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Hot nuclear matter is studied in the framework of quantum hadrodynamics. General principles
of covariant thermodynamics and thermodynamic consistency are discussed, and these principles
are illustrated by computing nuclear matter properties in an arbitrary reference frame, using the
mean-field approximation to the Walecka model. The results are shown to be Lorentz covariant,
and thermodynamic consistency is demonstrated by proving the equality of the “thermodynamic”
and “hydrostatic” pressures. The mean-field results are used in a simple hydrodynamic picture to
discuss the phenomenology of heavy-ion collisions and astrophysical systems, with an emphasis on

new features that arise in a covariant approach.

1. INTRODUCTION

The accurate description of hot, dense matter is an im-
portant problem in theoretical physics. Shortly after the
Big Bang, the universe was composed entirely of hot,
dense matter; calculations based on quantum field theory
at finite temperature and density have been used to de-
scribe this pervasive quark-gluon plasma'! * and to inves-
tigate symmetry restoration.” % In the present universe,
the nuclear equation of state as a function of tempera-
ture, density, and the ratios of protons to neutrons and
nucleons to hyperons is needed to study stellar collapse
through a possible supernova phase into a neutron star.’
On a smaller scale, we can explore the same nuclear dy-
namics through energetic collisions of heavy ions, where
at least part of the hot matter can be described in terms
of hadrons. Moreover, it is hoped that a quark-gluon
plasma can be created in the laboratory at energies at-
tainable in the proposed Relativistic Heavy-Ion Collider
(RHIC), so that the transition between hadronic and
subhadronic degrees of freedom can be studied.

To investigate this wide variety of phenomena, one
needs a consistent microscopic treatment of strongly in-
teracting, relativistic, quantum-mechanical systems.
With such a framework we can compute both static ther-
modynamic properties (such as energy, pressure, and en-
tropy) and dynamical characteristics (such as viscosity,
transport coefficients, and collective modes and their
damping). In addition, we can study the production and
absorption of particles under extreme conditions and map
out the nuclear matter phase diagram. Ultimately, we
would like to develop techniques for nonequilibrium sys-
tems, in order to describe the development of two isolat-
ed nuclei into a single system in equilibrium.

In the nuclear domain, these problems are traditionally
studied with the Schrodinger equation for nonrelativistic
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nucleons interacting through static, two-body potentials.
Although the Schrodinger equation has been useful in
this program for many years, new experimental facilities
will force us to extend this framework to compare calcu-
lations with the data of the future. A more complete
treatment of hadronic systems should include relativistic
motion of the nucleons, dynamical mesons and baryon
resonances, modifications of the nucleon structure in the
nucleus, and the dynamics of the quantum vacuum, while
maintaining general properties of quantum mechanics,
covariance, gauge invariance, and causality. These physi-
cal effects will be relevant regardless of the degrees of
freedom used to describe the system, and they must be
studied simultaneously and consistently to draw definite
conclusions about nuclear dynamics at high tempera-
tures, high densities, and short distances.

In this paper, we study hot, dense nuclear matter using
a renormalizable, relativistic quantum field theory of
mesons and baryons, which is known as quantum hadro-
dynamics (QHD).!® QHD is consistent in the sense that
the dynamical assumptions (such as the relevant degrees
of freedom, the form of the Lagrangian, and the normali-
zation conditions) are made at the outset, and one then
attempts to extract concrete results from the implied for-
malism. In principle, the assumptions permit the formu-
lation of systematic, ‘“‘conserving” approximations'!!?
that maintain the important general properties men-
tioned earlier. Calculations can then be compared to
data to see if the framework is related to the real world,
and to decide where QHD succeeds and where it fails.

We focus on some general aspects of relativistic many-
body systems at finite temperature and density, such as
covariant formulations of thermodynamics and the
preservation of thermodynamic consistency in micro-
scopic calculations. We illustrate these aspects by per-
forming a covariant calculation of finite-temperature nu-
clear matter properties in the mean-field approximation
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to the Walecka model (QHD-I).!*!® This model contains
some basic elements of hadronic theories of nuclei, name-
ly, baryons coupled strongly to neutral scalar and vector
fields. Although this is a simple calculation, it produces
some informative results, such as the Lorentz transforma-
tion properties of the temperature and chemical poten-
tial; it also illustrates that a preferred frame (the frame of
the “thermal bath” in contact with our system) does not
destroy the covariance. In a future paper, we will de-
scribe systematic techniques for going beyond the mean-
field approximation using covariant, finite-temperature
Feynman rules in real and imaginary time. These tech-
niques are based on a path-integral representation of the
quantum partition function extended to the complex time
plane'* and can be used to compute both static thermo-
dynamic properties and dynamical characteristics. The
calculations presented here provide a convenient bench-
mark for our discussion of more general techniques, and
also introduce concepts that will be important in subse-
quent developments.

There are several reasons for considering models with
only hadronic degrees of freedom. First, these variables
are the most efficient at low densities and temperatures
and for describing particle emission and absorption, as
hadrons are the particles observed experimentally.
Second, hadronic calculations can be calibrated by com-
paring to observed hadron-hadron scattering and empiri-
cal nuclear properties; we can then extrapolate to ex-
treme conditions and test the predictions of the models.
Third, the formulation of practical, reliable techniques
for finite-density calculations in strong-coupling relativis-
tic quantum field theories is a problem that is basically
unsolved.’> ™7 The development of such tools in a ha-
dronic field theory is not only useful in its own right, but
it may also provide insight into similar approaches for
quantum chromodynamics (QCD). Finally and most im-
portantly, we must understand the limitations of a purely
hadronic theory to deduce true signals of QCD behavior
in nuclear matter.

We consider three main topics in the present work.
First, we discuss thermodynamic consistency in calcula-
tions of hot, dense nuclear matter. Consistency implies
that the “thermodynamic” pressure calculated from the
thermodynamic potential agrees with the “hydrostatic”
pressure computed from the trace of the stress tensor.
(This is sometimes called the virial theorem.') The
mean-field theory is consistent (as we demonstrate), as is
the exact quantum field theory,'* but it is difficult to ob-
tain consistency in other approximations to the relativis-
tic many-body problem.!® This is an important topic for
future work. We also study how covariance is achieved
by comparing a canonical calculation carried out directly
in a frame where the nuclear matter is moving to one per-
formed in the frame where the matter is at rest. Al-
though manifest covariance disappears in the calculation,
we show that the results are covariant and relate them to
a manifestly covariant formulation. Finally, we illustrate
our covariant results using hydrodynamic models to de-
scribe the systematics of heavy-ion collisions and astro-
physical systems. Although the hydrodynamic approach
in infinite matter is an oversimplification, it gives the

most direct connection to the thermodynamics and al-
lows us to study new ideas in a simple fashion. In partic-
ular, the covariant approach elevates the velocity and
momentum density of the system to the status of conju-
gate thermodynamic parameters, and we examine the im-
plications for dense, rapidly flowing systems. We post-
pone to a future paper the extension of these results to
more sophisticated approximations.

The outline of this paper is as follows: In Sec. II, we
discuss covariant thermodynamics, establish notation,
and present working definitions of Lorentz covariance
and thermodynamic consistency. In Sec. III, hot, flowing
nuclear matter is studied in the mean-field approximation
to the Walecka model, using the familiar procedures of
canonical quantization. In Sec. IV, we examine the prop-
erties of nuclear matter, concentrating on the differences
that arise when the matter is observed in uniform motion.
We also examine the nuclear matter phase diagram and
the various regions of phase space that may be achieved
in current heavy-ion experiments. We emphasize, howev-
er, that our results are obtained from a simple approxi-
mation to a simple model; our focus is not on quantita-
tively accurate predictions but rather on basic and impor-
tant features of hot, dense, relativistic many-body sys-
tems. Many of these features will remain in more sophis-
ticated calculations.

II. COVARIANT THERMODYNAMICS

Here we summarize some important formulas for the
covariant description of a uniform, isolated system in
equilibrium. These results are not new; our purpose is to
define notation, to establish working definitions of
Lorentz covariance and thermodynamic consistency, and
to clarify which calculated quantities provide nontrivial
tests of the consistency of a particular approximation.
For a more complete discussion of the thermodynamic
formalism, see Refs. 2, 19, and 20.

We begin by defining primary thermodynamic functions
for the equilibrium system:

energy-momentum tensor: T#Y (2.1)
entropy flux vector: S*, 2.2)
baryon current density vector: B* . (2.3)

These quantities are covariant and involve no specifica-
tion of a particular reference frame. We assume the con-
servation laws

3,T*'=0, 3,B=0, 2.4)

and the symmetry of T#". Our conventions are those of
Ref. 10, with a metric g#"=diag(+,—,—,—), and we
use natural units with #i=c =kg=1.

