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Summary

Motivated by analysis of genetical genomics data, we introduce a sparse high dimensional 

multivariate regression model for studying conditional independence relationships among a set of 

genes adjusting for possible genetic effects. The precision matrix in the model specifies a 

covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene 

expression after the confounding genetic effects on gene expression are taken into account. We 

present a covariate-adjusted precision matrix estimation method using a constrained ℓ1 

minimization, which can be easily implemented by linear programming. Asymptotic convergence 

rates in various matrix norms and sign consistency are established for the estimators of the 

regression coefficients and the precision matrix, allowing both the number of genes and the 

number of the genetic variants to diverge. Simulation shows that the proposed method results in 

significant improvements in both precision matrix estimation and graphical structure selection 

when compared to the standard Gaussian graphical model assuming constant means. The proposed 

method is also applied to analyze a yeast genetical genomics data for the identification of the gene 

network among a set of genes in the mitogen-activated protein kinase pathway.

Keywords

Constrained ℓ1 penalization; Gaussian graphical model; high-dimensionality; multivariate 
regression

1. Introduction

Genetical genomics experiments measure both genetic variants and gene expression data on 

the same subjects. Such data have provided important insights into gene expression 
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regulations in both model organisms and humans (Brem & Kruglyak, 2005; Cheung & 

Spielman, 2002). For a given gene, a typical analysis of such data sets is to identify the 

genetic loci or single nucleotide polymorphisms that are linked or associated with the 

expression level of this gene. Depending on the locations of the genetic variants, they are 

often classified as distal trans-linked loci or proximal cis-linked loci. However, the genetic 

architecture for many gene expressions may be complex due to possible multiple genetic 

effects and gene-gene interactions, and poorly estimated genetic architecture may 

compromise inference on the dependency structures of genes at the transcriptional level. 

Although a single gene analysis can be effective in identifying the associated genetic 

variants, gene expressions of many genes are highly correlated due to either shared genetic 

variants or other unmeasured common regulators. One important biological problem is to 

study the conditional independence among these genes at the expression level.

Gaussian graphical models have been applied to infer the relationship between genes at the 

transcriptional level (Segal et al., 2005; Li & Gui, 2006; Peng et al., 2009a), where the 

precision matrix for multivariate normal data has an interpretation of conditional 

dependence. Compared with marginal dependence, conditional dependence can capture the 

direct “link” between two variables when other variables are conditioned on. Since the gene 

expression variation of a gene can usually be explained by a small subset of other genes, the 

precision matrix for gene expression data is expected to be sparse. Estimation of high-

dimensional Gaussian graphical models has been an active area of research in recent years. 

Meinshausen & Buhlmann (2006) proposed a neighborhood selection procedure by 

identifying edges for each node in the graph using ℓ1 penalized regression. This approach 

reduces the graphical model estimation problem to a collection of separate high dimensional 

variable selection problems that have been well studied. Estimation of the precision matrix 

and the graphical structure can also be obtained through a penalized maximum likelihood 

approach, see, for example, Friedman et al. (2008), Rothman et al. (2008) and Yuan & Lin 

(2007). Friedman et al. (2008) proposed a fast block coordinate descent algorithm to solve 

the penalized likelihood maximization problem. Cai et al. (2011) proposed a constrained ℓ1 

minimization estimator for precision matrix and obtained the results on convergence rates 

and sign consistency.

Although a direct application of the Gaussian graphical model to gene expression data alone 

provides some insights into gene regulation at the expression level, it ignores the effects of 

genetic variants on gene expression. One important observation from many genetical 

genomics experiments is that the gene expression level of many genes is inheritable and can 

be partially explained by genetic variation (Brem & Kruglyak, 2005; Cheung & Spielman, 

2002). Since some genetic variants have effects on the expression of multiple genes and 

therefore may serve as confounders while detecting the association between the genes, 

ignoring the effects of genetic variants on the gene expression levels can lead to both false 

positive and false negative associations in the gene network graph. The effect of genetic 

variants on gene expression therefore needs to be adjusted in estimating the high 

dimensional precision matrix.

The problem can be formulated as joint estimation of multiple regression coefficients and 

precision matrix. Most of the available approaches use a group-wise regularization term 
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where the multiple regressions can be fitted jointly (Turlach et al., 2005; Peng et al., 2009b; 

Obozinski et al., 2011). Rothman et al. (2010) focuse on improving estimation of regression 

co-efficients by incorporating the covariance information. Similarly, Yin & Li (2011) 

proposed a penalized estimation method for sparse conditional Gaussian graphical model 

that iteratively estimates the regression coefficients and precision matrix. Li et al. (2012) 

developed a method that is based on a combination of kernel-based estimate of the means 

and regularized estimate of the precision matrix.

In this paper, we present a two-stage constrained ℓ1 minimization approach for covariate-

adjusted precision matrix estimation, where we use a constrained ℓ1 minimization approach 

to first estimate the regression coefficient matrix and then estimate the precision matrix 

using the estimated regression coefficients in the first stage. Different from the approaches 

of Rothman et al. (2010) and Yin & Li (2011), our approach does not make the multivariate 

normal assumption on the error distribution. The method can be easily implemented by 

linear programming. An R package of our method has been developed and is available on 

the CRAN (http://cran.r-project.org/). We provide the rates of convergence and the 

estimation bounds for the estimates of both the regression coefficient matrix and the 

precision matrix in various matrix norms, allowing both the number of the covariates and the 

number of the response variables to diverge as the sample size approaches infinity. In 

addition, a simple thresholding on the estimated precision matrix is proposed to recover the 

support of the covariate-adjusted precision matrix and is shown to provide consistent support 

recovery. The method is applied to a yeast genetical genomics data to demonstrate its 

application.

