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A new covariant quantization of the free electromagnetic field is proposed corresnonding to
the fact that a massless vector bound state in the Bothe-Salpeter formalism is accompanied by
a dipole ghost. The Lorentz condition is formulated as an operator identity,

§1. Imtroduction

As is well known, a covariant quantization of the electiomagnetic field was
formulated by Gupta and Bleuler.” Since the Lorentz condition is not consistent
with ‘the canonical commutation relation, the former is regarded as a supple-
mentary condition which holds only for certain “physical states”. Correspondingly,
the photon propagator does not satisfy the Lorentz condition.

It is often convenient theorctically to use the photon propagator in the
Landau gauge, which satisfies the Lorentz condition. It has been customary,
however, that the Landau gauge is introduced ad hoc after the quantization.
The difficulty of quantizing the electromagnetic field in the Landau gauge consists
in the fact that if the Lorentz condition is regarded as an operator identity, then
the corresponding commutation relation is necessarily inconsistent with d’Alembert
equation of the free electromagnetic field. In the quantization of Rohrlich and
Strocchi® in the Landau gauge, this difficulty is camouflaged by using a product
of distributions which are not associative. On the other hand, Just® has recently
proposed a theory in which only the interacting field can be covariantly quantized
by means of Lehmann’s spectral representation. He has forbidden one to use
the interaction representation in which the quantum electrodynamics has been
most successful.

The purpose of the present paper is to propose a consistent, covariant quanti-
zation of the free electromagnetic field in the Landau gauge. In our previous
work® on the Bethe-Salpeter equation for equal-mass particles, we have found
that a massless vector bound state is accompanied by a dipole ghost® instead of
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a ghost, namely the corresponding Green’s function then has a double pole at
zero energy. Since we have not introduced any artificial assumption in the Bethe-
Salpeter formalism, the above result suggests that it will be natural to use a
dipole ghost in the quantization of a massless vector field.

As we remarked above, when the Lorentz condition is regarded as an
operator identity, [ A, cannot vanish identically, wkere A, is the free electro-
magnetic field. But we can easily see that the commutation relation can be
consistent with an ansatz

LIA.=%0.8, [ 1B=0, (1-1)

where B is an auxiliary scalar field, » being a constant.

As will be seen later, I3 is related to the residue of a double pole of the
Green’s function. The longitudinal photon becomes a dipole ghost accompanied
by B, and the scalar photon is reduced to the longitudinal one because of the
Lorentz condition. The d’Alembert equation holds only in the sense of the
expectation value for “physical states”:

<DAN«>1J“}S:0> (1 '2)

where physical states are the statcs which contzin no dipole ghosts.
Our methed of quantization may also be applied to the weak gravitational
field by using a “tripole” ghost.

§2. Quantization
We use the following metric tensor:
Jo= ngixls <]_l> 29 3)7
gw=0 for p+#v. @1

We start from the following Lagrangian density:
L= | @A~ A9 @ule—0,A)

— ﬁ]ga“Au + '7127' (8M13)> (an Zf) > (2 . 2)

where »=0 is an arbitrary real constant having the dimension of mass. It is
evident that L, is invariant under the gauge transformation

AM_>AM—%“6MA,
L—DB
DA:Oa (DEA,LO%L)’ (2"3) .

where 4 may be an operator.
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The equations of motion follow from (2-2):
— 30 Av—0, Au—29wB) =0, (2
_va“A;LmaﬂauB;:O. (2'5) .

Operating 8 on (2-4), we have

[1B=0. (2-6)
Then (2-5) reduces to

0" A.=0. | e
Substituting (2:7) in (2-4), we find

[ JA.=70.B. 2-8)

Our fundamental equations are (2:6), (2-7) and (2:8). From (2-6) and (2-8),
we see

[ 1*PA,.=0. (2-9)

The commutation relation of A, must be consistent with (2:-7) and (2-9).
It is uniquely (up to a coefiicient) determined as follows:

[A.(2), A(a)] =iDw(z—2), (2-10)
where
D () =i(22) Sd/ (B (G0 3 ) & o oy (B)] &% (2-11)

with £’=k"k,. The integral of the first term is well known. The integration
in the second term can also be easily carried out. We then obtain

D) = (1/2m)2(e0)| 93 (2 = 100,02 |. (2-12)
The second term of (2-12) may be determined also by the requirement
6" Dy () =0. (2-13)
From (2-10) with (2-11) we have
[C14u), 4] = — 2\ e (k) BuR 8D 4
=00,0D(x—2x), | (2-14)

where

D{(x)=—(1/2n)e(xy)d(x?). (2-15)
Therefore, (2-8) leads us to

[0.B(x), A(2)] =iy 0,6, D(x—2z"), (2-16)
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[0.8B(x),8,/B(x")] =0. 2-17)
Integrating (2-16) and (2-17), we obtain
[A.(x), B(x)] = —iy 0. D{(x 2", (2-18)
[B(x), B(x")] =0. (2-19)