Our main objective is to compute these thermodynam-
ic functions by taking ensemble averages of the corre-
sponding quantum-mechanical operators, which will be
denoted with carets, for example, T'#¥_ In the theories we
consider, the conservation laws (2.4) are satisfied as a
consequence of the field equations resulting from the
model Lagrangian. Moreover, although it is possible to



264 R.J. FURNSTAHL AND BRIAN D. SEROT 41

construct a symmetric energy-momentum-tensor opera-
tor T#”=T ", this is unnecessary for a uniform system.
(The nonsymmetric part of 74" can be written as a total
divergence, whose diagonal matrix elements vanish be-
tween eigenstates of total four-momentum.?!)

The primary thermodynamic quantities (2.1)-(2.3) are
generally functions of six variables:

baryon thermal potential: « , (2.5)
inverse temperature: [, (2.6)
fluid four-velocity: u# , 2.7
volume: V . 2.8)

The volume V will be taken large and fixed throughout
the calculation; we let ¥ — « at the end to define the
“thermodynamic limit” and restore invariance under
translations. The quantities a and 8 are Lorentz scalars
defined by

B= TL a= % ,
where T’ and ' are the temperature and baryon chemi-
cal potential in the comoving frame, where the fluid
three-velocity v=0. Throughout this work, when we
refer to a quantity that may be defined by an observer in
any frame, the value taken in the comoving frame will be
denoted with a prime. The primed value is, by definition,
a Lorentz scalar, and these scalars are commonly used as
the thermodynamic variables for the system.?*?>2 For
the present development, however, it will be more con-
venient to allow all observers to define their own temper-
ature, chemical potential, etc., and a prime simply distin-
guishes the value observed in the comoving frame.

The fluid four-velocity vector u® can be written in
terms of the three-velocity v as

(2.9)

ut=n(1,v), n=(1—v>)~1/2. (2.10)

(We reserve the more conventional symbol y for later
use.) There are only three independent components in
u#, since u, u"=1. In the comoving frame, ut'=(1,0).
It is also convenient to introduce a timelike thermal
four-vector
Br=put= 1 uh
T' »
which depends on the four independent variables 3 and v.
One now introduces secondary thermodynamic func-
tions that are defined in the comoving frame and are thus
Lorentz scalars:

(2.11)

pressure: p'=p , (2.12)
proper energy density: &', (2.13)
proper entropy density: o', (2.14)
proper baryon density: py , (2.15)
scalar density: p;=p; . 2.16)

The pressure p and the scalar density of baryons p, are

the same in all frames,!® so the primes are superfluous. In
the thermodynamic limit, these secondary quantities are
functions of a and B (or u’ and 7T”) only.

The secondary thermodynamic functions can be used
to construct the primary functions in any frame:

TH=(&"+p)utu’—pg"", (2.17)
St=g'ut , (2.18)
Br=pluh . (2.19)

In the thermodynamic limit, the primary quantities are
functions of a, 3, and u*, or equivalently, a and B¥. We
now make the following working definition.

If the theory (or approximation) is Lorentz covariant,
calculation of the secondary quantities and insertion into
Egs. (2.17)-(2.19) should give the same result as the
direct evaluation of the primary quantities (2.1)-(2.3) in a
Jframe where v#0.

There has recently been some controversy regard-
ing Lorentz covariance in calculations of relativistic
many-body systems. Difficulties may arise when one tries
to construct approximations to boost operators or states.
Nevertheless, the covariant calculation of matrix ele-
ments (thermodynamic functions, Green’s functions, S-
matrix elements, etc.) is straightforward in a uniform sys-
tem, even at finite temperature and density.25 In the next
section, we demonstrate how covariant matrix elements
can be calculated in a canonical approach.

With the preceding definitions, we can discuss the ther-
modynamics of the system. All equilibrium results follow
from the first law of thermodynamics, which is written
covariantly as?°

B AT =dS*+adB" .

23,24

(2.20)

This important expression can be recast in more familiar

form by inserting Eqgs. (2.17)-(2.19). After taking the in-

dicated differentials and realizing that u* and du* are or-

thogonal vectors, we find the two scalar equations
d&'=T'do’'+u'dpy ,

G'=—p+T'o'+upy.

.21
(2.22)

These will be recognized as the usual first law and Gibbs’
relation,?® written in the comoving frame at fixed volume
V’. Equation (2.21) produces the familiar thermodynam-
ic results at fixed volume

ag’
do’

1
b

I
9pp

=u' . (2.23)
lr"‘p;,3

V',a'

Moreover, if we specialize to a system at zero tempera-
ture, a combination of Eqs. (2.22) and (2.23) reveals

28 |6

95 | P

These results allow us to make another working
definition.

If the theory (or approximation) is thermodynamically
consistent, secondary quantities calculated from operator
ensemble averages should satisfy Gibbs’ relation and the
corresponding differential laws.

p=(pg) (T=0). (2.24)
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This definition of consistency is most important when
applied to the pressure, since p can be computed from ei-
ther the thermodynamic potential®® or from the trace of
the stress tensor.”’ (See the discussion below.) We will
call an approximation thermodynamically consistent only
if the two results for the pressure agree.

If we rewrite Eq. (2.22) as

put=—&ut+T o'ut+u' pgut
=—u,T"+T'S*+u'B*, (2.25)

division by T’ gives the covariant form of Gibbs’ relation
ppt=—B T**+St+aB* . (2.26)

This expression can be rewritten as a differential relation
using Eq. (2.20), with the result

d(pp*)=—T"*dB,+B*da . (2.27)

If a calculation is both Lorentz covariant and thermo-
dynamically consistent (as defined above), then both
(2.26) and (2.27) should hold. Since the (constant volume)
thermodynamic functions depend only on a and 8, Eq.
(2.27) implies

n "
—P—a(a;) =—T™, —ﬂ——a(af) ,=BY. @28

Note that these manipulations require greater care for
systems at zero temperature. In particular, one must re-
turn to Eq. (2.25) and remember that u* has only three
independent components to derive

d(pu*)='T®—T")du,+B*dy’ (T=0). (2.29)

To compute the thermodynamic functions in a particu-
lar theory, one must relate them to ensemble averages of
quantum-mechanical operators. This is achieved by
defining a grand partition function Z and a four-vector
thermodynamic potential ®#=®*(a,B") through

Z=exp |— fdAuCD“(a,Bv)

=Tr |exp |~ [an 8P —aB || . 230

Here A, is a spacelike hypersurface, and these expres-
sions are manifestly Lorentz invariant. In the comoving
frame, Eq. (2.30) reduces to the familiar result

Z=Tr{exp[—BH—wB)]} , 2.31)

where H is the Hamiltonian and B is the baryon number
operator. The motivation and justification for Eq. (2.30)
will be discussed in Sec. III, where we show how this
definition arises naturally from a canonical calculation of
the grand partition function in an arbitrary reference
frame.
If one makes small variations in B* and «, it follows
immediately from Eq. (2.30) that
do*=T""dpB,—B*da . (2.32)

Here the classical quantities on the right-hand side are
defined as usual by ensemble averages:

A=A

=Z Tr

Aexp [— [dA BT —aB®) ] } . 233
Thus we have

aPp*
a3,
To relate the thermodynamic four-potential ®# to

more familiar quantities, recall that the conventional
thermodynamic potential®®

Q=UT", V', u')=(6'—T'oc'—pu'pg) V'

Lol
oa

:T/'“” = —BH

B,

(2.34)

a

(2.35)

in the comoving frame can be used to define the “thermo-
dynamic pressure”

—QUT,V',u)

P= v (2.36)
A comparison of Egs. (2.28) and (2.34) implies that
e a4
= UTLVu) u (2.37)
VT
so that
Q=B T —St—aB* . (2.38)

If a calculation is Lorentz covariant, the computation
of ®* from Eq. (2.37) should agree with the resuit deter-
mined directly from (2.30) in an arbitrary frame. If the
calculation is also thermodynamically consistent, the
thermodynamic pressure determined from Eq. (2.36) or
(2.37) should agree with the ‘hydrostatic’” pressure
defined by the ensemble average of the stress-tensor
operator in the comoving frame:

p=1UT 1.

