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ABSTRACT. We propose covariate adjusted correlation (Cadcor) analysis to target the

correlation between two hidden variables that are observed after being multiplied by an

unknown function of a common observable confounding variable. The distorting effects

of this confounding may alter the correlation relation between the hidden variables. Co-

variate adjusted correlation analysis enables consistent estimation of this correlation, by

targeting the definition of correlation through the slopes of the regressions of the hidden

variables on each other and by establishing a connection to varying-coefficient regression.

The asymptotic distribution of the resulting adjusted correlation estimate is established.

These distribution results, when combined with proposed consistent estimates of the

asymptotic variance, lead to the construction of approximate confidence intervals and

inference for adjusted correlations. We illustrate our approach through an application to

the Boston house price data. Finite sample properties of the proposed procedures are

investigated through a simulation study.
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1. Introduction

We address the problem of estimating the correlation between two variables which are

distorted by the effect of a confounding variable. For identifiability, we assume that the

mean distorting effect of the confounder corresponds to no distortion. We consider the

multiplicative effects model where the actual variables (Y,X) are observed after being

multiplied by a smooth unknown function of the confounder, leading to the observations

Ỹi = ψ(Ui)Yi, and X̃i = φ(Ui)Xi. (1)

Here (Yi, Xi) represent the unobserved realizations of the actual variables, ψ(·), φ(·) are

unknown smooth functions of the confounder with observed values Ui, and (Ỹi, X̃i) are

the distorted observations of the original variables for a sample size of n. The nature of

the relationship of the confounding variable U with the underlying variables will often be

unknown, implying that ψ(·) and φ(·) in (1) are unknown functions.

The identifiability condition of no average distortion can be expressed as

E{ψ(U)} = 1, E{φ(U)} = 1. (2)

We also assume that (Yi), (Xi), (Ui) are independent and identically distributed for

i = 1, . . . , n, where U is independent of Y and X.

One example is the Boston house price data of Harrison & Rubinfeld (1978), where

finding the correlation relation between crime rate and house prices is of interest. How-

ever, a confounder affecting both variables is the proportion of population of lower edu-

cational status. For such data, model (1) provides a general and sensible way to describe

this confounding as we shall demonstrate.

The simultaneous dependence of the original variables on the same confounder may

lead to artificial correlation relations which do not exist between the actual hidden

variables whose correlation we want to infer. To illustrate how drastically the mul-

tiplicative distorting effects of the confounder may change the correlation between

the underlying variables even under the identifiability condition of no average distor-

tion, consider the following example. The underlying variables Y vs. X, simulated

from a bivariate normal distribution with ρ(Y,X) = 0.5, and the distorted versions
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Ỹ vs. X̃, where the distortion is multiplicative as given in (1) through smooth, al-

most linear functions of a uniformly distributed confounder, have been plotted in Fig-

ure 1. Detailed explanations are given in the simulation study in Section 5.2. For

this data, the sample correlation between the underlying variables is ρ̂(Y,X) = 0.4924,

whereas for the distorted variables the sample correlation is negative, ρ̂(Ỹ ,X̃) = −0.4552.

FIGURE 1 ABOUT HERE

A central goal of this paper is consistent estimation and inference for ρ(Y,X), the corre-

lation coefficient of the hidden variables (Y,X), given the observations of the confounding

variable Ui and the distorted observations (Ỹi, X̃i) in (1). We refer to model (1), (2) as

multiplicative distortion model. Adjustment for confounding variables per se is a classical

problem. We start by investigating a sequence of nested models, for all of which standard

adjustment methods to obtain consistent estimates of the correlation already exist.

First, consider an additive distortion model, Ỹ = Y + ψa(U) and X̃ = X + φa(U),

with identifiability constraints E{ψa(U)} = E{φa(U)} = 0, for the distorting effects of U

to average out to 0. A simple adjustment method for the consistent estimation of ρ(Y,X)

in the additive distortion model is to use an estimate of ρ(ẽ
Ỹ U

,ẽ
X̃U

), where ẽW1W2 is the set

of errors from the nonparametric regression of W1 on W2 (referred to as nonparametric

partial correlation). However, as we show in Appendix D, under (1), (2), the estimate of

ρ(ẽ
Ỹ U

,ẽ
X̃U

) is targeting the value

ξ1 = ρ(Y,X)∆, (3)

where ∆ = E{ψ(U)φ(U)}/[
√

E{ψ2(U)}
√

E{φ2(U)}]. Noting that ∆ can assume any

real value in the interval (0, 1], this simple adjustment, while working for the special case

of an additive distortion model, fails for the multiplicative distortion model.

The second model considered is a special case of the additive distortion model, where

the distorting functions ψa(·) and φa(·) are linear functions of U . In this case, a consistent

estimate of ρ(e
Ỹ U

,e
X̃U

) will also be consistent for ρ(Y,X) where eW1W2 is the set of errors from

the least squares regression of W1 on W2. This simple adjustment method is also known

as the partial correlation of Ỹ and X̃, adjusted for U (Pearson, 1896). This popular

adjustment however fails for the multiplicative distortion model, since under (1), (2), the
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target value ξ2 of the estimate of ρ(e
Ỹ U

,e
X̃U

) will generally not satisfy ξ2 = ρ(Y,X). Indeed it

holds that ξ2 = ξ1, where ξ1 is as given in (3) (see Appendix E). This adjustment method

therefore is fraught with the same bias problem as the nonparametric partial correlation

adjustment discussed above.

What if we ignore the distorting effects of the confounder U on (Ỹ , X̃)? In this case

we would simply use the regular correlation ρ(Ỹ ,X̃) in order to target ρ(Y,X). As we will

show in Appendix F, under (1), (2), this correlation estimate is targeting the value

ξ3 =
E{φ(U)ψ(U)}E(XY ) − E(X)E(Y )

√

var{φ(U)}E(X2) + var(X)
√

var{ψ(U)}E(Y 2) + var(Y )
. (4)

Now if ψ(·) ≡ φ(·) ≡ 1, i.e., there is no confounding, then we immediately see that

ρ(Ỹ ,X̃) = ρ(Y,X), so that in this case of no confounding this estimate is on target. However,

if ψ(·) and φ(·) do not equal one, then we find that ξ3 can assume any real value in the

interval [−1, 1]. Therefore, arbitrarily large biases can result if one estimates a correlation

while ignoring the confounding.

Another straightforward approach would be to apply logarithmic transformations to Ỹ

and X̃, so as to change the effect of the distorting functions ψ(·) and φ(·) from multiplica-

tive to additive. We would then use the nonparametric partial correlation adjustment

method to estimate ρ{log(Ỹ ),log(X̃)} consistently. However, this ad hoc solution might fall

short since the observed Ỹ and X̃ might not necessarily be positive. Furthermore, one

may be interested in the correlation between the untransformed variables which is not

easy to recover from that of the transformed variables.

Since the available adjustment methods fail to adjust properly for the distorting effects

of the confounder U in the multiplicative distortion model, a new adjustment method for

correlations needs to be developed, a problem that we address in this paper. Our starting

point is the equality

ρ(Y,X) = sign(γ1)
√
γ1η1 = sign(η1)

√
γ1η1, (5)

where γ1 and η1 are the slopes from the linear regressions of Y on X and X on Y respec-

tively, and ρ(Y,X) is the underlying targeted correlation. We then propose an estimate of

ρ(Y,X), based on pilot estimates of γ1 and η1. Assuming that the linear models given in (6)
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below hold between the underlying variables Y and X, the proposed general estimation

method provides a consistent estimate for ρ(Y,X) not only under a multiplicative distortion

model, but under all three distortion models outlined above (Şentürk & Müller, 2003a).

This is one of the major attractions of the proposed adjustment since in most applica-

tions the specific nature of the distortion will be unknown. The asymptotic distribution

of the resulting covariate adjusted correlation (Cadcor) estimates is established. This

main result, combined with proposed consistent estimates for the asymptotic variance, is

then applied for the construction of approximate confidence intervals for the correlation

coefficient.

