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Summary

It is desirable to adjust Spearman’s rank correlation for covariates, yet existing approaches have 

limitations. For example, the traditionally defined partial Spearman’s correlation does not have a 

sensible population parameter, and the conditional Spearman’s correlation defined with copulas 

cannot be easily generalized to discrete variables. We define population parameters for both partial 

and conditional Spearman’s correlation through concordance-discordance probabilities. The 

definitions are natural extensions of Spearman’s rank correlation in the presence of covariates and 

are general for any orderable random variables. We show that they can be neatly expressed using 

probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our 

partial estimator for Spearman’s correlation between X and Y adjusted for Z is the correlation of 

PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson’s 

correlation derived as the correlation of observed-minus-expected residuals. Our conditional 

estimator is the conditional correlation of PSRs. We describe estimation and inference, and 

highlight the use of semiparametric cumulative probability models, which allow preservation of 

the rank-based nature of Spearman’s correlation. We conduct simulations to evaluate the 

performance of our estimators and compare them with other popular measures of association, 

demonstrating their robustness and efficiency. We illustrate our method in two applications, a 

biomarker study and a large survey.
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1. Introduction

It is often of interest to summarize the degree of association between two variables using a 

single number. To this end, associations are frequently described using correlation 

coefficients, which, well over a century after their introduction, remain popular in practice. 

Although correlation coefficients have limitations (e.g., an inability to accurately describe 

non-monotonic relationships), their continued popularity is due in part to their simplicity and 

interpretability. For symmetrically distributed continuous variables, a common choice is 

Pearson’s correlation coefficient. When dealing with ordered categorical data, nonlinear 

relationships, skewed distributions, and extreme values, rank correlation coefficients such as 

Spearman’s rho or Kendall’s tau are preferred. For example, many studies investigate 

pairwise associations between large numbers of biomarkers to better understand biological 

processes. The distributions of these biomarkers may be very heterogeneous with high 

skewness for some and assay detection limits for others. Biomarkers’ scales often vary, their 

relationships are frequently non-linear, and there may be little interest in obtaining, at least 

at a first pass, regression coefficients to describe pairwise associations. For these reasons, 

Spearman’s rank correlations are often presented (e.g., Andrade et al. (2014)).

In many applications, it is desirable to adjust the correlation coefficients for the influence of 

other variables. For example, when quantifying the association between biomarkers, 

investigators may want to adjust for demographic variables such as age, sex, and weight. In 

general, there are two approaches to adjusting the correlation for covariates. One is to obtain 

a partial correlation, i.e., removing the effect of covariates and then summarizing the 

relationship with a single number. The other is to obtain conditional correlations, i.e., 

assessing the correlation at various levels of the covariates. For example, a conditional 

correlation might look at the association between two biomarkers as a function of age, so 

that for different ages, the correlation may differ. One could also consider partial correlations 

conditional on specific covariates; for example, the correlation between two biomarkers 

conditional on age after adjusting for sex and weight.

The partial Pearson’s correlation coefficient between X and Y controlling for Z, denoted as 

ρXY·Z, is the correlation between residuals from linear regression models of X on Z and of Y 
on Z. When Z is a single variable,

ρXY ⋅ Z = ρXY − ρXZρYZ / 1 − ρXY
2 1 − ρYZ

2 , (1)

where ρAB represents the Pearson’s correlation between A and B. Partial Spearman’s and 

partial Kendall’s correlations have also been proposed with the same formula: substituting 

ρAB with corresponding rank correlations (Kendall, 1942). If Z is more than a single 
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covariate, the traditional forms of these partial correlations are computed recursively using a 

similar expression. However, they have limitations. The partial Kendall’s correlation can be 

far from 0 even under conditional independence, and therefore, is generally not useful (Korn, 

1984). The partial Spearman’s correlation is ad hoc, has little theoretical justification, and 

does not correspond with a sensible population parameter (Kendall, 1942; Gripenberg, 

1992).

Conditional rank correlations have been studied for continuous data with copulas. For 

continuous variables, Spearman’s correlation and Kendall’s correlation can be expressed as 

functions of copulas (Nelsen, 2006). Gijbels et al. (2011) proposed a kernel-based method to 

estimate the conditional copula and the associated conditional Spearman’s and Kendall’s 

correlations. However, their approach cannot be directly extended to discrete data because 

rank correlations between discrete variables cannot be easily described with copulas (see the 

discussions in Genest and Nešlehová (2007); Nešlehová (2007)).

In this paper, we define population parameters for both partial and conditional Spearman’s 

correlations through concordance-discordance probabilities, and show that they can be 

expressed using probability-scale residuals (PSRs; Li and Shepherd, 2012; Shepherd et al., 

2016) to derive simple estimators. Our estimator of partial Spearman’s correlation is the 

correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial 

Pearson’s correlation derived as the correlation of observed-minus-expected residuals. Our 

conditional estimator is the conditional correlation of PSRs. In the absence of covariates, our 

partial Spearman’s correlation reduces to the usual sample Spearman’s correlation; in the 

presence of covariates, it averages the conditional Spearman’s correlation across covariate 

values. Since PSRs are widely defined for orderable variables (Shepherd et al., 2016), our 

estimators are quite general.