2. Two-stage Covariate-Adjusted Precision Matrix Estimation

2·1. Covariate Adjusted Gaussian Graphical Model

We consider a genetical genomics experiment. Let y = (y1, …, yp)T denote the random 

vector of expression levels for p genes, x = (x1, …, xq)T denote the random vector of the 

numerical values of q genetic markers. We consider the following multivariate regression 

model

(1)

where Γ0 is a p × q unknown coefficient matrix, z is a p × 1 random vector with mean zero, 

covariance matrix  and precision matrix . We assume that x and z 

are independent and we have n independent identically distributed observations (xk, yk) (k = 

1, …, n) from (1).

In genetical genomics data, each row of Γ0 is assumed to be sparse since each gene is 

expected to have only a few genetic regulators. The precision matrix Ω0 is also expected to 

be sparse, since typical genetic networks have limited links. If z follows a multivariate 

normal distribution, the conditional independence of zi and zj is equivalent to ωij = 0 and the 

matrix Ω0 has an interpretation of conditional dependence and can be used to construct a 
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conditional dependence graph. To be more specific, let G = (V, E) be a graph representing 

conditional independence relations between the components of y. The vertex set V has p 

components y1, …, yp and the edge set E consists of pairs (i, j), where (i, j) ∈ E if there is an 

edge between yi and yj. The edge between yi and yj is excluded from E if and only if zi and 

zj are independent given all other zk’s (k ≠ i, j). We are interested in detecting the non-zero 

entries of Ω0 in order to construct a conditional independence graph for y after the effects of 

the covariates x on y are adjusted. Such a graphical model is called the covariate-adjusted 

Gaussian graphical model.

Estimation of Γ0 in (1) in high dimensional setting, where p and q can be larger than n, has 

been extensively studied. Most of the available approaches use a group-wise regularization 

term where the p regressions can be fitted jointly (Turlach et al., 2005; Peng et al., 2009b; 

Obozinski et al., 2011). Rothman et al. (2010) and Yin & Li (2011) developed ℓ1-penalized 

estimation methods that iteratively estimate Γ0 and Ω0. Rothman et al. (2010) focus on 

improving estimation of Γ0 by incorporating Ω0. The work of Yin & Li (2011) aims to 

improve the estimate of Ω0 after the effects of the covariates on the means are taken into 

account, which is also the focus of the present paper.

2·2. Estimation of Γ0

When q = 1, many methods have been developed for estimation of Γ0, including the methods 

based on the ℓ1 minimization (Tibshirani, 1996) and the Dantzig selector (Candès & Tao, 

2007). We propose to develop a method for estimating Γ0 using a constrained ℓ1 

minimization that can be treated as a multivariate extension of the Dantzig selector. For a 

matrix A = (aij) ∈ ℝp×q, define the element-wise ℓ1 norm by  and the 

element-wise ℓ∞ norm by |A|∞ = maxi,j|aij|.

Let . Then

(2)

Set  and . We propose to 

estimate Γ0 by the solution to the following the optimization problem:

(3)

where λn is a tuning parameter. This optimization problem is equivalent to the following p 

optimization problems:

(4)
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where Γ = (γ1, …, γp)T and Sxy = (Sxy,1, …, Sxy,p)T. This is exactly the Dantzig selector 

formulation in the usual regression analysis for the ith regression and its solution can 

therefore be obtained by solving the corresponding linear programming problem. This 

simple observation is useful for the implementation and technical analysis. In this paper and 

the R package we developed, the procedure is implemented by a linear programming 

optimization using the primal dual and interior point algorithm.

2·3. Estimation of Ω0

After plugging the estimator Γ̂ given in (3) into equation (2), we can estimate Ω0 by the 

method of constrained ℓ1-minimization proposed in Cai et al. (2011). Let

The precision matrix Ω0 is then estimated by the solution to the optimization problem

(5)

where τn is a tuning parameter. Let  be a solution to (5). This constrained ℓ1 

minimization approach is the same as the one proposed in Cai et al. (2011), except that Syy 

depends on the estimated coefficient matrix Γ̂. Since no symmetry condition on Ω1̂ is 

imposed, as a result, the solution may not be symmetrical in general. The final estimator of 

Ω0, denoted by Ω̂ = (ω̂ij), is obtained by symmetrizing the estimator as follows:

(6)

where I(·) is the indicator function. As in (4), the problem (5) can be decomposed into p 

optimization problems. For i = 1, …, p, let ωî be the solution of the convex optimization 

problem

(7)

where ωi is a vector in ℝp, ei is a standard unit vector in ℝp with 1 in the i-th coordinate and 

0 in all other coordinates. This can also be solved using the primal dual and interior point 

algorithm.