We can translate the commutation relations (2-10), (2-18) and (2-19) into
those in the momentum space. Let™

A,;(JC) =S (Zﬂ) '3/zgd% ﬁ(/,\,o) l(lu (/3) o ik +a”* (k)eika ,
B(«x) - (271) '3/QSCZ4/€ 0 </€0> [b(k) e*ikx -+ b* </€> eikx] . ‘ (2 '20>

Then our equations of motion are rewritten as

Bo(k) =k b* (k) =0, (2-21)
ka, (k) = ka,* (k) =0, (2-22)
Ra,(k) = ink.b(k),

Ra (k)= —ink.b*(k). (2-23)

Our commutation relations become

[a.(k), a(B')] =0, (2-24)
aw(l), @ (R) ] = =" (k— k') 190 (K -+ kuky 0" () ], 2-25)
la.(k), b(£)] =0, (2-26)
lan(k), 0% (B =i 0* (b — k) ko (£), (2-27)
[6(k), b(%)] =0, (2-28)
(b(k), b* (k)] =0. (2-29)

As is seen from (2-18) or (2-27), two free fields A, and B do not commute
with each other. This fact is closely related to the existence of a dipole ghost
as was shown in Froissart’s model.” We note that a similar formulation was
used also by Fujii and Kamefuchi” for a different purpose.

§3. States
As usual, we define the vacuum 2 by

a.(R)9=0, b(k)2=0 (3-1)

* We understand that a,(k)=0 and b(%£)=0 if % does not lie on (or infinitesimally near) the
light cone. Hence 0(k) is Lorentz-invariant.
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for all %, with £>>0. The norm of £ is normalized to unity, namely
2%0=1, 3-2)

Next, we consider one-particle states. For a given k., there always exist
four vectors €., (a=0,1,2,3), such that

. N ( (o) . 3.5

e(“)“(f,imﬁgaﬁ, Ze“a)eya)"_‘gm/, ("‘}.‘%>
w

Wk, = ¢, =0, (3-4)

We write ke=e“*%, and a,(k)=¢c"*"q, (k) for simplicity of notation. Then
(3-4) is rewitten as

/7\’,1—_“/32:': O. <3’5)
Let
v (k)=a.*(k)9,

O(k)=b*(k)L2. (3-6)
The Lorentz condition k*a.* (%) =0 reduces to
/63 dsg * (/(f) = ko Clu* (/3) . (3 . 7)

Since k>0, ay* (k) is not independent of «;* (k). Hence we have only to con-
sider four one-particle states #;(%k), (j=1,2,3), and ®(%). Their norms are

W (T (R) =1, (W, (1) =8 — K3,
vy (R (k) =0 (k—k') [0(F) — (ks)*0" (&) ],
0* (K)o (k) =0, (3-8)

on account of (2:25), (2-29) and (3-1). Of course, (3-8) should be under-
stood in the following way. Let a wave-packet state be

71(0) Egd%@ DF, (k). | (3-9)
Then ,
ORGP GINOIR (3-10)

Thus #(k) and ¥.,(%) are positive-norm states corresponding to transverse
photons, while @(%) is a zero-norm state. The sign of the norm of #;(%) is not
definite. Furthermore, (2-23) and (2-21) yield

Bw (k) =kw,(k)=FFo(k) =0,
B s(k) = —ink,®(k). (3-11)

We can, therefore, regard ¥;(k) as a dipole ghost and @(£) as the state which
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15 related to the residue of a double pole of the Green’s function. In other
words, @(k) and #;(k) correspond to @, and @,,, respectively, in Heisenberg’s
notation.” The result obtained here is quite analogous to that in the Bethe-
Salpeter formalism for a massless vector bound state.”

The free electromagnetic field has to satisfy the d’Alembert equation at least
in the sense of the expectation value. For this purpose, we should exclude the
dipole ghost #;(k) as an unphysical state. Let M,* be an arbitrary monomial
of creation operators which contains no dipole-ghost creation operator as* (k)
lor a*(k)]. Then we call a state of the form

?sz!?+2a,, M, 02 (3-12)

a “physical state”, where a and a, are arbitrary complex numbers, and the
summation >, generally contain integrations over four-momenta. In other words,
n

a physical state is a state which can be constructed from £ without using as* (k)
lor a,*(k)]. We call the totality of the physical states (after completion)
“Hilbert Space I”. The norm in it is positive semi-definite. For a physical
state ¥, it is not difficult to show

r* [ A()T =0, (3-13)

We postulate that when the interaction is switched off the state must belong to
Hilbert Space I. We have thus constructed a covariant quantum theory of the
iree electromagnetic field in the Landau gauge.

Finally, the interaction Lagrangian can be introduced as usual:

Li=—j*A,, (3-14)

where j. denotes an electric current. Then (2:6) and (2:7) remain unchanged
if

6"j.=0, (3-15)
while (2-8) is replaced by

(JAu=20.8—j.. (3-16)

It is subject to future investigation to check the consistency of our theory
when an interaction is present.
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