This equality of the thermodynamic and hydrostatic pres-
sures is sometimes called the virial theorem,'* because the
classical virial theorem of Clausius is implied by it.
Whereas the theorem holds as an exact result in relativis-
tic quantum field theory, it is often difficult to maintain in
approximate calculations. '

(2.39)

III. HOT, FLOWING NUCLEAR MATTER

To illustrate the ideas in the preceding section and to
provide a concrete example of a covariant calculation, we
consider a uniform system of hot, flowing nuclear matter.
We work in the mean-field approximation to the Walecka
model,'>'° in which Dirac nucleons interact with classi-
cal scalar and vector fields. Vacuum contributions will be
ignored here for simplicity, but can be included straight-
forwardly in this renormalizable model.?"?

Hot nuclear matter??®% and flowing nuclear
matter?”3%10 have been studied separately in this model,
but to our knowledge, the present calculation is the first
to treat the general case.’! Extensions beyond the mean-
field approximation are postponed to a forthcoming pa-
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per,?® where we derive covariant Feynman rules for sys-
tems described by quantum hadrodynamics at finite tem-
perature and density.

We have three goals in this section. First, we want to
illustrate the calculation of thermodynamic functions in
an arbitrary reference frame. By relating the results to
those computed in the comoving frame, the covariance of
the calculation can be verified. Second, we want to dis-
cuss the thermodynamic constraints, showing which are
satisfied trivially and which are not. Third, we want to
justify the covariant definition of the partition function in
Eq. (2.30). Clearly, if one starts with this definition, the
resulting calculation of the trace is guaranteed to be co-
variant. In contrast, our approach begins with a straight-
forward canonical treatment of the thermodynamics of a
moving relativistic fluid. Although manifest Lorentz co-
variance is lost, we prove that the calculated results are
covariant and then show that the canonical partition
function agrees with Eq. (2.30) for a particular choice of
hypersurface A,. In Sec. IV, we discuss some of the
physical properties of hot, flowing nuclear matter in this
simple relativistic model.

Our starting point is the mean-field theory (MFT) La-
grangian for the Walecka model. (This is called QHD-I
in Ref. 10.) Since the nuclear medium is homogeneous,
the classical meson fields ¢ and V* are constant, but since
the matter is flowing with velocity v, there is a uniform
baryon flux B. Thus the classical vector field has both
temporal and spatial components: V#=(V,V), and the
mean-field Lagrangian density is

Lyer =1y, (i*—g, V) — (M —g.$) ¢
—imi*+imVEV, 3.1
The conserved baryon four-current and energy-
momentum tensor can be derived in the usual
fashion,*>?? resulting in
BA=(pg, B)=Yy"Y , (3.2)
T“V=i¢y"a"¢—%(m3VAV;L—m;°'¢2)g’“' : (3.3)

Since the meson fields are classical, only the fermion
field must be quantized. The Dirac field equation follows
from L et

(M —g ) ](t,x)=0

and since this equation is linear, it can be solved exactly.
We look for normal-mode solutions of the form

liv, o —g v V'— (3.4)

¢§(—}t )(t,x)z U(k,)\‘)etk-x—ieh'(k)t ,

e 3.5)
U (6,%)= V(k,A)e ~kex—ie T o

so that the spinors obey

[€P(k)—g, Vo lUkA)=[a(k—g,V)+BM*U(k,A

- (3.6)
[€7(—Kk)—g, V1V (k,A)

=[a-(—k—g,V)+BM*]V(k,1)

where M*

=M —g.¢. (The Dirac matrices a and f

should not be confused with the thermodynamic parame-
ters introduced in Sec. II.) These conventions are useful,
since the resulting single-particle spectrum can be written
in the compact form

e (k)=g ¥V t[(k—g, VI +M**]'?
=g, V(,i(K2+M*2)1/2
=g VotE*(x), (3.7

where the second line defines the kinetic momentum
xk=k—g,V, and the final line defines E *(k).
The baryon field operator can be written as

Wex)=v 12 S[A4 U(k,}x)eik"‘_"f(+"k)’
kA

_Q_Bll:}\V(k,}\‘)e"ik~x~i5(h)(*k)t] , (3.8

where V is the volume of the system and the spinors have
the (noncovariant) normalization

Uk, MUK A) =V (K, DV (KA =85, .

We now impose the equal-time anticommutation rela-
tions

((,x),¥(1,y)} =8V (x—y) ,
(s, x), ¢, y)} = {¢'(,%),4 (4,y)} =0,

which produce the famlhar antlcommutators for the
mode amplitudes 4y;, N w» Bya, and Bkk

The field operators ¥ and ¢' can now be used to con-
struct the baryon number operator B= f d*x ¥y°¢ and

(3.9}

the four-momentum operators Pr=(H, P)= fd x T,
with the results*
B=3 (4], 45, — BBy, (3.10)
kA

ﬁ: EE*(K)(AllAk)L +Btk)\Bfkk+gvVO§
kA

Lmip+miVi—-miVi)v , (3.11)

P=Sk(4], 4, +BLB,,) . (3.12)
ki

Note that P involves a sum over canonical momenta k,
not kinetic momenta x. To obtain these expressions, the
operator products have been normal ordered, so that all
destruction operators are to the right, and c-number
pieces have been omitted. As discussed in Ref. 10, the c-
number contribution to the Hamiltonian leads to vacuum
corrections, which we will neglect here. Note that, in
principle, there are also contributions to the energy and
momentum from thermal excitation of real mesons.
Since these do not become appreciable (in this model) un-
til very high temperatures (T'X mg, m,), we omit these
terms.

The MFT Hamiltonian (3.11) is diagonal, so we have
solved this model problem exactly (once we have specified
the meson fields). Since B and P are also diagonal, the
baryon number and total momentum are constants of the
motion, as are their corresponding densities pg and P,
since the volume is fixed. At zero temperature, the
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ground state of the moving medium is obtained'®3" by
filling energy levels up to a nonspherical Fermi surface
kg. The shape of the Fermi surface is determined ther-
modynamically by minimizing the mean-field energy den-
sity & at fixed baryon density pg and momentum density
P. This is achieved by introducing Lagrange multipliers
for the chemical potential and flow velocity, so that the
quantity to be minimized is

E(kg; 8, Vo, V) —ppykp) — v-Plkg) . (3.13)

Note that the thermodynamic quantities appearing in this
expression are defined in the “laboratory” frame, where
the fluid has velocity v.

To describe the system at finite temperature, we need a
thermodynamic potential and partition function that will
select the correct ground state in the T—0 limit. Thus
we are naturally led to define

Z=Trexp[—(ﬁ—y§——v-/l;)/T]

=expl—UT,V,u,v)/T] . (3.14)

As before, all thermodynamic parameters in this expres-
sion are defined by an observer in the laboratory frame.
In addition, as is clear from the discussion before Egs.
(3.10)-(3.12), the thermodynamic functions &, pg, and P

|

QUT,V,u,v)=—T1InZ

=Um2g 4+ mIVi—mV )V —T 3 [In(1+e ~[E* 0~

kA

The sum runs over all single-particle states labeled by

momentum k and intrinsic quantum numbers A. The

effective chemical potential v is defined by
v=p—g,(Vo—v'V),

which is called p g in Ref. 30.
The ensemble average of an operator 4 is given by

(3.19)

A=(AN=Z""Tr( Ae ~H-uB-vPr/1) (3.20)
For example, the baryon density is
_ KBy _ 1 3 |_1
PB=— % a# E(n (3.21)

Here the partial derivative is taken with all other thermo-
dynamic parameters and field variables held fixed, and we
have identified the particle and antiparticle occupation
numbers

n,= =(1_+_e[E*(K)~v-K7v]/T)—1

n.=n(T,v,v)

n(T,v,v) (3.22)

:(I+e[E*(K)+v~x+v]/T)* (3.23)
By comparing Eq. (3.21) with (3.10), it appears that we
can identify the occupation number as the ensemble aver-
age of the number operator for each mode. Some care is
required, however, with the signs. Notice that

1

vV

aH
M

2 L)\Ak)\_*_Btk)LBfkk) (3.24)

kAE

are defined in a natural way for this observer. The rela-
tion of these observables to those in the comoving frame
(the “primed” observables), as well as the connection be-
tween Egs. (3.14) and (2.30) will be clarified in the subse-
quent discussion. The thermodynamic potential Q also
depends parametrically on the meson fields, which will be
chosen to make (Q stationary.
The first law of thermodynamics in the laboratory
frame reads
dE=TdS —pdV +udB+v-dP, (3.15)
so that the energy is a natural function of the extensive
variables S, V, B, and P. The thermodynamic potential is
given by the Legendre transformation

AT, V,u,v)=—pV=E—TS—uB—v-P, (3.16)
so that
dQ=—SdT—pdV—Bdu—P-dv. (3.17)

Since the operators appearing in Eq. (3.14) are all diago-
nal, the thermodynamic potential can be evaluated exact-
ly in this MFT. The results are analogous to those for
noninteracting fermions, and with proper care regarding
signs, we find

V,KAV]/T)_}_ln(1+e_[E*(K)+V'K+V]/T)] . (3.18)

f

reproduces the scalar density operator
=v~'[dxdy,

except for off-diagonal terms that vanish in the trace.
Thus we can compute

ps=iV«aﬁ/aM»=

(3.25)

Comparison with Eq. (3.24) now allows us to make the
correct identification

nKZ« Az)\Ak}\ », ﬁx=<<BtkAB—kA » .

