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SUMMARY

There is considerable debate regarding whether and how covariate adjusted analyses should be used in
the comparison of treatments in randomized clinical trials. Substantial baseline covariate information
is routinely collected in such trials, and one goal of adjustment is to exploit covariates associated with
outcome to increase precision of estimation of the treatment effect. However, concerns are routinely
raised over the potential for bias when the covariates used are selected post hoc; and the potential
for adjustment based on a model of the relationship between outcome, covariates, and treatment to
invite a “fishing expedition” for that leading to the most dramatic effect estimate. By appealing to the
theory of semiparametrics, we are led naturally to a characterization of all treatment effect estimators
and to principled, practically-feasible methods for covariate adjustment that yield the desired gains
in efficiency and that allow covariate relationships to be identified and exploited while circumventing
the usual concerns. The methods and strategies for their implementation in practice are presented.
Simulation studies and an application to data from an HIV clinical trial demonstrate the performance
of the techniques relative to existing methods. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary objective of many randomized clinical trials is to evaluate the difference in
mean outcome between two treatments. In typical moderate-to-large-scale trials, the setting
addressed herein, in addition to the primary outcome, extensive baseline data are collected
on each participant prior to treatment administration, such as baseline observations on the
outcome and qualitative and quantitative variables reflecting demographics, prior medical and
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treatment history, and physiological status. Some of these baseline covariates may be related to
the primary outcome and may exhibit chance imbalances between the two treatment groups.

A vast literature exists on whether or not and how to “adjust” the analysis of treatment
difference for the effects of covariates in order to increase the precision of the estimator for
this treatment effect, thereby increasing statistical power, and to take imbalances into account
[1, 2, 3, 4, 5, 6]. Indeed, that many studies fail to meet their accrual goals and the desire to
use the data from patient volunteers most efficiently are strong rationales for this practice.
However, covariate adjustment has inspired considerable controversy among numerous authors
[1, 7, 8, 9] and regulatory authorities [10, 11] because of the potential for biased estimation due
to post hoc selection of covariates and, more ominously, the temptation for analysts to engage
in a “fishing expedition” to find “the covariate model that best accentuates the estimate and/or
statistical significance of the treatment difference” [1]. Thus, trialists and regulatory agencies
have been reluctant to endorse adjusted analyses, and current guidelines assert strongly that,
if adjustment is undertaken, only a few such covariates should be used, chosen based on
prior knowledge of their prognostic value; and these should be prespecified in the protocol or
analysis plan, as should be the form of the model relating covariates to outcome to be used
for adjustment (e.g., [11, 12]). However, associations between covariates and outcome may
not be appreciated at the design stage [1], particularly if such information was not collected
systematically in previous studies, but may be evident only at the analysis stage, subsequent
to unblinding. An unfortunate consequence of these recommendations may be that a critical
opportunity to enhance efficiency and reveal important, real effects may be lost.

Clearly, approaches that seek to resolve the tension between the need to make the best use of
the data and concerns over the properties of adjusted estimators and possible lack of objectivity
are needed. Pocock et al. [1] strongly encourage research along these lines, arguing that
covariate adjustment should be carried out whenever appropriate while simultaneously making
“one’s statistical policy for covariate adjustment completely objective.” Some approaches in
this spirit, such as that of Koch et al. [2], which does not require regression modeling of
covariate effects, have been proposed. Nonetheless, to our knowledge, a general, practically-
feasible strategy that achieves this goal has not been elucidated.

In this article, we consider covariate adjustment in estimation of treatment differences
in randomized clinical trials from the formal point of view of semiparametric theory (e.g.,
[13]). This leads to characterization of all treatment effect estimators, facilitating comparisons
among competing methods. Moreover, emerging elegantly from this perspective is principled
adjustment methodology that supports objective incorporation of covariate effects while
simultaneously exploiting covariate-outcome relationships to increase precision. Because the
approach automatically separates modeling of these relationships from evaluation of the
treatment effect, it obviates concerns over suspicious “data dredging” exercises.

In Section 2, we introduce a formal model framework and identify the parameter representing
the treatment effect of interest. We present the semiparametric theory results in Section 3.
In Section 4, based on the theory, we propose a practical strategy for adjusted analysis. The
methods are applied to data from an HIV clinical trial in Section 5, and simulation studies
demonstrating performance are summarized in Section 6.
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2. FRAMEWORK AND SCOPE OF INFERENCE

Consider a clinical trial with n subjects sampled from a population of interest. Let Y denote the
outcome on which the primary analysis will be based (continuous or discrete), and let Z = 1
or 0 with probabilities δ or 1− δ indicating randomization to, e.g., experimental treatment or
control. Let X (p×1) be a vector of baseline covariates; X may include a baseline measurement
on Y and additional quantitative and qualitative characteristics recorded prior to treatment
initiation. Randomization guarantees statistical independence of Z and X, written as Z⊥⊥X,
which is critical to our further developments. The observed data from the trial are (Yi, Zi,Xi),
i = 1, . . . , n, independent and identically distributed (iid) across i.

Within this framework, we may identify unambiguously the “treatment effect” that is
ordinarily targeted by the primary analysis, given by

β = E(Y |Z = 1) − E(Y |Z = 0), (1)

i.e., the difference in mean outcome between the two treatments. This may be represented
equivalently by E(Y |Z) = µ0 + βZ, where µ0 = E(Y |Z = 0); note that this is a model only
for the mean outcome for each treatment, with no additional assumptions, such as normality
or equal variances in the two groups, implied.

