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A new covariant quantization of the free electrornagndic field is pror:oscd corrcs:Jonding to 

the fact that a ma"~slc ;s vector bound sta tc in the H:__'t 1 Ho-~)a] peter forma li:sm i:; accornpaJtiecl by 
a dipole ghost. The Lorentz condition is formulated a:-; an OiJCwlor identity. 

§L Introduction 

As is well known, a covariant quantization o£ the elect1 omagnetic field was 
formulated by Gupta and Bleuler. 1

) Since the Lorentz condition is not consistent 
with the canonical commutation relation, the former is regarded as a supple­
mentary condition which holds only for certain "physical states". Correspondingly, 
the photon propagator does not satisfy the Lorcnt;0 condition. 

It is often convenient theoretically to use the photon propagator in the 
Landau gauge, which satisfies the Lorentz condition. It has been customary, 
however, that the Landau gauge is introduced ad hoc after the quantization. 
The difficulty of quantizing the electromagnetic flcld in the I_,anclau gauge consist~:> 
in the fact that if the Lorentz condition is regarded as an operator identity, then 
the corresponding commutation relation is necessarily inconsistent with d' Alemberi 
equation of the free electromagnetic field. In the quantization of Rohrlich and 
Strocchi2

) in the Landau gauge, this difficulty is camouflaged by using a product 
of distributions which are not associative. On the other hand, }use) has recently 
proposed a theory in which only the interacting field can be covariantly quantized 
by means of Lehmann's spectral representation. He has forbidden one to use 
the interaction representation in which the quantum electrodynamics has been 
most successful. 

The purpose of the present paper is to propose a consistent, covariant quanti­
zation of the free electromagnetic field in the Landau gauge. In our previous 
work4

) on the Bethe-Salpeter equation for equal-mass particles, we have found 
that a massless vector bound state is accompanied by a dipole ghost5

) instead of 

*l This work performed under the auspices of the U. S. Atomic Euergy Commission. 
n Present aJclress; I<.esearch Institute for Mathematical Sciences, Kyoto University, Kyoto. 
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1112 N. Nakanishi 

a ghost, namely the corresponding Green's function then has a double pole at 
zero energy. Since we have not introduced any arti:Lcial assumption in the Bethe­
Salpeter formalism, the above result suggests that it will be natural to use a 
dipole ghost in the quantization of a massless vector field. 

As we remarked above, when the Lorentz condition is regarded as an 
operator identity, DAM cannot vanish identically, wt,ere A,_, is the free electro­
magnetic field. But we can easily see that the commutation relation can be 
consistent with an ansatz 

(1·1) 

where B is an auxiliary scalar field, YJ being a constant. 
As will be seen later, B is related to the residue of a double pole of the 

Green's function. The longitudinal photon becomes a dipole ghost accompanied 
by B, and the scalar photon is reduced to the longitudinal one because of the 
Lorentz condition. The d'Alerr.bert equution holds only in the sense of the 
expectation value for "physical states": 

(1·2) 

where physical states are the states wbich contc;.in no di1~ole ghosts. 
Our method of quantization may also be apr::licd to the weak gravitational 

field by using a "tripole'' ghost. 

§2. Quantization 

We use the following metric tensor: 

goo=- gjj:= 1, (j=:.l, 2, 3), 

g!Lv=O for p*-v. 

We start from the following Lagrangian density: 

La= ~ (afJ.Av-avA!L)(afJ.Av-6\Af-1.) 

-r;Baf-l.Af-1.+ -} (a!LB) (afJ_B), 

(2·1) 

(2·2) 

where YJ*- 0 is an arbitrary real constant having the dimension of mass. It IS 

evident that Lo is invariant under the gauge transformation 

B----B 

(2·3) 

where A may be an operator. 
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Covariant Quantization of the Electromagnetic Field 1113 

The equations of motion follow from (2 · 2): 

-8~-'(8~-LAv-ovA.u. -r;gfLvB) ==0, 

- r;o/J. A.u.- 61-La.u.B = 0. 

Operating &v on (2 · 4), we have 

OB==O. 

Then (2 · 5) reduces to 

Substituting (2 · 7) 1n (2 · 4), we find 

OA.u.= r;o.u.B. 

(2·4) 

(2·5) 

(2. 6) 

(2·7) 

(2·8) 

Our fundam.ental equations are (2 · 6), (2 · 7) and (2 · 8). From (2 · 6) and (2 · 8), 

we see 
(2" 9) 

The commutation relation of A.u. must be consistent with (2 · 7) and (2 · 9). 
It is uniquely (up to a coefil.cient) determined as follows: 

(2 ·10) 

where 

(2 ·11) 

with k2 -===.k""kfL. The integral of the first term is well known. The integration 
in the second term can also be easily carried out. We then obtain 

(2 ·12) 

The second term of (2 ·12) may be determined also by the requirement 

From (2 ·10) with (2 ·11) we have 

where 

[OA.u.(x), Av(x')J ==- (2n)-3~d4k c(ko)k.u.kvo(k2
)e-ik(x-x') 

=~ i8.u.8vl)(x-x'), 

IJ(x)-- (l/2n)c(x0)o(x2
). 

Therefore, (2 · 8) leads us to 

(2 ·13) 

(2 ·14) 

(2 ·15) 

(2 ·16) 
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[a~"B(x), av' B(x')] = 0. 

Integrating (2 ·16) and (2 ·17), we obtain 

[A,-'(x), B(x')] = -ir;-1 8,-'D(x---x'), 

[B(x), B(x')] = 0. 

