (1, 0)-tensor u = ukfk is the (1, 2)-tensor T ⊗ u = T ijukei ⊗ ej ⊗ fk. Notice
that, traditionally, all indices of the same type (upper or lower) are grouped together,
otherwise preserving ordering, when taking tensor products, e.g., (T i

jei⊗f j)⊗ (ukek) =

T i
ju

kei ⊗ ek ⊗ f j .
A fundamental property of tensors, as with vectors and covectors, is that they are

geometric objects and therefore invariant under any change of coordinate basis. Thus,
similar to (9), (10), we obtain the general transformation law for the components of T ,

T
i′1...i′p

j′1...j′q
= Λ

i′1
i1

. . .Λ
i′p

ip
T

i1...ip

j1...jq
(Λ−1)j1

j′1
. . . (Λ−1)

jq

j′q
. (12)

It follows that the summation over one upper and one lower index, still denoted by the
Einstein summation convention defined earlier, is an invariant operation (i.e., indepen-
dent of the basis used), no matter whether the indices belong to the same or two different
tensors.

One of the most important advantages of working with tensors is that one may easily
distinguish between accidental equalities and true, geometrical ones. For example, one
may find, working in a particular basis, that vi = ai for the components of a covector
v and a vector a. However, since the two transform differently under a change of basis,
the equality found is an accidental one, and does not correspond to any geometrical
truth. On the other hand, if vi = T ijaj holds true in a particular coordinate system,
it will hold true in any other, as the reader can easily demonstrate using only (12) (we
call such equations covariant). This fact can often be taken advantage of by choosing a
particular coordinate system that is convenient for a particular calculation.

3 Bases for Characteristic Functions: the Binary Case

Having introduced tensors in a general setting we now restrict to the case of interest for
genetic algorithms: fixed-length, binary strings. In this case the natural configuration
space consists of the vertices of an N -dimensional unit cube CN , which can be embedded
in RN , so that the points (0, 0, . . . , 0) and (1, 1, . . . , 1) are antipodal points of the cube.
For Rn we use coordinate functions {x1, . . . , xN}. Then, restricted to CN , each xi,
1 ≤ i ≤ N , takes the value 0 or 1. We define x̄i ≡ e − xi, where e is the unit function
on CN , taking the value 1 on each vertex. For the rest of this section, and the next one,
all functions are considered restricted to CN . In that case, one may impose algebraic
relations on the coordinate functions, compatible with their allowed numerical values

x2
i = xi , x̄2

i = x̄i , xi x̄i = 0 . (13)

Notice that xi is the CF for half of the cube (all vertices with xi = 1 that lie on the
(N − 1)-dimensional cube (hyperplane) defined by xi = 1), and therefore corresponds
to the schema ∗i−1 1 ∗N−i, where ∗ is the standard wildcard symbol and ∗i means ∗
repeated i times. Similarly, x̄i is the CF of the other half of the cube, and corresponds
to the schema ∗i−1 0 ∗N−i, while e is the CF of the entire cube, in accordance with
xi + x̄i = e. To specify lower dimensional k-cubes, where k < N , one needs products of
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the coordinates, e.g., for N = 3, x1x2 specifies the edge connecting the points (1, 1, 0)
and (1, 1, 1) (schema 11∗), while x1x̄2x̄3 specifies the point (1, 0, 0). In general, there
exists a one-to-one correspondence between monomials of degree N − k in xi, x̄i, and
k-cubes, which, in their turn, correspond to particular schemata.

3.1 The δ-basis

The standard basis in FCN
, i.e., the vector space of real-valued functions on CN , is the

δ-basis Bδ, consisting of the CF’s of all 2N vertices of CN , i.e., of delta-like functions
with support on the vertices of the cube,

Bδ = {x̄1x̄2 . . . x̄N , x̄1x̄2 . . . x̄N−1xN , . . . , x1x2 . . . xN} . (14)

We have arbitrarily singled out above the point (1, 1, . . . , 1), its CF being the last element
of the basis. The same construction can be based on an arbitrary vertex P , by defining

BP
δ = {ᾱ1ᾱ2 . . . ᾱN , ᾱ1ᾱ2 . . . ᾱN−1αN , . . . , α1α2 . . . αN} , (15)

where the CF of the vertex P is α1α2 . . . αN , with each of the αi being either xi or x̄i,
and defining the bar operation to be involutive (¯̄x = x).

The particular ordering of the basis elements we choose above is “odometer”-like:
referring to the choice P = (1, 1, . . . , 1), we start at the origin (the antipode of P in the
cube), with CF x̄1x̄2 . . . x̄N , and let the last factor take on all possible values (x̄N and
xN , in this case), then the next-to-last factor advances etc.. This is the standard ordering
for tensor products of vector spaces mentioned already in Sect. 2.3 — see Eq. (7), where,
in our case, a k-cube is considered as a k-fold tensor product of 1-cubes.

3.2 The Walsh basis

The other basis for fixed length binary strings that has been extensively studied in the
dynamics of EAs is the Walsh basis (Bethke, 1980; Goldberg, 1989a; Goldberg, 1989b;
Vose and Wright, 1998a; Vose and Wright, 1998b) — we will illustrate it for N = 1.

Example 1 The δ and Walsh bases for N = 1

For N = 1, the δ-basis of Subsect. 3.1 (corresponding to the vertex with CF x1) is Bx1

δ =

{x̄1, x1}, while the corresponding Walsh basis is Bx1

W = {ŷ1, y1} = {(x̄1 +x1)/
√

2, (x̄1 −
x1)/

√
2}. Thus we have,

xx1

W = Λ̂1x
x1

δ , (16)

where xx1

W = (ŷ1, y1)
T , and Λ̂1 ≡ 2−1/2

(

1 1
1 −1

)

does not depend on P (hatted Λ

matrices will effect the transition from the δ to the Walsh basis). 2

For an N -bit string, the Walsh basis corresponding to the vertex P = (11 . . . 1) can be
written as

BP
W = {ŷ1ŷ2 . . . ŷN , ŷ1ŷ2 . . . ŷN−1yN , . . . , y1y2 . . . yN} , (17)

in an obvious notation. The column vector of the basis elements in (14) can be obtained
from the corresponding one for the δ-basis by multiplication with the Walsh matrix
Λ̂N = (Λ̂1)

⊗N , i.e., xP
W = Λ̂NxP

δ , relation that remains valid, with the same Λ̂N ,

regardless of the choice of P . From the fact that Λ̂n+1 = Λ̂1 ⊗ Λ̂n, one infers the
recursion relation

Λ̂n+1 =
1√
2

(

Λ̂n Λ̂n

Λ̂n −Λ̂n

)

. (18)
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3.3 The Monomial Basis

We now turn to an alternative basis which is a more recent development - the monomial
basis BP

m - associated to the vertex P of the unit cube. It consists of the CF’s of all k-
cubes containing P , which are all monomials in the variables that appear in the CF of P .
Anticipating the discussion of recombination in Sect. 7.3, we point out that the monomial
basis is essentially identical to the BB basis, which, as was shown in (Stephens, 2002),
most naturally enters in the description of recombination. We clarify the construction
of BP

m by first considering a couple of examples.

Example 2 The δ and monomial binary bases for N = 1 and N = 3

For N = 1, the δ-basis of the previous subsection (corresponding to the vertex with CF
x1) is Bx1

δ = {x̄1, x1}, while the monomial basis (corresponding to the same vertex) is
Bx1

m = {e, x1}. Arranging the basis elements in columns, xx1

δ = (x̄1, x1)
T , xx1

m = (e, x1)
T

we have,
xx1

m = Λ1x
x1

δ , (19)

where Λ1 ≡
(

1 1
0 1

)

does not depend on the chosen vertex P .