The paper is organized as follows. In Section 2, we review PSRs, illustrate their connection 

with Spearman’s correlation, and derive expressions for population parameters of 

conditional and partial Spearman’s correlation using PSRs. In Section 3, we discuss 

estimation and inference, highlighting the use of semiparametric cumulative probability 

models. In Sections 4 and 5, we provide numerical illustrations and conduct simulations to 

evaluate the performance of our estimators. In Section 6, we illustrate our approach in two 

applications. Section 7 contains a discussion. Additional information is in the 

Supplementary Material.

2. Population Parameters of Covariate-adjusted Spearman’s Rank 

Correlations

2.1 Spearman’s Rank Correlation and PSRs

Fundamentally, Spearman’s rank correlation is a scale-invariant concordance measure 

(Kruskal, 1958). Its population parameter, the rank correlation between the random variables 

X and Y, denoted as γXY, can be interpreted as the scaled difference between the probability 

of concordance and the probability of discordance between (X, Y) and (X0, Y0), where X0 

Liu et al. Page 3

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Y0 have the same marginal distributions as X and Y, respectively, but X0 is independent 

of Y0, and (X0, Y0) are independent of (X, Y) (Kruskal, 1958). That is,

γXY = c Pc − Pd ,

where Pc = P {sign(X, X0)sign(Y, Y0) = 1}; Pd = P {sign(X, X0)sign(Y, Y0) = −1}; sign(a, 

b) is −1, 0, and 1 for a < b, a = b, and a > b, respectively; and c is a scaling factor so that −1 

≤ γXY ≤ 1 and the bounds can be reached. For continuous X and Y, c = 3. For 

noncontinuous X and/or Y, c is a function of the marginal distributions (Nešlehová, 2007). 

Let F and G be the marginal distributions of X and Y, respectively, and F (x−) = limt↑xF (t). 
With an infinite sample, Spearman’s rank correlation equals corr[{F (X) + F (X−)}/2, {G(Y) 

+ G(Y −)}/2], the correlation of ridits (Bross, 1958; Kendall, 1970), which for continuous X 
and Y is corr{F (X), G(Y)}, the grade correlation (Kruskal, 1958).

We express γXY in terms of a new type of residual: the probability-scale residual (PSR). For 

an orderable random variable X from distribution F, the PSR of X = x is

r x, F = E sign x, X0 = P X0 < x − P X0 > x = F x − + F x − 1,

where X0 is a random variable with distribution F (Li and Shepherd, 2012; Shepherd et al., 

2016). We sometimes use Xres = r(X, F) to denote the corresponding random variable. In 

practice, F is replaced by F∗, an assumed or fitted distribution of X. As shown in Shepherd 

et al. (2016), E{r(X, F)} = 0, and var{r(X, F)} = 1/3 if X is continuous or 1 − ∑ f x
3 /3 if X 

is discrete, where fx = P(X = x). Following arguments similar to those of Kruskal (1958), it 

can be shown that

Pc − Pd = E sign X, X0 sign Y , Y0 = E X, Y E sign X, X0 sign Y , Y0 X, Y

= E X, Y E sign X, X0 X E sign Y , Y0 Y = E X, Y r X, F r Y , G = cov r X, F , r Y , G ,

with the last equality holding because E{r(X, F)} = E{r(Y, G)} = 0. Let the scaling factor be 

c = [var{r(X, F)}var{r(Y, G)}]−1/2; e.g., c = 3 when both X and Y are continuous. Then,

γXY = corr r X, F , r Y , G .

This expression suggests that Spearman’s rank correlation can be estimated with PSRs, i.e., 

with observed data {(xi, yi); i = 1, 2, …, n}, γXY is estimated as the sample correlation 

between {r(x1, F∗), …, r(xn, F∗)} and {r(y1, G∗), …, r(yn, G∗)}. In the absence of 

covariates, F∗ and G∗ are often estimated with empirical distribution functions, and r(xi, F∗) 

and r(yi, G∗) are linear functions of the ranks of xi and yi (Shepherd et al., 2016). Therefore, 

the estimate obtained above with PSRs equals the sample Spearman’s rank correlation.
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2.2 Conditional Spearman’s Rank Correlation

In the presence of covariates Z, let FX|Z be the conditional distribution of X given Z and GY|

Z be that of Y given Z. The PSRs given Z are r(X, FX|Z) and r(Y, GY|Z). Then, E{r(X, FX|Z)|

Z} = 0 and var{r(X, FX|Z)|Z} = 1/3 for continuous X or var r X, FX Z Z = 1 − ∑x f x Z
3 /3

for discrete X, where fx|Z = P(X = x|Z).