It is now straightforward to express the baryon flux

operator in terms of bilinear products of mode operators
to find

(3.26)

3___

> X (n +m,) .

E*(x) (3.27)
Vi

With these results, we can derive equations that deter-
mine the meson fields. For a system in equilibrium, these
should be chosen to make the thermodynamic potential
) stationary. For example, 3Q /3¢ =0 leads to

M*
SEP ¥l

nt )=

(3.28)
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Similarly, the vector field equations become

8y 1

8y .,

VOZ——Z?E(nK—nK)-'m—%«PB» s (3.29)
gv 1 K gv A

=7 +a)=—=«B» . (3.30)
IV 2 prg e T 5 CB)

Thus, by making the thermodynamic potential stationary
with respect to the fields, they automatically satisfy the
ensemble averages of the normal-ordered field equations
resulting from the Lagrangian (3.1).

These relations are extremely useful, for they imply
that ¢ and V* can be held fixed in computing thermo-
dynamic functions as derivatives of the thermodynamic
potential through the relations

B=— |2 v ,
o T.V,v
_ a
P=— |—Q(T,V,u,v) ,
o o (3.31)
s=— |2 v
oT ' V. v
= — J — T, V,u,v)
14 aV s Voldy -

Notice that the first two of these relations are satisfied

trivially from the definition of the partition function in

Eq. (3.14). That is, they will be valid for any approxima-

tions to the exact Hamiltonian, number operator, and
momentum operator. Moreover, since

_[an az |_

oT oT

_ —Q+E—uB—v-P

—IZ+— ,
T

(3.32)

Gibbs’ relation (3.16) is satisfied automatically.35 Finally,
since ) of Eq. (3.18) is linear in ¥ (once the sum has been
converted into an integral), Eq. (3.31) merely defines the
“thermodynamic” pressure. Thus the only real check of
the thermodynamic consistency of this approximation is
the verification that p defined by Eq. (3.31) agrees with
the result computed from the stress tensor in the comov-
ing frame. Since this requires a discussion of the covari-
ance of the preceding results, we postpone this
verification until later in this section.

The calculation of the thermodynamic functions in the
laboratory frame can now be carried out straightforward-
ly in this MFT, leading to

—_Y 3 M* _

= d (n +m,), (3.33)
P ) f “Ero "
Pp= 2w)3fd k(n,—a,), (3.34)
B=_Ts [d (n, +7,) (3.35)

2
gv '}/ -
P= + dkeln,—H,), (3.36)
mfpf}g (27)3 f o
2 2 2
g\/ S gV
&= 2 M M*)2+ BZ
2m3pB 2g§( 2m?
(—ilf?fdJKE*(K)(nK-f‘ﬁK), (3.37)
yre
2 2 2
. gV 2 mS 2 gV 2
=Y 52 (M —M*) B
b 2m§pB 2g? 2m?
~T(2 )3fd3K[ln(1—nK)+ln(l—ﬁ,()], (3.38)
T
== fd k[n dnn,+(1—nn(1—n,)

+a dnA, +(1—"A)n(1—7,)] .

(3.39)

Here y is the spin-isospin degeneracy, the occupation
number distributions are given by Eqgs. (3.22) and (3.23),
and the meson field equations can be used to write

B, (3.40)

(3.41)

Note that Eq. (3.28) can be recast as

g?
M*=M—gb=M——5p,

2
8 Y 3 M* —
=M — d’k (n ,+7a.).
m? (27)} f E*k) " F
(3.42)

This is a transcendental self-consistency condition that
determines ¢.

To compute the thermodynamic functions, one first
chooses T, v, and v. The self-consistency condition (3.42)
is then solved to determine M *. (There may be several
solutions for fixed T, v, and v.) These solutions specify
the distribution functions n, and 7, and the remaining
integrals in Eqgs. (3.34)-(3. 39 can be evaluated directly.
At the end of the calculation, one can (in principle) invert
these relations to find u and v in terms of pg and P, but in
practice, desired values of pg and P are found by search-
ing on values of v and v. Similarly, to compute results at
fixed entropy, it is easiest to search through values of T.

In the v— 0 limit, the distribution functions reduce to

n(T',v,0)
7(T,v,0) =(1 +e[E*(k)¥v’]/T-)‘]

n (T ')
~ iy (3.43)

Here we follow our “prime” notation, since the observer



41 COVARIANT MEAN-FIELD CALCULATIONS OF FINITE-. .. 269

is now in the comoving frame. There is no angular
dependence in the distribution functions, so B=7=0,
and this allows us to replace x with k. The distribution
functions (3.43) agree with those in Eqs. (3.77) and (3.78)
of Ref. 10, and our Egs. (3.33), (3.34), and (3.37) become

=Y (M my (3.44)
P | o gy M)
pp=—L= [dk(nj—7}), (3.45)
(27)
2 2
,_ 8y , mg 2
é —m(pB)Z‘FE(M —M*)
+—L— [k E*(nj+7 ) . (3.46)

(27)}

For the pressure, the integrand in Eq. (3.38) is now spher-
ically symmetric, which allows us to perform a partial in-
tegration, yielding

2 2
gy mg
=——(ppgf———=(M—M*)?
1 o k4 ’ —
+§—L2ﬂ2 J, dk e it (3.47)

These expressions agree with Egs. (3.74)-(3.76) of Ref.
10, and Eq. (2.24) is satisfied at T=0. It is also a simple
matter to show that (3.47) agrees with the trace of
the stress tensor evaluated in the comoving frame:
p=3+(T ... To derive this last result, use Egs. (3.3),
(3.8), and (3.9), and remember to normal order the opera-
tors for negative-energy states. Thus, at least for v=0,
the MFT is thermodynamically consistent.

Let us now return to finite relative velocity and take
the T—0 limit. Since E*(x)>« and |v-k| <k, it follows
that E*(k)tv-xk>0. If we consider only systems with
vZ0 (no net antibaryons), the antibaryon distribution
goes to zero in this limit, while the baryon distribution
becomes unity for E*(k)—v-xk—v<0 and zero other-
wise.”® Thus the (nonspherical) Fermi surface is defined
by

E*(kg)—V-kp=v, (3.48)
in agreement with Eq. (2.9) of Ref. 30 and the minimiza-
tion condition discussed at the beginning of this section
[Eq. (3.13)]. The preceding results for p,, pg, B, and P
then reduce immediately to those in Egs. (2.12)—(2.15) of
Ref. 30, and it is easy to verify that the entropy density o
is identically zero. For the pressure, some care must be
used in the limit, since

lim TIn(l—n, )=E*k)—v-k—v
T—0
g2
=E*(k)—vk—p+—Spp
m

v

(3.49)

for occupied states in the Fermi sea. When used in con-
Jjunction with the preceding zero-temperature results [see
also Eqgs. (2.29)-(2.32) in Ref. 30], it follows that

p=n*upy—6 . (3.50)

As we will see, this is the correct representation of the
(Lorentz scalar) p in terms of laboratory-frame quantities.

