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Introduction 

I f  a locally compact group G acts on a C*-algebra A as an automorphism group, then 

one can construct the crossed product C* (A, G), the covariance algebra in the sense of 

[5], of A by  G in a way similar to the construction of a group C*-algebra. In  fact, the crossed 

product C* (A, G) of A by  G is the enveloping C*-algebra of the Banach *-algebra L 1 (A, G) 

of all Bochner integrable A-valued measurable functions on G with respect to the left 

Haar  measure of G, where the *-algebraic structure of LI(A, G) is defined as follows 

= fox+ t(y(t-is)) dt (zy) (8) 

for every pair x, y E L 1 (=4, G) and s E G, 

1 
x*(8) = h-~ s(x(s-~))* 

for every x ELZ(A, G) and s E G, where dt and A(s) denote the left Haar  measure and its 

modular function of G respectively. As it is shown in [5], if (~, U) is a covariant representa- 

tion of (A, G) on a Hilbert  space H (Cf. Def. 3.1), there exists a unique representation 

#~. v) of C* (A, G) on the same space H such tha t  

#<=,~)(x) = fa~(x(s)) U(s) ds 

for each x ELl(A, G). Further,  the map (~, U)~p(,.v> sets up a one- to-one correspondence 

between the set of all covariant representations and the set of all *-representations of 

(1) The author is partially supported by Sakkokai Foundation. 
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C*(A, G). The von Neumann algebra M(g, U) generated by (g(x), U(s); xEA, sEG} is 

the weak closure of ~(,.v)(C* (A, G)). Therefore, the study of representations of C* (A, G) 

is, in a sense, equivalent to that  of eovariant representations of (A, G). 

Recently, a number of works on the crossed product of a C*-algebra by its automor- 

phism group ,has been published by several authors~for  example, by G. Zeller-Meier 

[23], A. Guichardet [10] and by S. Doplieher, D. Kastler and D. Robinson [5]. 

In this paper, we shall study eovariant representations of (A, G), following G. W. 

Mackey's important theory of induced representations of groups. w 1 and w 2 are just 

preliminaries for the later study and the main part of this paper is w167 4-8. In w 1, we shall 

s tudy transformation groups of a topological space or of a Borel space. In w 2, we shall 

study the action of G on the space of representations of A. In w 3, we shall construct induced 

eovariant representations of (A, G) following the construction of induced representations 

of locally compact groups given by G. W. Maekey [15]. In w 4, we shall study the converse 

process of what is discussed in w 3. That is, studying a system of imprimitivity for a co- 

variant representation (Cf. Def. 4.1), we shall reduce the study of covariant representation 

of (A, G) to that  of eovariant representation of a subsystem (A, Go) of (A, G) under a certain 

assumption. Applying the results of w 4, we shall show, in w 5, that  the type of a covariant 

representation (z, U) is completely determined by the type of the associated projective 

representation of the associated subgroup of G under the hypothesis that  the representa- 

tion is of type I and that  the central system of imprimitivity is transitive (Cf. Theorem 

5.3). w 6 will be devoted to the study of covariant representations of a GCR-algebra and its 

smooth automorphism group as an application of the results of w 5. In w 7, we shall show 

the results concerning the induced eovariant representation corresponding to the subgroup 

theorem in the theory of induced representation of a locally compact group. In w 8, we shall 

show the existence of non-type I covariant representation under a certain condition. 

1. Transformation groups 

Suppose that  G is a topological (resp. Borel) group; that  is, G is a topological (resp. 

Borel) space and a group such that  the map (s, t)EG• is continuous (resp. 

Borelian). When G is a topological group, G is often considered as a Borel group equipped 

with the Borel structure determined by its topology. Let F be a topological (resp. Borel) 

space. Suppose that  a homomorphism of (7 into the group of all homeomorphisms (resp. 

Borel:automorphisms) of F is given, denoting the homeomorphism (resp. Borel-automor- 

phism) of F corresponding to sEG by yEF-*~sEP. If the map: (7, s)EFxG-+~sEF is 
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continuous (resp. Borelian), then G is said to be a topological (resp. Borel) t ransformation 

group of F, or F is said to be a topological (resp. Borel) G-space. 

In  many  cases, there are difficulties in proving the joint continuity of the map (7, s) E 

F • G-+Ts E F, even if its separate continuity is easily verified. However, we can get rid of 

such difficulties in our s tudy by  making use of the following theorem based on Baire's 

category theorem. 

THEOREM 1.1. I / G  is a Baire's space as a topological space and i /F  is metrizable, then 

the separate continuity of the map (7, s)EF • G~TsEF automatically implies its joint con- 

tinuity. 

This is easily proved from [2; Exercise 23, p. 118], but, for the convenience of the 

reader, we shall give the proof. 

Proo/. Let d be a distance function of F. For e > 0, 70 E F and s o E G, let/(7o, so, e) be the 

supremum of numbers 5 > 0  such tha t  d(70, 71) <~ implies d(7os0, 71So) ~<e. If/(70, So, e) <k,  

then there exists a 71 E F such tha t  d(70, 71) < k and d(70so, 71So) > e. There exists a neighbor- 

hood U of s o in G such tha t  d(7oS, 71s)>e for every sE U. Hence we have /(7o, s, e ) < k  

for every sE U, so tha t  the function sEG-~f(7o, s, e) is upper semi-continuous for every 

yoEF and e>0 .  The continuity of the map: 7EF-~TsEF implies f(7, s, e)~=0 for every 

7 E F and s E G. Let  70 be an arbi t rary fixed element of F. Putt ing 

G(7o; e, n) = (sEG; f(7o, s, e) >1 1/n), 

G(7o; e, n) is closed and LJ ~=1G(7o; e, n) =G. By the hypothesis for G, O=~lG(70; e, n) ~= 

G(7 o, e) is open and dense in G, where S ~ means the interior of S for each subset S of G. 

G Hence G(70)= N n=l (70, 1/n) is a dense subset of G with the maigre complement. I f  an 

s o belongs to G(7o), then for each n there exists a neighborhood U of s o and an m such tha t  

U is contained in G(70; 1/n, I/m), tha t  is, f(7o, s, I /n)~ 1/m for every sE U. Hence we have 

d(7oS, 7s) < 1/n whenever d(70, 7) < 1/m. I t  follows tha t  

1 
d(yoSo, 7s)~d(7oSo, 7os)+d(yoS, 7s)<-+d(7o s, 7s) 

whenever d(70, 7) < 1/m. Therefore, if U is chosen sufficiently small, then we have d(7oso, 

ys)<2/n whenever d(7o, 7)<l /m and sEU, so tha t  the map (7, s)-~Ts is jointly 

continuous at  (70, So) for every s o E G(7o). For an arbi trary element s I of G, considering the 

following sequence of maps 

(7, s) EF • G-~ (7, ss{lso) EF • G -~7ss~lso EF, 

18-- 672909 Acta mathematica 119. Imprlm6 le 9 f6vrier 1968 
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we can conclude tha t  the map  (7, s )EF x G-~7sEP is jointly continuous at (70, sl). Since 

70 is arbitrary, F becomes a topological G-space. This completes the proof. 

THF. OR~,M 1.2. I /  G is a separable locally compact group acting on a countably separated 

Borel space F as a Borel trans/ormation group, then /or each 7 o/ I ~ the stability group 

Gv = {s E G; 7s =7} o/G at 7 is closed and the natural map o/ the right coset space G~\G onto the 

orbit 7G is a Borel isomorphism. 

Proo/. Let  En be a countable separating family of Borel sets of F. Let  ~r  denote the 

natural  map GrsEG~\G-~TsEF. Then ~ is a one- to-one Borel mapping with respect 

to the quotient Borel structure of Gv\G and the Borel structure of F, so tha t  the family 

~0~l(En) becomes a countable separating family of Borel sets of Gv\G, tha t  is Gv\G is count- 

ably separated. Hence G v is closed by  [16; Theorem 7.2]. Therefore, the Borel space Gv\G 

is standard and ~ is a one- to-one Borel map of the standard Borel space G~,\G into the 

countably separated Borel space F, so tha t  ~v becomes a Borel isomorphism by  [16; 

Theorem 3.2.]. This completes the proof. 

By a measure /~ on a Borel space F, we shall mean a complete measure determined 

by a a-finite measure on the Borel sets of F. Let  C(/~) denote the set of all measures equiva- 

lent to /z  in the sense of absolute continuity. 

Let G be a locally compact group and F a Borel G-space. For a measure/~ on F and 

s EG, let s(#) denote the measure defined by s(/z)(E)=la(Es) for each Borel set E of F. 

I f  s(#) and/z are equivalent, tha t  is, if they have the same null sets for every s E G, # is said 

to be quasi-invariant (under G) and the measure space (F, #) is said to be a G-measure space. 

For a quasi-invariant measure #, let 2(7 , s) denote the Radon-Nikodym derivative of s(#) 

with respect to/~, tha t  is, 

(1 ) 
J d 

for every Borel function / on F. I t  is clear tha t  the function 2(7 , s) satisfies the condition 

2(7, s t )  = 2(7, s)2(7 s, t) (2) 

for every pair s, t E G and almost every 7 E 1". 

I f  a quasi-invariant measure /z on a Borel G-space F satisfies the condition tha t  

#(E) = 0  or # ( F -  E ) =  0 for every Borel set E of F with #(EAEs) =0 for every s E G, then 

/z is said to be ergodic, where A means the symmetric difference of sets. The notion of 

ergodicity does not depend on the measure/z  itself, but  only on the class C(#). When # 

is quasi-invariant and ergodic, the class C(/z) is said to be a quasi-orbit of G following 
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G. W. Mackey [17]. I f  G O is a closed subgroup of G, there exists a unique class C of the 

quasi-invariant measure on the right coset space Go\G which is the image of the class of 

Haar  measures under the canonical map sEG~GosEGo\G. In  a Borel G-space I ' ,  each 

orbit yG carries a unique class of quasi-invariant measures since ~G is isomorphic to the  

Borel G-space G~,\G by Theorem 1.2. The transi t ivi ty of the action of G yields its ergodicity, 

so tha t  the class of quasi-invariant measures concentrated on an orbit is a quasi-orbit, 

which is said to be transitive or merely orbit. The notion of quasi-orbit, defined above, is 

a generalization of tha t  of a measure concentrated on an orbit. 