We define the population version of the conditional Spearman’s rank correlation as

γXY Z = cZ Pc Z − Pd Z ,

with Pc|Z = P {sign(X, X0)sign(Y, Y0) = 1|Z} and Pd|Z = P {sign(X, X0)sign(Y, Y0) = −1|Z}, 

where X0|Z ∼ FX|Z, Y0|Z ∼ GY|Z, and conditional on Z, X0 is independent of Y0 and (X0, 

Y0) are independent of (X, Y). Note that γXY|Z is a function of Z. As shown in the 

unconditional case, Pc|Z − Pd|Z = cov{r(X, FX|Z), r(Y, GY|Z)|Z}. With the scaling factor cZ = 

[var{r(X, FX|Z)|Z}var{r(Y, GY|Z)|Z}]−1/2, γXY|Z can be expressed as

γXY Z = corr r X, FX Z , r Y , GY Z Z .

In general, cZ ⩾ 3. When both X and Y are continuous, cZ = 3, and this expression is 

equivalent to the definition in Gijbels et al. (2011) using conditional copulas. However, since 

PSRs are well defined for any orderable random variable, including discrete random 

variables (Shepherd et al., 2016), our expression of γXY|Z with PSRs is quite general.

2.3 Partial Spearman’s Rank Correlation

Partial Spearman’s rank correlation can be defined in two equivalent ways. One is

γXY ⋅ Z = corr r X, FX Z , r Y , GY Z .

This is analogous to the partial Pearson’s correlation, which is the correlation of observed-

minus-expected residuals. Another definition is as a rescaled average of conditional 

concordance-discordance probabilities,

γXY ⋅ Z = c∗EZ Pc Z − Pd Z ,

where the scaling factor c∗ = [var{r(X, FX|Z)} var{r(Y, GY|Z)}]−1 ⩾ 3. The equivalence of 

these two definitions is shown in Supplementary Material S.1. Note that γXY·Z is not a 

function of Z.

When both X and Y are continuous, γXY·Z = 3EZ(Pc|Z − Pd|Z) = E(γXY|Z). Otherwise, γXY·Z 

is a weighted average of γXY|Z where the weights are a function of covariates Z 
(Supplementary Material S.1). For example, if both X and Y are discrete, γXY·Z = 

E(wZγXY|Z), where 
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wZ = 1 − ∑x f x Z
3 1 − ∑ygy Z

3 / 1 − ∑x EZ f x Z
3 1 − ∑yEZ gy Z

3 , fx|Z = P (X = x|Z), 

and gy|Z = P (Y = y|Z). Note that the denominator of wZ is fixed for all values of Z, and that 

larger weights are assigned to the values of Z at which the discrete variables X and Y are 

less likely to have ties (e.g., have more categories or are more evenly distributed).

2.4 Partial Spearman’s Rank Correlation Conditional on Covariates

When covariates are multidimensional, it may be useful to condition the partial Spearman’s 

rank correlation on one or a subset of covariates. For example, suppose Z can be divided into 

two (potentially multidimensional) components, i.e., Z = (Z1, Z2). To describe the rank 

correlation between X and Y at a specific level of Z1 while adjusting for the other covariates, 

we can define the partial Spearman’s rank correlation conditional on Z1 as

γ
XY ⋅ Z Z1

= corr r X, FX Z , r Y , GY Z Z1 .

It can be shown that γ
XY ⋅ Z Z1

= cZ1
∗ E

Z2 Z1
Pc Z − Pd Z = E

Z2 Z1
wZ1

∗ γXY Z  (derivation and 

expressions of cZ1
∗  and wZ1

∗  are in Supplementary Material S.2). For continuous X and Y, 

cZ1
∗ = 3 and wZ1

∗ = 1, and therefore, γ
XY ⋅ Z Z1

= 3E
Z2 Z1

Pc Z − Pd Z = E
Z2 Z1

γXY Z  and 

γXY ⋅ Z = EZ1
γ

XY ⋅ Z Z1
.

Notice that both γXY·Z and γXY|Z are special cases of γ
XY ⋅ Z Z1

; specifically, if Z1 is the 

empty set (∅), then γ
XY ⋅ Z Z1

= γXY ⋅ Z, and if Z2 = ∅, then γ
XY ⋅ Z Z1

= γXY Z.

3. Estimation and Inference

3.1 Modeling Strategies and Calculation of PSRs

The definitions in the previous section allow estimation of partial and conditional 

Spearman’s correlation using PSRs. First, we need to fit models for X on Z and for Y on Z, 

and then compute the two sets of PSRs. As shown in Section 2.1, PSRs are well defined as 

long as the underlying cumulative distribution functions are estimable at the observed values 

of x and y. We consider nonparametric, parametric, and semiparametric models.

Since Spearman’s rank correlation is a nonparametric statistic, it is natural to consider 

obtaining the PSRs using nonparametric models. For example, given a dataset {(xi, yi, zi); i 
= 1, 2, …, n}, a kernel estimator for the conditional distribution could be 

FX Z = z x = ∑i = 1
n wi z I xi ≤ x , where the kernel weight wi(z) is given by 

K d zi, z /h /∑i = 1
n K d zi, z /h  with kernel function K(·), distance metric d(·), and 

bandwidth h (Gijbels et al., 2011). Similarly, FX Z = z x − = ∑i = 1
n wi z I xi < x . Then, the 
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PSR for xi can be calculated as xi, res = F
X Z = zi

xi − + F
X Z = zi

xi − 1. The PSR for yi can 

be calculated similarly. Although feasible, there are challenges to incorporating such 

nonparametric models to real data. One challenge is that the fitted models can be highly 

dependent on the selected bandwidth. Additional challenges arise with multidimensional 

covariates due to the curse of dimensionality. Also, nonparametric estimators are often 

inefficient and do not have analytic expressions of their variance.