We now prove the Lorentz covariance of the expres-
sions in Eqgs. (3.33)~(3.39) by making a suitable change of
integration variables. Not surprisingly, this change of
variables looks like a Lorentz transformation to the
comoving frame. Let us define two new momenta t and q
related to x by

2
KEt+—17LV't+1]VE*(I) ,
I+7

(3.51)

2
K5q+%v-q—nvE*(q) .

The variable t will be used to rewrite the integrals over
the particle distributions, while q will be used for the an-
tiparticle distributions. [Recall that n=(1—v?)"1/2]
The parameter M * appearing in E* can be given its value
in the laboratory frame, but we will find that this is a sca-
lar, as expected. It is a straightforward matter of algebra
to show that

E*(k)=n[E*(t)+v-t], E¥x)=n[E*(¢g)—v-q],

(3.52)
and to compute the Jacobians
.t v
dk=n |1+ ——— d%, d*x=n|1-—=3- |d3 .
T e T Eg |1
(3.53)

Consider now the Fermi distribution function for parti-
cles under the change of variables k—t. Since Eqgs. (3.51)
and (3.52) imply that

E*(k)—v-k=E*(t)/n,
we can rewrite the distribution as

n(Tv,v)=(1+EX O/ 1= p (0T my) | (3.54)

with n; given by Eq. (3.43). With this change of vari-
ables, the particle distribution function looks just like a
comoving-frame distribution function (i.e., no angular
dependence) with the thermodynamic variables [compare
Eq. (3.43)]

T'=qT, vV=yv. (3.55)

In other words, if we define the transformation properties
of the temperature and chemical potential as in Eq.
(3.55), the distribution function n,(7T,v,v) is a Lorentz
scalar. This is as it should be, since all observers must
agree on the occupation probability of a given single-
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particle state. Similarly, the antiparticle distribution
function becomes

ﬁK(T,V’V)z(l+e[E*(q)+7lV]/T]T)—1=ﬁ ;(”IT”?V) . (3.56)
J

The proof of Lorentz covariance now proceeds easily.
To illustrate the procedure with a nontrivial example,
consider the baryon flux B. To simplify the expressions,
we take v||Z, so that

K
B,=—L— [dk—2—(n +7,)
: (21r)3f “Erue) e
-1
S Y (FEN P t,+vE*()] [nE*(1) |1+ —=
(277)3[f S e L E*(1)
—1
vq, vq,
+ [diqa'qn|1— ,—VE*(q)] |[mE*(g) |1—
f qrgm E*(9) nlg, —vE*(g)] |mE*(q o) ] ’
=?#(17U fd3t n;—nv fd3q i )=nvpp . (3.57)
m

Since the transformed distribution functions n, and 7 ,
are spherically symmetric, all integrals linear in t or q
vanish, and we have identified the proper baryon density
pp [Eq. (3.45)] in the final expression. With similar tech-
niques and Eqgs. (3.44)-(3.47), it is easy to show that

Ps=Py PB=1PE O0=10",

(3.58)
E=0X&"+v?p), P=n>v(&E +p).

Equations (3.57) and (3.58) verify that p is a scalar, pg
and B are the components of a four-vector B¥, o is the
timelike component of a four-vector S¥, and § =T% and
P'=TY% are components of the energy-momentum tensor
T#Y, all defined correctly in terms of comoving-frame
(“secondary”) quantities by Eqgs. (2.10) and (2.17)-(2.19).
(The transformation of the spacelike components T/ can
be verified analogously.)

All that is left to show is that the pressure in Eq. (3.38)
is indeed a Lorentz scalar. In other words, the evaluation
of (3.38) with parameters 7, v, and v should lead to pre-
cisely the same result as the comoving-frame formula
evaluated with T7'=9T and v'=nv. This conclusion fol-
lows by inspection of Eq. (3.38). With the change of vari-
ables in Eq. (3.51), the distribution functions are spheri-
cally symmetric, so terms in the Jacobians (3.53) that are
linear in the momenta again vanish. This leaves an in-
tegral that contains the new distribution functions (3.54)
and (3.56), multiplied by a factor of 7, which combines
with the existing factor of T to yield the desired T'. Thus
the final term in Eq. (3.38) is a scalar. Since M* is a sca-
lar, as is pf;—ﬂz:B“B“, the remaining terms are also
scalars, verifying the desired result.

The proof of Lorentz covariance is now complete. The
primary thermodynamic functions computed for the
moving fluid are correctly described in terms of the
transformed secondary thermodynamic functions of Sec.
II. This also verifies the thermodynamic consistency of
the MFT in all frames, since we know from Eq. (3.47)
that the pressure evaluated from the stress tensor in the
comoving frame agrees with Gibbs’ relation (2.22).
Moreover, this implies that at zero temperature,
p=p'pg—&’; when combined with the transformations

[

(3.55) and (3.58), the laboratory-frame expression [Eq.
(3.50)] for p is obtained. Most importantly, as shown in
Sec. 11, since the MFT is both thermodynamically con-
sistent and Lorentz covariant, the covariant thermo-
dynamic relations (2.20), (2.26), and (2.27) are all
guaranteed to hold. In particular, Egs. (3.15) and (3.16)
at constant volume follow from the zeroth components of
Eqgs. (2.20) and (2.26), together with the transformation
laws in Eq. (3.55). The verification of these relations
from the explicit expressions (3.34)—(3.39) is left as an ex-
ercise for the reader. It is also left as an exercise to show
that these expressions can be rewritten in a manifestly co-
variant form.?

We turn now to the partition function defined in Eq.
(3.14), and show that this is consistent with the covariant
definition in Eq. (2.30). Since the system is uniform, the
partition function can be written in terms of density
operators as

Z=Trexp —ind3x(7:\[—pﬁB—v@’) . (3.59)

We emphasize that all quantities in this expression are
defined in the laboratory frame. In particular, the opera-
tors are constructed from baryon fields that satisfy (3.9)
at equal times observed in this frame. By writing the in-
verse temperature as 1/T =7/T'=%pB and defining the
thermal potential as a=u /T =u'/T’, Eq. (3.59) becomes

Z=Trexp

- fd3X[BT](?OO*UET iO)_ap\B] ]

=Trexp |~ [d’x 8,08, *—aB*) |.  (3.60

Here we have identified the Hamiltonian density and
momentum density operators as components of the
laboratory-frame energy-momentum tensor and have
defined a thermal four-vector B* as in Eq. (2.11). If we
now define the purely spacelike hypersurface element in
the laboratory frame as dA#Ed3x 8,0, Eq. (3.60) repro-
duces Eq. (2.30).

There are several important points to note. First, the
preceding derivation shows that the canonical evaluation
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of the partition function yields a Lorentz scalar, which is
the reason for the covariance of the MFT results. More-
over, the partition function defined by Eq. (2.30) is a sca-
lar for any spacelike hypersurface A,. Indeed, since
quantization can be performed on any A, with equivalent
results,*> %3 one can even choose different hypersurfaces in
different reference frames, as long as the operators B*
and T are quantized on the appropriate hypersurface
in each frame.

This is precisely how we performed the MFT calcula-
tion. Equation (3.9) implies that the quantization was
carried out on the purely spacelike A, in the laboratory
frame; if Eq. (2.30) was rewritten in the comoving frame
using the same A, the resulting expression would look
quite unfamiliar. As we proved, however, covariance is
maintained even when the comoving-frame results are
computed by quantizing on the purely spacelike hyper-
surface in that frame, as in Ref. 10. Thus we have not
only justified the definition (2.30), which allows the parti-
tion function to be computed directly in any reference
frame, but have also learned that A, can be chosen to
make the computation as simple as possible. This last re-
sult is usually overlooked in the literature.> '4

1V, DISCUSSION

Thus far we have described how to calculate nuclear
matter properties in an arbitrary frame and examined
some consequences of thermodynamic consistency. We
now want to illustrate these results by considering some
simple models of finite-temperature nuclear systems. We
will concentrate on bulk nuclear properties and use a hy-
drodynamic approach, since this gives the most direct
connection to the thermodynamic variables.

Because of the simplicity of our model Lagrangian
(3.1), the mean-field approximation of Sec. IIl, and a hy-
drodynamic description of the evolution, the results that
follow will only be qualitatively accurate. These three
major simplifications can be relaxed, however, and more
detailed calculations can be performed using techniques
similar to those discussed earlier. We use the simpler,
more familiar approaches to illustrate which thermo-
dynamic variables are relevant, and to concentrate on
new aspects that arise from a covariant description of the
matter. In particular, the covariant formulation elevates
the fluid velocity v and its conjugate, the momentum den-
sity P, to the status of thermodynamic parameters, and
we study the role of these parameters in the description
of moving systems. We expect that the general features
of our discussion will remain valid in more sophisticated
calculations.

A. Heavy-ion collisions

In a hydrodynamic description of a heavy-ion collision,
the basic equations for energy flow, momentum flow, and
matter flow follow from the conservation laws (2.4) for
the baryon current and the energy-momentum tensor.’’
These equations can be written in the laboratory frame as

96

—+V(vE)=~V-(vp),

Y 4.1

-%?+(v-V)P+?(V-v)=—Vp , 4.2)
3
—§73+v-(v,>ﬁ>=o : .3)

where we first introduced the secondary quantities
defined in Egs. (2.17) and (2.19) and then used the
Lorentz transformation properties in (3.57) and (3.58).
We assume that the fluid is “perfect,” so that it appears
isotropic to an observer in the comoving frame, and all
contributions from viscosity, dissipation, etc., have been
neglected. A basic assumption of the hydrodynamic
model is that local thermodynamic properties of the
matter (for example, pg, 6, and p) can be computed from
the infinite system, as in Sec. III.