2. Locally compact automophism groups of C*-algebras 

Let G be a locally compact group and A a C*-algebra. I f  there exists a map  

(s, x)EG x A ~ s ( x )  eA  

satisfying the following conditions: 

(1) /or each sEG, the map xEA--->s(x)EA is a *.automorphism o/ A, and sl(s2(x))=sls~(x ) 

/or each s I, s 2 e G and x E A, 

(2) /or each xEA and e>0 ,  there exists a neighborhood U o/ the unit e o/ G such that 

IIs(x)-xll /or every se U, 

then G is said to be a locally compact automorphism group of A. 

Let  H be a Hilbert space and let R(A: H) denote the set of all representations of 

on H. Considering the *-strong operator topology in the full operator algebra B(H) on H, 

we take for topology in Rep(A: H) the simple convergence topology. For each s EG and 

~ERep(A:  H), we define an action of s to ~ by  

(~s) (x) = ~(s(x)) (3) 

for every x e A .  Then it follows at once tha t  the map (g, s) eRep  (A: H) • G ~ z s e R e p ( A : H )  

is separately continuous. Since Rep (A: H) is metrizable whenever A and H are separable, 

we get the following result from Theorem 1.1. 

THE 0 R E M 2.1. I1 A and H are separable, then Rep (A: H) becomes a topological G-space 

automatically/or every locally compact automorphism group G o/ A. 

Let ~ (H)  (or simply ll) denote the group of all uni tary  operators on H. For  u E 

we shall define an action of u to g E Rep (A: H) by  
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(u=)  (x) = u ~ ( x )  u -1 (4) 

for every x E A. Then it follows at once that  

( u ~ ) s  = u (~s )  (5) 

for every (u, g, s) 6 ~ • Rep (A: H) • G. Suppose that  the dimension of H is infinite. Then 

the action of G on Rep (A: H) satisfies the following: 

(~1@j~2) s = ~ i  s |  (6) 

/or every (Zl, ~2, s) ERep(A: H) • Rep(A: H) • G, 

p(x~s) = p(~) (7) 

for every (~, s) E Rep (A: H) • G, where the definition of the ]-direct sum gl | ~ ~2 of 

gl, ~ E R e p  (A: H) and the definition of the projection p(g) are given in [21]. Hence G 

becomes an automorphism group of the topological algebraic system Rep (A: H). 

As a converse of Theorem 2.1, we get the following 

T H E O R ~  2.2. When A and H are separable, i/ a locally compact group G acts on 

Rep (A: H) as a topological trans/ormation group satis/ying conditions (4)-(7), G becomes an 

automorphism group o / A  and the action o/G on Rep (A: H) coincides with the action given by 

Theorem 2.1. 

Proo/. By [21; Theorem 4], A is represented as the C*-algebra of all continuous ad- 

missible operator fields on Rep (A; H), so that  we can define an action of s EG to x E A  by 

s(x)(~) = x(~s), ~ERep (A: H). (S) 

Then s(x) is a continuous admissible operator field on Rep (A: H), so that  s(x) belongs to A. 

I t  is easily verified that  s is an automorphism of A. Considering the Borel structure of 

B(H) generated by the *-strong operator topology, we shall consider a Borel structure of 

A which is the smallest Borel structure in which the function x E A ~ x ( g ) E  B(H) becomes 

a Borel function for every z E Rep (A: H). Since the Borel structure of B(H) is generated 

by  the weak operator topology, the Borel structure of A, just defined, is generated by the 

family of functions xEA--->(x(Te)~]~) for each 7eERep (A: H), ~, ,]EH. By [21; Lemma 2], 

the Borel structure of A is generated by the a(A, A*)-topology, so that  it is countably 

separated. The norm topology of A is polish and also finer than the a(A, A*)-topology, 

so that  the Borel structure of A is generated by the norm topology. For each ~ E Rep (A: H) 

and x E A, the map s E G~s(x)(~) = x(res) E B(H) is continuous, so that  the map s E G~s(x) E A 
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is a Borel function for each xEA. Hence the action of G on A becomes a measurable re- 

presentation of G on a separable Banach space A, so that  we have IIs(x)-xII ~0  for each 

xEA as s converges to e in G. This completes the proof. 

Let A* denote the conjugate space of a C*-algebra A and :E* its unit ball. For an 

sEG and an wEA*, we shall define an action of s to ~o by 

(o~'s, x) = (w, s(x)) (9) 

for each x of A, where (o~, x) means the value of co at x. If  A is separable, then the weak 

*-topology of Z* is metrizable. Since the map (w, s)EZ* x G-+o~sEZ* is separately con- 

tinuous, Z* becomes a topological G-space by Theorem 1.1. In  the following of this section, 

we shall assume the separability of A. Let U~ denote the group of all unitary elements of 

the C*-algebra A~ obtained by adjunction of a unit to A. For uE UA and eoEA*, we shall 

define a functional ~o ~ by 

(o~ ~, x~ = (~o, uxu - l~  (10) 

for each xEA, recalling that  A is an ideal of Az. Then we have, for each xEA, 

(o~s,  x~ = ( ~ ,  u s ( x )u - l~  = r s(s-~(u)xs-l(u-~))~ 

= (w~, s-~(u)xs-~(u-1))  = r ~-~(~), x~, 

so that we get eoUs = (~o. s) ~-~(u) (l l)  

for each eoEA* and sEG. Let ~) denote the Set of all pure states of A. Then ~) becomes 

a G~-set in Z*, so that  ~) is a polish space in the weak *-topology. For each eo E ~), let 

g~ denote the cyclic representation of A induced by w. Then, for each pair COl, eo~E ~, 

" ~ ,  _ ~ ~ "  is equivalent to "there exists u E U~ such that  coi =eo~ . 

Let .~ be the dual space of A, that  is, the set of unitary equivalence classes of all ir- 

reducible representations of A. In  .4, we shall consider the Fell-topology as a topological 

space and the Mackey Borel structure as a Borel space. Then the map ~oE~)-+~oE.~ is 

open by [8; Theorem 3], where ~ means the unitary equivalence class containing a repre- 

sentation g, so that  we can identify ~ with the quotient topological space ~)/UA under 

the natural correspondence. :For (o~o, So)~ ~)• G, let V be an open neighborhood of o~os o 

which is invariant under the action of UA. By the continuity of the map (~o, s) E ~) • G-+ 

o)sE~), there exist open neighborhoods W' of oJ 0 and U of s o such that  W'U~ V. For each 

eoEW', sEU and uEUA, co=s=(ws) ~-~(=) belongs to V by UA-invarianee of V, so that  

( U = ~ ~a W '=) U ~ V. Putting W = U = ~ vAW=, we can conclude that  there exist open neigh- 

borhoods W of w 0 and U of s o such that  W U c  V and W is invariant under U A. Therefore, 
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the quotient topological space ~)/UA becomes a topological G-space. Recalling that  

~,.~ =rews for every co E ~ and s E G, G becomes naturally a topological transformation group 

of the dual space .~ of A. Thus, we get the following 

T ~  E o R E M 2.3. For an irreducible representation g o / A  and s E G, de/ining an action o/ 

s to the unitary equivalence class :~ o/~e by ~. s = g.s,  G becomes a topological trans/ormation 

group o/ the dual space A o/ A equipped with the Fell topology. 

T ~ O ~ M  2.4. I /  A is GCR, then G becomes a Borel trans/ormation group o/ the dual 

space .~ o / A  equipped with the Mackey Borel structure. Hence/or each ~ o/ ~ ,  the stability 

group G~ o/ G at ~ is a closed Subgroup o/ G. 

Proo/. If A is GCR, then the Borel structure of A is generated by its Fell topology and 

is standard by [6]. Hence our assertion follows from Theorem 1.2 and 2.3 at once. This 

completes the proof. 

Now let A be a separable C*-algebra and G a separable locally compact automorphism 

group of A and H a separable Hilbert space. Then the space Rep (A: H) of all representa- 

tions of A on H becomes a polish space. Let  Irr  (A: H) denote the space of all non-de- 

generate irreducible representations of A on H. Then Irr  (A: H) is a Ga-set in Rep (A: H), 

so that  it is also polish. Considering the natural action of the cartesian product group 

•  on Irr  (A: H), ~ •  becomes a polish transformation group of the polish space 

Irr  (A: H). 

LEM~.~ 2.1. The action o/ ~ • G on I r r  (A: H) satisfies condition D in the sense o~ E. G. 

E//ros [24]. That is, /or each neighborhoods M o~ I in ~ and U o/ e in G, there exist neigh- 

borhoods N o/ I in ~ and V o/ e in G with the/ollowing property: I/{Qm} is a decreasing basis 

o/ open neighborhoods o/ any element ~ o/ Irr (A: H), then f') ~=I (NQ,n V ) c  M~U, where 

means the closure o / S / o r  any subset S o /  Irr  (A: H). 