One could instead fit parametric models for X on Z and Y on Z. Parametric models are 

usually easier to fit than nonparametric models, are more convenient for obtaining PSRs, and 

yield more efficient estimators when correctly specified. However, estimators from 

parametric models are less robust to outliers and are generally sensitive to model 

misspecification. Using PSRs derived from parametric models for estimation seems contrary 

to the robust nature of Spearman’s rank correlation.

To balance robustness and efficiency, we consider semiparametric models that only use the 

order information of the outcomes, thereby allowing us to include covariates while 

preserving the rank-based nature of Spearman’s correlation. Specifically, we focus on the 

semiparametric transformation model X = H(βZ + ε), where H(·) is an unspecified 

monotonic increasing transformation and ε is random error with a specified parametric 

distribution Fε (Zeng and Lin, 2007; Liu et al., 2017). Since the transformation H(·) is not 

specified and only needs to be monotonic, this model only depends on the order of X. Note 

that

FX Z x ≡ P X ≤ x Z = P H βZ + ε ≤ x Z = Fε H−1 x − βZ .

Therefore, this semiparametric transformation model can be written in the form of the 

ordinal cumulative probability model (CPM) (Walker and Duncan, 1967; McCullagh, 1980):

g FX Z x = α x − βZ,

with link function g ⋅ = Fε
−1 ⋅  and the intercept α(x) = H−1(x). Based on this fact, Harrell 

(2015a) proposed an estimating procedure that maximizes an approximated multinomial 

likelihood of the CPM. This maximum likelihood estimation procedure treats a continuous 

response variable as an ordered categorical variable, and results in estimators that are very 

similar to the nonparametric maximum likelihood estimators proposed by Zeng and Lin 

(2007), whose asymptotic properties have been well studied for right censored data (Murphy 

et al., 1997; Zeng and Lin, 2007). In practice, this ordinal estimation procedure is easy to 

implement; estimation is efficiently executed with the orm() function in the rms package of 

R (Harrell, 2015b). These models are also widely applicable to any orderable outcome. For 

example, with the logit link function, the CPM is the commonly used proportional odds 

model when the outcome is ordered categorical and the logistic regression model when the 

outcome is binary. Computation of PSRs from CPMs is straightforward (Shepherd et al., 
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2016). For a more detailed description and illustrations of CPMs, we refer the reader to Liu 

et al. (2017).

3.2 Partial Correlation Estimators

After obtaining PSRs from models of X on Z and of Y on Z, we estimate γXY·Z simply as 

the sample correlation of PSRs. In the special case where X and Y are both ordered 

categorical variables, Li and Shepherd (2010) described two approaches for obtaining the 

distribution of the correlation of PSRs, a bootstrap method and a large sample 

approximation, both of which can be applied with more general X and Y. We focus here on 

the large sample approach using M-estimation for approximate inference (Stefanski and 

Boos, 2002).

Let Ψx(·) denote estimating functions for the model of X on Z with parameter θx, and Ψy(·) 

denote estimating functions for the model of Y on Z with parameter θy. Ψx(·) and Ψy(·) can 

be stacked together with the components necessary for computing the correlation of PSRs, 

resulting in the following estimating function:

Ψ Xi, Yi, Zi; θ

= Ψx Xi, Zi; θx , Ψy Yi, Zi; θy , Xi, res − θ1, Yi, res − θ2, Xi, resYi, res − θ3, Xi, res
2 − θ4, Yi, res

2 − θ5
T ,

where θ = (θx, θy, θ1, θ2, θ3, θ4, θ5), with θ1 = E(Xi,res), θ2 = E(Yi,res), θ3 = E(Xi,resYi,res), 

θ4 = E(Xi, res
2 ) and θ4 = E(Y i, res

2 ), and ∑i = 1
n Ψ Xi, Y i, Zi; θ = 0. Under standard regularity 

conditions (Stefanski and Boos, 2002), n θ − θ
d

N 0, V θ , where V (θ) = A(θ)−1B(θ)

{A(θ)−1}′, A(θ) = E{−∂Ψi(θ)/∂θ}, and B(θ) = E{Ψi(θ)Ψi(θ)′}. Since 

γ XY ⋅ Z = θ3 − θ1θ2 / θ4 − θ1
2 θ5 − θ2

2 , the delta-method can be employed to obtain the 

large sample distribution of γ XY ⋅ Z. In practice, estimating the large sample distribution of 

the Fisher transformation of γ XY ⋅ Z, i.e., log 1 + γ XY ⋅ Z / 1 − γ XY ⋅ Z /2, typically results in 

more rapid convergence to normality, and is therefore preferable for constructing confidence 

intervals. Some parameters may have known values and can be removed. For example, if F∗ 

and G∗ are continuous and correctly specified, then θ1 = θ2 = 0 and θ4 = θ5 = 1/3. In our 

experience, however, estimating these parameters has little impact on resulting confidence 

intervals.