In the usual approach, one specifies some initial condi-
tions and solves Egs. (4.1)-(4.3) for the physically
relevant proper quantities p, pg, and &', together with the
local fluid velocity v. Since there are six unknowns and
five equations, an additional relation is required to obtain
a solution. This is provided by the equation of state,
which can be written as

E'=6"pg, T'), p=plpsT") 4.4)
in the comoving frame. The proper temperature 7" has
been introduced as a parametric variable, so there are
now seven equations in seven unknowns. Note that the
entropy/baryon (S/B) could have been used instead of
T

One reason for expressing the hydrodynamic solutions
in terms of proper variables is that, typically, the equa-
tion of state (4.4) can be calculated only in the rest frame
of the matter. In a covariant approach, however, one can
dispense with the boost relations and solve the hydro-
dynamic equations directly in the laboratory frame, using
6 and p computed as functions of pg, T or o, and v or P.
Thus 7 can be replaced by P=v(&+p), which follows
from Lorentz covariance [see Eq. (3.58)], and p can be el-
iminated in favor of &.

The equation of state (EOS) for nuclear matter (y =4)
in the mean-field model of Sec. III is shown in Figs. 1 and
2. Note that the EOS is defined in terms of the proper en-
ergy density, as in (4.4), and we show results for both iso-
therms and isentropes. The MFT thermodynamic quan-
tities depend only on the ratios of couplings to masses,
and we choose™®

Cl=gX(M?/m?)=357.4, Cl=gl(M?*/m2)=273.8,

4.5)
which produce zero-temperature equilibrium at kp=1.30
fm~!, with a binding energy of 15.75 MeV and a
compressibility of K =545 MeV. At low density, there is
a liquid-gas (van der Waals) phase transition, and at high
density, the system approaches the causal limit p =6&". If
pg—  at any T’, the system becomes degenerate, and
the zero-temperature results are obtained. If T’ <<M and
pp—0, the system resembles a classical nonrelativistic
gas [p=21(6'—Mpy)], while if T > at any pg,
baryon-antibaryon pairs will be produced, and the EOS is
that of a black body (p =16").
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Nuclear Matter EOS (QHD-I MFT)
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FIG. 1. Nuclear matter equation of state on isotherms. The
dashed line represents the causal limit, and the dotted-dash line
is the liquid-gas coexistence curve. The solid curves are labeled
by the proper temperature.

Figure 3 shows the nuclear matter phase diagram, and
the dotted-dash line gives the phase coexistence bound-
ary. This is determined by Gibbs’ criteria, namely, that
the liquid and gas phases have equal temperatures
(thermal equilibrium), chemical potentials (chemical equi-
librium), and pressures (hydrostatic equilibrium). Below
the coexistence curve, the equilibrium state is a mixture
of gas and liquid. The critical temperature in this model
is roughly 18.3 MeV, which is similar to that obtained in
other models that reproduce the empirical saturation

point.®® % This similarity occurs even though the
Nuclear Matter EOS (QHD~I MFT)
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FIG. 2. Nuclear matter equation of state on isentropes. The
dashed line represents the causal limit, and the dotted-dash line
is the liquid-gas coexistence curve. The solid curves are labeled

by the entropy/baryon.
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FIG. 3. Nuclear matter phase diagram: pressure as a func-
tion of proper volume/baryon for various proper temperatures.
The dotted-dash line is the liquid-gas coexistence curve.

present model has a rather large compressibility. (If the
nonlinear mean-field model of Ref. 44 is used, which has
a compressibility of K =225 MeV, the critical tempera-
ture is =14.2 MeV.)

The density and temperature dependence of the baryon
effective mass M* is illustrated in Fig. 4. For low tem-
peratures, the density dependence is more important than
the temperature dependence. As the temperature is in-
creased, M * first increases and then decreases rapidly for
T'~200 MeV. (This is true except at very small densi-
ties, where M* decreases monotonically with tempera-

Nuclear Matter QHD-I MFT
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FIG. 4. Baryon effective mass in nuclear matter as a function
of the proper baryon density and temperature. The solid curves
show results for 7' =0, 50, 100, and 150 MeV.



41 COVARIANT MEAN-FIELD CALCULATIONS OF FINITE- . .. 273

ture.) This rapid decrease of M * with increasing temper-
ature resembles a phase transition, and at high tempera-
ture and low density, the system becomes a dilute gas of
baryons in a sea of baryon-antibaryon pairs. This behav-
ior is also indicated in Fig. 5, which shows the entropy
density as a function of baryon density for various tem-
peratures.

We remark that at high temperatures (7' X 100 MeV),
the equation of state in Figs. 1 and 2 will be modified by
contributions from thermal pions, which are not included
here. Moreover, at very high temperature or density, the
hadrons will dissolve into a quark-gluon plasma, through
what is now believed to be a first-order phase transi-
tion.*>*¢ One goal of QHD is to describe the hadronic
phase of this system accurately and identify signals of the
QCD phase transition. However, if the hadronic phase
becomes an essentially massless gas with high entropy
density before the transition to quarks and gluons, the
unambiguous observation of the latter transition will be
difficult. In particular, it is impossible to associate the
small baryon mass (sometimes characterized as ‘“‘chiral
symmetry restoration’’) with the onset of the quark-gluon
phase, if the mass already becomes small in the hadronic
phase.

Let us now consider lower temperatures and focus on
medium-energy heavy-ion collisions, which can give us
information on the liquid-gas phase transition. Starting
with two nuclei colliding in their c.m. frame, one can fol-
low the evolution by solving the hydrodynamic equations
(or some more sophisticated equations) using the nuclear
EOS (or the NN interaction) as input. We will assume
that the combined system is compressed and heated (due
to the formation of a shock front) and ultimately reaches
thermal equilibrium at some finite temperature, density,
and pressure. Whether the system actually reaches equi-
librium in these collisions is a difficult question that is
clearly beyond the scope of our simple model; for illustra-
tion, we will simply assume that such a state occurs.

Nuclear Matter QHD-I MFT
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FIG. 5. Proper entropy density as a function of proper

baryon density for various temperatures.
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FIG. 6. Pressure as a function of proper baryon density for
various temperatures. The isothermal spinodal (ITS), which is
defined by (3p /9py) =0, is indicated by the dashed curve.

The properties of the resulting equilibrium system can
be deduced from Figs. 6 and 7, where the pressure and
energy/baryon are shown as functions of the proper den-
sity for various temperatures. If the reaction is observed
from the c.m. frame, the equilibrium system is created at
rest. However, since p >0, the system is not in hydro-
static equilibrium and will expand; moreover, since the
hot nucleus is not in thermal equilibrium with its sur-
roundings, it will cool down. We are basically interested
in the evolution of this expanding, hot nuclear matter.

The evolution can be related to the thermodynamic
variables by studying Fig. 8, which illustrates properties
of the system in the temperature-density plane. Equipo-
tential surfaces of constant energy/baryon and lines of

Nuclear Matter QHD-I MFT
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FIG. 7. Proper energy/baryon as a function of baryon densi-
ty for various temperatures. The isothermal spinodal (ITS) and
liquid-gas coexistence curve (CE) are indicated.
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Nuclear Matter QHD—-I MFT
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FIG. 8. Properties of nuclear matter as functions of tempera-
ture and density in the comoving frame. The dotted-dashed
curves are contours of equal energy/baryon (in MeV), and adia-
bats are shown as dashed curves. The solid curves determine
the phase separation and are described in the text.

constant entropy/baryon (adiabats) are shown. The
properties of the system along the adiabats can be de-
duced from Figs. 9 and 10, which indicate the pressure
and energy/baryon as functions of the density for various
values of the entropy/baryon.