Proo/. By [24; Lemma 4.1], the action of ~ on Irr  (A: H) satisfies condition D, so 

r162 C that  there exists a neighborhood N of I in ~ such that  17 m=l(Z~Qm) Mn for every de- 

creasing basis {Qm} of open neighborhoods of ~ EIrr (A: H). Let V be a compact neighbor- 

hood of e contained in U. Take an arbitrary point ~o E N ~=l(zVQm V). Then we can choose 

sequences {urn}, {sin} and {7~m} such that  UmEN, 7~mEQ,n, SmE V for each m = l ,  2 .. . .  and 

lim U,ngmSm =g0" By the compactness of V, taking a subsequence of {sin} ff it is necessary, 

we may assume that  {sin} converges to an soEV. Since limum~m=lim (UmrCmSm)STnl= 

~0SO 1, g0S~ 1 belongs to N ~=I(NQm). From the assumption for N, we have 
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:~oSo~ N (NQm) ~ M:~. 
m = l  

Therefore ~0 belongs to MuU, which implies that  rl ~=I(NQm v ) c  MzU. This completes 

the proof. 

Combining the results of E. G. Effros [24] and Lemma 2.1, we get the following 

T~wORV,~ 2.5. I~ A is a separable C*-algebra and G is a separable locally compact 

automorphism group o /A,  then the ]ollowing are equivalent: 

(i) The quotient Borel space A/G is countably separated. 

(ii) ~ has no non-transitive quasi-orbit o] G. 

(iii) The quotient topological space ~/G is almost Hausdor//. 

Proo/. The implication (i) ~ (ii) is easily proved by the argument of p. 126 in [25]. 

Let  Hn be an n-dimensional Hilbert space for n = 1, 2, ..., c~ and ~n the group of 

all unitary operators on Hn. Putt ing ~n = ( tEA;  dimension of t =n}, ~n can be regarded 

as the quotient topological (or Borel)space Irr  (A: Hn)/'U ~. Since [J ~=l-~k is a closed sub- 

space of .~ and ~ is invariant under the action of G for each n = 1, 2 ..... c~, it is sufficient 

to prove our assertions for ~n instead of the whole space ~.  For each :~EIrr (A: H), let 

~(:~) denote the class of all irreducible representations of ~ on H~ unitarily equivalent to 

:~. For each $ E~n, let ~v(~) denote the orbit tG of G at ~. Each subset S of ~n/G is open (resp. 

Borelian) if and only if ~-1(S) is open (resp. Borelian) in ~n" Also each subset E of ~ ,  is 

open (resp. Borelian) if and only if ~-I(E) is open (resp. Borelian), so that  each subset S 

of ~/G is open (resp. Borelian) if and only if t-lq0-i(S) is open in I r r  (A: H) (resp. Bore- 

llan in I r r  (A: Hn) ). Hence the space ~/G becomes the quotient space under the composed 

map ~v =~  o ~. On the other hand, ~v can be regarded as the canonical map of I r r  (A: H~) 

onto the orbit space Irr  (A: Hn)/('U~ • G). Therefore, by Lemma 2.1 and [24; Theorem 

2.9], the assertions (i) and (iii) are equivalent. 

(ii) ~ (i). Suppose the quotient Borel space ,~/G is not countably separated. By [24; 

Theorem 2.6], Irr  (A: Ha) has a non-transitive ergodie quasi-invariant measure # with total 

mass one under the action of ~ x G. Define a measure v in ~= by v(E) =#( t - l (E) )  for each 

Borel set E of A~. Then v becomes an ergodie measure in ~n under the action of G. Suppose 

that  there exists a point t0 E.4~ with v(~0G) = 1. Since t-l(~0G) = ~n~0G for any ~0 of ~0 and 

~u(~-l(t0G)) =v(~0G) = 1, ~u is concentrated in the orbit ~ 0 G  of ~ x G at :~0, which contradicts 

the non-transitivity of ju. Therefore, v is a non-transitive ergodie measure in ~ .  This 

completes the proof. 

Under the same conditions as in Theorem 2.5, we shall study an irreducible represen- 
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tation zr of A on a separable Hilbert space H such that  re. s_~re for each s of G. There exists 

a unitary operator V(s) on H for each s E G such that  ~rs = V(s)re. For each pair s, t E G, 

we have 
V(st)re = ~r(st) = (V(s)re) t = V(s)  (~t) = V(s)  V(t)~r, 

which implies that  V(t) -1 V(s) -1 V(st) commutes with ~r(A). By the irreducibility of re, 

V(t) -1 V(s) -1 V(st) is a scalar a(s, t) of modulus one. As in the arguments of [17; Theorem 

8.2], we may choose V(s) such that  V(. ) is a ~/(H)-valued Borel function over G, and so 

a becomes a multiplier in the sense of G. W. Mackey [17] and V is a a-representation of G. 

Moreover, the multiplier ~ and the (~-representation V are uniquely determined within 

equivalence. Thus we get the following 

THEOREM 2.6. Let A be a separable C*-algebra and G a separable locally compact 

automorphism group o/ A.  I /~r is an irreducible representation o/ A on a separable Hilbert 

space H such that vrs is unitarily equivalent to re/or each s E G, then there exist a unique multiplier 

a /or  G and a a-representation V o /G on H, unique within equivalence, such that V(s)~r =yr. s 

/or each s E G. 

3. Induced covariant representation of C*-algebras and their locally compact 

automorphism groups 

Let A be a C*-algebra and G a locally compact automorpMsm group of A. On the 

connection between a representation of A and of G, we shall state the following. 

De/inition 3.1. If  a representation ~r of A on a Hilbert space H and a unitary represen- 

tation U of G on the same space H satisfy the condition 

U(s) ~(x) U(s)- i  = res(x) (1) 

for every x E A  and sEG, then the couple (Jr, U) is said to be a covariant representation of 

(A, G). According to the type of the yon Neumann algebra M(re, U) generated by {Jr(x), 

U(s); x E A, s E G}, the covariant representation (re, U) is said to be a factor representation, 

a type I representation and so on. 

In  the following, we shall assume the separability for A, G and H. 

Let G o be a closed subgroup of G and let F denote the right coset space Go\G. Then 

F becomes a locally compact G-space. Let /z  be a fixed finite quasi-invariant measure on 

F and 2 the associated 2-function on I ~ in the sense of G. W. Mackey [15]. Let (:r0, L) 

be a covariant representation of (A, Go) on a separable Hilbert space H 0. Making use of 

Mackey's construction of the induced representation of G, we shall construct a new co- 
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variant  representation (~, U) of (A, G), which is called the induced covariant representa- 

tion. Take the unitary representation U ~ of G induced by  L as a uni tary representation 

U of G. Let  H denote the representation space of U L. Then H is the space of all H0-valued 

Borel function ~ on G satisfying the conditions: 

for every 8 r G o and t r G, 
~(st) = L(s)~(t) (2) 

f r  (3) 

The last condition (3) is easily justified by  the fact tha t  11~(st)ll = IIL(s)~(t)H = II~<t)ll for 

every aEG o and tEG, so tha t  11 (8)11 can be interpreted as a function on F. For each x E A ,  

we shall define an operator a(x) on H by; 

( ~ ( x )  ~ )  (t) = n0 t ( z )  ~(t)  (4)  

for each ~ fi H and t e G. By the fact tha t  

(=(x)~) (at) = ~rost(z)~(st) = {L(a)ztot(x)L(s)-l} L(a) $(t) = L(s) (~(x)~) (t) 

for every ~fiH,  a r G  o, t r ig  and x r A ,  ~r(x)~ belongs to H. I t  is clear tha t  ~(x) is bounded 

and tha t  zt preserves all algebraic operations of A, so tha t  we get the representation ~t of 

A on H. The arguments in [15], which prove the independence of U ~ on the choice of 

quasi-invariant measure #, also show the independence of ~ on the measure. The covarianee 

of (~, U) is proved at  once by the following 

U(8):7~(z) U(8-1)~( t )  = ~(t, 8) �89 (:T~(x) U(8-1)~) ( t s )  

= ~(t ,  a)%ota(z)(U(a-~)~)( ts)  

= %ta(x)~(t)  = ( ~ s @ ) ~ ) ( t )  

for every ~ r H ,  8, t r G  and x r A .  

De/inition 3.2. The couple (~r, U), just defined, is said to be the covariant representa- 

tion of (A, G) induced by the covariant representation (zt0, L) of (A, Go). 

4. Systems of imprimltivity for covariant representations 

In  this section we shall keep tile basic hypothesis of countability condition for U*- 

algebras, locally compact groups, Hilbert  spaces and so on. We shall s tudy the converse 

process of tha t  described in w 3. That  is, we shall s tudy when a given covariant representa- 

tion of (A, G) comes from a covariant representation of a subsystem (A, Go) as an induced 

covariant representation. For the purpose, we shall make  a definition following G. W. 

Mackey. 
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De/inition 4.1. Let  (~, U) be a covariant  representation of a C*-algebra A and a 

locally compact automorphism group G of A on a Hilbert space H. Let  A be a commutative 

yon Neumann algebra acting on H. If A satisfies the conditions: 

A is contained in the commutant ~(A)' of 7~(A), (1) 

U(s)AU(s-1)=A for every sEG, (2) 

then A is said to be a system of im~rimitivity for (z~, U). Also, if each fixed element of A, 

under the automorphism xEA-~ U(s)xU(s -1) EA for all s of G, becomes a scalar, then A 

is said to be an ergodie system of imprimitivity for (g, U). 

Suppose that  a covariant representation (g, U) of (A, G) on H is induced by a co- 

variant representation (z0, L) of (A, Go) on H 0 as in Definition 3.2. For each ] EL~ 

define an operator i(/) on H by (i(/) ~) (s) =/(~) ~(s) for every ~ e H and s E G. Then the algebra 

A consisting of all i(/)'s becomes a system of imprimitivity for (z, U). We shall call A the 

canonical system of imprimitivity. 