For N = 3, the vertex P = (1, 0, 0), with CF x1x̄2x̄3, induces the following δ and
monomial bases

BP
δ = {x̄1x2x3, x̄1x2x̄3, x̄1x̄2x3, x̄1x̄2x̄3, x1x2x3, x1x2x̄3, x1x̄2x3, x1x̄2x̄3} (20)

BP
m = {e, x̄3, x̄2, x̄2x̄3, x1, x1x̄3, x1x̄2, x1x̄2x̄3} , (21)

the latter consisting of the CF’s of all k-cubes, with 0 ≤ k ≤ N = 3, containing the
above vertex, ranging from the entire 3-cube to the vertex itself. The use of the standard
tensor product ordering for the basis elements in BP

m, mentioned earlier, becomes clear
if one substitutes e’s for the missing coordinates in each of the above monomials,
i.e., writing the basis as {eee, eex̄3, ex̄2e, . . .}. The matrix Λ3 that effects the tran-
sition between the two bases is the tensor cube of Λ1 above, Λ3 = Λ⊗3

1 ≡ Λ1⊗Λ1⊗Λ1. 2

In the general case, a vertex P with CF α1α2 · · ·αN , induces the monomial basis

BP
m = {e, αN , . . . , α1 . . . αN−2αN , α1 . . . αN−1, α1 . . . αN−1αN} , (22)

with
xP

m = ΛNxP
δ , ΛN ≡ Λ⊗N

1 . (23)

ΛN does not depend on P , as long as the two bases are chosen according to Eqs. (15),
(22) and, owing to the second of (23), it satisfies the recursion relation

Λn+1 = Λ1 ⊗ Λn =

(

Λn Λn

0 Λn

)

. (24)

4 Bases for Points: the Binary Case

We turn now from the vector space FCN
, of real valued functions on CN , to its dual. Its

elements are identified with linear combinations of the 2N vertices of the cube. Notice
that each vertex is an independent basis element — the reader should not confuse the
2N -dimensional vector space in question with the N -dimensional configuration space (in
the latter, the position vectors of the vertices are obviously linearly dependent). The
duality mentioned above is via pointwise evaluation, i.e., given a function f and a vertex
g, their inner product is simply the value of f at g, 〈g, f〉 = f(g), extended by linearity
in each of the arguments. We now consider the duals of the δ, Walsh and monomial
bases of FCN

.
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4.1 The vertex basis

We define the vertex basis Bv, as the dual of Bδ — it clearly consists of the vertices
gR of the cube, appropriately ordered, Bv ≡ B∗

δ = {gR}. R here is a multi-index, R =
(r1 . . . rn), with each ri being either 0 or 1. Taking for concreteness the reference point
P = (11 . . .1), we arrange the vertices in a row vector, gv = (g00...0, g00...01, . . . , g11...1).
It will prove convenient, in what follows, to endow the vector space generated by the
vertices with an abelian group structure, given by translations, gRgS = gR+S , where the
sum of the indices is bit-wise, modulo 2, e.g., g2

1 = g0, g10g01 = g11, etc.. The mod 2
feature converts the configuration space to an N -dimensional torus.

4.2 The dual Walsh basis

The dual Walsh basis BW∗ is given in (row) vector form by gW = gv(Λ̂N )−1, which gives,
e.g., for N = 1, gW = (g0 + g1, g0 − g1)/

√
2. These linear combinations are formally

identical to the ones for BW (see Example 1), which is actually true for any N , owing
to the fact that Λ̂N = Λ̂−1

N = Λ̂T
N . Needless to say, this is not a special property of the

Walsh basis, but rather, it can be regarded as a special relation between the δ and the
Walsh bases, or their duals.

4.3 The Taylor basis

Dual to the basis Bm of the k-cube CF’s (arranged in the column vector xm = ΛNxδ)
is the Taylor basis BT ≡ B∗

m, given in (row) vector form by gT = gvΛ
−1
N . To illustrate

its geometrical meaning consider the following5

Example 3 δ, monomial, vertex and Taylor binary bases for N=2

We have

xδ =









x̄1x̄2

x̄1x2

x1x̄2

x1x2









, xm = Λ2xδ =









1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

















x̄1x̄2

x̄1x2

x1x̄2

x1x2









=









e
x2

x1

x1x2









,

(25)
while, for the dual bases, we compute

gv =
(

g00, g01, g10, g11

)

gT = gvΛ
−1
2 =

(

g00, g01, g10, g11

)









1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1









=
(

g00, g01 − g00, g10 − g00, g11 − g10 − g01 + g00

)

. (26)

Apply now the first of (2) to an arbitrary function f ∈ FCN
, using the pair of dual bases

Bm, BT,

f = 〈(gT)i, f〉 (xm)i

= f(g00) e +
[

f(g01) − f(g00)
]

x2 +
[

f(g10) − f(g00)
]

x1

+
[

f(g11) − f(g10) − f(g01) + f(g00)
]

x1x2 . (27)

Thus, one obtains the Taylor expansion of f around the origin, with

∂1 ≡ g10 − g00 , ∂2 ≡ g01 − g00 , ∂12 ≡ g11 − g10 − g01 + g00 , (28)

5The Taylor basis was considered, in a different context, by Weinberger in (Weinberger, 1991).
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being discrete derivative operators which, given that f is at most linear in the xi’s,
coincide with the exact ones. Notice that ∂12 = ∂1∂2, where the product is that of the
abelian group mentioned earlier. 2

Since, for higher N , Bm still consists of all monomials in the xi’s, it is easy to see
that the above interpretation of the elements of BT persists for all N . Using the group
structure, one may describe Bm as the set of all monomials in the first order derivatives
that, when expressed in terms of the vertices, do not “wrap around” the torus, e.g., in
the above example, only the product ∂1∂2 appears as a basis element, ∂2

1 , ∂2
2 etc.would

involve wrapping around.

5 Bases for length-K Alphabets

The results of the previous two sections can be generalized to the case of N -Kit6 strings
of a cardinality-K alphabet. The configuration space consists now of the vertices of
an N -dimensional cubic lattice of length K − 1 in each (basic) direction, i.e., of the
points with cartesian coordinates (r1, r2, . . . , rN ), with ri = 0, 1, . . . , K − 1, 1 ≤ i ≤ N .
Restricting the coordinates xi on this lattice, one may impose the relations

x
(K)
i ≡ xi(xi − 1) . . . (xi − K + 1) = 0 , i = 1, . . . , N . (29)

5.1 δ and vertex bases

The generalization of the δ and vertex bases is straightforward: the δ-basis Bδ in the
space of characteristic functions consists of KN unit-amplitude delta-like functions, each
with support on a single vertex. When the coordinates of the latter are (n1, n2, . . . , nN ),
the corresponding delta function δn1...nN

is given by

δn1...nN
= δ1

n1
. . . δN

nN
, (30)

where

δi
nj

≡ Njxi(xi−1) . . . ̂(xi − nj) . . . (xi−K +1) , N−1
j ≡ (−1)K−nj−1nj !(K−nj −1)!

(31)
(hats denote omission). Notice that δi

nj
is the CF of the xi = nj hyperplane, and

the above product formula for δn1...nN
defines the vertex gn1...nN

as the intersection of
the xi = ni hyperplanes. The expansion of an arbitrary function f in the δ-basis is
particularly simple, the coefficient of a basis element (delta function) being the value of
f at the corresponding vertex,

f =
∑

g

f(g)δg , (32)

where g ranges over all vertices and δg has support on g (this is an application of the
general formula (2)). The dual vertex basis Bv is the collection of the vertices of the
lattice — we use again the odometer ordering.