The four solid curves in the lower left corner of Fig. 8
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FIG. 9. Pressure as a function of proper baryon density for
several values of the entropy/baryon. The adiabatic spinodal,
defined by (3p /3p3)s,5 =0, is indicated by the dashed line.
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FIG. 10. Proper energy/baryon as a function of density for
several values of the entropy/baryon. The dashed line is the
adiabatic spinodal, and the fragmentation zone represents the
region of mechanical instability. If the hot equilibrium nucleus
is formed in the “overstressed zone” to the right of the dotted
curve, subsequent isentropic expansion will lead to fragmenta-
tion.

describe the phase transition. The outer curve is the
coexistence (CE) curve, which is determined by Gibbs’
phase criteria discussed earlier. Inside the CE curve, the
thermodynamically stable system is a mixture of liquid
and gas. We also show the isothermal spinodal (ITS),
which intersects the coexistence curve at the critical tem-
perature. The ITS is defined by the locus (3p /dpg) =0
and can be deduced from Fig. 6, where this locus is
shown. Similarly, the innermost solid curve is the adia-
batic spinodal (AS), which is defined by (3p /9pg)s,5 =0,
and which follows from the dashed curve in Fig. 9.

Between the CE curve and the spinodals, dp /dpp > 0;
thus the system is stable against small density fluctua-
tions, and it may become superheated. When the system
crosses a spinodal, however, dp /8p; becomes negative,
and instability to small fluctuations is possible, leading
immediately to fragmentation. This is believed to occur
by the formation of droplets surrounded by vapor.’>#’
The remaining (unlabeled) solid curve in Fig. 8 shows the
points of hydrostatic equilibrium (p =0) at constant tem-
perature; the intersection of this curve with the ITS is
known as the “flash point” and represents the highest
temperature at which a self-bound system can exist in hy-
drostatic equilibrium. (In this model, Ty, =~14.1 MeV.)
In  contrast, equilibrium points at constant
entropy/baryon occur when an adiabat is tangent to an
equipotential surface.

The expansion of the hot nucleus is a complex process
that involves the interplay of the hydrodynamic relations
in Egs. (4.1)-(4.3), augmented to include various trans-
port coefficients and nonequilibrium effects, such as nu-
cleation and fragmentation. To simplify the discussion,
we can consider two limiting cases: isoergic expansion
and isentropic expansion.*®* As the system expands, inter-
nal energy is transformed into collective motion, which
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manifests itself as local flow velocity. If the expansion is
highly damped, the energy of motion is rapidly
transformed back into internal energy; the resulting ex-
pansion is therefore slow and proceeds along an equipo-
tential surface. The expansion proceeds until p =0, after
which the fluid remains at rest and evaporates particles
until it is cool. In contrast, if the motion is undamped,
the expansion carries the system past hydrostatic equilib-
rium, where it begins to slow down as the energy of
motion is returned to internal energy. Since there is no
dissipation, the expansion is isentropic, and the motion is
bounded by the equipotential surface of the initial hot
configuration. Intranuclear cascade calculations suggest
that the expansion is nearly isentropic.*>*

Consider the isentropic expansion of a system with rel-
atively low excitation and entropy/baryon, say,
S/B=1.0. As the system expands into the coexistence
region, several outcomes are possible. The evolution de-
pends on the relative rates of expansion and nu-
cleation.’>*® If the expansion is slow enough to allow for
nucleation, bubbles of gas form or the system fragments
into droplets and vapor. If the nucleation is relatively
slow, which is more likely, the system will become su-
perheated. If the expansion halts before the adiabatic
spinodal is reached, the direction of motion is reversed
and the system vibrates, ultimately evaporating nucleons
to cool down. In contrast, if the system crosses the adia-
batic spinodal, fragmentation occurs. Initial conditions
that produce this fragmentation in the present model are
denoted by the “overstressed zone” in Fig. 10.

If the initial entropy is high enough, the system crosses
the CE curve but misses the AS and simply vaporizes. Of
course, since it is already unbound (in this model), it is
evaporating particles all the while.

During the expansion, both the local velocity and
momentum/baryon will be nonzero. Our covariant
analysis shows that these are conjugate variables, just like
T and S. Which of these is the relevant thermodynamic
variable for the expansion?

To answer this question, it is useful to introduce the
“hydrodynamic mass” M, which relates v to P/B.'**
An expression for My, can be deduced solely from ther-
modynamics and Lorentz covariance. By combining the
expressions for & and P in the boost relations (3.58), one
discovers P=v{& +p). This equality can be divided by
pp to give a relation for M4, and Eq. (2.22), which is a
consequence of the first law of thermodynamics, produces
another useful result:

P/B

- 6+
Mhyd:T: £

PB

=n|T +u | (4.6)

S

To see why this should be interpreted as a ‘“hydro-
dynamic mass,” insert P=pyzvM, 4 into the momentum
flow equation (4.2). Note that py is the number density of
baryons. If we use the energy flow equation (4.1) and the
continuity equation (4.3), we find

av 1 ap
—+ . -_— )
3t (v-V)v oM Vp+v ar @.7)

This will be recognized as Euler’s equation for hydro-
dynamic flow,””*® which embodies the content of
Newton’s second law, if we identify the “mass density” of
the fluid as pgMy 4. Thus, M, 4 is the relevant parame-
ter for describing the inertia of the flowing system.

There are several important features of the hydro-
dynamic mass.

(i) It arises naturally in the present covariant approach
when one calculates thermodynamic properties in an ar-
bitrary reference frame.

(i1) As is clear from the final expression in Eq. (4.6),
My, is not really a mass at all, since it transforms like an
energy. (Recall that 7', u’, S, and B are all Lorentz sca-
lars.) It is more appropriate to call it the “hydrodynamic
potential,” but in an abuse of terminology, we will use
“mass” and “potential” interchangeably in the sequel.

(iii) M4 gives the ratio between P/B and v and is the
inertia parameter for the moving system. It is a dynami-
cal quantity that depends on the equation of state. It is
incorrect to relate P/B and v using the nucleon mass M
or the effective mass M *. In the comoving frame at zero
temperature, M, , =p’'~ M, which explains why isoscalar
nuclear magnetic moments reproduce the Schmidt lines
in the relativistic MFT.*®*

(iv) The hydrodynamic mass in the present model is
shown in Fig. 11 as a function of the (proper) density and
temperature. M), becomes large in a variety of situa-
tions: If pg— oo at any temperature, the system becomes
a dense, degenerate Fermi gas dominated by vector repul-
sion, which stiffens the EOS. If T— « at any density,
the system becomes a nucleon-antinucleon plasma with a
large inertia. If S/B — oo at any (finite) temperature, the
resulting classical gas has a large inertia. If v — o at any
T’ and p’, the rapidly moving system also has a large in-
ertia.
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FIG. 11. The “hydrodynamic mass” M, as a function of
the proper density for several temperatures. These values of
M q-M are computed with v =0; the results in an arbitrary
frame are given by adding M and multiplying by 7.
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(v) Using Eq. (4.6), we can define the hydrodynamic
potential explicitly as

BMhydEBMhyd(S’ P’ B, P):E+pV . (4.8)

Notice that S, p, and B are Lorentz scalars, and thus the
value of M, , in different frames is determined solely by
its dependence on P.

Having defined the hydrodynamic potential, we still
must decide whether v or P is the relevant variable to de-
scribe the expansion of the hot nucleus. Since the collec-
tive motion of the system is described by Euler’s equation
(4.7), the pressure gradients drive the motion. Thus, nei-
ther v nor P will be constant as the hot system expands,
regardless of whether it oscillates or reaches the AS and
fragments. In Fig. 12, we show the adiabatic spinodal as
a function of density and momentum/baryon for fixed
S/B =1. {In other words, the solid curve is the locus
(@p /3pg)s,/p—1,psp =0. The intersection of the S/B =1
adiabat with the AS in Fig. 8 gives the result at P/B =0.]
The dotted curves in the figure show the fluid velocities
associated with given pg and P/B. Since M, is essen-
tially constant for these temperatures and densities (see
Figs. 8 and 11), the velocity curves are also essentially
constant, and it is immaterial whether we use v or P/B to
describe the expansion. [In fact, the adiabatic spinodal at
constant velocity, (3p /dpp)s,p—1,, =0, is also plotted in
Fig. 12, but it is indistinguishable from the solid curve.]
Moreover, since My 4~p~M in this temperature and
density regime, taking P=MBv, as is usually done in
nonrelativistic calculations, introduces negligible errors.
These results would follow automatically if one integrat-
ed Eq. (4.2) or (4.7) to describe the expansion.
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FIG. 12. The adiabatic spinodal (solid) for a moving system
with S/B =1 as a function of the laboratory baryon density and
local P/B. The dotted curves show the corresponding velocity
contours.

B. Astrophysical systems

We turn now to a discussion of macroscopic systems
such as supernovae and neutron stars. Here a hydro-
dynamic description is more accurate, provided one
modifies Egs. (4.1) and (4.2) to include the gravitational
force using general relativity.?? For simplicity, we will
not consider the formation of shocks and the resulting
nonequilibrium dynamics. Instead, we focus on the infall
of stellar matter before the “bounce” and on the proper-
ties of the residual matter and the resulting neutron stars.