The paper is organized as follows. In Section 2 we describe the model in more detail

and explore the relationship to varying coefficient models. In Section 3 we introduce the

covariate adjusted correlation (Cadcor) estimates and present results on asymptotic infer-

ence. Consistent estimates for the asymptotic variance, as needed for the implementation

of inference procedures, are derived in Section 4. Applications of the proposed method

to the Boston housing data are discussed in Section 5, where we also present some simu-

lation results. The proofs of the main results are assembled in Section 6, followed by an

Appendix with technical conditions and auxiliary results.

2. Covariate adjustment via varying coefficient regression

We assume the following regression relations between the unobserved variables Y and X:

Yi = γ0 + γ1Xi + eY X,i,

Xi = η0 + η1Yi + eXY,i, (6)

where eY X,i is the error term such that E(eY X,i) = 0 with constant variance σ2
Y X , and

eXY,i with E(eXY,i) = 0 and constant variance σ2
XY . Our goal is to use estimates of γ1

and η1 (Şentürk & Müller, 2003a) to arrive at an estimate for ρ(Y,X) via (5).

The regression for observed variables leads to

E(Ỹi|X̃i, Ui) = E{Yiψ(Ui)|φ(Ui)Xi, Ui}

= ψ(Ui)E{γ0 + γ1Xi + eY X,i|φ(Ui)Xi, Ui}.
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Assuming that E(eY X,i) = 0 and that (eY X , U , X) are mutually independent, the model

reduces to

E(Ỹi|X̃i, Ui) = ψ(Ui)γ0 + ψ(Ui)γ1
φ(Ui)Xi

φ(Ui)

= β0(Ui) + β1(Ui)X̃i,

defining the functions

β0(u) = γ0ψ(u), β1(u) = γ1
ψ(u)

φ(u)
. (7)

This leads to

Ỹi = β0(Ui) + β1(Ui)X̃i + ψ(Ui)eY X,i,

corresponding to a multiple varying coefficient model, i.e. an extension of regression

and generalized regression models where the coefficients are allowed to vary as a smooth

function of a third variable (Hastie & Tibshirani, 1993). For varying coefficient models,

Hoover et al. (1998) have proposed smoothing methods based on local least squares and

smoothing splines, and recent approaches include a componentwise kernel method (Wu

& Chiang, 2000), a componentwise spline method (Chiang et al., 2001) and a method

based on local maximum likelihood estimates (Cai et al., 2000). We derive asymptotic

distributions for an estimation method that is tailored to this special model.

Since the assumptions on Ỹ and X̃ are symmetric, with a similar argument as above,

regressing X̃ on Ỹ and U leads to a second varying coefficient model

X̃i = α0(Ui) + α1(Ui)Ỹi + φ(Ui)eXY,i,

where

α0(u) = η0φ(u), α1(u) = η1
φ(u)

ψ(u)
. (8)

3. Estimation of covariate adjusted correlation and asymptotic distribution

The proposed Cadcor estimate for ρ(Y,X) is

r = sign(γ̂1)
√

γ̂1η̂11{sign(γ̂1)=sign(η̂1)}, (9)
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where the estimates of γ̂1 and η̂1 are obtained after an initial binning step and

1{sign(γ̂1)=sign(η̂1)} denotes the indicator for sign(γ̂1) = sign(η̂1). We assume that the

covariate U is bounded below and above, −∞ < a ≤ U ≤ b <∞ for real numbers a < b,

and divide the interval [a, b] into m equidistant intervals denoted by B1, . . . , Bm, referred

to as bins. Given m, the Bj, j = 1, . . . ,m are fixed, but the number of Ui’s falling into

Bj is random and is denoted by Lj. For every Ui falling in the jth bin, i.e., Ui ∈ Bj, the

corresponding observed variables are X̃i and Ỹi.

After binning the data, we fit linear regressions of Ỹi on X̃i and X̃i on Ỹi, using

the data falling within each bin Bj, j = 1, . . . ,m. The least squares estimates of the

resulting linear regressions for the data in the jth bin are denoted by β̂T
j = (β̂0j, β̂1j)

T

and α̂T
j = (α̂0j, α̂1j)

T , corresponding to the linear regressions of Ỹi on X̃i and of X̃i on

Ỹi. The estimators of γ0, γ1, η0 and η1 are then obtained as weighted averages of the β̂j’s

and α̂j’s, weighted according to the number of data Lj in the jth bin,

γ̂0 =
m

∑

j=1

Lj

n
β̂0j γ̂1 =

1
¯̃X

m
∑

j=1

Lj

n
β̂1j

¯̃X ′
j, (10)

and

η̂0 =
m

∑

j=1

Lj

n
α̂0j η̂1 =

1
¯̃Y

m
∑

j=1

Lj

n
α̂1j

¯̃Y ′
j , (11)

where ¯̃X = n−1
∑n

i=1 X̃i,
¯̃Y = n−1

∑n
i=1 Ỹi and ¯̃X ′

j,
¯̃Y ′
j are the averages of the X̃i

and Ỹi falling into the bin Bj respectively, i.e. ¯̃X ′
j = L−1

j

∑n
i=1 X̃i1{Ui∈Bj} and ¯̃Y ′

j =

L−1
j

∑n
i=1 Ỹi1{Ui∈Bj}. (Şentürk & Müller, 2003a). These estimates are motivated by

E{β0(U)} = γ0, E{β1(U)X̃} = γ1E(X̃), E{α0(U)} = η0 and E{α1(U)Ỹ } = η1E(Ỹ )

(see (7), (8) and the identifiability conditions).

Remark 1: An alternative to the equidistant binning adopted in this paper would be

nearest neighbor binning, where the number of points falling in each bin is fixed, but

the bin boundaries are random. We have chosen to adopt the equidistant binning where

bin boundaries are fixed but the number of points falling in each bin is random, as we

found it to work quite well in applications. One might expect equidistant binning to be

superior in terms of controlling the bias, whereas the nearest neighbor approach might

yield smaller variance, depending on the underlying assumptions. This trade-off could be
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further investigated in future research.

Remark 2: Yet another alternative to the proposed estimation procedure targeting the

regression coefficients γ0, γ1, η0 and η1 would be to use one of the above cited smoothing

techniques, such as kernel smoothing based on local least squares or smoothing splines, to

estimate the varying coefficient functions evaluated at the original observation points Ui,

i = 1, . . . , n, and then to apply an averaging method to estimate the targeted regression

coefficients. In the special case of using local polynomial fitting based on local least

squares, Zhang et al. (2002) were able to derive the asymptotic conditional mean squared

error of such an estimator. However, asymptotic distributional results as we provide in

this paper are yet to be established for this class of varying coefficient estimators.

Remark 3: A possible extension of the proposed confounding setting would be to

consider a vector valued confounding variable U . The proposed binning and smoothing

techniques could be easily adapted to two or three dimensional cases, but one will en-

counter the problem of curse of dimensionality for higher dimensions, as the bins will

get sparse quickly as dimension increases. To overcome this problem, a topic for future

research would be to adopt a single index approach, where the confounding effects are

functions of a linear combination of the confounding vector U , say νTU , where the single

index vector ν needs to be estimated.

We derive the asymptotic distribution of r, the Cadcor estimate (9), as the number

of subjects n tends to infinity. As in typical smoothing applications, the number of bins

m = m(n) is required to satisfy m → ∞ and n/(m log n) → ∞ and m/
√
n → ∞ as

n→ ∞. We denote convergence in distribution by
D→ and convergence in probability by

p→.

Theorem 1. Under the technical conditions (C1)− (C6) given in Appendix A, on events

En (defined in (16)-(18) below) with P (En) → 1 as n→ ∞, it holds that

√
n(r − ρ(Y,X))

D→ N(0, σ2
r),

for ρ(Y,X) 6= 0, where the explicit form of σ2
r is given in Appendix B.