Example 4 δ and vertex bases for N = 2, K = 3 strings

The configuration space is 32 = 9-dimensional. Taking the alphabet to be {0, 1, 2}, the
vertex basis, in the odometer ordering, is given by

Bv = {g00, g01, g02, g10, g11, g12, g20, g21, g22} . (33)

6As mentioned in the introduction, we propose “Kit” as a natural upgrade of “bit”.
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The dual δ-basis is

Bδ = {δ00, δ01, . . . , δ22}
= {δ1

0δ
2
0 , δ1

0δ
2
1 , . . . , δ1

2δ2
2}

= {(x1 − 1)(x1 − 2)(x2 − 1)(x2 − 2)/4, −(x1 − 1)(x1 − 2)x2(x2 − 2)/2,

. . . , x1(x1 − 1)x2(x2 − 1)/4} .

(34)

One may express the coordinates xi in terms of the δ’s either by inverting the above
formulas or by direct use of (32), e.g.,

x1 = δ10 + δ11 + δ12 + 2δ20 + 2δ21 + 2δ22 . (35)

2

5.2 Monomial and Taylor bases

Our starting point for the generalization of the monomial and Taylor bases to longer
alphabets is the interpretation, in the binary alphabet case, of the elements of the
Taylor basis as discrete differential operators. As we will see later on in Sect. 7 this is
not the only possibility, but it is a natural one from the algebraic point of view. We
start therefore from the construction of the Taylor basis, which we take to consist of
all monomials in the discrete derivatives ∂i ≡ g0...1...0 − g0...0 (with the 1 in the i-th
position), appropriately normalized7,

Bv =
{

∂R ≡ 1

r1! . . . rN !
∂r1
1 . . . ∂rN

N

∣

∣ ri = 0, . . . , K − 1, i = 1, . . . , N
}

=
{

1, ∂1, . . . , ∂N ,
1

2
∂2
1 , ∂1∂2,

1

2
∂2
2 , . . . ,

1
(

(K − 1)!
)N

∂K−1
1 . . . ∂K−1

N

}

(36)

(R here again is a composite index, R = (r1 . . . rN )). The dual basis Bm is given by

Bm =
{

x(S) ≡ x
(s1)
1 . . . x

(sN )
N

∣

∣ si = 0, . . . , K − 1, i = 1, . . . , N
}

=
{

1, x1, . . . , xN , x
(2)
1 , x1x2, x

(2)
2 , . . . , x

(K−1)
1 . . . x

(K−1)
N

}

, (37)

with x(n) ≡ x(x − 1) . . . (x − n + 1) (so that x(1) = x) and x(0) ≡ 1. It is easily checked
that

〈

∂R, x(S)
〉

= δ S
R ≡ δ s1

r1
. . . δ sN

rN
. Notice that the non-locality of the difference

operators ∂i results in the “spreading out” of the standard momomials xm
i into x

(m)
i .

The matrix Λ̃N,K that effects the change of basis, from the δ’s to the “monomials”
x(r), can be easily computed. Indeed, our analysis, in Sect. 7.5 below, of its tensor
product structure, implies that we only need compute Λ̃1,K . This is a K × K matrix,
connecting x(r) to the delta functions on the line, δm (we drop here the index i as we
are dealing with a single Kit) . Now, x(r) takes the value m!/(m − r)! at x = m, when
m ≥ r, and zero otherwise, implying that

x(r) =

K−1
∑

m=r

m!

(m − r)!
δm , (38)

7The product employed in the monomials derives again from an abelian group structure, given by
translations wrapping around the torus, i.e., by Kit-wise addition of the indices of the vertices, modulo
K.
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from which we infer

(Λ̃1,K) m
r =

{

m!
(m−r)! if m ≥ r

0 otherwise
. (39)

For the inverse matrix, we observe that

1

m!
∂m =

1

m!
(g1 − g0)

m

=

m
∑

r=0

(−1)m−r

r!(m − r)!
gr
1g

m−r
0

=

m
∑

r=0

(−1)m−r

r!(m − r)!
gr , (40)

where the last step uses the abelian (additive) group structure. We conclude that

(Λ̃−1
1,K) m

r =

{

(−1)m−r

r!(m−r)! if m ≥ r

0 otherwise
. (41)

Notice that K does not enter explicitly in the above expressions, making Λ̃1,K a subma-

trix of Λ̃1,K+1 (similarly for Λ̃−1).

Example 5 Monomial and Taylor bases for N = 2, K = 3 strings

The monomial and its dual Taylor bases are

Bm =
{

1, x1, x2 , x
(2)
1 , x1x2, x

(2)
2 , x

(2)
1 x2, x1x

(2)
2 , x

(2)
1 x

(2)
2

}

BT =
{

1, ∂1, ∂2,
1

2
∂2
1 , ∂1∂2,

1

2
∂2
2 ,

1

2
∂2
1∂2,

1

2
∂1∂

2
2 ,

1

4
∂2
1∂2

2

}

. (42)

The matrix Λ̃2,3 effecting the change of basis according to xm = Λ̃2,3xδ, where x denotes,

in each case, the column vector of the basic CF’s, is given by the tensor square of Λ̃1,3.
The latter, as well as its inverse, can be computed from (39), (41), giving

Λ̃1,3 =





1 1 1
0 1 2
0 0 2



 , Λ̃−1
1,3 =





1 −1 1
2

0 1 −1
0 0 1

2



 , (43)

so that

Λ̃2,3 =







Λ̃1,3 Λ̃1,3 Λ̃1,3

0 Λ̃1,3 2Λ̃1,3

0 0 2Λ̃1,3






, Λ̃−1

2,3 =









Λ̃−1
1,3 −Λ̃−1

1,3
1
2 Λ̃−1

1,3

0 Λ̃−1
1,3 −Λ̃−1

1,3

0 0 1
2 Λ̃−1

1,3









. (44)

2

6 Covariant Genetic Dynamics

We now consider dynamical evolution in the different bases for an arbitrary cardinality, in
the presence of the genetic operators of selection, mutation and recombination, focusing
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primarily on the latter. The state of the system, at time t, is described by the KN -
component vector P(t) = PI(t)e

I , the physical interpretation of the components of
which is basis-dependent, and where the eI form a basis in the vector space spanned
by the vertices of CN . In the vertex basis associated with the strings, i.e., when eI are
the vertices of CN , the components PI(t) give the proportion of the string I at time t.
PI is therefore a stochastic variable (when the string population is finite), whose time
evolution is governed by

E(PI(t + 1)) = M J
I P c

J (t) , (45)

where E(PI(t)) is the expected value of PI(t), P c
I (t), in the vertex basis, is the propor-

tion of string J after selection and recombination and M J
I are the components of the

mutation matrix M. For example, for standard point-like mutation for binary strings
M J

I is given, in the string basis, by M J
I = pd(I,J)(1 − p)N−d(I,J), where d(I, J) is the

Hamming distance between the strings I and J , and p is the individual locus mutation
probability.

Interpreting (45) in the light of our discussion on tensors in Sect. 2.4, PI(t) and
P c

J (t) are the components of (0, 1) tensors, while the mutation matrix is a (1, 1) tensor.
In the form shown, (45) is a tensor equation, meaning that, under a coordinate trans-
formation to a primed system, both sides of the equation transform in the same way,
with the result that the functional relations among the primed quantities are identical
to the ones among the unprimed ones. We thus have a covariant formulation of genetic
dynamics.