If a commutative yon Neumann algebra A on H is a system of imprimitivity for 

(g, U) then by [18; Theorem 1 and 2] there exists an essentially unique standard Borel 

measure G-space (F,/~) and an isomorphism i of the algebra L~~ ~u) of all essentially 

bounded measurable functions over (F,/~) onto A such that  

u(8)i(/)u(8 -1) =i(s(/)) (3) 

for each /EL~176 where s(/) means the function of L~~ by s(/)(~)=/(~s) 

for ~ E F. In other words, the couple (i, U) is, in a sense, a covariant representation of 

(L~ G) on H, considering G as an automorphism group of the algebra L~176 #). 

The action of G on L~176 ~u), however, does not satisfy condition (2.2). In the above situa- 

tion, the system of imprimitivity A for (~, U) is said to be based on the G-measure space 

(F,/~) with respect to i. Then the ergodicity of the system of imprimitivity A is equivalent 

to that  of the action of G on (F, ju). 

De/inition 4.2. If the quasi-invariant measure/~ of F is transitive, then A is said to be 

a transitive system of imprimitivity for (~, U). 

The above definition does not depend on the choice of G-space (F,/~) by [18], but  it is 

determined by the triple (A, G, U). 

For the study of the connection between a covariant representation and a system 

of imprimitivity, we shall briefly sketch the arguments employed by G. W. Maekey in [17]. 

Let  A be a system of imprimitivity for a covariant representation (~, U) of (A, G). Since 

A is commutative, A is the center of the commutant A' of A. Hence there exists a unique 
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family {en) of orthogonal projections of A such tha t  Zne, = I and, for each n = 1, 2 . . . .  , ~ ,  

A' e~ is spatially isomorphic, as a v o n  Neumann algebra, to the tensor product L~(En,#) | Bn 

of the von Neumann algebra L~~ #) on the Hilbert  space L2(E,, #) and the full operator 

algebra B n on an n-dimensional Hilbert  space Hn, where En is a Borel set in F associated 

with i-l(en). Each projection e, is invariant under every spatial automorphism of A, so 

tha t  we may  assume tha t  each Borel set E~ is G-invariant by  [18; Theorem 3]. Hence we 

can, without loss of generality, limit ourselves to the case when A' is spatially isomorphic 

to L~(F, #) |  Bn for some n. In  this case, A is said to have uni/orm multiplicity n. I f  A is 

an ergodic system of imprimit ivi ty the situation certainly will fall into this case. I f  A has 

uniform multiplicity n, then the situation becomes as follows: 

(4) The space H is the Hilbert  space of all square integrable Hn-valued functions 

over (1 ~, ~). 

The action of A on H is given by  

(i(/)~) (2,) =/(2,)~(2,) (5) 

for each /EL~176 #) and ~eH=L2(Hn, F,#) .  

Let  2(2,, s) be the function on 1 ~ • G defined by  condition (1.1). For each sEG, we shall 

define an operator V(s) on H by  

(v(s)~) (2,) = ~(2,, s)~ ~(2,s) (6) 

for every ~EH. Then, by  [17; Theorem 5.3], V(s) becomes a uni tary representation of 

G on H. We also have 
V(s)i(l)  V(s -~) = i(s(l)) (7) 

for every s E G and ] EL~176 #). Combining equations (3) and (7), we find tha t  the operator 

W(s) = U(s) V(s) -1 belongs to A' for every s E G, so tha t  W(s) is decomposable. Hence, for 

each s e a ,  there exists a ~/(H,)-valued Borel function W(y, s) on (F,/~) such tha t  

(W(s)~) (y)= W(y, s)~(2,) for every ~ e H and almost every 2, E F. From the equation 

(w(st)  ~) (2') = (u (a )  V(st)-~#) (2,) = (u(8) u(t)  v(t)-a v(8)-~) (2') 

= (u(8) V(8) -~ v(s)  W(t) v(s)-i~)(2,) 

= w(2,, 8) (v(8) W(t) v(8)-~)(2 , )  

= ,~(2,, s)~ W(2,, s) w(2,8, t) ( v ( s ) - ~ ) ( y s )  

= )t(2,, s)�89 s- l)  ~ W(2,, s) W(2,s, t)~(2,) 

= W(2,, s) W(2,s, t)~(r ) 

for every ~EH and almost every 2,, it follows tha t  
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W( 7, st) = W(7, s) W(Ts, t) / 

J W(7, e) = I 
(8) 

for every pair s, t in G and almost every 7. By [17; Theorem 5.6], the ~(Hn)-valued function 

W(7, s) on F • G may be chosen as a measurable function. Hence we have 

(U(s)~) (7) = 2(7, s)~ W(7, s)~(Ts) (9) 

for every ~ E H, s E G and almost every 7 E r .  

Let  us come back to the study of z. Condition (1) yields that  there exists a Rep (A; Hn)- 

valued measurable function 7 E F - ~ v E R e  p (A: Hn) such that  

(~(x)~) (7) = ~(x)~(7)  (10) 

for each xGA, ~EH and almost every ~,. Then we have 

(:7~8(X) ~) (7) = (U(8) :r~(x) U(s -1) ~) (7) 

= 2(7, s)t W(r, s)(~(x) u(s-1)~)(Ts) 

= 2(7, s)~ W(7, s)~78(x) (U(s-~)~) (Ts) 

= 2(7, s)�89 s-~) ~ W(7, s)%,~(x) W(Ts, s-~)~(7) 

= W(7, s)~rs(x)W(Ts, s-1)~(7) 

lor every xEA,  sEG, ~EH and almost every 7. Since it follows from (8) at  once that  

W(Ts, s -1) = W(7, s) -1 for every s of G and almost every 7, we have 

~ s  = W(7, s).Te~s (11) 

for each s of G and almost every 7. Now we are in the position to describe how the family 

(~r, W(7, s); 7 E F, s E G} determines the eovariant representation (g, U). 

T ~ v. o R ~ M 4.1. Let (P,/~) be a standard G-measure space and H o a separable Hilbert space. 

,Let H denote the Hilbert space o /a l l  Ho-valued square summable /unctions over (F, #). ,Let 

W(7 , s) be a ~(Ho)-valued measurable/unction on F • G and gv a Rep (A: Ho)-valued measur- 

able /unction on I ~. I /  W(7, s) and ~ ,  satis/y conditions (8) and (11), then the couple (~, U) 

which is de/ined on H by equations (9) and (10), becomes a covariant representation of (A, G) 

and the algebra A given by equation (5) becomes a system o/imprimitivi ty/or (x~, U). 

Conversely, i/ a commutative von Neumann algebra A with uni/orm multiplicity is a system 

o/imprimitivity/or a covariant representation (~, U) o/ (A, G) on a Hilbert space H, then there 

exists a standard G-measure space (F, #), a Hilbert space H o, a ~(Ho)-valued measurable 

/unction W(7 , s) o/ P • G and a Rep (A: Ho).valued measurable/unction o/ 7~, as in the above 

such that (z, U) is unitarily equivalent to the covariant representation on the Hilbert space 
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L~(H0, F, #) o /a l l  Ho-valued square summable /unctions over F determined by (g~,, W(~, s); 

~ E r ,  s~G}. 

When a system of imprimitivity for a covariant representation is transitive, we can 

sharpen the above result as follows. By [17; Theorem 6.1], the associated G-measure space 

(F, #) can be identified with the right coset space Go\G of a closed subgroup G o as a G-space. 

Suppose that  a system of imprimitivity A for a covariant representation (g, U) of (A, G) 

is based on the right coset space Go\G of a closed subgroup of G. By [17; Theorem 6.6], 

the representation U of G is certainly induced by  a unitary representation L of G 0 on a 

Hilbert space H 0. We shall, however, briefly sketch Mackey's arguments again for the study 

of the covariance of ~ and U. 

Let  7(s) denote the coset Gos for each sEG. We shall keep the notations of Theorem 

4.1. Putt ing 

tit(s, t) = W(7(s), t) and ~s = :~,(s) 

for each pair s, t in G, W(s, t) and ~s satisfy the following conditions: 

For every pair s, t in G, 

W(r, st) = VV(r, s) VV(rs, t) and l~V(r, e) = I (12) 

for almost every r E G, and 

l~(rs, t) = W(s, t) and ~r8 =~s (13) 

for every (r, 8, t) EG o • G • G i for every tEG 

if(8, t) ~s~ =~8.t (14) 

for almost every sEG. Then, by [17; Lemma 6.1 and 6.2], there exists a ~(H0)-valued 

Borel function B on G and a unitary representation L of G O on H o such that  

W(8, t) = B(s) -1B(st) (15) 
for almost every pair s, t in G, 

JB(rs) = L(r) B(s) (16) 

for every r E G o and every s E G. Further,  these functions B and L are uniquely determined 

within suitable equivalence, that  is, if B' and L' are another couple of ~/(H0)-valued Borel 

functions with the properties (15) and (16), there exists a unitary operator C such that  

B'(s) = CB(s) for almost every s E G and such that  L'(s) = C - I L ( 8 )  C for every s E G 0. I t  

follows from condition (14) that  

(B(s) ~s) s-1 = B(st) ~TSt(St) -1  (17) 
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for almost every pair s, t in G. Hence, the representation B(s)~s 8-1 of A on H 0 is almost 

everywhere equal to the representation fro which is independent of 8. Let  ~ be a member 

of the unique invariant measure class in G with total mass one. Then we have, for every 

pair ~, ~ E H e and x E A, 

~[~) = fo (B(s) ~8 s-l(x) B(s) -1 ~l~) d~(s). (n0 (x) 

For every r E Go, we have 

(no r(x) ~ [ ~l) = f G !B(s) "~s-lr(x) B(s)-I ~ I ~/)da(s)= f a (B(rs) ~rss-l(x) B(rs)-l ~ [ ~1) d~" (s), 

where g' is another measure in G with the same properties as a. The right side of the 

above integration becomes 

fa(L(r) B(s) ~[r/) (s) :~sa-l(z) B(s)-IL(r) -1 ds  

J (f ( B(s) ~ss-l(x) B(s)-lL(r) -1 ~ [ L(r)-l~/) d~' (s). 