Remark 4: It is of interest to test the hypothesis H0 : ρ(Y,X) = 0, since this case is
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excluded by the assumptions of Theorem 1. Equation (5) implies that testing the hy-

pothesis H0 : ρ(Y,X) = 0 is equivalent to testing H0 : γ1 = 0 or testing H0 : η1 = 0. Thus,

we propose to test the hypothesis H0 : ρ(Y,X) = 0 via testing H0 : γ1 = 0. For this testing

problem, the bootstrap test proposed in Şentürk & Müller (2003a) is available. This test

has been shown to attain desirable coverage levels in simulation studies.

4. Estimating the asymptotic variance

From this point on, we will use subscripts n to denote variables that form a triangular

array scheme. The observable data are of the form (Uni, X̃ni, Ỹni), i = 1, . . . , n, for a

sample of size n. Correspondingly, the underlying unobservable variables and errors are

(Xni, Yni, eY X,ni, eXY,ni), i = 1, . . . , n. Let {(U ′
njk, X̃

′
njk, Ỹ

′
njk, X

′
njk, Y

′
njk, e

′
Y X,njk, e

′
XY,njk),

k = 1, . . . , Lnj, r = 1, . . . , p} = {(Uni, X̃ni, Ỹni, Xni, Yni, eY X,ni, eXY,ni), i = 1, . . . , n,

r = 1, . . . , p : Uni ∈ Bnj} denote the data for which Uni ∈ Bnj, where we refer to

(U ′
njk, X̃

′
njk, Ỹ

′
njk, X

′
njk, Y

′
njk, e

′
Y X,njk, e

′
XY,njk) as the kth element in bin Bnj. Then we can

express the least squares estimates of the linear regressions of the observable data falling

in the jth bin Bnj as

β̂n1j =

∑Lnj

k=1(X̃
′
njk − ¯̃X ′

nj)Ỹ
′
njk

∑Lnj

k=1(X̃
′
njk −

¯̃X ′
nj)

2
, β̂n0j = ¯̃Y ′

nj − β̂n1j
¯̃X ′

nj, (12)

for the regression of Ỹ on X̃ leading to the parameter estimates γ̂n0 and γ̂nr given in (10),

and

α̂n1j =

∑Lnj

k=1(Ỹ
′
njk − ¯̃Y ′

nj)X̃
′
njk

∑Lnj

k=1(Ỹ
′
njk −

¯̃Y ′
nj)

2
, α̂n0j = ¯̃X ′

nj − α̂n1j
¯̃Y ′
nj, (13)

for the regression of X̃ on Ỹ leading to the parameter estimates η̂n0 and η̂nr given in (11)

respectively. In the above expression, ¯̃X ′
nj = L−1

nj

∑Lnj

k=1 X̃
′
njk and ¯̃Y ′

nj = L−1
nj

∑Lnj

k=1 Ỹ
′
njk.

Next we introduce least squares estimates of the linear regressions of the unobservable

data falling into Bnj, i.e.,

ζn1j =

∑Lnj

k=1(X
′
njk − X̄ ′

nj)Y
′
njk

∑Lnj

k=1(X
′
njk − X̄ ′

nj)
2
, ζn0j = Ȳ ′

nj − ζn1jX̄
′
nj, (14)
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for the regression of Y on X, and

ωn1j =

∑Lnj

k=1(Y
′
njk − Ȳ ′

nj)X
′
njk

∑Lnj

k=1(Y
′
njk − Ȳ ′

nj)
2

, ωn0j = X̄ ′
nj − ωn1jȲ

′
nj, (15)

for the regression of X on Y . These quantities are not estimable, but will be used in the

proof of the main results.

For γ̂n0, γ̂n1, η̂n0 and η̂n1 given in (10) and (11) to be well defined, the least squares

estimates β̂n0j, β̂n1j, α̂n0j and α̂n1j given in (12), (13) must exist for each bin Bnj.

This requires that s2
X̃′

nj

= L−1
nj

∑

k X̃
′2
njk − (L−1

nj

∑

k X̃
′2
njk)

2 and s2
Ỹ ′

nj

= L−1
nj

∑

k Ỹ
′2
njk −

(L−1
nj

∑

k Ỹ
′2
njk)

2 are strictly positive for each Bnj. Correspondingly, ζn0j, ζn1j, ωn0j and

ωn1j given in (14), (15) will exist under the condition that s2
X′

nj
, s2

Y ′

nj
> 0, where s2

X′

nj
and

s2
Y ′

nj
are defined similar to s2

X̃′

nj

and s2
Ỹ ′

nj

. Define the events

Ãn = {ω ∈ Ω : inf
j
s2

X̃′

nj

> κ, and min
j
Lnj > 1},

An = {ω ∈ Ω : inf
j
s2

X′

nj
> κ, and min

j
Lnj > 1}, (16)

C̃n = {ω ∈ Ω : inf
j
s2

Ỹ ′

nj

> κ, and min
j
Lnj > 1},

Cn = {ω ∈ Ω : inf
j
s2

Y ′

nj
> κ, and min

j
Lnj > 1}, (17)

En = Ãn ∩ An ∩ C̃n ∩ Cn, (18)

where κ = min{%x/2, infj(φ
2(U ′∗

nj))%x/2, %y/2, infj(ψ
2(U ′∗

nj))%y/2}, %x and %y are as defined

in (C5), U ′∗
nj = L−1

nj

∑Lnj

k=1 U
′
njk is the average of the U ’s in Bnj, and (Ω,F , P ) is the

underlying probability space. The estimates γ̂n0, γ̂n1, ζn0j, ζn1j, η̂n0, η̂n1, ωn0j and ωn1j

are well defined on events Ãn, An, C̃n and Cn. Generalizing a result in Appendix A.3 of

Şentürk & Müller (2003b), we have that P (En) → 1 as n → ∞, due to the symmetry

between Ỹ and X̃.

Theorem 2. Under the technical conditions (C1)− (C6) given in Appendix A, on event

En (defined in (16)-(18)) with P (En) → 1 as n→ ∞, it holds that

σ̂2
nr

p→ σ2
r ,

where the explicit form of σ̂2
nr is given in Appendix B.
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5. Applications and Monte Carlo study

Under the technical conditions given in Appendix A, if ρ(Y,X) 6= 0, the asymptotic distri-

bution of the Cadcor estimate r according to Theorem 1 is
√
n(r− ρ(Y,X))/σr

D→ N(0, 1),

as n→ ∞, where σ2
r is as in Appendix B. Using the consistent estimate σ̂2

nr of σ2
r proposed

in Theorem 2, it follows from Slutsky’s theorem that
√
n(r − ρ(Y,X))/σ̂nr

D→ N(0, 1), so

that an approximate (1 − ϕ) asymptotic confidence interval for ρ(Y,X) has the endpoints

r ± zϕ/2
σ̂nr√
n
. (19)

Here zϕ/2 is the (1 − ϕ/2)th quantile of the standard Gaussian distribution.

5.1. Application to the Boston house price data

We analyze a subset of the Boston house price data (available at http://lib.stat.cmu.edu)

of Harrison & Rubinfeld (1978). These data include the following variables: proportion

of population of lower educational status (i.e. proportion of adults without high school

education and proportion of male workers classified as laborers) (%LS ), per capita crime

rate by town (crime rate, CR) and median value of owner-occupied homes in $1000’s

(house price, HP) for 506 towns around Boston. A goal is to identify the factors affecting

the house prices in Boston. However, it is hard to separate the effects of different factors

on HP since there are confounding variables present. Of interest is the correlation be-

tween HP and CR. While we can simply compute the standard correlation between these

variables, a more meaningful question is whether these variables are still correlated after

adjusting for %LS, since we may reasonably expect %LS to influence the relationship

between HP and CR. We therefore estimate the Cadcor using %LS as the confounding

variable U .