P c
I can further be written as8

P c
I = (1 − pc)P

′
I + pc(P

′
I + GI − LI) , (46)

pc being the probability that recombination takes place. In the vertex basis, P ′
I is the

probability to select I. For example, in the case of proportional selection, P ′
I is given

by P ′
I = F J

I PJ , where F J
I = (f(I)/f̄(t))δ J

I are the matrix elements of the fitness
matrix F (still in the vertex basis)9f̄(t) is the average population fitness. The gains
term GI in (46) counts the total number of children of type I produced at time t, while
disappearing parents of type I are counted by the losses term LI

10. Clearly, LI is equal
to P ′

I , since, by our definition, every parent participating in recombination is lost, while
GI can be written as

GI =
∑

M

1

2

(

p(M) + p(M̄)
)

λ JK
I (M)P ′

JP ′
K , (47)

where λ JK
I (M) is the conditional probability that given parent strings J and K, and

a recombination mask M , the offspring I is formed11. This probability is either 0 or 1.
The recombination mask M = (m1, . . . , mN ) specifies from which parent a particular
offspring locus is obtained. mi = 0 (1) signifies that the i-th locus of the offspring is
taken from the i-th locus of the first (second) parent. p(M) is the conditional probability

8Henceforth all time-dependent quantities are evaluated at time t, unless explicitly shown otherwise.
9Notice that the index I in f(I) is not a tensor index — the transformation properties of the f(I)’s

are determined by the fact that they are the diagonal entries of a (1, 1)-tensor.
10This organization of terms is different from the one used in past work (Stephens and Waelbroeck,

1997; Stephens, 1999), where only net gains and losses were counted. Final answers are independent of
these different ways of counting.

11We will here restrict to standard homologous recombination though by introducing the concept of
a Generalized Crossover Mask (Poli and Stephens, 2005) more general forms of recombination can be
treated in a similar fashion.
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of applying mask M , given that crossover is done. M̄ denotes the conjugate mask, i.e.,
such that M + M̄ = (11 . . . 1) — we explain further the form of (47) in Sect. 7.3 below.

Substituting the expressions for GI and LI , (45) becomes

PI(t + 1) = M J
I

(

(1 − pc)P
′
J + pc

∑

M

1

2

(

p(M) + p(M̄)
)

λ KL
J (M)P ′

KP ′
L

)

. (48)

which is a covariant form of the dynamics of a system of fixed length strings evolving in
the presence of selection, mutation and homologous recombination. In the vertex basis
it is equivalent to standard formulations in population genetics (Buerger 2000) and EC
(Vose 1999)).

Despite the covariance of (48), the facility of its analysis as well as its physical
interpretation are basis-dependent. The advantage of a covariant formulation is that we
may choose a convenient coordinate system for a given problem, while always dealing
with the same underlying equation, coordinate transformation matrices being used to
transform from one coordinate system to another. Fundamentally, the dynamics is gov-
erned by: the mutation matrix, a (1, 1) tensor with components M J

I ; the (2, 1) tensor
λ(M), with components λ JK

I (M); the mask probability distribution p(M) and the fit-
ness values f(I). In this sense the evolutionary algorithm is a “black box” whose output
depends on a large set of parameters. It is therefore worth looking for symmetries and
regularities that may be exploited to effect a natural coarse graining, making manifest
the effective degrees of freedom of the dynamics.

7 What Basis for Genetic Dynamics?

In Sect. 6 we wrote down the fundamental dynamical equation for the canonical GA
in covariant form. In Sect.s 3.1, 3.2 and 3.3 we introduced three separate bases in
which the dynamics may be examined. We will now see how this dynamics appears
in these bases. Rather than immediately considering all three operators — selection,
mutation and recombination — acting simultaneously, we will first consider them one by
one, showing that each basis that we have considered is best adapted for one particular
operator. Regarding notation, we will generally denote quantities in the Walsh basis
(or its dual) by a hat, and those in the Building Block/monomial (or Taylor) basis by
a tilde — the δ (or vertex) basis quantities will often carry no distinctive mark. The Λ
matrices connecting the δ-basis to the Walsh and monomial bases, will likewise carry a
hat and a tilde respectively.

7.1 Selection

We consider first selection-only dynamics. In Eq. (48), selection is “hidden” inside P ′
I(t).

In the absence of any further information, all that can be said is that the components of
P′ transform like a vector. When P′ is given in terms of a fitness matrix, P ′

I = F J
I PJ ,

the covariant evolution equation is

E(PI(t + 1)) = F J
I PJ (t) , (49)

which in the vertex basis becomes, for proportional selection,

E(PI(t + 1)) =
f(I)

f̄(t)
PI(t) , (50)

meaning that the strings only couple to each other through f̄(t). In terms of unnormal-
ized variables xI , where PI = xI/

∑

I xI , we may write the equation,

E(xI(t + 1)) = f(I)xI(t) , (51)
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all solutions of which can easily be shown to provide solutions of equation (50).
In the infinite population limit, where E(PI(t)) = PI(t), and when the fitness

landscape is time-independent, the above equation can be easily integrated, and the
transformation back to the PI done, to give the well known result (see, for example
(Buerger 2000) )

PI(t) =
f(I)tPI(0)

∑

I f(I)tPI(0)
. (52)

Simple as it may look, Eq. (52) is not satisfactory, as the transformation properties of
the r.h.s. are far from clear — we refer to this as lack of explicit covariance. The remedy,
though, is simple: rewrite (52) using only tensors and invariant contractions of indices
— the reader should have no trouble verifying that the result is

PI(t) =
(Ft) J

I PJ(0)

V I(Ft) J
I PJ (0)

, (53)

where the vector V is given, in the δ-basis, by V = (1, 1, . . . , 1). One can now pass to
another (primed) coordinate system, transforming the tensors in (53) according to

PI′ = Λ J
I′ PJ , F J′

I′ = Λ R
I′ F S

R (Λ−1) J′

S , V I′

= V R(Λ−1) I′

R . (54)

Taking the primed system to be in the Walsh basis, the transformed fitness matrix
F̂ = Λ̂FΛ̂−1 looks complicated, the number and position of non-zero elements depending
on the degree of epistasis in the landscape. In the monomial basis, F̃ = Λ̃FΛ̃−1 is not
diagonal either, however, it can be shown (Rowe and Stephens 2007) that F̃ = F̃D +A,
where F̃D is diagonal and AP̃ = 0. Hence the dynamics is given essentially by a
diagonal matrix, as in the δ-basis. For proportional selection, F̃ J

I = (f(I, t)/f̄(t))δ J
I ,

where f(I, t) is the fitness of the Building Block schema I and is population- (and hence
time-) dependent. To illustrate this, for N = 1, we transform FP from the δ to the
monomial basis to get

F̃P̃ = (Λ̃FΛ̃−1)Λ̃P

=

(

1 1

0 1

)(

f0/f̄(t) 0

0 f1/f̄(t)

)(

1 −1

0 1

)(

1 1

0 1

)(

P0

P1

)

=
1

f̄(t)

(

f0 −f0 + f1

0 f1

)(

P∗

P1

)

=
1

f̄(t)

(

f∗ 0

0 f1

)(

P∗

P1

)

+
1

f̄(t)

(

(f0 − f1)P1 f1 − f0

0 0

)(

P∗

P1

)

=
1

f̄(t)

(

f∗ 0

0 f1

)(

P∗

P1

)

=
1

f̄(t)

(

f∗P∗

f1P1

)

(55)

where f∗ ≡ f0P0 + f1P1 and P∗ = P0 + P1 = 1. The important point here is that the
diagonal elements of the fitness matrix are precisely the natural definitions of fitness for
the corresponding elements of the BBB, i.e. for the associated Building Block schemata.
Thus, although mathematically one can always define a diagonal fitness matrix in any
basis, there is no guarantee that the elements of the fitness matrix are the “natural”
fitnesses of the corresponding transformed basis elements.
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We argued above that strings were the natural effective degrees of freedom for
selection, in that, in the δ-basis, the dynamics is diagonal. The Walsh basis does not
look natural in this sense, as in that basis the different Walsh modes, viewed as effective
degrees of freedom, are coupled together. On the other hand, in the monomial basis the
dynamics is also essentially diagonal and therefore different Building Block schemata are
not coupled by selection. In this sense Building Block schemata are every bit as natural
as effective degrees of freedom as strings. The difference between the two lies in the fact
that in the δ-basis, when the fitness landscape is time independent, the selection-only
equation can be simply integrated, as in (52). On the other hand, as the Building Block
fitnesses, in the above case, are time and population dependent, the integration of the
corresponding equation, xI(t + 1) = f(I, t)xI(t), is, in general, non-trivial.