2·4. Tuning parameter selection

Two tuning parameters λn and τn need to be selected. We tune these two parameters together 

via a L-fold cross-validation, where the Bregman divergence can be use to measure the 
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model fit. Specifically, we divide all the samples in the training dataset into L disjoint 

subgroups, also known as folds, and denote the index of subjects in the lth fold by Tl for l = 

1, …, L. The L-fold cross-validation score is defined as

where nl is the size of the lth fold Tl and

with Ω̂
−l(λn, τn) and Γ−̂l(λn) being the estimates of based on the sample  with λn 

and τn as the tuning parameters. Then, we choose  as the best 

tuning parameters, which are used to obtain the final estimates of the regression coefficients 

and precision matrix based on the whole training set. Here the maximization of CV(λn, τn) 

with respect to (λn, τn) is achieved via a grid search.

3. Rates of Convergence of the Estimators

3·1. Convergence rates of Γ̂ − Γ0

In this section, we present theoretical properties of the estimators Γ̂ and Ω̂. We first introduce 

the matrix norms used in the rest of the paper. For a matrix A = (aij) ∈ ℝp×q, define the 

spectral norm as ||A||2 = max|x|2=1|Ax|2, the matrix L∞ norm as 

, and the Frobenius norm as . The notation 

A ≻ 0 means that A is positive definite. Write x = (x1, …, xq)T, z = (z1, …, zp)T and u = 

zTΩ0 = (u1, …, up). The following conditions are needed for establishing the rate of 

convergence.

(A1) Let log(p ∧ q) = o(n). Suppose that there exist some η > 0 and K > 0 such that

for all i = 1, …, q and j = 1, …, p. Furthermore, .

(A2) The regression coefficient matrix Γ0 belongs to the following class with 0 ≤ δ1 < 

1:
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(A3)
The precision matrix  belongs to the following class with 0 ≤ δ2 < 

1:

(A4)
There exists some Nq > 0 such that the matrix l∞ norm of  satisfies 

, where Σx = cov(x).

Condition (A1) is a sub-Gaussian condition on x, z and zT Ω0, where the variance of uj is 

. The dimensions p and q are of the order exp{o(n)}. Conditions (A2) and (A3) assume 

the uniformity class of matrices for the regression coefficient matrix and the precision 

matrix, where 0 and 0 are classes of matrices with the sparsity measurements of s1(q) and 

s2(p), respectively. Similar parameter spaces have also been used in Bickel & Levina (2008) 

and Cai et al. (2011). Conditions (A2) and (A3) also bound the matrix L∞ norm of Γ0 and 

Ω0. Finally, condition (A4) bounds the matrix L∞ norm of the inverse covariance matrix of 

x.

The estimation error Γ̂ − Γ0 can be measured by different matrix norms: the matrix L∞ 
norm, the Frobenius norm and the entry-wise ℓ∞ norm. The matrix L∞ norm measures the 

accuracy of the estimation of Γ0. The Frobenius norm is also a reasonable measure on the 

accuracy of the estimation of Γ0 and can be viewed as the sum of squared errors for 

estimating individual rows. The element-wise ℓ∞ norm can be used to recover the support of 

Γ0 by a further thresholding step. We have the following rates of convergence for the 

estimator Γ̂ in matrix L∞ and the Frobenius norm.

Theorem 1—Suppose (A1), (A2) and (A4) hold. Let Γ0 ∈ δ1 and λn = C1[{log(pq)}/

n]1/2, where C1 > 0 is a sufficiently large constant. If

(8)

then with probability greater than 1 − O{(pq)−1}, we have

(9)

and
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(10)

for some constant C > 0.

Theorem 1 shows that the regression coefficients matrix Γ0 can be estimated consistently 

under the Frobenius norm if the sparsity s1(q) of Γ0 is of order . 

The requirement on the dimensions p and q is mild as they only appear in the logarithmic 

term. To see this, if s1(q) = O(nr1) for some r1 < 1 − δ1/2 and Nq is bounded, then p and q 

can be as large as exp(nr2) for some r2 < 1 − δ1/2 − r1.

Theorem 2—Under the conditions of Theorem 1, with probability greater than 1 − 

O{(pq)−1}, we have

(11)

for some constant C0 > 0.

The rate under the element-wise l∞ norm is critical to the support recovery. Define Γt̃hr = 

(γ̃ij) with

where (γ̂ij) = Γ̂. Let  be the true support of the coefficient matrix Γ0 

and γmin = min(i,j)∈S(Γ0) |γij|.

Theorem 3—Suppose the conditions in Theorem 1 hold and

(12)

then with probability greater than 1 − O{(pq)−1}, we have S(Γt̃hr) = S(Γ0).

The lower bound condition (12) requires that the magnitude of the non-zero entries in Γ0 

cannot be too small in order to recover the support.
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3·2. Convergence rates of Ω̂ − Ω0

We consider the rate of Ω̂ − Ω0 under the spectral norm and the element-wise l∞ norm. The 

rate under the spectral norm is important because it can lead to the consistency of the 

estimation of eigenvalues and eigenvectors and it is essentially needed in developing 

theoretical properties for various statistical inference problems when the estimator of the 

precision matrix is used.

Theorem 4—Suppose (A1) – (A4) and (8) hold. Let Γ0 ∈ δ1, Ω0 ∈ δ2 and

(13)

Let τn = C2[{log(pq)}/n]1/2, where C2 > 0 is a sufficiently large constant. Then with 

probability greater than 1 − O{(pq)−1}, we have

(14)

for some constant C > 0.