The interesting feature here is that the flow of the sys-
tem is determined primarily by gravity and not the pres-
sure gradients, at least in the early stages of stellar col-
lapse. Thus, the possibility of (essentially) constant local
v or P/B becomes relevant. There are two limiting cases
determined by the viscosity of the matter, which pro-
duces friction between neighboring fluid elements. If the
viscosity is high, we expect a homologous flow and a con-
stant (“terminal’) velocity. In contrast, if friction is
small, there is no transfer of longitudinal momentum be-
tween neighboring elements, and the fluid travels along
streamlines, with constant P /B.

We must therefore consider the implications of covari-
ance on the thermodynamic parameters. For simplicity,
we will consider T =0, but our discussion can be extend-
ed to finite temperature by replacing the energy E with
the Helmholtz free energy F =E —TS. As before, we as-
sume that the local variables can be computed from the
results for an infinite system.

To begin, consider the energy/baryon (E/B —M) as a
function of the proper baryon density, as shown in Fig.
13. These curves can be interpreted as the energy/baryon
seen by different observers as they move with various ve-
locities through the infinite system. It is tempting for
each observer to conclude that hydrostatic equilibrium
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FIG. 13. Laboratory energy/baryon as a function of the
proper baryon density (p=2k{ /377 at zero temperature. The
curves are labeled by the velocity of the nuclear fluid relative to
the observer.



exists at the minimum in each curve, with a binding ener-
gy equal to the value at the minimum. This conclusion is
clearly absurd, as it implies that simply by moving
through the medium, one observes the matter as un-
bound! Moreover, it appears that as the observer’s veloc-
ity increases, the equilibrium proper density p,=(pple,
decreases, in direct violation of special relativity!

There are several errors in this naive interpretation.’!
First of all, the binding energy of the system is defined by
the energy/baryon in the comoving frame, a point that we
will return to later. More seriously, although hydrostatic
equilibrium occurs when p =0, the pressure is not deter-
mined by the slopes of the curves in Fig. 13, since the
curves are at constant velocity. In other words, since
E =E(V,B,P) at zero temperature [see Eq. (3.15)],

p#‘ —— — ———
v B,v Pe apB v
_ k}: , a(G/pB)
=N3 PB T . 4.9)

Thus the points of zero slope in Fig. 13 do not corre-
spond to hydrostatic equilibrium.

In contrast, consider E /B at various values of P/B as
seen by a single observer (Fig. 14). The velocity of the
system decreases as the density increases along each
curve; thus, one cannot describe each curve as a boost of
the observer, and it is more relevant to plot E /B against
the observed (laboratory) baryon density. Since E is a
natural function of P, we can determine the pressure
from (3.15):
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_ e | __[awEsB)
g oV |pp oV /B) |ppp
I E /pg)
=p} Rl 4.10)
dpp P/B

Here B is held fixed, so we define intensive quantities by
dividing everything by B. (In contrast, if ¥ were fixed, we
would divide everything by V; see the discussion below.)
Thus the minima in Fig. 14 correspond to equilibrium
densities, and a careful examination of the curves shows
that the observed equilibrium density increases with in-
creasing P/B. Note that all of the equilibrium points
correspond to bound systems (E'/B <M), when the
binding energy is calculated correctly, as we describe
later. Moreover, whereas the (incorrect) interpretation of
Fig. 13 implies a stiffer system as v increases, the correct
results at constant P /B show that the system gets softer
as the momentum/baryon increases.

To see why the equilibrium density increases as P/B
increases, we again consider M}, which is given at zero
temperature by M hydInz,u:nu’. Evidently, the moving
system can achieve the same P /B by decreasing v and in-
creasing My, which occurs at increased py (see Fig. 11).
Although the density increases, the smaller velocity im-
plies a more spherical Fermi surface, which lowers the to-
tal energy of the system. Of course, if the density is in-
creased too much, E /B increases in spite of the more
spherical Fermi surface. Nevertheless, a slight increase
in the density leads to a lower E /B and causes the mini-
ma of the curves in Fig. 14 to shift to higher density as
P /B increases.

As an aside, note that since V is not held fixed, we can-
not define the intensive variables in Eq. (4.10) by dividing
by V. Thus,

a(& /ppg)

, (4.11)
dpp

P

PFPi

and plotting E /B for various P=P/V (as opposed to
P/B) does not allow for a determination of hydrostatic
equilibrium. Moreover, although we still have

AHE/V)

AB/V)

3E
p= =

oB

836
9pg

V.P

) (4.12)

V,P/V P

we can no longer combine this result with Eq. (4.10) in a
simple way, since different variables are held fixed when
performing the derivatives. To be precise, at T =0 we
find [see Eqgs. (3.50) and (4.10)]

p=n'upy—6
& /pg) 36
— 2 . _
“PB|T 5 PB |7 — —6Fupg—6 .
dpp P/B dpg P/B
{4.13)
This result implies
g ==t |2 | (4.14)
98 |p/s PB |p/v
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which can be proven directly using Lorentz covariance
and the first law of thermodynamics.

To discuss systems at constant velocity correctly, we
can construct an “internal” energy U that is a natural
function of v by making a Legendre transformation:

U=U(V,B,v)=E—v'P (T=0). (4.15)

In Fig. 15, we plot U/B as a function of the proper
baryon density (or kg). Since v is fixed along each curve,
we can again interpret these results as the internal energy
seen by observers moving through the system at different
velocities. The pressure follows from Eq. (4.15) as

—_|9U | _ ,|3U/B)
p v . PB 3ps .
_ ke , latusB)
=n37PB W , (4.16)

so the minima in these curves correspond to hydrostatic
equilibrium. Each observer now finds the same proper
equilibrium density p,, in agreement with special relativi-
ty.
The shapes of the curves in Fig. 15 are not identical,
however, due to the overall factor of % in Eq. (4.16). If
we consider instead the Lorentz scalar quantity

2V _nE—vP) _& (4.17)
B B Ph

and remember that v is fixed in Eq. (4.16), we can rewrite

that equation as

— 1 |3aU/B) | e | ) | g
] opp |, A}k
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FIG. 15. Internal energy/baryon in the laboratory as a func-
tion of the proper baryon density at zero temperature. The
curves are labeled by the velocity of the nuclear fluid relative to
the observer.

which is the familiar result for p expressed in terms of
proper quantities [see Eq. (2.24)].

It now follows that by adding M to the curves in Fig.
15 and multiplying each one by the appropriate
n=(1—v?)"'2 we arrive at a single universal curve,
equal to &' /py. This is just the proper energy/baryon,
which defines the binding energy. Thus observers with
different velocities agree on both the proper equilibrium
density and the binding energy. Similar manipulations
with the results in Fig. 14 reveal that at fixed P/B, al-
though the equilibrium density increases substantially as
P /B increases, the binding energies of the equilibrium
systems remain remarkably constant, and all the equilib-
rium systems are bound.

In summary, although much of this discussion deals
with simple thermodynamics, it emphasizes the care re-
quired to interpret results calculated in different frames.
In the present case, the incorrect interpretations produce
obvious nonsense; in more sophisticated circumstances,
however, the errors may not be so obvious.

V. SUMMARY

In this paper we studied the properties of hot, dense,
flowing nuclear matter. Since the system is inherently
relativistic, we used quantum field theory based on a lo-
cal, Lorentz-invariant Lagrangian density to describe the
dynamics. We discussed some general features of covari-
ant thermodynamics and illustrated these features in an
explicit mean-field model. We verified that our approxi-
mate microscopic calculation satisfies Lorentz covariance
and the appropriate thermodynamic identities. It is im-
portant to maintain these identities in more sophisticated
calculations, and it is useful, if not essential, to perform
these calculations in a covariant fashion.

One of the interesting features of our covariant micro-
scopic approach is the elevation of the velocity v and
momentum density 7 to the status of conjugate thermo-
dynamic parameters for the moving system. This is
relevant for studying the properties of dense, rapidly
flowing matter, and in standard microscopic approaches,
the connection of v and 2 to the thermodynamic state
functions is usually overlooked. Using a simple hydro-
dynamic model to consider heavy-ion collisions and as-
trophysical systems, we illustrated how these new ther-
modynamic parameters enter and stressed their impor-
tance when using thermodynamic identities and
differential relations in different reference frames. We ex-
pect that the general features discussed here will remain
valid in more sophisticated calculations, which are
currently under investigation.
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