The correlation ρ(Y,X) was estimated by the Cadcor method and the results were

compared to estimators obtained without adjustment and with the standard correlation

adjustment methods that we have discussed above in Section 1, namely using estimates

of ρ(ẽ
Ỹ U

,ẽ
X̃U

) and ρ(e
Ỹ U

,e
X̃U

). The estimators and approximate 95% asymptotic confidence

intervals for ρ(Y,X) for these four methods are displayed in Table 1. For the two standard

adjustment methods and the case of no adjustment, approximate confidence intervals
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were obtained using Fisher’s z-transformation. Before forming confidence intervals for

the proposed covariate adjusted correlation (5), its significance was tested (see Remark

4 after Theorem 1). It was found to be significant at the 5% level (p-value= 0.048).

The approximate confidence interval for the Cadcor (19) was obtained using the variance

estimate σ̂2
nr (see Theorem 2). The scatter-plots of the raw estimates (β̂nr1, . . . , β̂nrm)

(12) and (α̂nr1, . . . , α̂nrm) (13) vs. the midpoints of the bins (Bn1, . . . , Bnm) are shown

in Figure 2 for intercepts (r = 0) and slopes (r = 1). The scatter-plots of the raw

correlations within each bin (r̂n1, . . . , r̂nm) vs. the midpoints of the bins (Bn1, . . . , Bnm),

where r̂nj is defined as

r̂nj = sign(β̂n1j)
√

β̂n1jα̂n1j1{sign(β̂n1j)=sign(α̂n1j)}
, (20)

are shown in Figure 3, along with scatter-plots of the variables (%LS,HP,CR).

FIGURE 2 ABOUT HERE

The implementation of the binning includes the merging of sparsely populated bins.

Bin widths were chosen aiming at a number of at least three points in each bin, and bins

with less than three points were merged with neighboring bins. For this example with n =

506, the average number of points per bin was 18, yielding a total of 24 bins after merging.

TABLE 1 ABOUT HERE

The unadjusted correlation ρ(Ỹ ,X̃) for HP and CR was found to be −0.3880. When

adjusted for %LS with Cadcor, the adjusted correlation was found to be −0.2201. This

implies that the proportion of population of lower educational status explains a significant

amount of the negative correlation between median house price and crime rate. The

estimate of nonparametric partial correlation ρ(ẽ
Ỹ U

,ẽ
X̃U

) was −0.1706, which came closest

to the Cadcor estimate, even though the approximate 95% confidence interval based on

this estimate did not contain the Cadcor of −0.2201. When adjusting for %LS with partial

correlation (ρ̂(e
Ỹ U

,e
X̃U

) = −0.0868), HP and CR were found to be no longer correlated.

The reason for the relative poor performance of the partial correlation estimate might be

its inability to reflect the nonlinear nature of the relationship between HP and %LS, as

demonstrated in Figure 3.

FIGURE 3 ABOUT HERE
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From Figure 3 bottom right panel, the correlation between HP and CR is seen to be

positive when %LS is between 0 and 10, and to become negative for larger %LS values.

The same phenomenon can also be observed from the positive slopes of HP and CR in

Figure 2, top and bottom right panels. This positive correlation between house prices

and crime rate for relatively high status neighborhoods seems counter-intuitive at first.

However, the reason for this positive correlation is the existence of high educational sta-

tus neighborhoods close to central Boston where high house prices and crime rate occur

simultaneously. The expected effect of increasing crime rate on declining house prices

seems to be only observed for lower educational status neighborhoods in Boston.

5.2. Monte Carlo simulation

The confounding covariate U was simulated from Uniform(1, 7). The underlying unob-

served variables (X,Y )T were simulated from a bivariate normal distribution with mean

vector (2, 3)T , σ2
X = 0.3, σ2

Y = 0.4 and ρ(X,Y ) = 0.5. The distorting functions were

chosen as ψ(U) = (U + 1)/5 and φ(U) = (−2U2 + 4U + 90)/68, satisfying the identifia-

bility conditions. We conducted 1000 Monte Carlo runs with sample sizes 100, 400 and

1600. For each run, 95% asymptotic confidence intervals were constructed by plugging

estimates σ̂2
nr, r = 0, . . . , p, given in Theorem 2, into (19). The estimated non-coverage

rates in percent and mean interval lengths for these confidence intervals were (8.06, 5.50,

5.30) and (0.44, 0.16, 0.08) respectively for sample sizes n = (100, 400, 1600). The esti-

mated non-coverage level is getting very close to the target value 0.05, as the sample size

increases, and the estimated interval lengths are decreasing.

For the sample size of 400, biases for non-adjustment (ρ(Ỹ ,X̃)) and the two standard

correlation adjustment methods, nonparametric partial correlation (ρ(ẽ
Ỹ U

,ẽ
X̃U

)) and par-

tial correlation (ρ(e
Ỹ U

,e
X̃U

)), were also estimated, and found to be 0.9557, 0.1101 and

0.1106 respectively, for the three methods. The bias of the Cadcor algorithm was 0.0080,

and thus negligible in comparison to the other methods.

We have also carried out simulations to study the effects of different choices of m, the

total number of bins, on the mean square error of the Cadcor estimates. Under the rate

conditions on m given in Section 3, the estimates are found to be quite robust regarding

12



different choices of m; we advocate a choice such that all or the vast majority of bins

include at least three observations. If there are a few bins that have less than this min-

imum number, they will be merged with neighboring bins in a second bin-merging step.

The average number of points per bin were 5, 16 and 32 for sample sizes n = 100, 400 and

1600, respectively.

6. Proofs of the main results

Defining δn0jk = ψ(U ′
njk) − ψ(U ′∗

nj) and δn1jk = φ(U ′
njk) − φ(U ′∗

nj) for 1 ≤ k ≤ Lj, where

U ′∗
nj = L−1

nj

∑Lnj

k=1 U
′
njk is the average of the U ’s in Bnj, we obtain the following results, by

Taylor expansions and boundedness considerations: (a.) supk,j |U ′
njk −U ′∗

nj| ≤ (b− a)/m;

(b.) supk,j |δnrjk| = O(m−1), for r = 0, 1.

Proof of Theorem 1. We show

√
n

















∑m
j=1

Lnj

n
β̂n1j

¯̃X ′
nj − γ1E(X)

∑m
j=1

Lnj

n
¯̃X ′

nj − E(X)
∑m

j=1
Lnj

n
α̂n1j

¯̃Y ′
nj − η1E(Y )

∑m
j=1

Lnj

n
¯̃Y ′
nj − E(Y )

















D→ N4(0,Σ), (21)

where Σ = {(σij)} is a 4 × 4 matrix with elements defined in Theorem 1. The asymp-

totic normality of
√
n(
√
γ̂n1η̂n1 − |ρ(Y,X)|) will follow from this with a simple application

of the δ-method when γ1 and η1 or equivalently ρ(Y,X) are different from zero, using

the transformation g(x1, x2, x3, x4)
T =

√

(x1x3)/(x2x4). The asymptotic normality of
√
n(rn − ρ(Y,X)) and thus Theorem 1 will then follow by Slutsky’s theorem, since the

consistency of sign(γ̂n1) and 1{sign(γ̂1)=sign(η̂1)} for sign(ρ(Y,X)) and 1 respectively follow

from the consistency of γ̂n1 and η̂n1 for γ1 and η1 respectively, when γ1 and η1 are different

from zero, shown in Şentürk & Müller (2003a).