With parametric models of X and Y, implementation is straightforward; e.g., with maximum 

likelihood estimation, Ψx and Ψy are simply the score functions. When modeling X and Y 
using semiparametric CPMs, we also advocate using the score functions from the 

approximated multinomial likelihoods for Ψx and Ψy. Notice that with continuous data, as n 

increases, the number of parameters (specifically the intercept parameters α(x)) in these 

models also increases. Therefore, standard large sample theory for M-estimation no longer 

holds. More generally, the large sample distribution of nonparametric maximum likelihood 

estimators of semiparametric transformation models with uncensored, continuous data have 

not been fully developed, and are quite challenging (Zeng and Lin, 2007; Zeng, Kosorok, 
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and Lin, personal communication). However, based on fairly extensive simulations and 

heuristic arguments by us and others (Zeng and Lin, 2007; Liu et al., 2017; Zeng, Kosorok, 

and Lin, personal communication), standard functions of the estimated parameters (e.g., 

conditional expectations or quantiles) appear to be consistent and asymptotically normal. As 

illustrated in Section 5, our simulations also demonstrate that the large sample distribution of 

the partial Spearman’s rank correlation with these semiparametric models is well 

approximated using M-estimation techniques.

3.3 Conditional Correlation Estimators

To estimate γXY|Z, we calculate the correlation of PSRs as a function of covariate values. 

Again, let Z be a vector of covariates, such that Z = (Z1, Z2). Since conditional rank 

correlations can be viewed as a special case of partial rank correlations conditional on Z1 

(see Section 2.4), we focus on the more general case in this section. To obtain γ
XY ⋅ Z Z1

 we 

compute the correlation of PSRs as a function of Z1. If Z1 is a categorical variable with 

sufficient numbers per category, one can compute the correlation of PSRs within each level 

of Z1. If Z1 is continuous or multidimensional, smoothing is often needed. It should be noted 

that smoothing approaches will only work well with low-dimensional Z1, which is typically 

what is desired in practice.

We consider two ways to smooth estimators of the conditional correlation. A nonparametric 

kernel smoother for estimating the conditional correlation at Z1 = v is to weight the 

observations by their Z1 values, the farther from v the smaller the weight. Specifically,

γ
XY ⋅ Z Z1

v =
∑wi v xi, resyi, res − ∑wi v xi, res∑wi v yi, res

∑wi v xi, res
2 − ∑wi v xi, res

2 ∑wi v yi, res
2 − ∑wi v yi, res

2,

where wi v = K d z1i, v /h /∑i = 1
n K d z1i, v /h  and z1i is the value of Z1 for subject i.

Alternatively, we can estimate conditional rank correlations using parametric smoothing. For 

example, since under correctly specified models, E(Xres|Z1) = E(Yres|Z1) = 0, then cov(Xres, 

Yres|Z1) = E(XresYres|Z1), var Xres Z1 = E Xres
2 Z1 , and var Yres Z1 = E Yres

2 Z1 . Therefore, 

γ
XY ⋅ Z Z1

 can be approximated with E XresYres Z1 / E Xres
2 Z1 E Yres

2 Z1 , where E ⋅ Z1

designates an estimator of a conditional expectation. To obtain E XresYres Z1 , E Xres
2 Z1 , 

and E Yres
2 Z1 , one might fit regression models of XresYres on Z1, Xres

2  on Z1, and Yres
2  on Z1, 

using natural spline functions to allow flexible modeling. When X and Y are continuous 

variables, E Xres
2 Z1  and E Yres

2 Z1  converge to 1/3 under correctly specified models; 

plugging in 1/3 could further simplify estimation and inference because then only 

E XresYres Z1  needs to be estimated. For these parametric smoothing techniques, standard 

errors and confidence intervals can be estimated using the bootstrap or large sample 
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approximation techniques similar to those described in Section 3.2; details are in 

Supplementary Material S.3.

4. Numerical Illustrations

To illustrate our definitions, let Z ~ N(0, 1) and 
X1
Y1

Z ∼ N
Z

−Z
, 1 ρ

ρ 1 , with ρ varying over 

a fine grid over [0, 1]. We consider four scenarios: (I) Y = Y1 and X = X1; (II) Y = exp(Y1) 

and X = X1; (III) Y = Y1 and X is generated by discretizing X1 with cut-offs at the 0.2, 0.4, 

0.6, 0.8 quantiles of the standard normal distribution; (IV) Y = exp(Y1) and X is the 

discretized version of X1 as in (III).