(2 ·17) 

(2 ·18) 

(2 ·19) 

We can translate the commutation relations (2 ·10), (2 ·18) and (2 ·19) into 
those in the momentum space. Let*) 

A,-'(x) = (2n) -S/2 ~d4k (} (k0) [a~"(k) e-ikx +a,-'* (k) eikx], 

B(x) = (2n)-312 ~d4k O(k0) [b(l~)e-ikx+-b*(k)eikx]. 

Then our equations of motion are rewritten as 

k2 b (k) = k2 h * (/.?) = 0' 

k~"a,J_(k) == k~"a11.* (k) = 0, 

k2afJ_(k) =ir;l~,,b(k), 

k2a~'-* (k) = - ir;k,J.b* (!~). 

Our commutation relations become 

[a~'- (k), av(l~')] = 0, 

. [al'-(k), av*(k')] = -o4 (k-k') [ggvo(k2
) +l~fl.kvo'(k2)]' 

[a,,(k), bC~')j =0, 

[a,"'(k), b*(!/)\ =ir;-1 o4 (k-k')k,"'l5(k2
), 

l:bO~), b(I~')J =0, 

[b(k), b*(k')\ =--=0. 

(2·20) 

(2. 21) 

(2·22) 

(2·23) 

(2. 24) 

(2·25) 

(2-26) 

(2·27) 

(2. 28) 

(2. 29) 

As is seen from (2 ·18) or (2 · 27), two free fields Afl. and B do not commute 
with each other. This fact is closely related to the existence of a dipole ghost 
as was shown in Froissart's m.odel. 6

) We note that a similar formulation was 
used also by Fujii and Kamefuchi7

) for a different purpose. 

§3. States 

As usual, we define the vacuum SJ by 

(3·1) 

*) VVe understand that a1,(h)=O and bCA')=O if/~ does not lie on (or infinitesimally near) the 
light cone. Hence e(ko) is Lorentz-invariant. 
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Covariant Quantization of the Electromagnetic Field 1115 

for all k,~ w 1th ko>O. The norm of Q is normalized to unity, namely 

Q* Q === 1. (3 <2) 

Next, we consider one-particle states. For a giVen k!L, there always exist 
four vectors eCcx) !L, (a== 0, 1, 2, :-3), such that 

e(cx)!Le ~B)== _q afl, :::8 e: cx)e~ ex)= g !W, 

~ 

We write kcx -::::::::.eCcx)ll.,~!L and aa (k) -::::::::.eca)!La!L(k) for simplicity of notation. Then 

(3 · 4) is rewitten as 

Let 

?Ji a (k) ~aa * (k) Q, 

(f)(k) ==b* (l::)JJ. 

The Lorentz condition k!Laf). * (!?,) === 0 reduces to 

(3·5) 

(3·6) 

(3·7) 

Since ko>O, a 0 * (k) is not independent of a3 * (k). Hence we have only to con­

sider four one-p:uticle states ?fJ'j(k), (j = 1, 2, 3), and ({) (!~). Their norms are 

?Jf 1 * (!/) ?Jfl (k) =~ ?Jf 2 * (k') w 2 (/?) = o4(k- k') o(/?2
), 

7F3*(k')?Jis(k) =o4 (k-k') [o(k2
)- (kg) 2 o'(/?,2)j, 

m*(k)m(l::) =0, (3 ·H) 

on account of (2 · 25), (2 · 29) and (3 ·1). Of course, (3 · 8) should be under­

stood in the following way. Let a wave-packet state be 

(3. 9) 

Then 

(3·10) 

Thus ?J!I (I~) and ?J!~(k) are positive-norm states corresponding to transverse 

photons, while (/)(/?) is a zero-norm state. The sign of the norm of ?Ji3 (k) is not 

definite. Furthermore, (2 · 23) and (2 · 21) yield 

ll ?_[! 1 (!?) = k2 ?Ji 2 ( k) = k2 
({) (!?) = 0' 

k2 ?Jf3(k) = -£7Jk3m(k). (3 ·11) 

vVe can, therefore, regard ?Jf3(k) as a dipole ghost and (j)(k) as the state which 
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1116 }!. Nakanishi 

is related to the residue of a double pole of the Green's function. In other 
words, @(k) and ?Jfs(k) correspond to (/) 0 and @uip, respectively, in Heisenberg's 
notation.5

) The result obtained here is quite analogous to that in the Bethe­
Salpeter formalism for a massless vector bound state.4

) 

The free electromagnetic field has to satisfy the d' Alembert equation at least 
in the sense of the expectation value. For this purpose, we should exclude the 
dipole ghost ?Jf3 (k) as an unphysical state. Let NI,* be an arbitrary monom.ial 
of creation operators which contains no dipole-ghost creation operator as* (k) 
[or a0 * (k)]. Then we call a state of the form 

?Jf==af2+ b a,.A1n *Q (3·12) 
n 

a "physical state", where a and a" are arbitrary complex numbers, and the 
summation :::8 generally contain integrations over four-n1omenta. In other words, 

" 
a physical state is a state which can be constructed from Q without using as* (k) 
[or a 0 * (k) _\ . We call the totality of the physical states (after completion) 
"Hilbert Space I". The norm in it is positive semi-definite. For a physical 
state ?Jf, it is not difficult to show 

(3 ·13) 

We postulate that when the interaction is switched oH the state must belong to 
Hilbert Space I. We have thus constructed a covariant quantum theory of the 
free electromagnetic field in the Landau gauge. 

Finally, the interaction Lagrangian can be introduced as usual: 

where }!L denotes an electric current. TLen (2 · 6) and (2 · 7) remam unchant;ed 
if 

6'~j,~ = 0, (3 ·15) 

while (2 · 8) 1s replaced by 

(3 ·16) 

It is subject to future investig<cltion to check the consistency of our theory 
when an interaction is present. 
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