By the Cramer-Wald device it is enough to show the asymptotic normality of

√
n

[

a

{ m
∑

j=1

Lnjn
−1β̂n1j

¯̃X ′
nj − γ1E(X)

}

+ b

{ m
∑

j=1

Lnjn
−1 ¯̃X ′

nj − E(X)

}

+c

{ m
∑

j=1

Lnjn
−1α̂n1j

¯̃Y ′
nj − η1E(Y )

}

+ d

{ m
∑

j=1

Lnjn
−1 ¯̃Y ′

nj − E(Y )

}]

(22)
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for real a, b, c, d, and (21) will follow. Let

Snt =
t

∑

i=1

Zni =
t

∑

i=1
j,k

[

a
γ1√
n
{ψ(Uni)Xni − E(X)} +

a√
n
X̄ ′

nj(i)ψ(Uni)
(Xni − X̄ ′

nj(i))

s2
X′

nj(i)

eY X,ni

+
b√
n
{φ(Uni)Xni − E(X)} + c

η1√
n
{φ(Uni)Yni − E(Y )}

+
c√
n
Ȳ ′

nj(i)φ(Uni)
(Yni − Ȳ ′

nj(i))

s2
Y ′

nj(i)

eXY,ni +
d√
n
{ψ(Uni)Yni − E(Y )}

]

,

where X̄ ′
nj(i) = L−1

nj

∑Lnj(i)

k=1 X ′
nj(i)k and s2

X′

nj(i)
= L−1

nj

∑Lnj(i)

k=1 X ′2
nj(i)k − X̄ ′2

nj(i) represents the

sample mean and variance of the X’s falling in the same bin as Xni; and Ȳ ′
nj(i) and s2

Y ′

nj(i)

are defined similarly.

It is shown in Şentürk & Müller (2003b) (equation (17)) that

sup
j

∣

∣

∣

∣

∣

∣

β̂n0j − ψ(U ′∗
nj)ζn0j

β̂n1j − {ψ(U ′∗
nj)/φ(U ′∗

nj)}ζn1j

∣

∣

∣

∣

∣

∣

= Op(m
−1)12×1, (23)

where ζn0j and ζn1j are as defined in (14). This result implies that

sup
j

∣

∣

∣

∣

∣

∣

α̂n0j − φ(U ′∗
nj)ωn0j

α̂n1j − {φ(U ′∗
nj)/ψ(U ′∗

nj)}ωn1j

∣

∣

∣

∣

∣

∣

= Op(m
−1)12×1, (24)

where ωn0j and ωn1j are as defined in (15) and 12×1 is a 2 × 1 vector of ones, since all

assumptions for Ỹ and X̃ are symmetric under the correlation setting. It also follows from

Lemma 4 (a,b) of Şentürk & Müller (2003b) that supj |X̄ ′
nj −E(X)| = op(1), supj |s2

X′

nj
−

var(X)| = op(1), supj |ē′Y X,nj| = op(1), and supj |L−1
nj

∑

k X
′
njke

′
Y X,njk| = op(1). This result

can analogously be extended to supj |Ȳ ′
nj − E(Y )| = op(1), supj |s2

Y ′

nj
− var(Y )| = op(1),

supj |ē′XY,nj| = op(1), and supj |L−1
nj

∑

k Y
′
njke

′
XY,njk| = op(1). It follows from (23), (24),

Lemma 4 (a,b) of Şentürk & Müller (2003b) and property (b) that the expression in (22)

equals Snn +Op(m
−1
√
n). Since Op(m

−1
√
n) is asymptotically negligible, the expression

in (22) is asymptotically equivalent to Snn.

Let Fnt be the σ-field generated by {eY X,n1, . . . , eY X,nt, eXY,n1, . . . , eXY,nt, Un1, . . . ,

Unt, Lnj(1), . . . , Lnj(t), X
′
nj(1), . . . , X

′
nj(t), Y

′
nj(1), . . . , Y

′
nj(t)}. Then it is easy to check that

{Snt =
∑t

i=1 Zni,Fnt, 1 ≤ t ≤ n} is a mean zero martingale for n ≥ 1. Since the σ-fields
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are nested, that is, Fnt ⊆ Fn,t+1 for all t ≤ n, using Lemma 1 given in Appendix C,

Snn
D→ N(0, (a, b, c, d)Σ(a, b, c, d)T = σ2

Z) in distribution (McLeish, 1974, Theorem 2.3

and subsequent discussion], and Theorem 1 follows.

Proof of Theorem 2. The consistency of σ̂n11, σ̂n12 and σ̂n22 for σ11, σ12 and σ22 are given

in Theorem 2 of Şentürk & Müller (2003b). The consistency of σ̂n33, σ̂n34 and σ̂n44 for

σ33, σ34 and σ44 follows from this result, since the assumptions regarding Ỹ and X̃ are

symmetric.

The symmetry of Ỹ and X̃ allows to extend equation (22) of Şentürk & Müller (2003b)

to

sup
j

∣

∣

∣

∣

∣

∣

α̂n0j − φ(U ′∗
nj)η0

α̂n1j − {φ(U ′∗
nj)/ψ(U ′∗

nj)}η1

∣

∣

∣

∣

∣

∣

= op(1)12×1. (25)

By Lemma 4 (a,b) and (22) of Şentürk & Müller (2003b), property (b.), Law of Large

Numbers and boundedness considerations,

σ̂n14 = n−1
∑

j

ψ2(U ′∗
nj)X̄

′
njs

−2
X′

nj

(

∑

k

X ′
njkY

′
njke

′
Y X,njk − X̄ ′

nj

∑

k

Y ′
njke

′
Y X,njk

)

+ n−1γ1

∑

j

ψ2(U ′∗
nj)

∑

k

X ′
njkY

′
njk − γ1E(X)E(Y ) + op(1) = σ14 + op(1).

With similar arguments, using Lemma 4 (a,b) of Şentürk & Müller (2003b), (25), property

(b.), Law of Large Numbers and boundedness considerations, it can be shown that σ̂n23 =

σ23 + op(1). It also holds by the Law of Large Numbers that σ̂n24 = σ24 + op(1). Using

this result, Lemma 4 (a,b) and (22) of Şentürk & Müller (2003b), (25), property (b.),

Law of Large Numbers and boundedness considerations, it holds that

σ̂n13 = η1
1

n

∑

j

ψ(U ′∗
nj)φ(U ′∗

nj)
X̄ ′

nj

s2
X′

nj

(

∑

k

X ′
njkY

′
njke

′
Y X,njk − X̄ ′

nj

∑

k

Y ′
njke

′
Y X,njk

)

+ γ1
1

n

∑

j

ψ(U ′∗
nj)φ(U ′∗

nj)
Ȳ ′

nj

s2
Y ′

nj

(

∑

k

X ′
njkY

′
njke

′
XY,njk − Ȳ ′

nj

∑

k

X ′
njke

′
XY,njk

)

+
1

n

∑

j

ψ(U ′∗
nj)φ(U ′∗

nj)
X̄ ′

njȲ
′
nj

s2
X′

nj
s2

Y ′

nj

(

∑

k

X ′
njkY

′
njke

′
Y X,njke

′
XY,njk − X̄ ′

nj

∑

k

Y ′
njke

′
Y X,njke

′
XY,njk

)

− 1

n

∑

j

ψ(U ′∗
nj)φ(U ′∗

nj)
X̄ ′

njȲ
′2
nj

s2
X′

nj
s2

Y ′

nj

(

∑

k

X ′
njke

′
Y X,njke

′
XY,njk − X̄ ′

nj

∑

k

e′Y X,njke
′
XY,njk

)
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+γ1η1cov(X̃, Ỹ ) + op(1) = σ13 + op(1).
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Appendix

Appendix A: Technical conditions

We introduce some technical conditions:

(C1) The covariate U is bounded below and above, −∞ < a ≤ U ≤ b < ∞ for

real numbers a < b. The density f(u) of U satisfies infa≤u≤b f(u) > c1 > 0,

supa≤u≤b f(u) < c2 < ∞ for real c1, c2, and is uniformly Lipschitz continuous, i.e.,

there exists a real number M such that supa≤u≤b |f(u + c) − f(u)| ≤ M |c| for any

real number c.

(C2) The variables (eY X , U,X) and (eXY , U, Y ) are mutually independent, where eY X ,

eXY are as in (6).