The condition (13) on the sparsity s1(q) of Γ0 ensures that Γ0 can be well estimated with 

certain rate so that y − Γ̂0x can be used to replace the oracle one y − Γ0x. The convergence 

rate in (14) is optimal. In fact, as shown in an unpublished 2010 technical report available 

from the first author, even if Γ0 = 0 or is known in advance, the minimax optimal rate of 

estimation of Ω0 is still . If q = O(p), then the rate in (14) is 

the same as the oracle optimal rate and thus is also optimal.

The next theorem shows the convergence rate under the element-wise l∞ norm, which is 

useful for the recovery of the support of Ω.

Theorem 5—If (A1) – (A4) and (8) hold, we have with probability greater than 1 − 

O{(pq)−1},

(15)

where C > 0 is a constant.

The proofs of these two theorems are given in the Appendix. The key is to account for the 

estimation error and uncertainty of Γ̂0 in evaluating the estimation error of Ω̂
0. This is in 

contrast to the estimation of Ω0 in Cai et al. (2011) when Γ0 is assumed to be zero. As shown 
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in an unpublished 2010 technical report available from the first author, the minimax optimal 

rate under the element-wise l∞ norm for estimating the precision matrix is O{Mp(log p/

n)1/2} when Γ0 = 0 or is known. Hence covariate-adjusted ℓ1 minimization can achieve the 

same optimal rate as the case that Γ0 is known.

4. Graphical Model Selection Consistency

When the error term z in (1) is assumed to follow , recovery of the support of the 

precision matrix Ω0 is closely related to the covariate-adjusted graphical model selection. 

When Γ0 = 0, the problem reduces to Gaussian graphical model selection. We consider the 

setting when Ω0 belongs to 0 and are interested in estimating the support of Ω0, 

 when Γ0 ≠ 0. Define . As long as θmin ≥ 

2Mpτn, using the rate under the element-wise ℓ∞ norm given in Theorem 5, we have 

following result.

Theorem 6

Suppose (A1) – (A4) and (8) hold. Further suppose that θmin > 2Mpτn. Then for all ωij ≠ 0, 

the probability of ω̂ij ≠ 0 tends to one.

Sign consistency can be achieved by further thresholding the entries of Ω̂. Let

where  is a tuning parameter which will be specified later. Define 

 and  be the 

vector of the signs of the elements of the true and the estimated precision matrix, where 

sign(t) is defined as

We have the following theorem on sign consistency of the estimator Ψ̂, i.e., the estimator not 

only recovers the sparsity pattern of Ω0, but also recovers the signs of the nonzero elements.

Theorem 7

Let . Suppose that . Then under the conditions of Theorem 4, as n and p 

tend to infinity, we have with probability tending to one, Ψ̂ = Ψ.

Theorem 7 shows that the support of Ω0 can be recovered exactly if the minimum of the 

nonzero entries in Ω0 has a lower bound that is not too small. The lower bound condition is 

necessary in order to recover the support exactly. In fact, as shown in an unpublished 2010 
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technical report available from the first author, suppose that Γ0 = 0 or is known in advance, if 

 for a sufficiently small constant c > 0, then for any estimator of Ω0, it is not 

possible to recover the support exactly uniformly over the class of s2(p) sparse precision 

matrices.

In practice, since the estimator obtained from (6) is already sparse, we do not further 

threshold the estimator. Although the sign consistency cannot be guaranteed, under weaker 

conditions, we can still get an estimator with its properties stated in Theorem 6.

5. Simulation Results

In this section simulation studies are carried out to evaluate the numerical performance of 

the proposed procedure and to compare it with other methods for precision matrix estimation 

and support recovery. Four models are considered with their dimensions and sample size p, 

q, n, pr(Γij ≠ 0) and pr(Ωij ≠ 0, i ≠ j) presented in Table 1. For each model, we generate a p × 

q coefficient matrix Γ and a p × p precision matrix Ω with pr(Γij ≠ 0) and pr(Ωij ≠ 0 | i ≠ j) 

shown in Table 1. If Γij ≠ 0 or Ωij ≠ 0 (i ≠ j), we generate Γij or Ωij (i ≠ j) from Unif([0.5, 1] 

∪ [1, 0.5]). The diagonal of Ω is set to be a common value so that the condition number of Ω 
is equal to p. This is to make sure that Ω is positive definite and invertible. Let Σ = Ω−1. We 

generate n × q design matrix X and a n × p random error matrix so that Xij and Zij 

independently follow N(0, 1) distribution. The n × p outcome matrix is set to be Y = XΓ + 

ZΣ1/2.

Model 1 has small values of p and q and is considered to mimic the applications on finding 

small-scale gene regulatory pathways or constructing networks in social sciences. Models 2–

4 have moderate or large p and q, simulating the settings in most genomic applications.

The performance of our proposed method is compared with several other methods, including 

those of Cai et al. (2011) and Friedman et al. (2008) that ignore the covariate effects and that 

of Yin & Li (2011). For all these estimators, the tuning parameters are chosen using five-fold 

cross validation by maximizing the cross-validated log-likelihood function,

where  for the methods of Cai et al. (2011) and Friedman et 

al. (2008), and  for our method and that of Yin & Li 

(2011), with Γ̂ computed from the training data set. The final estimates are obtained using 

the chosen tuning parameters on the full data sets. No extra thresholding is applied to the 

estimators.