In Scenarios I and II, since (X1, Y1) conditional on Z is normally distributed, γXY|Z = 6 

arcsin(ρ/2)/π (Pearson, 1907). Thus, for any fixed ρ, γXY|Z is a constant function of Z. In 

this case, it is desirable for a partial rank correlation to have the same value, which is true for 

our definition: γXY·Z = E(γXY|Z) = γXY|Z. Figure 1 (left panel) compares γXY·Z with the 

traditional partial Pearson’s ρXY ⋅ Z
∗ , Spearman’s γXY ⋅ Z

∗ , and Kendall’s τXY ⋅ Z
∗

correlations obtained by plugging corresponding parameters into (1). Under scenario I, 

γXY·Z and ρXY ⋅ Z
∗  are very close with max γXY ⋅ Z − ρXY ⋅ Z

∗ < 0.02, whereas ρXY ⋅ Z
∗  is not a 

suitable measure of correlation after the exponential transformation of Y (scenario II). In 

contrast, all rank based correlations, including ours, are unchanged between scenarios I and 

II. As expected, τXY ⋅ Z
∗  has poor performance: its value departs from 0 even under 

conditional independence (ρ = 0). γXY ⋅ Z
∗  is fairly similar to γXY·Z, but its difference is more 

pronounced when ρ is close to one.

In Scenarios III and IV, X is discrete and has, when Z = 0, five evenly distributed categories. 

As Z departs from 0, the conditional distribution of X becomes skewed, and the conditional 

correlation between X and Y is expected to become weaker. Figure 1 (right panel) plots γXY|

Z as a function of Z at ρ = 0.6, showing this trend. Our partial correlation γXY·Z (≈ 0.520) 

differs, although only slightly in this example, from E(γXY|Z). Since γXY·Z = E(wZγXY|Z) = 

c∗E(Pc|Z − Pd|Z), we also plot wZγXY|Z and 3(Pc|Z − Pd|Z) for comparison. As shown in 

Figure 1, the scaling factor c∗ is larger than 3, and the weight wZ is bigger when the 

distribution of X given Z is more dispersed (i.e., Z is closer to 0).

5. Simulations

We first evaluated the performance of our estimator of γXY·Z using PSRs derived from 

parametric, nonparametric, and semiparametric models in finite samples (n = 200) under the 

four scenarios described in Section 4. In this set of simulations, we set ρ = 0.6; therefore, 

γXY·Z ≈ 0.582 in Scenarios I and II, and γXY·Z ≈ 0.520 in Scenarios III and IV. Our 

parametric models are linear regression models (LM), and we computed two sets of PSRs: 

1) assuming normality of the error distribution, and 2) empirically, assuming a constant 

variance of the error distribution (Shepherd et al., 2016). For our nonparametric models, we 

used Gaussian kernels to estimate FX|Z and GY|Z, and chose the bandwidth based on 
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Silverman’s rule of thumb (Wand and Jones, 1995). We also fit semiparametric CPMs using 

the approximated maximum likelihood procedure described in Section 3.1 as implemented 

in the R function orm(). When fitting CPM, we used both the properly specified link 

function (probit) and misspecified link functions (logit, loglog, and cloglog). In all 

simulations, we used large sample approximations with Fisher’s transformation to compute 

confidence intervals. The results based on 10,000 simulation replications are shown in Table 

1.

In summary, our estimators of γXY·Z using PSRs from CPMs had minimal bias, good 

coverage, and low mean squared error (MSE) across all scenarios we considered. In 

Scenario I, estimators using CPMs properly specified with the probit link performed 

similarly to fully parametric estimators correctly assuming normality. However, because of 

their invariance to the exponential transformation of Y, in Scenarios II and IV, estimators 

using PSRs from CPMs easily out-performed those using PSRs from linear models. The bias 

and MSE of our estimators using CPMs were also generally smaller than those using kernel 

smoothers. Surprisingly, our estimators using PSRs from CPMs were robust to link function 

misspecification, with only slight increases in bias. However, especially poor models of Y 
and X on Z can lead to poor estimation (e.g., linear models, Scenarios II and IV). This is 

further illustrated with simulations in Supplementary Material S.4, which show that failure 

to include a quadratic term in models of Y and X on Z leads to biased estimates of γXY·Z. 

Additional simulations reported in Supplementary Material S.5 show that γ XY ⋅ Z tends to be 

biased towards zero with especially small sample sizes.

We next investigated the performance of our estimator of γXY·Z using PSRs from CPMs for 

testing covariate-adjusted association, and compared them with tests based on traditionally 

defined Pearson, Spearman, and Kendall partial correlation coefficients using (1). We set ρ = 

0 under the null hypothesis (H0) and ρ = 0.2 under the alternative hypothesis (H1) (Table 2). 

For tests based on the traditional partial correlation coefficients, p-values were obtained 

based on large sample approximations using the R package ppcor (Kim, 2012). Consistent 

with the observation in Figure 1, tests based on partial Kendall’s correlations had poor 

performance: high type I error rate and almost no power at ρ = 0.2. Compared with the 

partial Pearson’s correlation, our estimators were slightly less efficient when the 

relationships were linear or approximately linear (Scenarios I and III), but much more robust 

in the presence of nonlinearity and extreme values (Scenarios II and IV). Also, our 

estimators had better performance than the traditional ad hoc partial Spearman’s correlation: 

type I error rate closer to 5% and generally higher power.