(C3) For both variables X and Y , sup1≤i≤n |Xni| ≤ B1, sup1≤i≤n |Yni| ≤ B2 for some

bounds B1, B2 ∈ R; and E(X) 6= 0, E(Y ) 6= 0.

(C4) Contamination functions ψ(·) and φ(·) are twice continuously differentiable, satis-

fying

Eψ(U) = 1, Eφ(U) = 1, φ(·) > 0, ψ(·) > 0.

(C5) Variances of X and Y , σ2
X and σ2

Y are strictly positive, i.e. σ2
X > %x > 0, σ2

Y >

%y > 0.

(C6) The functions h1(u) =
∫

xg1(x, u)dx, h2(u) =
∫

xg2(x, u)dx, h3(u) =
∫

yg3(y, u)dy

and h4(u) =
∫

yg4(y, u)dy are uniformly Lipschitz continuous, where g1(·, ·), g2(·, ·),
g3(·, ·) and g4(·, ·) are the joint density functions of (X,U), (XeY X , U), (Y, U) and

(Y eXY , U), respectively.

Under these assumptions, the regressions of Ỹ on X̃ and of X̃ on Ỹ both satisfy

the conditions given in Şentürk & Müller (2003b). Bounded covariates are standard in

asymptotic theory for least squares regression, as are conditions (C2) and (C5) (see Lai
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et al., 1979). The identifiability conditions stated in (C4) are equivalent to

E(Ỹ |X) = E(Y |X), E(X̃|Y ) = E(X|Y ).

This means that the confounding of Y and X by U does not change the mean regression

functions. Conditions (C1) and (C6) are needed for the proof of Lemma 4 of Şentürk &

Müller (2003b).

Appendix B: Explicit forms for the asymptotic variance of r and its estimate

The asymptotic variance of r is defined as follows

σ2
r =

σ11η1

4{E(X)}2γ1

− σ12η1

2{E(X)}2
+

σ22γ1η1

4{E(X)}2
+
σ13 − σ14η1 − σ23γ1 + σ24η1γ1

2E(X)E(Y )

+
σ33γ1

4{E(Y )}2η1

− σ34γ1

2{E(Y )}2
+

σ44η1γ1

4{E(Y )}2
,

where

σ11 = γ2
1 [E{ψ2(U)}E(X2) − {E(X)}2] + σ2

Y X

{E(X)}2E{ψ2(U)}
var(X)

,

σ12 = γ1[E{ψ(U)ψ(U)}E(X2) − {E(X)}2],

σ22 = var(X̃),

σ13 = γ1η1cov(X̃, Ỹ ) +
E(X)E(Y )

var(X)var(Y )
E{ψ(U)φ(U)}cov(X,Y eY XeXY )

+ γ1
E(Y )

var(Y )
E{ψ(U)φ(U)}cov(Y,XeXY ) + η1

E(X)

var(X)
E{ψ(U)φ(U)}cov(X,Y eY X)

− E(X){E(Y )}2

var(X)var(Y )
E{ψ(U)φ(U)}cov(X, eY XeXY ),

σ14 = γ1[E{ψ2(U)}E(XY ) − E(X)E(Y )] +
E(X)

var(X)
E{ψ2(U)}cov(X,Y eY X),

σ23 = η1[E{φ2(U)}E(XY ) − E(X)E(Y )] +
E(Y )

var(Y )
E{φ2(U)}cov(Y,XeXY ),

σ24 = cov(X̃, Ỹ ),

σ33 = η2
1[E{φ2(U)}E(Y 2) − {E(Y )}2] + σ2

XY

{E(Y )}2E{φ2(U)}
var(Y )

,

σ34 = η1[E{φ(U)ψ(U)}E(Y 2) − {E(Y )}2],

σ44 = var(Ỹ ).

The consistent estimate of σ2
r is

σ̂2
nr =

σ̂n11η̂n1

4 ¯̃X2
nγ̂n1

− σ̂n12η̂n1

2 ¯̃X2
n

+
σ̂n22γ̂n1η̂n1

4 ¯̃X2
n

+
σ̂n13 − σ̂n14η̂n1 − σ̂n23γ̂n1 + σ̂n24η̂n1γ̂n1

2 ¯̃Xn
¯̃Yn

+
σ̂n33γ̂n1

4 ¯̃Y 2
n η̂n1

− σ̂n34γ̂n1

2 ¯̃Y 2
n

+
σ̂n44η̂n1γ̂n1

4 ¯̃Y 2
n

,
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where

σ̂n11 =
1

n

∑

j

β̂2
n1j

∑

k

X̃ ′2
njk − γ̂2

n1
¯̃Xn +

(

n−1
∑

j

∑

k

ˆ̃e′2Y X,njk

)(

n−1
∑

j

Lnj
¯̃X ′2

njs
−2

X̃′

nj

)

,

σ̂n12 = n−1
∑

j

β̂n1j

∑

k

X̃ ′2
njk − γ̂n1

¯̃X2
n,

σ̂n22 = s2
X̃
,

σ̂n13 = γ̂n1η̂n1 ˆcov(X̃, Ỹ ) + n−1
∑

j

Lnj
¯̃X ′

nj
¯̃Y ′
njs

−2

X̃′

nj

s−2

Ỹ ′

nj

ˆcov(X̃ ′
nj, Ỹ

′
nj ẽ

′
Y X,nj ẽ

′
XY,nj)

+ n−1
∑

j

Lnjβ̂n1j
¯̃Y ′
njs

−2

Ỹ ′

nj

ˆcov(Ỹ ′
nj, X̃

′
nj ẽ

′
XY,nj)

+ n−1
∑

j

Lnjα̂n1j
¯̃X ′

njs
−2

X̃′

nj

ˆcov(X̃ ′
nj, Ỹ

′
nj ẽ

′
Y X,nj)

− n−1
∑

j

Lnj
¯̃X ′

nj
¯̃Y ′2
njs

−2

X̃′

nj

s−2

Ỹ ′

nj

ˆcov(X̃ ′
nj, ẽ

′
Y X,nj ẽ

′
XY,nj),

σ̂n14 = n−1
∑

j

β̂n1j

∑

k

X̃ ′
njkỸ

′
njk − γ̂n1

¯̃Xn
¯̃Yn + n−1

∑

j

Lnj
¯̃X ′

njs
−2

X̃′

nj

ˆcov(X̃ ′
nj, Ỹ

′
nj ẽ

′
Y X,nj),

σ̂n23 = n−1
∑

j

α̂n1j

∑

k

X̃ ′
njkỸ

′
njk − η̂n1

¯̃Xn
¯̃Yn + n−1

∑

j

Lnj
¯̃Y ′
njs

−2

Ỹ ′

nj

ˆcov(Ỹ ′
nj, X̃

′
nj ẽ

′
XY,nj),

σ̂n24 = ˆcov(X̃, Ỹ ),

σ̂n33 = n−1
∑

j

α̂2
n1j

∑

k

Ỹ ′2
njk − η̂2

n1
¯̃Yn +

(

n−1
∑

j

∑

k

ˆ̃e′2XY,njk

)(

n−1
∑

j

Lnj
¯̃Y ′2
njs

−2

Ỹ ′

nj

)

,

σ̂n34 = n−1
∑

j

α̂n1j

∑

k

Ỹ ′2
njk − η̂n1

¯̃Y 2
n ,

σ̂n44 = s2
Ỹ
,

ˆ̃e′Y X,njk = Ỹ ′
njk − β̂n0j − β̂n1jX̃

′
njk, ˆ̃e′XY,njk = X̃ ′

njk − α̂n0j − α̂n1jỸ
′
njk, ˆcov(X̃, Ỹ ) =

n−1
∑

j

∑

k X̃
′
njkỸ

′
njk − ¯̃Xn

¯̃Yn, ˆcov(X̃ ′
nj, Ỹ

′
nj ẽ

′
Y X,nj) = L−1

nj

∑

k X̃
′
njkỸ

′
njk

ˆ̃e′Y X,njk

− ¯̃X ′
njL

−1
nj

∑

k Ỹ
′
njk

ˆ̃e′Y X,njk and ˆcov(Ỹ ′
nj, X̃

′
nj ẽ

′
XY,nj), ˆcov(X̃ ′

nj, Ỹ
′
nj ẽ

′
Y X,nj ẽ

′
XY,nj),

ˆcov(X̃ ′
nj, ẽ

′
Y X,nj ẽ

′
XY,nj) are defined similarly.