Note also, that in the particular case of a multiplicative fitness landscape, where
f(I) =

∏N
r=1 f(ir), and a similarly multiplicative initial population composition, PI(0) =

Pi1(0) . . . PiN
(0), one can generate the N -bit solution from the tensor product of N

1-bit solutions. Indeed, writing f̄(t) =
∑

i1
. . .
∑

iN
f(i1) . . . f(iN)Pi1 (t) . . . PiN

(t) =

f̄(i1, t) . . . f̄(iN , t), one obtains

PI(t + 1) =
f(i1) . . . f(iN)

f̄(i1, t) . . . f̄(iN , t)
Pi1 (t) . . . PiN

(t) , (56)

which has as solution, PI(t) =
∏N

r=1 Pir
(t), where Pir

(t) =
f(ir)

tPir
(0)/

∑

r,ir
f(ir)

tPir
(0), i.e., every locus evolves independently.

7.2 Mutation

The dynamical equation for mutation only is

E(PI(t + 1)) = M J
I PJ (t) , (57)

where M J
I are the components of the mutation matrix M, that transforms under a

basis transformation Λ as M → ΛMΛ−1. In the δ-basis, for binary strings, M J
I =

pd(I,J)(1− p)N−d(I,J), and the mutation matrix is evidently non-diagonal. Thus, we see
that the δ-basis is not particularly convenient for the study of mutation, as the string
degrees of freedom are coupled, i.e., the mutation operator converts one string into
another. Changing to the Walsh basis however, M transforms like M → M̂ = Λ̂MΛ̂−1,
with the well known result (see, for example (Vose 1999)

M̂ J
I = (1 − 2p)|I|δ J

I (58)

where |I| is the order of the Walsh mode, defined as the Hamming distance of mode

I from mode (00 . . . 0). Thus, M̂ is diagonal, with the entries (1 − 2p)|I| being its
eigenvalues, each with

(

N
|I|

)

associated degenerate eigenvectors. In the Walsh basis,

equation (57) gives
E(P̂I(t + 1)) = (1 − 2p)|I|P̂I(t) (59)

where P̂I = Λ̂ J
I PJ , and which has as solution, in the infinite population limit,

P̂I(t) = (1 − 2p)|I|tP̂I(0) . (60)

The above can be seen even more simply by noticing that, when the mutation probability
pi of the i-th bit is independent of the other bits, the N -bit mutation matrix factorizes
into the tensor product of N 1-bit factors,

MN = M(p1) ⊗ M(p2) ⊗ . . . ⊗ M(pN ) , (61)
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where, for binary strings, M(pi) ≡
(

(1 − pi) pi

pi (1 − pi)

)

in the δ-basis. The factoriz-

ability of MN is then preserved in all bases,

MN → ΛNMNΛN
−1 = Λ1M(p1)Λ1

−1 ⊗ . . . ⊗ Λ1M(pN )Λ1
−1 . (62)

In the Walsh basis, M̂1 =

(

1 0
0 1 − 2pi

)

, while in the monomial basis, M̃1 =
(

1 0
pi 1 − 2pi

)

. Thus, we see that, in the monomial basis, the mutation matrix is

triangular and hence, as in the case of the Walsh basis, its eigenvalues can simply be
read off from the diagonal.

Once again, if we consider the case where the initial probability distribution, in the
δ-basis, factorizes, i.e., PI(t) = Pi1(t) . . . PiN

(t), then it will factorize in any other basis
connected to the δ-basis by a transformation ΛN = Λ⊗N

1 , as is the case for the Walsh
and monomial bases.

Finally, it is clear that the product of factorizable operators is also factorizable. This
implies, e.g., that when both selection and mutation are present, and the conditions of
factorizability of each of them mentioned earlier are satisfied, each bit evolves essentially
independently of the others.

7.3 Binary alphabet recombination.

We now turn our attention to recombination, the dynamical equation for which is

E(PI(t + 1)) = (1 − pc)PI + pc

∑

M

1

2

(

p(M) + p(M̄)
)

λ JK
I (M)PJPK . (63)

Again, the covariance of (63) guarantees its validity in all bases, with λ JK
I transforming

as a (2, 1)-tensor, i.e., according to

(λ′) J′K′

I′ = λ JK
I Λ I

I′ (Λ−1) J
J′ (Λ−1) K

K′ (64)

and correspondingly PI → Λ J
I PJ . We will now consider recombination in the δ- and

monomial bases. For a discussion of recombination in the Walsh basis, in a different
context, see (Wright, 2000).

7.3.1 Binary alphabet recombination in the δ (“string”) basis.

In this basis PI is the relative proportion of the string I. For each given mask M , there
are generally several pairs of parent strings {J, K} that produce I as their child. The
tensor λ(M) in Eq. (47), in this basis, is given by (m̄i = 1 − mi)

λ JK
I (M) =

N
∏

r=1

(

m̄rδ
jr

ir
+ mrδ

kr

ir

)

(65)

which is 1, if the first child of the recombination of J , K, with mask M , is I, and
zero otherwise (we use the convention that a 0 (1) in the mask denotes that the first
child obtains the corresponding bit from the first (second) parent). Then λ KJ

I (M) =
λ JK

I (M̄) checks whether I is being produced as a second child. Notice the product form
of (65), which indicates that recombination functions “bit by bit”, as will be further seen
in Sect. 7.5.1, when its tensor product structure is considered.
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One may define a mask-independent average λI by λ JK
I =

∑

M p(M)λ JK
I (M),

whereupon (47) becomes, in matrix notation,

GI(t) = PT RIP , RI ≡ 1

2

(

λI + λT
I

)

. (66)

Once again, due to covariance, an equation analogous to the second of (66) is valid in
all bases, since both matrix indices of λI are upper. For reasons explained in Sect. 7.5,
λI is a more convenient object to work with than RI . Ignoring selection and mutation,
Eq. (48) becomes

PI(t + 1) = (1 − pc)PI + pcP
T RIP . (67)

Example 6 N = 2 binary alphabet recombination in the δ-basis

We fix I = 11 and take p(M) = 1/4 (independent of M). From (65) we compute12

λ11(00) =









0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1









, λ11(01) =









0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1









, (68)

while λ11(10) = λ11(01)T and λ11(11) = λ11(00)T . Then

λ11 =
1

4









0 0 0 1
0 0 1 2
0 1 0 2
1 2 2 4









, (69)

and R11 = λ11. Eq. (67) then gives

P11(t + 1) = P11 +
pc

2
(P10P01 − P11P00) . (70)

The equations for the other strings can be simply obtained by renaming the indices. 2

7.3.2 Binary alphabet recombination in the monomial basis.

As the above example shows, recombination is rather complicated in the δ-basis. A more
efficient organization of the various terms that contribute to GI(t) can be achieved if
one thinks in terms of Building Block schemata. For example, 11 can be obtained by
recombining the schemata 1∗ and ∗1, where ∗ denotes the standard wildcard symbol.
Each string gives rise to 2N corresponding Building Block schemata associated with
it, by all possible substitutions of its bits by ∗’s — the corresponding set of schemata
constitutes the BB basis for that string. For example, the string 11 generates the basis
{∗∗, ∗1, 1∗, 11}. Recombination involves the interaction of conjugate schemata only13,
so one expects some sort of “skew diagonalization” of the process in this basis.14 To
connect with the discussion in Sect. 3.3, notice that substitution of a particular bit by a
∗ corresponds, at the level of CF’s, to substitution of a coordinate xi (or x̄i) by the unit
function e. It is then clear that the CF’s of the Building Blocks are exactly the elements

12We write, for simplicity, λ11(00), rather than λ11((00)) etc..
13We define the conjugation ·̄ of schemata: the string I = (i1i2 . . . iN ) generates the basis {∗∗. . . ∗, ∗∗

. . . iN , . . . , i1i2 . . . iN} and īr = ∗ while ∗̄ = ir, if the ∗ is in position r — the conjugate of a schema, in
this sense, is the schema with conjugate bits.