Several different measures are used to compare the performance of these estimators. The 

estimation error Ω̂ − Ω is evaluated in terms of the spectral norm, Frobenius norm and ℓ1 

norm. The graph structure recovery is evaluated by the mis-specification rate, specificity, 

sensitivity and Matthews correlation coefficient, which are defined as the following:
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Here, TP, TN, FP, FN are the numbers of true positives, true negatives, false positives and 

false negatives, respectively, where true positives are the non-zero entries of the non-

diagonal elements of Ω. The performances over 50 replications are reported in Tables 2 and 

3.

For the estimation error (Table 2), when log(pq)/n is small or moderate as in Models 1 and 2, 

the performance of our method is comparable to that of the method in Yin & Li (2011). As 

log(pq)/n increases, the proposed estimator has the smallest estimation errors. In terms of 

graph structure recovery (Table 3), adjusting for covariates yields better performance in 

general as shown by the proposed method and the method of Yin & Li (2011). Our 

procedure performs better than the other methods for Models 2–4, and it has a comparable 

performance as the method of Yin & Li (2011) for Model 1.

The results presented in Tables 2 and 3 depend on the tuning parameters, which are selected 

by 5-fold cross-validation for all the estimators. To further compare the performance on 

graph structure recovery, we obtain the receiver operating characteristic curve for each 

simulated dataset by varying the turning parameter τn. The tuning parameter for the 

regression coefficients, λn, for our method and that of Yin & Li (2011) is fixed at the value 

selected by the cross validation. Figure 1 shows the receiver operating characteristic curves 

averaged over 50 replications. Our method has a comparable performance with that of Yin & 

Li (2011) for Model 1 and has better performance in the other models. Figure 1 also 

demonstrates that without adjusting for the covariate effects, existing precision matrix 

estimation methods perform poorly in terms of support recovery. The value of log(pq)/n is 

the key factor that determines the performance of these methods. When it is large as in 

Model 3, all the methods perform rather poorly. In Model 4, the dimension of the parameters 

p2 + pq is eleven times that of Model 3 and the sample size is only twice as large. However, 

since model 4 has a smaller log(pq)/n ratio, all methods have better performance than for 

Model 3.

6. Analysis of Yeast Data

We illustrate our method using the yeast genetical genomics data set generated by Brem & 

Kruglyak (2005). The data set contains 112 yeast segregants grown from a cross involving 

BY4716 and wild isolate RM11-1a. RNA was isolated and cDNA was hybridized to 

microarrays with 6,216 yeast genes assayed on each array. Each of the 112 segregants were 

individually genotyped at 2,956 marker positions. Due to the small sample size and limited 

perturbation to the biological system, it is not possible to construct a gene network for all 

6,216 genes. We instead focused our analysis on two sets of genes that are biologically 

relevant: the first set of 54 genes that belong to the yeast mitogen-activated protein kinase 

signaling pathway provided by the Kyoto Encyclopedia of Genes and Genomes database 

(Kanehisa et al., 2010), another set of 1,207 genes of the proteinprotein interaction network 
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obtained from a previously compiled set by Steffen et al. (2002) combined with protein 

physical interactions deposited in the Munich Information center for Protein Sequences 

(Mewes et al., 2002).

The first set of genes include 54 genes that belong to the yeast mitogen-activated protein 

kinase signaling pathway. Figure 2 displays the illustrative pathway structure, showing how 

yeast genes respond to different cellular signals. Some gene nodes such as Ste20, Ste11 and 

Ste7 appear in multiple locations on this pathway. This directed signaling pathway explains 

how yeast cells respond to different cellular signals.

To apply our method, we first select the genetic markers based on simple screening. There 

are 188 markers that are marginally associated with at least two of the 54 genes with p-value 

less than or equal to 0·01. A total of 702 such associations are observed, suggesting there is 

a large pool of possible confounders. We apply our method to this set of 54 genes and 188 

markers and use 5-fold cross validation to choose the tuning parameters as λ =0·15 and τ 
=0·24. The covariate-adjusted estimation results in selecting 51 links among the 54 genes. In 

addition, the method identifies 597 non-zero entries for the coefficient matrix, indicating 

many gene expression levels are affected by genetic variants. There are 528 pairs of genes 

sharing at least one common genetic variant. Figure 3 shows the graph constructed by our 

method based on the estimated precision matrix. While we do not expect that the estimated 

conditional Gaussian graph can fully recover the true mitogen-activated protein kinase 

signaling pathway, we observe the estimated undirected graph indeed has biological 

meanings. For example, Fus1, Fus3, Ste12, Ste20, Ste18, Ste11, Dig2 and Cdc42 are linked 

together, suggesting strong interaction mechanism between these genes. These genes all 

involve in the yeast pheromone and mating process. In contrast, genes Sho1, Ste20, Ste11, 

Ctt1, Glo1, Ypd1 and Msn4 are linked since they all participate in osmolyte synthesis. 

Finally, genes Swi4, Bni1, Bck1 and Fks1 are linked due to their interaction in the cell wall 

remodeling process.

For comparison we also obtain the Gaussian graph estimated by constrained ℓ1 penalization 

of Cai et al. (2011) and the estimation of Friedman et al. (2008) without adjusting for the 

genetic effects on gene expressions. We use 5-fold cross-validation to choose the tuning 

parameter for both methods, resulting λ =0·20 and λ =0·15, respectively. The method of Cai 

et al. (2011) identifies 146 links and the method of Friedman et al. (2008) identified 543 

links. Both graphs include too many links and are hard to interpret biologically.