Appendix C: Auxiliary results on martingale differences

Lemma 1. Under the technical conditions (C1)-(C6), on events An (16) and Cn (17),

the martingale differences Znt satisfy the conditions

(a.)
n

∑

t=1

E{Z2
ntI(|Znt| > ε)} → 0 for all ε > 0,

(b.) ∆2
n =

n
∑

t=1

Z2
nt

p→ σ2
Z for σ2

Z > 0.
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Proof. Let Znt = wntvnt, where wnt = 1/
√
n, and

vnt = aγ1{ψ(Unt)Xnt − E(X)} + aX̄ ′
nj(t)ψ(Unt)eY X,nt

(Xnt − X̄ ′
nj(t))

s2
X′

nj(t)

+ b{φ(Unt)Xnt − E(X)} + cη1{φ(Unt)Ynt − E(Y )}

+cȲ ′
nj(t)φ(Unt)eXY,nt

(Ynt − Ȳ ′
nj(t))

s2
Y ′

nj(t)

+ d{ψ(Unt)Ynt − E(Y )}

with E(vnt) = 0. Since |vnt| is bounded uniformly in t on event En, it holds for ε > 0

that
∑n

t=1E{Z2
ntI(|Znt| > ε)} =

∑n
t=1

∫

x2I(|x| > ε)dFwntvnt
(x) ≤ maxt

∫

x2I(|x| >
ε/|wnt|)dFvnt

(x)
∑

tw
2
nt = maxt

∫

x2I(|x| > √
nε)dFvnt

(x) → 0, and Lemma 1 (a.) fol-

lows.

The term ∆2
n in Lemma 1 (b.) is equal to

∆2
n = a2γ2

1

[

n−1
∑

t

ψ2(Unt)X
2
nt + {E(X)}2 − 2E(X)

{

n−1
∑

t

ψ(Unt)Xnt

}]

+ b2
[

n−1
∑

t

X̃2
nt + {E(X)}2 − 2E(X) ¯̃Xn

]

+ c2η2
1

[

n−1
∑

t

φ2(Unt)Y
2
nt + {E(Y )}2 − 2E(Y )

{

n−1
∑

t

φ(Unt)Ynt

}]

+ d2

[

n−1
∑

t

Ỹ 2
nt + {E(Y )}2 − 2E(Y ) ¯̃Yn

]

+ 2abγ1

[

n−1
∑

t

ψ(Unt)φ(Unt)X
2
nt − E(X)

{

n−1
∑

t

ψ(Unt)Xnt

}

− E(X) ¯̃Xn + {E(X)}2

]

+ 2acγ1η1

[

n−1
∑

t

X̃ntỸnt − E(Y )

{

n−1
∑

t

ψ(Unt)Xnt

}

− E(X)

{

n−1
∑

t

φ(Unt)Ynt

}

+ E(X)E(Y )

]

+ 2adγ1

[

n−1
∑

t

ψ2(Unt)XntYnt − E(Y )

{

n−1
∑

t

ψ(Unt)Xnt

}

− E(X) ¯̃Yn + E(X)E(Y )

]

+ 2bcη1

[

n−1
∑

t

φ2(Unt)XntYnt − E(X)

{

n−1
∑

t

φ(Unt)Ynt

}

− E(Y ) ¯̃Xn + E(X)E(Y )

]

+ 2bd

[

n−1
∑

t

X̃ntỸnt − E(Y ) ¯̃Xn − E(X) ¯̃Yn + E(X)E(Y )

]

+ 2cdη1

[

n−1
∑

t

φ(Unt)ψ(Unt)Y
2
nt − E(Y )

{

n−1
∑

t

φ(Unt)Ynt

}

− E(Y ) ¯̃Yn + {E(Y )}2

]
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+ 2

[

n−1
∑

t

ψ(Unt)X̄
′
nj(t)

(Xnt − X̄ ′
nj(t))

s2
X′

nj(t)

eY X,nt[a
2γ1{ψ(Unt)Xnt − E(X)}

+ ab{φ(Unt)Xnt − E(X)} − E(Y )(acη1 + ad)]

]

+ 2

[

n−1
∑

t

φ(Unt)Ȳ
′
nj(t)

(Ynt − Ȳ ′
nj(t))

s2
Y ′

nj(t)

eXY,nt[c
2η1{φ(Unt)Ynt − E(Y )}

+ cd{ψ(Unt)Ynt − E(Y )} − E(X)(acγ1 + bc)]

]

+ 2n−1
∑

t

ψ(Unt)YntX̄
′
nj(t)

(Xnt − X̄ ′
nj(t))

s2
X′

nj(t)

eY X,nt{acη1φ(Unt) + adψ(Unt)}

+ 2n−1
∑

t

φ(Unt)XntȲ
′
nj(t)

(Ynt − Ȳ ′
nj(t))

s2
Y ′

nj(t)

eXY,nt{acγ1ψ(Unt) + bcφ(Unt)}

+ a2n−1
∑

t

ψ2(Unt)X̄
′2
nj(t)

(Xnt − X̄ ′
nj(t))

2

s4
X′

nj(t)

e2Y X,nt

+ 2acn−1
∑

t

ψ(Unt)φ(Unt)Ȳ
′
nj(t)X̄

′
nj(t)

(Xnt − X̄ ′
nj(t))(Ynt − Ȳ ′

nj(t))

s2
X′

nj(t)
s2

Y ′

nj(t)

eY X,nteXY,nt

+ c2n−1
∑

t

φ2(Unt)Ȳ
′2
nj(t)

(Ynt − Ȳ ′
nj(t))

2

s4
Y ′

nj(t)

e2XY,nt = T1 + . . .+ T17.

It follows from the Law of Large Numbers that

T1 + . . .+ T10
p→ a2γ2

1 [E{ψ2(U)}E(X2) − {E(X)}2] + b2var(X̃) + d2var(Ỹ )

+ c2η2
1[E{φ2(U)}E(Y 2) − {E(Y )}2] + 2abγ1[E{φ(U)ψ(U)}E(X2) − {E(X)}2]

+ (2acγ1η1 + 2bd)[E{φ(U)ψ(U)}E(XY ) − E(X)E(Y )]

+ 2bcη1[E{φ2(U)}E(XY ) − E(X)E(Y )] + 2adγ1[E{ψ2(U)}E(XY ) − E(X)E(Y )]

+ 2cdη1[E{φ(U)ψ(U)}E(Y 2) − {E(Y )}2].

On eventA, E(T11|U,X,Lnj) = 0 and var(T11|U,X,Lnj) = 4n−2σ2
Y X

∑

t ψ
2(Unt)X̄

′2
nj(t)(X

′
nt

−X̄ ′
nj(t))

2s−4
X′

nj(t)
[a2γ1{ψ(Unt)Xnt − E(X)} + ab{φ(Unt)Xnt − E(X)} − E(Y )(acη1 + ad)]2

which isO(n−1). Thus, E(T11) = 0 and var(T11) = O(n−1), implying that T11 = Op(n
−1/2)

on A. Similarly, it can be shown that T12 = Op(n
−1/2) on C. Using Lemma 4 (a,b) of

Şentürk & Müller (2003b) and the Law of Large Numbers, it follows that

T13
p→ E(X)

var(X)
cov(X,Y eY X)[2acη1E{ψ(U)φ(U)} + 2adE{ψ2(U)}],

T14
p→ E(Y )

var(Y )
cov(Y,XeXY )[2acγ1E{ψ(U)φ(U)} + 2bcE{φ2(U)}],
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T15
p→ a2σ2

Y X

{E(X)}2E{ψ2(U)}
var(X)

,

T16
p→ 2ac

E(X)E(Y )

var(X)var(Y )
E{ψ(U)φ(U)}cov(X,Y eY XeXY )

− 2ac
E(X){E(Y )}2

var(X)var(Y )
E{ψ(U)φ(U)}cov(X, eY XeXY ),

T17
p→ c2σ2

XY

{E(Y )}2E{φ2(U)}
var(Y )

.