Since the function of s under the integral sign is constant almost everywhere, the above 

integral is equal to (Tr0(x) L(r) -1 ~ I L(r) -1 v]). Hence we have 

:~o " r = L(r) . no (18) 

for every rE G 0. Therefore (~0, L) is a covariant representation of (A, Go). Since B(s)~s s -1 

is equal to 7r o almost everywhere, we have 

B(s) ~8 = no .8 (19) 

for almost every 8 E G. Now we are in the position to show the relation between the covariant 

representation (~, U) of (A, G) and the covariant representation (no, L) of (A, Go). 

THEOREM 4.2. In  the above situation, the covariant representation (Tr, U) o/ (A, G) 

is unitarily equivalent to (~, ~), the one induced by the covariant representation (no, L) o/ 

(A, Go). 

Proo/. Let R denote the representation space of the induced covariant representation 

(~, /~). For each ~ EH, let ~ denote the Ho-valued function on G defined by ~(8) = B(s)~(~,(s)) 

for every 8EG. I t  is not so difficult to show that  the operator V, defined by V~=~ for 

E H, becomes an isometry of H onto/~.  Then we have, for each ~ of H and every s E G, 
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(VU(s)~) (r) = B(r)(U(s)~)(7(r)) 

= ~(),(r), s) �89 B(r) W(7(r), s)~(~,(r)s) 

= 2(~(r), s)�89 B(r) 17V(r, s)~(~(rs)) 

= 2(~(r), 8) �89 B(rs)~(~,(rs)) 

= (UL(s) ,V~)  (r) 

for almost every r E G. Also we have, for each x E A and each ~ E H, 

( Vxe(x) ~) (r) = B(r) (7e(x)~) (~,(r) ) 

= B(r)~r(x)~(~(r)) 

= ~o.r(x) B(r)~(~(r)) 

= Zo" r(x) (V~) (r) = (~r(x) V~) (r) 

for almost every r E G. I t  follows tha t  the isometry V carries the unitary equivalence between 

(~r, U) and (Tr, /~). This completes the proof. 

In  the last par t  of this section, we shall s tudy the commutant  algebra YI(vr, U)' of the 

covariant representation (vr, U) in the situation of Theorem 4.2. 

Suppose tha t  T is an abi tary  operator in M(g, U)' N A'. Since T is decomposable, 

there is a measurable B(H0)-valued function T(~,) on 1 ~ such tha t  (T~)(~)= T(~)~(~) for 

every ~ E H and almost every 7 E F. For each s E G, we have 

(u(s) T~)(e) = 2(e, s)~ W(e, s) T(es)~(es) 

and also ( T U  (s) ~) (~) = 2(~, s) �89 T(~) W (~, s)~(~s) 

for each ~ E H and almost every ~ E F, so tha t  we have 

T(~) W(~, 8) = W(~, s) T(rs) (20) 

for almost every 7EF.  Putt ing T(s )=  T(~(s)) for every seG,  we get ~(rs )=  T(s) for every 

r E G o and every s E G. Also for each s E G, we have 

T(r) B(r) -1B(rs) = B(r) -1 B(rs) T(rs) 

for almost every r E G. Therefore, we have 

B(r) T(r) B(r) -~ = B(rs) ~'(rs) B(rs) -1 (21) 

for almost every pair r, s in G, tha t  is, the B(H0)-valued Borel function B(r)~'(r)B(r)  -1 

on G becomes a constant operator T o of B(Ho) almost everywhere. Since T belongs to 

M(~, U)' N A', almost every T(~) belongs to zr(A)' ,  so tha t  almost every ~(s) belongs to 
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fts(A)'. I t  is clear that  ~ss-l(A)" = ~s(A)" for every s E G and that  B(s )T ( s )B( s )  - t  belongs to 

the commutant M(B(s)~s)' of ( B ( s ) ~ ) ( A )  for almost every s E G, so that  To belongs to the 

commutant M(~0)' of ~r0(A). For each r E Go and each pair ~, ~ E H 0, we have 

(L(r) T O ~l~) = (To ~[L(r) -1~1) = f o  (B(s) ~(s) B(s) -!  ~ I L(r) iV) do(s) 

fo  .11 i fo I 
where a and a' mean the measures on G taken up on page 288. By the same reason as in the 

arguments there, the above integral is equal to (ToL(r)~l~). Therefore, T O belongs to the 

commutant M(L)' of {L(r); rEG0}. Let  (I) denote the map TEM@, U)' N A'-~ToEM(g0, L)'. 

THEOREM 4.3. I n  the same situation as in Theorem 4.2, the von Neumann  algebra 

M(ze, U)' n A '  is isomorphic to M(zt0, L) '  under the isomorphism ~P. 

Proo/. We shall use the preceeding notations. We have, for each ~ E/~, 

( V T V-a~)(s) = B(s) ( T V- l  ~) (7(s) ) = B(s) T(y(s) ) ( V-l~) (7(s) ) = B(s) T(s) B(s)- l  ~(8) = To~(8 ) 

for almost every s E G. Therefore, V T V  -1 becomes To@ 1 on the space / / ,  under a suitable 

interpretation. Hence ~P is an isomorphism of M(~r, U)' t3 A' into M(~r0, L)'.  For each T o 

of M(~r 0, L)', we shall define the operator ~ on ~ by T~(s) = Tong(s) for every ffE/t  and s c a .  

Then it is clear tha t  ~ belongs to M(~, UL) ' and that  V - 1 T V  belongs to M(~r, U)' fl A'.  

Moreover, we can easily show that  qP(V-1TV)= T o. This completes the proof. 

5. Central systems of  imprimitivity for covariant representations 

We shall in the following keep the basic countability assumptions. Let  (7~, U) be a 

covariant representation on a Hilbert space H of a C*-algebra A and its locally compact 

automorphism group G. Let  Z(~) denote the center of the yon Neumann algebra ~(A)" 

generated by ~(A). Then, Z(~) automatically becomes a system of imprimitivity for (z, U), 

which is said to be the central system of imprimitivity for (~r, U). Applying the results 

of w 4 to the central system of imprimitivity Z(~) for (~, U), we shall make a detailed study 

of the covariant representation (~, U). Since each fixed element of Z(~), under the auto- 

morphism; T E Z(z)-+ U(s) TU(s)  -1 E Z(~) for every s E G, belongs to the center of the yon 

Neumann algebra M(~, U) generated by {zt(x), U(s); x EA, s E G}, we get the following 
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THEOREM 5.1. Under the above conditions and i/ the covariant representation (g, U) 

is a covariant /actor representation o/ (A, G), then the central system o/ imprimitivity Z(g) 

/or (g, U) is ergodic. 

I f  the central system of imprimit ivi ty Z(n) is transitive, it is rather  easy to describe 

the covariant representation (g, U) in terms of the associated covariant representation 

(n 0, L) of some associated subsystem (A, Go). Applying Theorem 4.3, we get the following 

THEOREM 5.2. In the same situation as in Theorem 5.1, i~ the central system o/ imprimi- 

t!vity Z(g) /or  a covariant representation (g, U) o/ (A, G) is transitive, then there exists a unique 

closed subgroup G O o/ G and a unique covariant representation (no, L) o/ the subsystem (A, Go) 

such that (g, U) is induced by (no, L), where the uniqueness is up to equivalence. Moreover, 

in this case, the commutant algebra M(g, U)' o / (g(x) ,  U(s); xEA,  sEG} is isomorphic to the 

commutant algebra M(g0, L)'  o/ (g0(x), L(s); xEA,  SeGo} under the canonical isomorphism 

~9 and go is a/actor representation. 

In  the following, we shall s tudy a covariant representation (g, U) of (A, G) under the 

hypothesis tha t  Z(g) is transitive and tha t  the associated representation g of A, in the sense 

of Theorem 5.2, is of type I. For the purpose, we need the following lemma. 

LEMMA 5.1. Let G O be a separable locally compact automorphism group o/ a separable 

C*-algebra A. Let (no, L) be a covariant representation of (A, Go) on a Hilbert space H o. 1/ 

go is a type I/actor representation, then there exist a multiplier a/or G O in the sense o/ G. W. 

Mac]cey [17], a a-representation L 1 (resp. a-Lrepresentation L e) o/ G O on a Hilbert space H 1 

H o : H I |  L : L I |  2, go(X)=g l (x ) |  xEA,  

and L l ( S ) g l  : g l  8 /or each sEG. 

Proo/. By the hypothesis for go, there exist two Hilbert  spaces H 1 and H e and an 

irreducible representation gl  of A on H 1 such tha t  H = H 1 Q H  e and go (x )=g l (x ) |  for 

every x E A, Since gos =L(s)g0, gos is unitarily equivalent to go for each s EG o. g l  is quasi- 

equivalent to g0 and so is g l s  to g0s, so tha t  g l s  and gl  are quasi-equivalent for each s E G o. 

Since g l s  is irreducible for every s EGo, gl and g l s  are unitarfly equivalent. Therefore, by  

Theorem 2.6, there exist a unique multiplier a for G o and a a-representation L 1 of G o o n  

H 1 such tha t  L l ( s ) g i = g l s  for every sEG. Since (Ll(s)| 1)go=gos=L(s)g o for each sEG, 

(Ll(s)-l| 1)L(s) commutes with g0(A). Hence there exists, for each s E G, a uni tary operator 

Le(s) on H e such tha t  (Ll(s) -1 | 1)L(s) = 1 | The maps s EG-~Le(s) and s E G-~L(s) 

are Borel functions so tha t  the map  s EG-+Le(s) is a Borel function. Since L(s) =Ll(s) | 

19 -672909  Acta mathematica 119. Imprim~ le 9 f~vrier 1968 

(resp. H2) and an irreducible representation gl o / A  on H 1 such that 
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is an ordinary representation, L ~ becomes a a-Z-representation of G on H 2. This completes 

the proof. 