We also performed an additional set of simulations investigating the finite sample 

performance of γ XY Z under correct model specification. We considered scenarios 

conditioning on a continuous covariate and conditioning on a discrete covariate. Results 

were similar to those for the partial rank correlation under correctly specified models. Bias 

was small and slightly towards zero, Type I error rates were conserved under the null, and 

95% confidence intervals covered close to their nominal level. Details are in Supplementary 

Material S.6.
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6. Application Examples

6.1 HIV Biomarker Data

HIV-positive persons who have been on antiretroviral therapy (ART) for a long time tend to 

be at higher risk of diabetes and other cardiometabolic diseases than those who are HIV-

negative. An increasing number of studies are examining biomarkers related to 

inflammation, metabolism, and immune cell activation, to better understand and prevent 

cardiometabolic diseases in HIV-positive patients. Here we pool biomarker data from HIV-

positive adults on ART with an undetectable viral load (≤ 400 copies/mL) and no history of 

diabetes or myocardial infarction from two studies: the Vanderbilt Lipoatrophy and 

Neuropathy Cohort (LiNC; n=147; Koethe et al. (2012)) and the Adiposity and Immune 

Activation Cohort (AIAC; n=69; Koethe et al. (2016)). We are interested in assessing the 

pairwise association between five biomarkers: high sensitivity C-reactive protein (hsCRP), 

interleuken 6 (IL-6), interleuken 1 β (IL-1-β), soluble CD14 (sCD14), and leptin. The first 

three biomarkers are measures of inflammation, sCD14 is a marker of monocyte activation, 

and leptin is a hormone that regulates energy balance. These biomarkers are likely 

influenced by other patient characteristics, and it is possible that some biomarker 

associations are due to common causes, not to intrinsic relationships between the 

biomarkers. Hence, we adjusted for patient characteristics that could potentially affect these 

biomarkers: age, sex, race, body mass index (BMI), CD4 cell count, and smoking status. In 

addition, we adjusted for study cohort to account for potential differences between 

measurements across cohorts.

Figure 2 shows pairwise rank correlations between the 5 biomarkers. The upper-left region 

of the plot shows unadjusted Spearman correlations; the lower-right region shows covariate-

adjusted partial Spearman correlations using the methods described earlier. The covariate-

adjusted correlations were obtained by fitting CPMs with the logit link for each biomarker, 

computing PSRs, and then calculating the sample correlation between the PSRs.

Adjusting for covariates had a large impact on some of the rank correlations. For example, 

the unadjusted rank correlation between IL-6 and sCD14 was close to zero (0.03; 95% 

confidence interval [CI] −0.11, 0.16), whereas after adjusting for the covariates, the partial 

rank correlation was significantly positive (0.19; 95% CI 0.04, 0.33). For some other 

correlations, adjusting for covariates had less of an impact. For example, the association 

between IL-6 and hsCRP, both markers of inflammation, was strong both before (0.44; 95% 

CI 0.32, 0.55) and after (0.35; 95% CI 0.22, 0.46) adjusting for covariates.

The association between leptin and sCD14 is interesting because their unadjusted rank 

correlation was negative, −0.20 (95% CI −0.32, −0.06), whereas the adjusted rank 

correlation was positive, 0.13 (95% CI −0.01, 0.27). Leptin is known to be positively 

associated with BMI while sCD14 is negatively associated with BMI (in our data, 

unadjusted rank correlations were 0.66 and −0.41, respectively). Hence, it is reasonable that 

after adjusting for BMI and other covariates, the rank correlation changed. It is also of 

interest to see if this correlation varies as a function of BMI. Obese patients were over-

sampled in these studies: nearly half of the patients were obese (BMI > 30 kg/m2), and 20% 

were severely obese (> 35 kg/m2). The left panel of Figure 3 shows the partial rank 
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correlation between leptin and sCD14 conditional on patient BMI. Again, PSRs from the 

CPMs described above were used to estimate partial rank correlations as a function of BMI. 

This was done parametrically using splines (solid line) and non-parametrically using 

Gaussian kernel smoothers (dashed line) as described in Section 3.3. This figure suggests 

that the partial rank correlation between leptin and sCD14 varies as a function of BMI, with 

p-value = 0.024. (This p-value was computed by setting E Xres
2 Z1 = E Yres

2 Z1 = 1/3; 

estimating γ
XY ⋅ Z Z1

 as 3E XresYres Z1 , with E XresYres Z1  modeled using linear regression 

with BMI expanded using natural splines with 2 degrees of freedom; and applying a Wald-

test with variance estimated through M-estimation as motivated in Section 3.3.) In contrast, 

the partial rank correlation between leptin and sCD14 appears to be fairly stable across age 

(right panel of Figure 3; p=0.91).