Thus ∆2
n

p→ σ2
Z = (a, b, c, d)Σ(a, b, c, d)T , where Σ4×4 is as defined in Theorem 1, and

Lemma 1 (b.) follows.

Appendix D: Analysis of ξ1 defined in (3)

Assuming conditions (C1)-(C6) (see Appendix A), we estimate ρ(Y,X) by a consistent

estimate of ρ(ẽ
Ỹ U

,ẽ
X̃U

), where ẽỸ U and ẽX̃U are the errors from the nonparametric regression

models Ỹ = E(Ỹ |U) + ẽỸ U and X̃ = E(X̃|U) + ẽX̃U , respectively. Thus, ẽỸ U = Ỹ −
E(Ỹ |U) = ψ(U){Y − E(Y )} and ẽX̃U = X̃ − E(X̃|U) = φ(U){X − E(X)}. Therefore,

using the population equation for correlation,

ρ(ẽ
Ỹ U

,ẽ
X̃U

) =
E(ẽỸ U ẽX̃U) − E(ẽỸ U)E(ẽX̃U)

√

var(ẽX̃U)
√

var(ẽỸ U)
= ρ(Y,X)∆ = ξ1,

where ∆ as defined in Section 1 is equal to E{ψ(U)φ(U)}/[
√

E{ψ2(U)}
√

E{φ2(U)}].
Next, we show that ∆ can assume any real value in (0, 1] under suitable conditions.

Let {θ1, θ2, θ3, . . .} be an orthogonal basis of the inner-product space C[a, b], the space of

continuous functions on [a, b], using the inner product < g1, g2 >=
∫ b

a
g1(u)g2(u)f(u)du,

where f(·) represents the density function of U and we choose θ1 ≡ 1. Then ψ and φ

can be expanded as ψ =
∑

i µiθi, and φ =
∑

i ϑiθi, for sets of real numbers µi, ϑi. The

identifiability conditions imply that µ1 = ϑ1 = 1. Assume without loss of generality that

for a given set of ϑi, i ≥ 2, µi = λϑi for an arbitrary λ ≥ 0, and that
∑

i≥2 ϑ
2
i = τ for

τ ≥ 0, i.e. < φ, φ >= τ + 1. Hence, ∆ = (1 + λτ)/(
√
τ + 1

√
λ2τ + 1). For the case of

λ = 0, the value of ∆ gets arbitrarily close to 0 as τ increases, and ∆ = 1 for τ = λ = 1.

Thus ∆ may assume any real value in the interval (0, 1].

Appendix E: Analysis of ξ2

Partial correlation of Ỹ and X̃ adjusted for U is equivalent to ρ(e
Ỹ U

,e
X̃U

), where eỸ U and

eX̃U are the errors from the regression models Ỹ = a0+a1U+eỸ U and X̃ = b0+b1U+eX̃U ,

respectively. Assuming ψ(U) = c0 + c1U and φ(U) = d0 + d1U , for some real numbers
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c0, c1, d0, d1, we can evaluate eỸ U and eX̃U , and thus ρ(e
Ỹ U

,e
X̃U

). Using the population

normal equations for regression, we find a1 = {E(Ỹ U) − E(Ỹ )E(U)}/var(U) = c1E(Y ),

a0 = E(Ỹ )−a1E(U) = c0E(Y ), b1 = {E(X̃U)−E(X̃)E(U)}/var(U) = d1E(X), and b0 =

E(X̃)−b1E(U) = d0E(X). Therefore, eỸ U = ψ(U){Y −E(Y )}, eX̃U = φ(U){X−E(X)},
and

ρ(e
Ỹ U

,e
X̃U

) =
E(eỸ UeX̃U) − E(eỸ U)E(eX̃U)

√

var(eX̃U)
√

var(eỸ U)
= ρ(Y,X)∆ = ξ2.

Appendix F: Analysis of ξ3 in (4)

Applying the population equation for correlation and simplifying terms, we find ρ(Ỹ ,X̃) =

{E(Ỹ X̃) − E(Ỹ )E(X̃)}/{
√

var(X̃)
√

var(Ỹ )} = ξ3. Expanding ψ and φ in the same

way as in Appendix D, ξ3 = [(1+λτ)E(XY )−E(X)E(Y )]/[
√

E(X2)(τ + 1) − {E(X)}2

√

E(Y 2)(λ2τ + 1) − {E(Y )}2]. This quantity can assume any real value in [−1, 1], since

in the special case of τ = 0, ξ3 = ρ(Y,X).
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Table 1: Estimates and approximate 95% confidence intervals for ρ(HP,CR) adjusted for

%LS in the Boston house price data set with n = 506. The first three estimates

correspond to non-adjustment (ρ(Ỹ ,X̃)), nonparametric partial correlation (ρ(ẽ
Ỹ U

,ẽ
X̃U

)) and

partial correlation (ρ(e
Ỹ U

,e
X̃U

)). The approximate confidence intervals for these three

methods were obtained using Fisher’s z-transformation. The fourth estimate was obtained

from the Cadcor method adjusting for %LS, with the asymptotic intervals (19).

Methods Lower B. Estimate Upper B.

ρ̂(Ỹ ,X̃) -0.4600 -0.3880 -0.3118

ρ̂(e
Ỹ U

,e
X̃U

) -0.1720 -0.0868 0.0003

ρ̂(ẽ
Ỹ U

,ẽ
X̃U

) -0.2150 -0.1706 -0.1260

Cadcor -0.3113 -0.2201 -0.1289
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Figure 1: Data (Xi, Yi) (squares), i = 1, . . . , 400, generated from the underlying bivariate

distribution specified in Section 5.2, along with the distorted data (X̃i, Ỹi) (crosses). Least

squares linear lines fitted to distorted data (dashed) (with estimated correlation ρ̂(Ỹ ,X̃) =

−0.4552), and to original data (solid) (with estimated correlation ρ̂(Y,X) = 0.4924) are

also shown.
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Figure 2: Scatter-plots of the estimated regression coefficients (β̂nr1, . . . , β̂nrm) (12) of

linear regressions house price (HP) versus crime rate (CR) for each bin (Bn1, . . . , Bnm)

for intercepts (r = 0, top left panel) and slopes (r = 1, top right panel). Similarly,

estimated linear regression coefficients (α̂nr1, . . . , α̂nrm) (13) of linear regressions CR vs.

HP for each bin (Bn1, . . . , Bnm) for intercepts (r = 0, bottom left panel) and slopes (r = 1,

bottom right panel). Here Ỹ = HP , X̃ = CR and confounding variable U = %LS (lower

educational status). Local linear kernel smooths have been fitted through the scatter-

plots using cross validation bandwidth choices of h = 6, 10, 10, 10, respectively. Sample

size is 506, and the number of bins formed is 24.
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Figure 3: Scatter-plots of the variables HP (house price) vs CR (crime rate) (top left

panel), CR vs %LS (lower educational status)(top right panel) and HP vs %LS (bottom

left panel) for the Boston house price data, along with the scatter-plot of raw correlation

estimates (r̂n1, . . . , r̂nm) (20) per each bin (Bn1, . . . , Bnm) (bottom right panel). Local

linear kernel smooths have been fitted through the scatter-plots using cross validation

bandwidth choices of h = 25, 15, 15, 10, respectively.