14This skew-diagonalization was first noted in (Stephens 2002) and later discussed by others.
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of the monomial basis of Sect. 3.3. We conclude that the two bases are essentially the
same, with the monomial version formalizing the preexisting Building Block concept.
As a corollary, the Taylor basis is dual to the Building Block basis.

The CF corresponding to a schema is the sum of the CF’s of all vertices (strings)
that the schema matches. On the other hand, it is clear that the probability of a certain
schema is likewise the sum of the probabilities of all strings that the schema matches.
This implies that, in going from one basis to another, probabilities transform like CF’s
— in particular

P̃ = Λ̃NP . (71)

Example 7 N = 2 binary alphabet recombination in the monomial basis

One can calculate the mask-averaged interaction term in the monomial basis, λ̃ JK
I , by

transforming λ according to (64) (with Λ → Λ̃2), to find, for example, for λ̃11,

λ̃11 =
1

4









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









. (72)

As expected, it is skew diagonal. Regarding the structure of λ̃I , there is one non-zero
entry for every mask — in the example above they are all equal to 1/4 because of the
equal probabilities of all masks.

The dynamical equation for P11(t) is

P11(t + 1) = (1 − pc

2
)P11 +

pc

2
P∗1P1∗ , (73)

which by substituting P∗1 = P11 +P01, and analogously for P1∗, can be seen to coincide
with (70). 2

The above result generalizes to arbitrary N (assuming again uniform mask proba-
bility, see Sect. 7.5 below)

λ̃
JK

11...1 = 2−NδJ, 2N +1−K . (74)

In the δ-basis, the equations for the other elements of the basis can be obtained from the
one for 11 . . . 1 by simply renaming the indices. In the monomial basis, the situation is
even simpler: one obtains, for example, the equation for 11∗ from the one for 11 simply
by attaching an extra ∗ to all indices - this generalizes in the obvious way to any number
of ∗’s in any position, so that (74), inserted in (67), gives essentially the equations for
all basis elements, for all N .

7.4 Recombination for K-alphabets

The particular generalization of the concept of monomial and Taylor bases to the length-
K case, presented in Sect. 5, was motivated primarily by aesthetic considerations,
and what we considered a natural, from the algebraic point of view, way to proceed.
Nevertheless, there is no a priori guarantee that these criteria would lead to a useful
structure, from the point of view of recombination. But they do. Our starting point,
in demonstrating this claim, will be the construction of the λ-tensor appropriate for the
case at hand. We consider, in turn, the δ and monomial bases, the Walsh basis for
K-alphabets was considered in (Vose and Wright, 1998a; Vose and Wright, 1998b) .
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7.4.1 K-alphabet recombination in the δ basis.

As in the binary case, λ JK
I (M) is 1, if the first child of the recombination of the

strings J , K, with mask M , is equal to I, and zero otherwise. The difference here is
that the multiindices I, J , K range over KN values each, while M is still composed of
binary indices mi, since we are still dealing with quadratic, i.e., two-parent, processes.
Accordingly, λδ is given by the first of (65), while the mask-averaged λ JK

I and R JK
I

are defined as before.

Example 8 N = 2, 3-alphabet recombination in the δ-basis

We fix I = 12 and take p(M) = 1/4, independent of M . From the first of (65) we
find

λ12(00) =





0 0 0
A A A
0 0 0



 , λ12(01) =





0 0 0
B B B
0 0 0



 , (75)

λ12(10) =





0 A 0
0 A 0
0 A 0



 , λ12(11) =





0 B 0
0 B 0
0 B 0



 , (76)

where

A =





0 0 0
0 0 0
1 1 1



 , B =





0 0 1
0 0 1
0 0 1



 . (77)

The mask-averaged λ is then given by

λ(12) =
1

2





0 C 0
C 2C C
0 C 0



 , where C =
1

2
(A+B) =

1

2





0 0 1
0 0 1
1 1 2



 , (78)

and is equal to R(12). Substituting in (67), we get a somewhat uninspiring dynamical
equation for P12,

P(12)(t + 1) = (1 − pc)P12 +
1

2
pc(P02P10 + P02P11 + P00P12 + P01P12

+ 2P02P12 + 2P10P12 + 2P11P12 + 2P 2
12 + 2P12P22

+ P12P20 + P12P21 + P10P22 + P11P22) . (79)

2

7.4.2 K-alphabet recombination in the monomial basis.

To avoid having to invent too many new symbols, we retain the values (0, 1, . . . , K − 1)
of the indices. In particular, the index 0 will now play the role of the “wildcard” ∗. In

the binary case, the 1-bit Λ-matrix, Λ̃ =

(

1 1
0 1

)

, offered no middle option between

maintaining the identity of the basis element (second row), and completely erasing it
(first row). In the K-alphabet case, all monomial basis elements, apart from the first
and last one, represent intermediate degrees of coarse graining, that interpolate between
the above two. This might be anticipated, but what comes perhaps as a surprise, is
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the particular form of the coefficients in the “partial sums” provided by, e.g., Λ̃1,3 of

Eq. (43), or, Λ̃1,4 below,

Λ̃1,4 =









1 1 1 1
0 1 2 3
0 0 2 6
0 0 0 6









. (80)

One might, naively, have expected all non-zero entries above to be given by 1’s (a true
“partial sum”), but duality to the Taylor basis implies this strange-looking averaging
procedure. Two features of the Λ̃’s are particularly important: triangularity, and the
first row’s string of 1’s (notice that both are preserved by tensor products). The former
guarantees an hierarchical ordering of the monomial basis elements, according to their
degree of averaging, resulting in a partial decoupling of the dynamical equations, since
no PJ can appear in the r.h.s. of the equation for PI , if J is a “finer” variable than
I, i.e., if J corresponds to a higher order schema than I. This fact has been thought
to lie at the root of the simplification provided by the monomial basis in the study of
recombination. We will prove shortly that it is actually quite irrelevant. The whole
magic of the monomial basis stems from the inclusion of the unit function in the basis,
thanks to Λ̃1,k’s first row — we explain its rôle in detail below.

Example 9 N = 2, 3-alphabet recombination in the monomial basis

Continuing Example 8, we compute λ̃12. We transform λδ as a rank-3 tensor, using Λ̃2,3

of Eqs. (43), (44) — the result is

λ̃12 =
1

2





0 D 0
D 0 0
0 0 0



 , where D =
1

2





0 0 1
0 0 0
1 0 0



 , (81)

and is equal to R̃(12). Substituting in (67), and using P̃00 = 1, we get the dynamical

equation for P̃12,

P̃12(t + 1) = (1 − pc

2
)P̃12 +

pc

2
P̃10P̃02 , (82)

arguably an improvement over (79). 2

As can be appreciated, only complementary schemata enter in the r.h.s. of (82) —
notice, in particular, the absence of terms like P̃11P̃12 that might have been expected.
This represents maximal skew-diagonalization, and can be traced to the particular form
of the first row of Λ̃, as we show, in all generality, in Sect. 7.5. The practical implication
is that, quite generally, in the dynamical equation for P̃I , only terms P̃J P̃K enter, such
that J , K can “give birth” to I, with all “unused” Kits equal to zero.