LEMMA 5.2. Let (A, Go) be a couple as in Lemma 5.1. and let (~1, L1) be a couple o / a n  

irreducible representation o/ A and a a-representation o~ G o on the same Hilbert space H z / o r  

a multiplier a / o r  G o such that L l (s )g l  = g l  s / o r  every s ego. Then , / o r  each a-Z-representation 

.L~ on a Hilbert space H2, putting H 0 = H 1 | H2, no(X ) = gl(X) | 1/or each x E A and L = L  1 | L 2, 

the map L ~ (no, L)sets  up a one-to-one correspondence between the set o/a-Z-representations 

o/ G o and the set o/al l  covariant representations o/ the /orm (gl | 1, L 1 |  2) o/(A, Go). 

Moreover, the commutant M(zo, L)'  is isomorphic to the commutant M(L2) ' o/ L2(G) 

under the canonical correspondence. 

Proo/. Except  for the last assertion our theorem has been proved already. For each 

T of B(H2), we shall put  (I)(T)= 1 | T in H o = H I |  2. Then it is clear that  (I)(T) belongs 

to M(go, L)' for each T of M(L~) '. Suppose T.  is an operator of M(~ o, L)'. Since M(go, L)' -- 

M(~.)' N M(L)', there exists a unique T of B(H2) such that  (I)(T) = T o. From the fact tha t  

r TL2(s) -1) = 1 | (L2(s) TL2(s) -1) 

= (LI(s) | (1 | T) (LI(s) -1 | -1) 

= L(s) ToL(s) -1 = T o = r 

for each sEG o, we have L2(s)TL2(s) -1 = T, which implies that  T belongs to M(L2) '. This 

completes the proof. 

Combining Theorem 5.2, Lemma 5.1 and 5.2, we get the following at once. 

THWORV,~ 5,3. I n  the same situation as in Theorem 5.1, suppose that the central system 

o / impr imi t iv i t y  Z(Te)/or a covariant representation (g, U) o/ (A, G) on a Hilbert space H is 

transitive and that the representation g is o / type  I. Then there exist an irreducible representation 

~T I O/A on a Hilbert space 111, a closed subgroup G O o/G, a multiplier a /or  Go, a a-representation 

L 1 o/ G O on H 1 and a a-l-representation L 2 o/ G O on a Hilbert space H~ with the/ol lowing 

properties: 

(1) The couple (~o, L), de/ined by 

no(x ) =~l(x)  | 1 on H o = H 1 Q  H 2 /or x E A ,  

i ( s )  = LI(s) @L2(s) on H 0/or  s e G, 

is a covariant representation o / ( A ,  Go). 

(2) (g, U ) i s  unita~ily equivalent to the covariant representation induced by (n o, L). 
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(3) The commutant M(~, U)' o/ (~(~), U(s); xEA, ~EG~ is isomorphic ~o the c ~ -  

mutant M(L2) ' o/(L2(8); 8 ~o}" 

Therefore, the type of (~, U) is completely determined by that  of the associated pro- 

jective representation L 2 of the associated closed subgroup G 0. 

6. Covariant representations of GCR-algebras and their locally compact smooth 

automorphism groups 

In this section, let A denote a separable GCR-algebra and G a separable locally compact 

automorphism group of A. Then G becomes a Borel transormation group of the dual space 

.4 of A by Theorem 2.4. When the action of G on ~ is smooth, tha t  is, when the quotient 

Borel space .~/G is countably separated, G is said to be smooth or smoothly acting on A. 

In this section, we shall assume the smoothness of G. For each $EA the stability g r o u p  

G~ of G at $ is a closed subgroup of G and the orbit ~G of G at $ is B0rel isomorphic to the 

right coset space G~\G under t h e  canonical map. Let  g~ be an irreducible representation 
/x. 

of A contained in ~ on a Hilbert space H~. Since fe~s=~s=$s=$=~ for each sEG;, 

~ s  is unitarily equivalent to g~ for each s E G;. Then, by Theorem 2.6, there exist a unique 

multiplier for G~ and a unique ~-representation L~ of G~ on H ;  such that  L;(s)g~ =ze~s 

for each s E G~. I t  is easy to show that  the multiplier a~ and the projective representation 

L~ do not depend on the choice of ~ but  only on the class ~ within equivalence. 

Let  (~, U) be a covariant representation of (A, G) on a separable Hilbert space H. 

Suppose that  the representation g has uniform multiplicity and also that  the central system 

of imprimitivity Z(~) for (z, U) has a uniform multiplicity. (In general, every eovariant 

representation is a direct sum of a number  of disjoint eovariant representations of the 

above form.) Let  (F,/~), H0, {~ ;  ~EF} and {W(~, 8); ~EF, sEG} be as in Theorem 4.1. 

Then almost every 7~ v is a type I factor representation of A on H 0 and {~v; ~ E F} are mutually 

disjoint except for a null set of F. Besides, for each s E G, we have ~v s = W(~,, s)gv8 for almost 

every ~EF. Since A is GCR, we can identify the quasi-dual space A of A with the dual 

space .~ of A under the canonical map. For each ~ E F such that  gv is a factor representation, 

let ~(~,) denote the element of ~ which corresponds to the quasi-equivalence class of ~v" 

Then the map ~, E F-+$(7)EA is a one-to-one Bore1 map of F into ~ defined almost every- 

where. For s E G, if ~(~) and ~(~s) are defined and 7e~,s = W(~, 8 ) ~  then ~(~s) = ~(~)s. Define 

a Borel measure v on A by v(S) =/~(~-1(8)) for each Borel set S of -4. For a function / on .~, 

define a function ~*(/) on F by 

~* (/) (~')= I/(~(~)) if ~(~) is defined, 

l 0 if ~(7) is not defined. 
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Since ~ is one-to-one almost everywhere, ~* is an isomorphism of L~176 u) onto L~(F,/~). 

Besides, for each s E G and each /EL~ u), we have 

s ( ~ * ( / ) )  (~,) = ~ * ( t ) ( r s )  = l ( ~ ( r ) s )  = s ( l ) ( ~ ( ~ , ) )  = ~ * ( s ( l ) ) ( ~ , )  

for almost every 7EF,  so that  s(~*([))=~*(s(/)) for every sEG and/EL~176 v). Putt ing 

j(/) =i(~*(/)) for each/EL~176 v), where i is the isomorphism of L~176 #) onto Z(Jr) defined 

in w 4, we have U(s)j(/)U(s)-l=j(s(/)) for each/EL~176 ~,) and sEG. Therefore, the base 

space (F,/z) of the system of imprimitivity Z(Jr) can be replaced by (-~, v). By the hypo- 

thesis for the action of G on .~, every quasi-orbit of G in ~ is transitive. Therefore, if (Jr, U) 

is a eovariant factor representation, then the central system of imprimitivity Z(~r) for 

(~r, U) becomes transitive. Thus, we can apply Theorem 5.3 to (~r, U) in this case. 

T ~ O R ~ M  6.1. Suppose that A is a separable GCR-alqebra and that G is a separable 

.locally compact smooth automorphism group o/A.  Then every covariant /actor representation 

(z, U) o/(A, G) is induced by a covariant representation (gr Lr el (A, Gr /or a certain point 

el .~ such that ~ is a/actor representation o /A  which is quasi-equivalent to a member el 

and such that Gr is the stability group o/G at ~. Moreover, every covariant representation el 

(A, G) i8 el type I i /and only i/, /or each ~EA, every ar o/Gr is o/type I, 

where ar means the associated multiplier/or the stability group Gr o/G at ~ which is canoni- 

.tally determined. There/ore, the crossed product O*(A, G) o/ A by G is GCR i/ and only i/ 

every ar o/Gr is o/type I/or every ~ E~. 

Thus the study of covariant representations is reduced to that  of projective represen- 

tations of Stability groups. Unfortunately, the study of projective representations of locally 

compact groups is not easy, even if the considered group is abelian or of type I. So we shall 

limit ourselves to a simple case in the last part  of this section. 

Let  A be the algebra C(H) of all compact operators on a separable t t i lbert  space H. 

Let  G be a separable locally compact group. If  G acts on A as an automorphism group of 

A, then the stability group of G at the point of A becomes the whole g roup  G, since _4 

is reduced to one point. To give a projective representation of G on H is the same as to 

define an action of G on A as an automorphism group. 

TH]~o~v.M 6.2. In the above situation, i/ G is a connected nilpotent Lie group, then every 

covariant representation o/(A, G) is el type I. 

Proo/. Let a be the associated multiplier for G. I t  is sufficient, by Theorem 6.1, to 

show that  every a-representation of G is of type I. Let  Cw denote the cartesian product 

of G and the one-dimensional torus group T 1. For each pair (s, ~t), (t,/z) in G r define the 
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product (s, 4)(t, #) by (s, 4) (t, /x) = (st, 4ft(a(s, t))--l). Then G becomes a locally compact 

group with the normal subgroup K={(e ,  4); 141 =1} such tha t  a~/K~=a by [17]. Since 

K and G are connected Lie groups, G itself is a connected Lie group by [11; Theorem 7], 

K is also the center of G r Therefore Gr is a connected nilpotent Lie group. By [12], G r 

is of type I, tha t  is, every a-representation of G is of type I. This completes the proof. 

Applying Theorem 4.1 to another simple case, we get the following 

THEOREM 6.3. Let A be a separable GCR-algebra and G a separable locally compact 

smooth automorphism group o/ A. I / G  acts/reely on the dual space ~ o / A ,  that is, i/ every 

stability group o/ G at a point o / ~  is reduced to the trivial subgroup {e}, then every covariant 

representation o/ (A, G) is o/ type I. There/ore, the crossed product C*(A, G) o / A  by G is 

GCR in this case. 