6.2 SCIP Survey Data

In a second example, we use our partial estimator as a quick and robust tool to summarize a 

large number of covariate-adjusted associations with survey data from the Strengthening 

Communities through Integrated Programming (SCIP) project. In this survey, 3,892 female 

heads of household in Mozambique were asked to give opinions on their quality of life, 

health care, nutrition, education, and other aspects of livelihood. The investigators were 

interested in the correlations among the participants’ responses to different questions while 

adjusting for relevant demographic factors. The purpose of such an analysis is largely 

exploratory, and can be used to focus on particular sets of questions for further study.

We included all 171 questions with orderable responses from 13 modules of the survey, 

including 54 questions with binary responses, 106 with ordinal responses, and 11 with 

continuous responses. We fit 171 CPMs using the logit link function and the covariates age, 

language, marital status, religion, region (urban or rural), and district. The pairwise 

correlation of PSRs from these models were computed among participants who responded to 

both questions. A heatmap of our partial Spearman’s correlation matrix is shown in Figure 4. 

To better visualize the results, we developed a web application (https://scip.shinyapps.io/

scip_app) to allow investigators to zoom into any specific area in the heatmap and check the 

detailed information about the questionnaire and responses. The web application includes 

95% confidence intervals and compares results with the unadjusted Spearman’s correlation. 

More details are given in Supplementary Material S.7.

7. Discussion

In this work, we express the population parameters of unadjusted, partial, and conditional 

Spearman’s correlations in terms of probability-scale residuals, which allows us to connect 

these nonparametric statistics to a variety of regression models. Our methods therefore 

permit the adjustment of Spearman’s correlation for multidimensional covariates. Similar to 

Pearson’s partial correlation, Spearman’s partial correlation can now be written as a 

correlation of residuals. Our framework is very general, applicable to any orderable variables 

modeled with estimable fitted distributions. Our method requires initially fitting models for 

the distributions of X and Y given Z, which need to be approximately correct to get unbiased 
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estimates of rank correlations. We suggest fitting semiparametric cumulative probability 

models to preserve the rank-based nature of Spearman’s correlation while allowing flexible 

modeling of covariates. The broad applicability, robustness, and computational simplicity of 

our estimators make them very useful, as illustrated in our HIV biomarker and survey 

examples.

Since PSRs are widely defined (Shepherd et al., 2016), our framework has the potential to be 

extended to more complicated settings, such as censored outcomes in which fitted 

distributions are not completely determined and longitudinal data in which the observations 

are not independent. We are studying extensions in these settings.

We have developed an R package, PResiduals, that implements the new methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation parameters in Scenarios I, II (left panel) and III, IV (right panel). In the left 

panel, γXY·Z is the population parameter of our partial Spearman’s rank correlation; ρXY ⋅ Z
∗ , 

γXY ⋅ Z
∗ , and τXY ⋅ Z

∗  are traditional partial Pearson’s, Spearman’s, and Kendall’s correlations 

based on (1), respectively. In the right panel, γXY|Z is the population parameter of our 

conditional Spearman’s rank correlation as a function of Z, and γXY·Z = E(wZγXY|Z) is the 

population parameter of our partial Spearman’s rank correlation, which is constant over Z. 

For comparison with γXY|Z, we also show wZγXY|Z and 3(Pc|Z − Pd|Z), i.e., 3 times the 

difference between the probability of concordance and the probability of discordance 

conditional on Z, which is what γXY|Z would be if X and Y were both continuous. For 

comparison with γXY·Z, we also show E(γXY|Z) and 3E(Pc|Z − Pd|Z).
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Figure 2. 
Heat map showing the pairwise Spearman’s rank correlations between 5 biomarkers. The 

upper-left correlations are unadjusted, the lower-right correlations are partial correlations 

adjusted for age, sex, race, BMI, CD4 cell count, smoking status, and study cohort. Shading 

denotes the strength of the correlation with those closer to −1 and 1 being darker. Boxes are 

placed around correlations whose 95% confidence intervals do not contain zero. This figure 

appears in color in the electronic version of this article.
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Figure 3. 
Partial Spearman’s rank correlations between leptin and sCD14 conditional on BMI (left 

panel) and age (right panel). The solid curve (and shaded region) represent estimates (and 

pointwise 95% confidence intervals) using a parametric estimation procedure. Specifically, 

the parametric estimate fit separate ordinary least squares models to the product of the 

residuals and the square of each set of residuals, including BMI in the models using natural 

splines with 2 degrees of freedom. The dashed curve represents estimates using a Gaussian 

kernel smoother, using Silverman’s rule of thumb to select the bandwidth (h = 2.7).
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Figure 4. 
The heatmap of our partial estimators for pairwise Spearman’s rank correlation adjusting for 

demographic factors for responses to 171 questions from 13 modules of the SCIP survey 

labeled as 1: overall quality of life, 2: mental health, 3: income, 4: food and nutrition, 5: 

material goods, 6: transportation, 7: health care, 8: voluntary counseling and testing (VCT) 

services, 9: HIV prevention, 10: social support, 11: community service, 12: education test 

result, and 13: perception of education. This figure appears in color in the electronic version 

of this article. An interactive figure of results is at https://scip.shinyapps.io/scip_app.
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