7.5 The tensor product structure of recombination

7.5.1 Factorization of the λ tensor

As we have seen above, the dynamics of recombination in the δ-basis is controlled by
the tensor λ(M), which contains the information about which parents may give rise to a
particular child. In deciding this, one needs to perform a bit-by-bit test, the outcome for
the entire string being the logical AND of the individual bit tests (see Eq. (65), where
AND corresponds to multiplication). The fact that the value of λ(M) factorizes in this
manner, reflects itself in that λI(M), for a length-N string, is the tensor product of the
λ’s of its individual bits,

λI(M) = λi1 (m1) ⊗ λi2(m2) ⊗ . . . ⊗ λiN
(mN ) . (83)
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A simple calculation then shows that the same is true for the mask-independent λ, i.e.,
in matrix notation,

λI = λi1 ⊗ . . . ⊗ λiN
. (84)

Finally, given that ΛN is itself the N -th tensor power of the 1-bit Λ1, we conclude
that the above statements about λ are valid in all bases. Notice that R JK

I does not, in
general, factorize in this manner — this is because checking for the first or the second
child, for N > 1, is not a bit-wise operation.

Example 10 Tensor product structure for a binary alphabet

Consider N = 1 binary recombination in the δ-basis. We find

λ0 =
1

2

(

2 1
1 0

)

, λ1 =
1

2

(

0 1
1 2

)

. (85)

Transforming to the monomial basis we find

λ̃∗ =

(

1 0
0 0

)

, λ̃1 =
1

2

(

0 1
1 0

)

. (86)

The second equation above clearly shows that λ̃11...1 = λ̃⊗N
1 is skew-diagonal for all

N . Notice also that the λ11 given in Eq. (69) is just the tensor square of λ1 given in
Eq. (85) above. 2

Example 11 Tensor product structure for 3-alphabet

We calculate the 1-Kit λI(M) matrices in the δ-basis, as given by the first of (65),

λ0(0) =





1 1 1
0 0 0
0 0 0



 , λ0(1) =





1 0 0
1 0 0
1 0 0



 , (87)

λ1(0) =





0 0 0
1 1 1
0 0 0



 , λ1(1) =





0 1 0
0 1 0
0 1 0



 , (88)

λ2(0) =





0 0 0
0 0 0
1 1 1



 , λ2(1) =





0 0 1
0 0 1
0 0 1



 , (89)

resulting in the mask-averaged λI ’s (with p(M) = 1/2)

λ0 =
1

2





2 1 1
1 0 0
1 0 0



 , λ1 =
1

2





0 1 0
1 2 1
0 1 0



 , λ2 =
1

2





0 0 1
0 0 1
1 1 2



 . (90)

All higher N λ’s can be built from these by tensor multiplication. For instance, a look
at (75), (77) shows that, e.g., the λ12(01) found there is given simply by λ12(01) =
λ1(0)⊗λ2(1). Also, the mask-averaged λ12 of Eq. (78) is given simply by λ12 = λ1⊗λ2.
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Transforming the above λ’s according to (64), with the Λ̃1,3 matrix of (43), we find

for the λ̃’s,

λ̃0(0) =





1 0 0
0 0 0
0 0 0



 , λ̃0(1) =





1 0 0
0 0 0
0 0 0



 , (91)

λ̃1(0) =





0 0 0
1 0 0
0 0 0



 , λ̃1(1) =





0 1 0
0 0 0
0 0 0



 , (92)

λ̃2(0) =





0 0 0
0 0 0
1 0 0



 , λ̃2(1) =





0 0 1
0 0 0
0 0 0



 , (93)

giving the mask-averaged λ̃I ’s

λ̃0 =
1

2





1 0 0
0 0 0
0 0 0



 , λ̃1 =
1

2





0 1 0
1 0 0
0 0 0



 , λ̃2 =
1

2





0 0 1
0 0 0
1 0 0



 . (94)

Higher N λ̃’s are tensor products of the above. For example, λ̃12 of Eq. (81) is clearly
given by λ̃12 = λ̃1 ⊗ λ̃2. 2

For simplicity, we have mainly illustrated the form of the mask averaged λI using a
recombination distribution associated with equal mask probabilities. The case of uniform
crossover also leads to quite simple mask averaged λI . Here, in the binary case, the first
child gets the i-th bit from the first parent with probability pi, resulting in the mask
probability distribution

p(M) =
∏

i∈M0

pi

∏

j∈M1

(1 − pj) , (95)

where Mα is the subset of binary indices in M with value α. For example, for N = 2,
we get

p00 = p1p2 , p01 = p1(1 − p2) , p10 = (1 − p1)p2 , p11 = (1 − p1)(1 − p2) .

Then the average λ still factorizes, with the string basis 1-bit factors

λ0 =

(

1 pi

1 − pi 0

)

, λ1 =

(

0 1 − pi

pi 1

)

, (96)

and their monomial basis counterparts

λ̃∗ =

(

1 0
0 0

)

, λ̃1 =

(

0 1 − pi

pi 0

)

, (97)

where i denotes the position of the bit. We see again that λ̃11...1 is skew-diagonal. It
is easy to see that this generalizes to any probability distribution p(M) since λ̃11...1(M)
itself is skew-diagonal (a fact that does not depend on p(M)) and λ JK

I is a sum over
such matrices. It is equally easy to see that the above results hold also for K-alphabets.
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7.5.2 The origin of skew-diagonalization

We have seen above that in the monomial (Building Block) basis the quadratic part
of the dynamical equation for recombination only involves pairs of conjugate schemata
(see (67), (73), (82)). We examine, in this section, the algebraic origin of this sim-
plification. In particular, we address the following problem: given the form of the re-
combination operator RI in the δ-basis, Eqs. (65), (66), find properties of an invertible
transformation matrix ΛN = Λ⊗N

1 , guaranteeing that the transformed recombination
operator (Λ−1

N )T RIΛ
−1
N assumes the above simplified form. The proposition that follows

establishes a sufficient condition: the first row of Λ1 consists of only 1’s.

Proposition: Given λ(M), defined as in the first of (65), and an invertible matrix
ΛN , such that ΛN = Λ⊗N

1 and (Λ1)
i

0 = 1, 0 ≤ i ≤ K − 1. Then in the basis P′ = ΛNP,
the recombination equations take the building-block reduced (BBR) form

P ′
I(t + 1) = (1 − pc)PI +

pc

2

∑

M

(

p(M) + p(M̄)
)

P
M

(1)
I

P
M

(2)
I

, (98)

where M
(α)
I =

(

m
(α)
1 (I), . . . , m

(α)
N (I)

)

, α = 1, 2, and

m(1)
r (I) =

{

ir if mr = 0

0 if mr = 1
, m(2)

r (I) =

{

0 if mr = 0

ir if mr = 1
. (99)

Proof: From the factorization of the λ(M) tensor, Eq. (83), we get for the mask-
averaged λ,

λ ST
U =

∑

M

p(M)

N
∏

r=1

(

m̄rδ
sr

ur
+ mrδ

tr
ur

)

. (100)

Transforming to the primed basis, as in Eq. (64), and using the factorization of the ΛN

matrix, gives

(λ′) JK
I =

∑

M

p(M)

N
∏

r=1

∑

ur ,sr ,tr

(

(

m̄rδ
sr

ur
+ mrδ

tr

ur

)

(Λ1)
ur

ir
(Λ−1

1 ) jr

sr
(Λ−1

1 ) kr

tr

)

(101)

=
∑

M

p(M)

N
∏

r=1

(

m̄rδ
jr

ir

∑

tr

(Λ−1
1 ) kr

tr
+ mrδ

kr

ir

∑

sr

(Λ−1
1 ) jr

sr

)

. (102)

However, for the sum of the elements of a column of Λ−1
1 we find

δ v
0 =

∑

l

(Λ1)
l

0 (Λ−1
1 ) v

l =
∑

l

(Λ−1
1 ) v

l , (103)

since (Λ1)
l

0 = 1 for all l. Substituting in (102) gives

(λ′) JK
I =

∑

M

p(M)

N
∏

r=1

(

m̄rδ
jr

ir
δ kr

0 + mrδ
kr

ir
δ jr

0

)

. (104)

Consider now the factor, in the above product, corresponding to a particular value of r
— this is just the 1-Kit transformed λ(m) tensor, (λ′(mr))

jrkr

ir
. Contracting its two
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upper indices with arbitrary vectors x, y, one gets