7. The subgroup theorem for induced covariant representations 

We have already seen tha t  the theory of covariant representations is quite similar 

to tha t  of induced representations of locally compact groups. In  fact, we can show tha t  a 

number  of results in the theory of induced representations of locally compact groups 

correspond to the results in the theory of covariant representations. In  this section we 

shall only show the result corresponding to the subgroup theorem which is one of the most  

important  results in the theory of induced representations of locally compact groups. 

Let  G 1 and G~ be two regularly related subgroups, in the sense of G. W. Maekey [15], 

of a separable locally compact group G. Let  ~ denote the double G i: G~ coset space GI\G/G ~. 

G 1 and G~ are regularly related, so O becomes a standard Borel space as quotient space. 

For each s E G, let d(s) denote the double coset GisG 2 and ~(s) the right coset Gis. For any 

finite measure v on G with same null sets as the Haar  measure, we define a measure % on 

by  %(E)=v(d-i(E))  for every Borel subset E of O. The measure class C(vo) in O does 

not depend on the choice of v, tha t  is, the measure class C(vo) is uniquely determined by  

the measure class of the Haar  measure. 

THEOREM 7.1. In  the above situation, let G be an automorphism group o/ a separable 

C*-algebra A. Let (Zx, Li) be a covariant representation o/ (A, GI) o n  a separable Hilbert 

space H i and (~, U) the covariant representation o~ (A, G) on the Hilbert space H induced by 

(~1, Li). For each soEG , let Gi(so) denote the subgroup so-XGiso and (Ztso, Ls~ the covariant 

representation o/ (A, G2) on the Hilbert space H~, induced by the covariant representation o/ 

(A, Gl(s0) n G~); 

(x, t)EA • (Oi(s0) N G2)~(ztiSo(X ), Li(sotSol)). 

Then (re~~ L,,) is uniquely determined, up to unitary equivalence, by the double coset d(so). 
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Hence we may write (~o, L~~ = (aGo, Lao) where d o =d(so). Also, the restriction (~, U) J(a. o,) o/ 

the induced covariant representation (~, U) to the couple (A, G~) is decomposed into a direct 

integration over (0 ,  %) 

(~, U) I(A. ~,) = (~a, La)d~(d). (1) 

Pros/. Let/~ denote the measure in GI\G=F defined by ~u(E)=u(y-l(E)) for each Borel 

set E of F. For each y of F, let k(y) denote the double coset of D containing y. Then k 

is a Borel map of F onto 0 and k(ju)=Vs. Since F and ~ are standard, # is represented by  

direct integration with respect to the map k 

# = fD/~advo (d), (2) 

where each/Za is concentrated on the orbit  k-l(d) and quasi-invariant under the action of 

G 2 by  [15; Lemma 11, 5]. 

Since F is a standard G-space, F is obviously a standard G~-space. Putt ing y0=y(So), 

the orbit of G 2 at  Yo becomes the double coset GlSoG2=d o and the stability group of G 2 

at  Yo becomes Gl(So) N G2. Therefore, the orbit d o is isomorphic to the right coset space 

(Gl(so) N G2)\G 2 as a Borel G~-space under the map k 

rotedo~(G~(So) n O~)te(G~(8o) n G,)\G~, teG,~. 

Let jUa, denote a unique quasi-invariant measure on the orbit d o. Let  Ha0 denote the space 

of all H r v a l u e d  Borel functions ~ on the double coset GlsoG ~ satisfying the conditions 

~(st) = Ll(s ) ~(t) for every s E G 1 and t e G 1 s o G2, (3) 

o 

where ~ means the right coset y(s). Then Ha, becomes a Hilbert space with the norm 

defined by  

On the space Ha. , we define representations ~ao and La~ of A and G~ respectively by  

(~a. (s) ~) (s) = ~1 s(x) ~(s) [ 

(La~ (t) ~) (s) = ~(s, t)�89 ~(st)J (5) 

for each xEA,  tEG~, sEGlsoO ~ and ~EHao, where ~t means the k-function on GlsoO ~ x O~ 

in the sense of G. W. Mackey [15]. By the equalities 
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(L~0(t)re~.(*) L~o(t)-i~)(8) = 4(8, t)~ (~ . (x )L~. ( t ) - l~ ) (80  

= 4(8, t)~rel s t (x ) (L~ . ( t ) - l~ ) ( s t )  

= ~ st(x) ~(8) 

for every tEG2, xEA and ~EHa0, the couple (rea0, Lao) is covariant. For each ~EHao, putting 

~(t) =~(s0t ) for tEG2, ~ belongs to the space Hs. and the map V: ~-->~ sets up the unitary 

equivalence between La0 and Ls~ by [15; Lemma 6.1]. Moreover, we have 

( Vredo(~C ) V: l~ ) ( t )  = (retie(x) V-l~)  (80t) = re180t(x) (V- i~ )  (Sot) = re180t(x)~(t) 

for every xEA, -~EHs~ and almost every tEG2, so that  the map V also sets up the unitary 

equivalence between rea. and ~z~0. The construction of (rea~ Lao) does not depend on the ele- 

ment s o itself, but on the double coset do, so that  the first part of our assertion has been 

established. 

For each function /EL~176 (resp. /EL~176 u0)), we define the operator i(/) (resp. 

j(/)) on H by 
i(/)~(s) =/(~(s))~(s) (resp. ](/)~(s) =/(d(s))~(s)) 

for every ~ E H and s E G. Let Ar (resp. Av) denote the set consisting of all i(/)'s (resp. ~(/)'s). 

Then Ar (resp. Av) becomes a system of imprimitivity for the restriction (re, U)[ (A.a~ of 

(re, U) based on the G-measure space (P, ~u) (resp. (~), v0) ). Besides, Av is a yon Neumann 

subalgebra of Ar. Since the function s~/(d(s)), /EL~176 Vo), is constant on each double 

GI:G 2 coset, Av commutes with {re(x), U(s); x EA, s E G2}. Hence (re, U)[ (4, a,) is decomposed 

into the direct integration 

S: So re = ~d~o(d ) and U] a, = Ued~o(d) 

with respect to the diagonal algebra Av. For each /EL~(O, v0) and gEL~176 #) we have 

by equation (2). Therefore, the direct integral decomposition of H with respect to the dia- 

gonal algebra Ar becomes 

H= f~ H(,) d,(,)= f: (f: H(r)d~,~(r))d.o(a). 
Besides, A,  is the diagonal algebra of the first direct integral in the last integration. Let 

Aa denote the diagonal algebra of the direct integral S~H(~)dlaa(~). Then we have 

A r = f :  A d d~ o (d), 



298 M A S A M I C H I  T A K E S ~ E ~  

Since Ar is a system of imprimitivity for (~, U) [ (A. c~) and since A~ commutes with (~, U) leA. as) 

A~ becomes a system of imprimitivity for (n z, Ud)l(A.a~) based on the G~-measure space 

(d,/~d) for ~0-almost every dE~ .  Since G~ acts on every d E ~  transitively and since the 

stability group of G 2 at each ~(s0) of d is G~ [3 SolGlso=Gl(so) N G~, the covariant represen- 

tation (~d, Ua)l (A.a~i is unitarily equivalent to the induced covariant representation 

(:~a, L~) for almost every d E ~ by Theorem 4.2. This completes the proof. 

Now we shall show an application of Theorem 7.1. Suppose that  A is a separable 

GCR-algebra and that  G is a separable locally compact smooth automorphism group of 

A as in Theorem 6.1. We shall use the notation of Theorem 6.1. For each subgroup G o 

of G, multiplier a 0 for G O and soEGo, putting Go(so)=solGoso and ago(s, t)=(:rO(808801, 
SotSo 1) for each pair s, t in G0(s0) , ~0 ~ becomes a mutiplier for Go(so). Take a point ~E_~ and 

an element s o E G. Then it is clear that  G;so = G~(so). Let :~ be an irreducible representation 

of A belonging to ~ and L~ a a~-representation of G~ such that  1 1 L ; ( s ) ~ = r ~ s  for every 

s E G~. Then we have 
L (soSSo  l). so=. s0s 

for every s E G~(So) and the map s E G~(so)-->L~(soSSol) is a a~'-representation of G~(so), so 

that  a~ ~ is equivalent to a~,. Let L~ be an arbitrary irreducible a[~-representation of G~. 

PuttingL~ =L~ | and~(x)  =nl(x) | 1, we get a covariant representation (:~, L~) of (A, G~). 

By Theorem 5.3, the covariant representation (~, U) of (A, G) induced by (n~, L~) is irre- 

ducible. By Theorem 6.1, every irreducible covariant representation of (A, G) is obtained 

in this way. Applying Theorem 7.1 to (A, G~) and (A, G), (n~, L~) and (n~s0, L~') induce 

unitarily equivalent eovariant representations of (A, G) where L~ ~ is the unitary represen- 

tation of G~(So) given by L~(s)=L~(SoSS~ ~) for s E G~(So). Therefore, if we define an action 
/ ~ .  / x  

of G on the space U~eA (G~, qsl) ̂  byL~so=L~ ~~ for every L~ of (G~, o'sl) ̂ , where (Gr, a[~) ~" 

denotes the space of all unitarily equivalence class of irreducible ~[~-representation of G~ 

and L~ ~~ means a (~~ of G~(so) given by L~So(s)=L~(soSSo ~) for s E Gg(So) , 

then we get the following 

T H ~ O R ~  7.2. I n  the above situation, there exists a one-to-one correspondence between 

the dual space o/the crossed product C*(A, G) o / A  by G and the space o/al l  orbits o / G  in 

[.J ~ ~ ( G ;, a[ ~ )^. In  particular, i/ G acts/reely on ~ ,  then there exists a one-to-one correspond- 

ence between the dual space o/C*(A, G) and the orbit space .4/G. 