For the second data set, we analyze genes that belong to the yeast protein-protein interaction 

network (Steffen et al., 2002). We select 1,207 genes with variance greater than 0·05. Five-

fold cross-validation chooses the tuning parameters as λ =0·15 and τ =0·20, leading to an 

estimated covariate-adjusted Gaussian graph with 3,588 links out of 727,821 possible links. 

In contrast, the method of Friedman et al. (2008) identifies 25,117 links with an optimal 

tuning parameter λ =0·23, and the method of Cai et al. (2011) identifies 5,983 links with the 

selected tuning parameter λ =0·18. Again, it seems that the covariate-adjusted Gaussian 

graphical model gives a sparser graph than the standard Gaussian graphical model when the 

genetic effects on gene expressions are ignored.
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7. Extension

The two stage procedure introduced in this paper can be extended to yield an iterative 

procedure. For fixed tuning parameters λn and τn, given the current estimate of Ω0, say Ω̂
0, 

one can estimate Γ0 by solving the optimization problem

where  and . 

One can then iteratively update Γ0 and Ω0 until convergence. This however increases the 

computational time dramatically.
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Appendix - Proofs of the Theorems

The first lemma is an exponential inequality from Cai & Liu (2011) on the partial sums of 

independent random variables.

Lemma 1

Let ξ1, ···, ξn be independent random variables with mean zero. Suppose that there exists 

some t > 0 and B̄n such that . Then uniformly for 0 < x ≤ B̄n,

(A1)

where Ct = t + t−1.

Proof of Theorems 1 and 2

Without loss of generality, we assume that E(x) = 0. Recall that E(z) = 0. We show that with 

probability greater than 1 − O{(pq)−1},

(A2)

To prove (A2), it suffices to show that
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(A3)

Taking ξk = zkixkj in Lemma 1 and noting that maxi,j E exp(t|zkixkj|) ≤ K for all |t| ≤ min(η, 

η/K), we have

(A4)

By Lemma 1, we have

for some constant C > 0. This implies (A3). Let Γ̂ = (γ̂ij) = (γ1̂, …, γ̂p)T be the solution of 

(3). Then by (A2), we have |(Γ̂ − Γ0)Sxx| ≤ 2λn. Moreover, by the equivalence between (3) 

and (4), we have  for all 1 ≤ i ≤ p. Set 

. We have ||Γ|̂|L∞ ≤ ||Γ 0||L∞. Also by Lemma 1, we have

for some constant C > 0. Then, with probability greater than 1 − O{(pq)−1}, we have

It follows that

(A5)

Let tn = |Γ̂ − Γ0|∞. Define
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Then

So we have . It suffices to estimate . We have

Therefore,

If ||Γ̂ − Γ0||L∞ ≤ 1, then we have . If ||Γ̂ − Γ0||L∞ > 1, then 

by (8), we have for n large,

Thus (9) holds with probability greater than 1 − O{(pq)−1}. By (9) and (8), we have ||Γ̂ − 

Γ0||L∞ ≤ 1 with probability greater than 1 − O{(pq)−1}. This, together with (A5), implies 

(11). Finally, (10) follows from (9), (11) and the inequality 

.

Proof of Theorems 4 and 5

Recall that E(z) = 0. Set
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We suppose that

(A6)

and

(A7)

Then we have

It follows that

This proves Theorem 5. Following the arguments as the proof of Theorem 1, we can get 

Theorem 4.

It remains to prove (A6) and (A7). Write Δn = Γ̂ − Γ0. Then we have

We now prove that with probability greater than 1 − O{(pq)−1},

(A8)

and
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(A9)

First, recall that

(A10)

Write Δn = (δij), xk = (xk1, …, xkq)T and zk = (zk1, …, zkp)T. To prove (A8), we only need to 

show that with probability greater than 1 − O{(pq)−1},

By (9), (13) and (A10),

(A11)

Thus (A8) holds. It remains to show (A9), which is equivalent to show that with probability 

greater than 1 − O{(pq)−1},

(A12)

By Lemma 1, we can get

for some constant C > 0. By (11), (9) and (13),
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with probability greater than 1 − O{(pq)−1}. This implies (A12).

We next prove (A7). Write

Note that  and . By assumption (A2), 

. By Lemma 1, we have

for some bounded constant C depending only on C0, η and K. This yields (A7).
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Fig. 1. 
The average receiver operating characteristic curves obtained by varying the tuning 

parameter τn. The upper left panel is for Model 1, the upper right panel is for Model 2, the 

bottom left panel is for Model 3 and the bottom right panel is for Model 4. The solid, dotted, 

dashed and dashed-dotted curves represent the methods of Friedman et al. (2008), Cai et al. 

(2011), Yin & Li (2011) and our method, respectively. The solid and the dotted curves 

overlap in the bottom plots.

Cai et al. Page 21

Biometrika. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The yeast mitogen-activated protein kinase signaling pathway, illustrating the signaling 

paths in responses to different signals. Some genes appear in multiple paths. The figure is 

downloaded from http://www.wikipathways.org/index.php/Pathway:WP510
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Fig. 3. 
Covariate-adjusted conditional independence graph constructed based on the estimated 

covariate-adjusted precision matrix for the 54 genes on the yeast mitogen-activated protein 

kinase signaling pathway.
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Table 1

Fours models and the parameters used in the simulations.