(λ′(mr))
jrkr

ir
xjr

ykr
=
(

m̄rδ
jr

ir
δ kr

0 + mrδ
kr

ir
δ jr

0

)

xjr
ykr

(105)

= m̄rxir
y0 + mrx0yir

(106)

=

{

xir
y0 if mr = 0

x0yir
if mr = 1

. (107)

It is clear then that the terms that appear in the quadratic form (λ′) JK
I PJPK contain

the indices (i1, . . . , iN) distributed between the two P ’s, and whenever one P receives
an ir as an index, the other gets a 0, i.e.,

(λ′) JK
I PJPK =

∑

M

p(M)P
M

(1)
I

P
M

(2)
I

, (108)

in the notation of (99). Adding the contribution of the transpose of λ, in order to form
RI , one gets the extra term proportional to p(M̄) in (98). �

Notice that the summand in (98) is invariant under M → M̄ , so that the 1/2 factor in
front of the sum can be omitted, if the latter is restricted to only half the masks, omitting
their conjugates. We find it rather remarkable that the final form of λ′, Eq. (104), only
depends on the fact that (Λ1)

i
0 = 1, and the invertibility of Λ1, but is otherwise insen-

sitive to the structure of Λ1. Since the Λ̃1 matrix connecting the string and monomial
bases satisfies the above conditions (see Eq. (39)), the result (104) holds, in particular,
for λ̃.

In Sect. 5.2 we defined the monomial basis for Kit strings as the dual of the Taylor
basis. Exploiting the liberty afforded by the above observation about (Λ1)

i
0 = 1, we can

define an alternative basis whose elements are purely strings or schemata. This is done
using the K × K transformation matrix, for N = 1,

Λ1 =



















1 1 1 1 · · · 1
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...

0 0 0 0 · · · 1



















. (109)

Λ−1
1 has the sign of off-diagonal elements flipped. The corresponding transformation

matrix for arbitrary N , ΛN , is found, as before, by just taking the N -fold tensor product
of Λ1 — the corresponding basis elements are purely strings or schemata.

7.5.3 “Zapping”

As mentioned earlier, given the dynamical equation for recombination of a particular
string in the δ-basis, a similar equation for any other string can be obtained simply
by renaming of the indices. One may wonder how in the BB basis, given the equation
for a particular string, one generates equations for the other elements of the basis. As
these other basis elements represent schemata one must consider how to coarse grain
the string equation to obtain equations for schemata. This coarse graining was carried
out explicitly in (Stephens and Waelbroeck 1997; 1999; Stephens, 2001) by directly
summing over the allele values of those loci which were not in the corresponding schema
partition. The resulting equations were shown to be form invariant. Later, Vose and
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collaborators (Vose 1999; Vose and Wright 2001) generalized this result to arbitrary
cardinality GAs, while in (Vose, Wright and Rowe 2004) it was generalized to a more
general class of crossover operators. In the latter works the projection to schemata from
strings was achieved by a mask representation that directly mapped from, for example
binary strings, CN to CNM , where NM is the subspace picked out by the mask M .

Here we will show how one can pass from strings to schemata without projecting
onto a lower dimensional space so that the transformation can be implemented using a
square matrix that, importantly, can be written as a bit-wise tensor product. This has
the important ramification that all our tensor machinery can still be brought to bear.

In the BB basis, consider schemata I, J , where I can be obtained by coarse graining
J (turning non-∗ indices of J into ∗’s). Then the dynamical equation for I can be
obtained from the one for J by an operation which we call “zapping”. This consists
in summing over all values of a non-∗ index to turn it into a ∗. We remark here that
the process can be formalized further, taking into account the tensor product structure
of the matrices involved. Indeed, restricting for the moment to the binary case, the
dynamical equation for recombination is governed essentially by the 1-bit λ’s, Eq. (86),
or, more generally, (97). It is now a simple matter to verify that

ZT λ̃1Z = λ̃∗ , Z =

(

1 0
1 0

)

. (110)

This fact can be used to obtain λ̃I from λ̃J as follows

λ̃I = ZT
IJ λ̃JZIJ , ZIJ = A(i1, j1) ⊗ . . . ⊗ A(iN , jN ) , (111)

where

A(ir, jr) =

{

I2 if ir = jr

Z if ir 6= jr

. (112)

In words, two schemas I, J as above, will differ in that some of the 1’s of J are replaced
by ∗’s in I. This means that, in the corresponding λ-matrices, λ̃I , λ̃J , each of which
is a tensor product of λ̃1, λ̃∗ factors, the difference lies in that some of the λ̃1 factors
in λ̃J are replaced by λ̃∗ factors in λ̃I . The matrix ZIJ defined above implements this
substitution by conjugation by a Z factor in just the right places (and a unit matrix
factor in the rest). RI then is obtained by RI = ZT

IJRJZIJ .

Example 12 Two-bit zapping

We show here how to derive λ̃1∗ from λ̃11 by zapping the latter. We have (see
Eqs. (84),(86))

λ̃1∗ = λ̃1 ⊗ λ̃∗ =
1

2

(

0 1
1 0

)

⊗
(

1 0
0 0

)

=
1

2









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









. (113)

Since the schema (1∗) only differs from (11) in the second bit, the corresponding zapping
matrix is given by

Z(1∗)(11) = I2 ⊗ Z =

(

1 0
0 1

)

⊗
(

1 0
1 0

)

=









1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0









. (114)
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It is now a matter of straightforward matrix multiplication to verify that
λ̃1∗ = ZT

(1∗)(11)λ̃11Z(1∗)(11), where λ̃11 is given in Eq. (72). 2

Exactly analogous statements are easily seen to hold true in the K-alphabet case.
Taking J = I ≡ (11 . . .1), we get for the dynamical equation of any schema I in the
corresponding basis

PI(t + 1) = PT ZT
II

RIZIIP

= (1 − pc)PI + pcP
T
II

RIPII , (115)

where PII ≡ ZIIP. The quadratic term in the r.h.s. of (115) can now be interpreted
as the norm squared of the vector PII in the (I-independent) metric RI. Thus, we see
that we can generate all the dynamical equations for the Building Block schemata of
any string by simply “zapping” the dynamical equation for that string.

Equation (115) exhibits the characteristic form invariance of the dynamical equa-
tions under a coarse graining that has been noted previously (Stephens and Waelbroeck,
1999).

8 Conclusions

We presented GA dynamics in a covariant form, showing how different existing formu-
lations — string, Walsh mode, Building Block schemata — can be related by linear
coordinate transformations. It was shown that the N -bit transformation matrices are
the N -th tensor power of the corresponding 1-bit matrices. The covariance of the dy-
namical equations guarantees their validity in all bases — nevertheless, the analysis and
its interpretation can be greatly simplified by choosing the basis best adapted to the
genetic operator under study. The string basis is convenient for selection-dominated dy-
namics, while the Walsh basis is natural for dynamics dominated by mutation. In this
paper we concentrated on the most complicated operator — recombination — showing
how the BB basis offered the most natural description, the effective degrees of freedom
of recombinative dynamics being Building Block schemata. Introducing a description
in terms of characteristic functions in configuration space, we showed that the BB basis
is dual to the standard Taylor basis. A thorough analysis of the factorizability of the
various operators was given, resulting in an enormous simplification of their calculation
in the different bases. Finally, we showed that by “zapping”, i.e., coarse graining, the
dynamical equation in building block form for an arbitrary string one may generate
the dynamical equation for any Building Block schema of that string and thereby the
dynamical equation for any other string.

With the unification program for EC in mind, one might wonder if a covariant
formulation also exists for GP. Recently, the BB basis has been derived for variable-
length GAs and GP (Poli and Stephens, 2005) hence, as more than one coordinate
system is of utility there too, it would be of interest to write the dynamics of a GP
system in covariant form.
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