8. Non-type I covariant representations 

Let A be a separable GCR-algebra and G a separable locally compact automorphism 

group of A. If G is a smooth automorphism group, the existence problem of non-type I 
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covariant representations is reduced to tha t  of non-type I projective representations of 

the stability subgroups of G at  any point of ~ by Theorem 6.1. Therefore our at tention is 

concentrated on the case when G is a non-smooth automorphism group. But  then the 

existence problem of non-type I covariant representations is in general not easy, so we 

shall show the existence of non-type I covariant representation only in a special case. 

I f  G acts non-smoothly on A, then there exists a non-transitive ergodic quasi-invariant 

finite measure # on ~ by  Theorem 2.6. 

THEOREM 8.1. Suppose that G is a separable locally compact non-smooth automorphism 

group o /a  separable GCR-algebra A. Let/a be a non-transitive ergodic measure on .~. I f  there 

exists a G-invariant non-null Borel set E in ~ such that the stability group G~ of G at each 

E E is reduced to the trivial group (e}, then there exists a non-type I covariant/actor representa- 

tion o / (A,  G). 

Proof. By the ergodicity of/~, # is concentrated on E. For a separable Hilbert  space 

H, I r r  (A :H)/~(H) can be imbedded in .~ and it is invariant under the action of G, so tha t  

we may  assume tha t  E is contained in I r r  (A :Ho)/~(Ho) for some separable Hilbert  space 

H 0. Let  ~EE-~n~EIr r  (A: H0) be a Borel cross-section. Let  H be the Hilbert  space con- 

sisting of all H0-valued square summable functions on E x G with respect to the product 

measure of # and the right Haar  measure ds of G. Take a representation U of G and n of 

A on H defined by  
(v(t) ~) (~, s)= ~(~, st) 

(1) f 
(~(x) ~) (~, s) = ~ s ( x )  ~(~, s)J 

for each xEA,  s, tEG, ~EH and SEE. Then (n, U) becomes a covariant representation of 

(A, G) on H. We shall show tha t  (~, U) is a non-type I covariant factor representation. 

Let  H 1 denote the Hilbert  space consisting of all H0-valued square summable Borel 

functions on G with respect to the right Haar  measure. For each ~ E E, let (n~, U~) be a 

covariant representation of (A, G) on H 1 defined by  

(U~ (t) ~) (s) = ~(st) and (r~ (x) ~) (s) = ~s (x )  ~(s) (2) 

for every x e A ,  s, teG and ~ 6 H  1. Then (~ ,  U~) is the covariant representation induced 

by the covariant representation ( ~ ,  t) of (A, (e~) on H 0 where t means the trivial representa- 

tion of the trivial subgroup (e} of G. For each ~EE, ~ s  and ~ t  are disjoint irreducible 

representations for each distinct pair s, t in G by  the hypothesis for the action of G on E, 

so tha t  ~ becomes a representation which is multiplicity free in the sense of G. W. Mackey 

[16]. Therefore, the canonical system of imprimitivity for (~ ,  U~) is central, so tha t  the 
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commutant M(7~, U~)' is isomorphic to the commutant M(ze;, t)' which is reduced to the 

algebra of scalar multiples. That is, (~,  U~) is irreducible. 

By Fubini's theorem, the Hilbert space H can be regarded as the Hilbert space consist- 

ing of all Hi-valued square summable Borel functions on E with respect to the measure ~. 

Comparing equation (1) with equation (2), we find that  (z, U) is represented by the direct 

integral 

= j ;  (~ ,  U}) d~(~). (3) (~, U) 

Take (~0, So) E E • G. From the definition of the action of G on A, there exists a unitary 

operator V 0 on H 0 with V0r~os,=r~.s 0. I t  follows at once that  (re~oS0)S= Vo(~os, S ) for 

every s E G. If we define a unitary operator V on H i by (V~) (s) = Vo~(S ) for each ~ EH 1 and 

s E G, V sets up a unitary equivalence between (n~ .... U~0,o) and (n~., U~.). If ~1 and ~ lie 

on different orbits of G in E, then the direct integral decompositions of ~z~, and 3z~, 

:4=f =r and (4) 

have no common component, which yields that  7e~, and 7e~ are disjoint representations of A. 

Thus, (7~,, g~,) and (g~,, V~,) are unitarily equivalent for a pair ~,  $2 in E if and only if 

~1 and ~2 lie on the same orbit of G. Therefore, if we define an equivalence relation "~1 ~ $2" 
by "" ~ 1 ~ 1 tgr Ur _ (~r U~,)", then the quotient Borel space E/"  ~ "  is not eountably separated 

because of the ergodicity of the measure ~u. 

For each function/EL~ t~), define an operator i(/) on H by i(/)~(~, s)=/($)~($, s) 

for every ~EH and (~, s )EE x G. Then the algebra A consisting of all i(/)'s becomes a 

diagonal algebra of the direct integral (3) which is a completely rough subalgebra of the 

eommutant M(~z, U)' in the sense of [26; Definition 2.1]. Since each component of the direct 

integral (3) is irreducible, A is a completely rough maximal abelian subalgebra of the 

commutant M(~, U)'. Every maximal abelian subalgebra of a type I yon Neumann algebra 

is smooth, so that  M(g, U)' is not of type I, equivalently M(re, U) is not of type I. If z is a 

non-trivial central projection of M(re, U), Az and A ( I - z )  are unrelated in the sense of 

[26; Definition 3.2] by [27]. But this is impossible by the ergodicity of the action of G on 

(E, #). Therefore, M(~, U)' is a factor. This completes the proof. 

COROLLARY. Suppose that G is a one-parameter automorphism group o/ a separable 

GCR-algebra A. Then the/ollowing are equivalent: 

(i) There exists a non-type I/actor covariant representation o/ (A, G). 

(ii) The action o/ G on A is not smooth, that is, the quotient Borel space ~/G is not 

countably separated, 
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Proo/. Any proper closed subgroup of G is cyclic and discrete. Hence every projective 

representation of a closed subgroup of G is of type I.  Therefore, (i) implies (ii) by Theorem 

6.1. 

(ii) ~ (i). Let /~ be a non-transitive ergodic measure of -~ with total  mass one. By [1; 

Proposition 2.4, p. 70], there exists a G-invariant Borel set E, which carries the measure ju, 

such tha t  the stability group of G in E does not  depend on the point of E. Let  G o denote the 

constant stability group. I f  G o is not reduced to the trivial group (e}, then the quotient 

group G/G o becomes a compact group. The action of G induces naturally an action of the 

compact group G/G o on E, so tha t  E becomes a standard G/Go-Space. Hence every ergodic 

measure on E is transitive by the compactness of G/G o, which contradicts the non-transi- 

t iv i ty  of/~. Therefore G o is reduced to the trivial group (e}, which is the case of Theorem 

8.1. This completes the proof. 

9. Appendix 

Throughout this paper, we have been assuming tha t  the basic C*-algebra is of type I. 

Of course, the s tudy in the case of non-type I is important ,  although, without the type I 

assumption for the basic C*-algebra, we are far from the detail at  present. For example, 

it is plausible tha t  a pair (A, G) of a non-type I C*-algebra A and its locally compact auto- 

morphism group G could have a non-type I covariant representation. But  this guess is 

not true. At the Fifth Symposium on Functional Analysis (in Japan)  held in Sendai on 

August  1-3, 1967, Professor O. Takenouchi pointed out to the author the following curious 

example. 

Let  H be the famous example of 5-dimensional non-type I solvable Lie group due to 

F. I .  Mautner. That  is, H is the cartesian product set C 2 • R of the complex number  field 

C and the real number  field R, and the multiplication in H is defined by the equation 

(Z 1, W 1, 81)(Z2, W2, 82) : (Z 1 + e 2~|s, z2 , W 1 + e 2 ur w2 , 81 + 82) 

for (z~, w~, s~)EH i = l ,  2, where a is an irrational real number. Let  A denote the group 

C*-algebra C*(H) of H. Then A is not of type I. Let  G denote the additive group of real 

numbers. For each t E G, define an action of t on H as an automorphism by  

(z, w, s) t  = (z, e2~'~tw, s) for (z, w, s ) e H .  

Let K denote the semi-direct product H G  of H and G. Then K becomes the cartesian 

product set C~• R 2 with the multiplication 

(zl, wl, sl, tl) (z2, w2, s~, t~) = (zl + e ~'~s' z~, w 1 + e 2"~(~s'+ ") w2, Sl + s2, t~ + t~) 

for (z~, w~, s~, t~) E C ~ • R e. Define a map a of C ~ • R ~ onto C ~ • R ~ by  
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Cr(Z,W,S,t)=(Z,W,S,  Ccs§ for ( z , w , s , t ) E C 2 •  2. 

Then we easily see t h a t  a is an isomorphism of K onto the  group K ' =  C2• R 2 with the 

multiplication 

(Z 1, W 1, 81, t 1) (Z2, W2, 82, t 2) = (Z 1 +e2~ts'z2,  W 1 + e2~t'w~, s 1 +s2, tl +t2) 

for (z~, w~, si, t~)EK' i = l ,  2. Since K '  is the direct product  of the group H'  = C  • R and 

itself with the multiplication 

(Zl, 81)(z2, 82) = (z I § 81 -}-82) 

for (z~, s~) E C • R i = 1, 2 and H'  is of type  I, K '  is also of type  I and then so is K.  The act ion 

of G on H induces natura l ly  t ha t  of G on the group C*-algebra A = C* (H) of H.  The crossed 

product  of A b y  G is nothing else bu t  the  group C*-algebra C* (K) of the  group K, so every  

covariant  representat ion of (A, G) is of type  I despite the non- type  I p roper ty  of A. 
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