Parameters

Model 1 p = 60, q = 30, n = 100, pr(Γij ≠ 0) = 5/q, and pr(Ωij ≠ 0 | i ≠ j) = 5/p

Model 2 p = 200, q = 200, n = 200, pr(Γij ≠ 0) = 30/q, and pr(Ωij ≠ 0 | i ≠ j) = 5/p

Model 3 p = 200, q = 200, n = 100, pr(Γij ≠ 0) = 30/q, and pr(Ωij ≠ 0 | i ≠ j) = 5/p

Model 4 p = 800, q = 300, n = 200, pr(Γij ≠ 0) = 30/q, and pr(Ωij ≠ 0 | i ≠ j) = 10/p

Biometrika. Author manuscript; available in PMC 2017 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cai et al. Page 25

T
a
b

le
 2

S
im

u
la

ti
o
n
 r

es
u
lt

s:
 e

st
im

at
io

n
 e

rr
o
rs

 o
f 

fo
u
r 

d
if

fe
re

n
t 

m
et

h
o
d
s 

fo
r 

th
e 

p
re

ci
si

o
n
 m

at
ri

x
 a

s 
m

ea
su

re
d
 b

y
 d

if
fe

re
n
t 

m
at

ri
x
 n

o
rm

s 
b
as

ed
 o

n
 5

0
 r

ep
li

ca
ti

o
n
s.

 

N
u
m

b
er

s 
in

 p
ar

en
th

es
es

 a
re

 t
h
e 

si
m

u
la

ti
o
n
 s

ta
n
d
ar

d
 e

rr
o
rs

.

(p
, q

, n
)

M
et

ho
d

Sp
ec

tr
al

 n
or

m
F

ro
be

ni
us

 n
or

m
M

at
ri

x 
ℓ 1 

no
rm

M
o

d
el

 1
(6

0
,3

0
,1

0
0
)

C
A

P
M

E
4
·4

 (
0
·2

)
1
5
·8

 (
0
·2

)
9
·6

 (
0
·4

)

C
L

IM
E

4
·7

 (
0
·1

)
1
6
·2

 (
0
·1

)
1
1
·2

 (
0
·4

)

cG
G

M
3
·1

 (
0
·2

)
1
3
·4

 (
0
·1

)
7
·7

 (
0
·5

)

G
L

A
S

S
O

5
·6

 (
0
·1

)
1
6
·9

 (
0
·0

)
1
2
·1

 (
0
·2

)

M
o

d
el

 2
(2

0
0
,2

0
0
,2

0
0
)

C
A

P
M

E
1
0
·5

 (
0
·3

)
3
0
·2

 (
0
·1

)
2
4
·8

 (
0
·7

)

C
L

IM
E

1
3
·1

 (
0
·0

)
3
4
·0

 (
0
·0

)
2
9
·4

 (
0
·1

)

cG
G

M
1
1
·4

 (
0
·2

)
3
3
·0

 (
0
·2

)
2
6
·4

 (
0
·6

)

G
L

A
S

S
O

6
·9

 (
0
·2

)
4
1
·0

 (
0
·0

)
1
3
·9

 (
0
·0

)

M
o

d
el

 3
(2

0
0
,2

0
0
,1

0
0
)

C
A

P
M

E
8
·2

 (
0
·5

)
4
8
·5

 (
1
·7

)
2
6
·6

 (
1
·8

)

C
L

IM
E

8
·8

 (
0
·1

)
4
8
·8

 (
0
·1

)
1
9
·4

 (
0
·2

)

cG
G

M
1
1
·0

 (
5
·2

)
5
4
·8

 (
3
·2

)
2
6
·4

 (
0
·6

)

G
L

A
S

S
O

9
·6

 (
0
·0

)
5
0
·0

 (
0
·0

)
2
0
·1

 (
0
·0

)

M
o

d
el

 4
(8

0
0
,3

0
0
,2

0
0
)

C
A

P
M

E
1
4
·2

 (
0
·1

)
6
9
·5

 (
0
·1

)
3
1
·6

 (
0
·4

)

C
L

IM
E

1
0
·8

 (
0
·6

)
1
1
1
·5

 (
2
·5

)
3
7
·8

 (
0
·9

)

cG
G

M
1
4
·4

 (
0
·3

)
6
9
·1

 (
0
·3

)
3
7
·3

 (
5
·6

)

G
L

A
S

S
O

1
5
·4

 (
0
·0

)
8
2
·4

 (
0
·0

)
3
4
·2

 (
0
·1

)

C
A

P
M

E
, 
ℓ 1

 c
o
n
st

ra
in

ed
 m

in
im

iz
at

io
n
 a

d
ju

st
ed

 f
o
r 

co
va

ri
at

es
; 

C
L

IM
E

, 
th

e 
m

et
h
o
d
 o

f 
C

ai
 e

t 
al

. 
(2

0
1
1
);

 c
G

G
M

, 
th

e 
m

et
h
o
d
 o

f 
Y

in
 &

 L
i 

(2
0
1
1
);

 G
L

A
S

S
O

, 
th

e 
m

et
h
o
d
 o

f 
F

ri
ed

m
an

 e
t 

al
. 
(2

0
0
8
).

Biometrika. Author manuscript; available in PMC 2017 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cai et al. Page 26

T
a
b

le
 3

S
im

u
la

ti
o
n
 r

es
u
lt

s:
 v

ar
ia

b
le

 s
el

ec
ti

o
n
 p

er
fo

rm
an

ce
s 

as
 m

ea
su

re
d
 b

y
 o

ve
ra

ll
 e

rr
o
r 

ra
te

, 
se

n
si

ti
v
it

y,
 s

p
ec

if
ic

it
y
 a

n
d
 t

h
e 

M
at

th
ew

’s
 c

o
rr

el
at

io
n
 c

o
ef

fi
ci

en
t,

 f
o
r 

fo
u
r 

d
if

fe
re

n
t 

p
ro

ce
d
u
re

s,
 b

as
ed

 o
n
 5

0
 r

ep
li

ca
ti

o
n
s.

 N
u
m

b
er

s 
in

 p
ar

en
th

es
es

 a
re

 t
h
e 

si
m

u
la

ti
o
n
 s

ta
n
d

ar
d
 e

rr
o
rs

. 
A

ll
 t

h
e 

va
lu

es
 a

re
 m

u
lt

ip
le

d
 b

y
 1

0
0
.

M
od

el
(p

, q
, n

)
M

et
ho

d
M

IS
R

SP
E

SE
N

M
C

C

M
o
d
el

 1
(6

0
,3

0
,1

0
0
)

C
A

P
M

E
1
7
 (

0
)

8
9
 (

1
)

5
8
 (

3
)

4
5
 (

3
)

C
L

IM
E

2
9
 (

0
)

7
7
 (

1
)

3
7
 (

2
)

1
2
 (

2
)

cG
G

M
1
7
 (

0
)

8
7
 (

1
)

6
1
 (

2
)

4
4
 (

2
)

G
L

A
S

S
O

3
0
 (

0
)

7
5
 (

1
)

4
2
 (

3
)

1
3
 (

2
)

M
o
d
el

 2
(2

0
0
,2

0
0
,2

0
0
)

C
A

P
M

E
6
 (

0
)

9
7
 (

0
)

3
6
 (

2
)

3
5
 (

1
)

C
L

IM
E

9
 (

0
)

9
5
 (

0
)

7
 (

1
)

2
 (

1
)

cG
G

M
9
 (

0
)

9
4
 (

0
)

3
8
 (

2
)

2
4
 (

0
)

G
L

A
S

S
O

2
0
 (

0
)

8
3
 (

0
)

1
9
 (

1
)

1
 (

1
)

M
o
d
el

 3
(2

0
0
,2

0
0
,1

0
0
)

C
A

P
M

E
1
6
 (

0
)

8
7
 (

0
)

1
9
 (

1
)

4
 (

1
)

C
L

IM
E

1
6
 (

0
)

9
5
 (

0
)

5
 (

1
)

1
 (

1
)

cG
G

M
3
7
 (

0
)

6
5
 (

1
)

4
 (

2
)

1
 (

1
)

G
L

A
S

S
O

1
2
 (

0
)

9
3
 (

0
)

8
 (

1
)

1
 (

1
)

M
o
d
el

 4
(8

0
0
,3

0
0
,2

0
0
)

C
A

P
M

E
3
 (

0
)

1
 (

0
)

8
 (

0
)

1
 (

1
)

C
L

IM
E

1
2
 (

0
)

9
0
 (

0
)

1
2
 (

0
)

1
 (

0
)

cG
G

M
3
 (

0
)

9
9
 (

0
)

3
 (

1
)

4
 (

1
)

G
L

A
S

S
O

3
2
 (

0
)

6
9
0
)

3
3
0
)

1
 (

0
)

C
A

P
M

E
, 
ℓ 1

 c
o
n
st

ra
in

ed
 m

in
im

iz
at

io
n
 a

d
ju

st
ed

 f
o
r 

co
va

ri
at

es
; 

C
L

IM
E

, 
th

e 
m

et
h
o
d
 o

f 
C

ai
 e

t 
al

. 
(2

0
1
1
);

 c
G

G
M

, 
th

e 
m

et
h
o
d
 o

f 
Y

in
 &

 L
i 

(2
0
1
1
);

 G
L

A
S

S
O

, 
th

e 
m

et
h
o
d
 o

f 
F

ri
ed

m
an

 e
t 

al
. 
(2

0
0
8
);

 M
IS

R
, 
m

is
-

sp
ec

if
ic

at
io

n
 r

at
e;

 S
E

N
, 
se

n
si

ti
v
it

y
; 

S
P

E
, 
sp

ec
if

ic
it

y
; 

M
C

C
, 
M

at
th

ew
’s

 c
o
rr

el
at

io
n
 c

o
ef

fi
ci

en
t.

Biometrika. Author manuscript; available in PMC 2017 March 15.


	Summary
	1. Introduction
	2. Two-stage Covariate-Adjusted Precision Matrix Estimation
	2·1. Covariate Adjusted Gaussian Graphical Model
	2·2. Estimation of Γ0
	2·3. Estimation of Ω0
	2·4. Tuning parameter selection

	3. Rates of Convergence of the Estimators
	3·1. Convergence rates of Γ̂ − Γ0
	Theorem 1
	Theorem 2
	Theorem 3

	3·2. Convergence rates of Ω̂ − Ω0
	Theorem 4
	Theorem 5


	4. Graphical Model Selection Consistency
	Theorem 6
	Theorem 7

	5. Simulation Results
	6. Analysis of Yeast Data
	7. Extension
	References
	Appendix - Proofs of the Theorems
	Fig. 1
	Fig. 2
	Fig. 3
	Table 1
	Table 2
	Table 3