The usual treatment effect β in (1) is defined unconditionally ; i.e., as the effect of treatment
relative to control averaged across the population. An alternative measure of treatment effect
is defined conditional on a subset of the population having the particular covariate values x,

βx = E(Y |Z = 1,X = x) − E(Y |Z = 0,X = x). (2)

For continuous Y , a standard approach to estimate βx is to postulate a linear regression model

E(Y |Z,X) = γ0 + γT
XX + βZZ, (3)

often referred to as the “analysis of covariance” (ANCOVA) model. Model (3) is a popular basis
for “covariate-adjustment,” where βZ is interpreted as the “treatment effect after adjusting for
the covariates X.” In (3), no interactions(s) are specified between elements of X and Z, so that
(3) assumes that this “adjusted” treatment effect is constant across values of X. Models may
also include such interactions; see Section 3. For other outcomes, alternative models and effect
measures may be specified; for example, for binary Y , one may consider the logistic regression
model

E(Y |Z,X) =
exp(γ0 + γT

XX + γZZ)

1 + exp(γ0 + γT
XX + γZZ)

, (4)

where γZ denotes the log-odds ratio conditional on X, assuming that this conditional log-odds
ratio is constant for all values x.

The unconditional treatment effect (1) is overwhelmingly the focus of the primary analysis in
most randomized trials, with inference on conditional treatment effects as in (2) often specified
as secondary analyses. However, this is a matter of some debate; some researchers advocate
that the conditional treatment effect (2) is a more appropriate basis for primary inferences;
e.g., Hauck et al. [12] “recommend that the primary analysis adjust for important prognostic
covariates in order to come as close as possible to the clinically most relevant subject-specific
measure of treatment effect.” Clearly, both unconditional and conditional treatment effects are
of considerable and complementary importance in developing a comprehensive understanding
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of how treatments compare. The former provides a measure of overall effect useful for broad
policy recommendations, which explains its role as the primary focus of regulatory authorities.
Inference on the latter can reveal interactions between treatment and patient characteristics;
qualitative such interactions (i.e, the direction of the effect changes depending on x) may have
critical implications for use of the treatment in certain subpopulations.

With continuous outcome, this debate rarely receives explicit mention because, if (3) is an
exactly correct representation of the relationship E(Y |Z,X), then β and βx coincide. In fact,
it is well-appreciated that, with Z⊥⊥X, the least squares estimator for βZ in (3) is consistent
for β in (1) regardless of whether or not (3) is the correct representation and is generally
more precise than competing estimators, e.g., the difference in sample means, which do not
take covariates into account. In Section 3, we show that these results follow immediately from
semiparametric theory. For binary and other outcomes where nonlinear regression models are
natural, the distinction between the unconditional and conditional perspectives is pronounced
[12]. E.g., γZ in (4) is generally different from the unconditional log-odds ratio in a logistic
regression model not including X. Accordingly, in general, it is critical to state unambiguously
the inference (unconditional or conditional) desired.

In this article, we do not enter into this debate. Rather, given the long-standing status of
the unconditional treatment effect as the primary parameter of interest in most clinical trials,
we focus henceforth on covariate adjustment in the context of inference on β in (1), with the
goal of making this inference as precise as possible under very general conditions.

3. SEMIPARAMETRIC INFERENCE

We consider estimation of β based on the iid data (Yi, Zi,Xi), i = 1, . . . , n, under as
unrestrictive conditions as possible. We make no assumptions on aspects of the joint
distribution of (Y,Z,X), such as parametric assumptions on the distributions of Y given Z or Y
given (Z,X) (e.g., normality and/or common variance) except that Z⊥⊥X by randomization.
We now show that semiparametric theory leads under these conditions to the class of all
consistent and asymptotically normal estimators (“large n”) for β, including the “most
precise.” As noted at the outset, we focus on moderate-to-large-sized trials, and we demonstrate
in Section 6 that the implications of the asymptotic theory are relevant in this setting.

Under these conditions, when one of the elements of X is a baseline observation on Y ,
Leon et al. [14] and Davidian et al. [15] derive the class of all consistent estimators for β by
appealing directly to semiparametric theory [13] or by making an analogy to missing data
problems and using the semiparametric missing-data theory of Robins et al. [16]. We comment
on this “missing data” analogy below. Because a baseline outcome is just another baseline
covariate, these results are immediately applicable here and lead to the following.

Let the numbers of subjects randomized to experimental treatment and control be n1 =∑n
i=1 Zi and n0 =

∑n
i=1(1 − Zi), n = n0 + n1. Write the sample means of outcome in each

group as Y
(1)

= n−1
1

∑n
i=1 ZiYi and Y

(0)
= n−1

0

∑n
i=1(1−Zi)Yi, with Z = n−1

∑n
i=1 Zi = n1/n

the sample proportion randomized to treatment. Then it follows from References [14, 15] that
all reasonable consistent and asymptotically normal estimators for β either can be written
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exactly as or are asymptotically equivalent to an expression of the form

Y
(1)

− Y
(0)

−

n∑

i=1

(Zi − Z)
{

n−1
0 h(0)(Xi) + n−1

1 h(1)(Xi)
}

, (5)

where h(k)(X), k = 0, 1, are arbitrary scalar functions of X.

When h(0)(Xi) = h(1)(Xi) ≡ 0, (5) reduces to the sample mean difference Y
(1)

−

Y
(0)

, the standard “unadjusted” estimator, which is unbiased and trivially consistent for
β and asymptotically normal under our general conditions. From (5), all consistent and
asymptotically normal estimators for β may be viewed as “augmenting” [17] this estimator by
the second term, which incorporates covariates and thereby implements the “adjustment,” in
a spirit similar to estimators proposed in the survey sampling literature [18, 19, 20]. Because
Z⊥⊥X by randomization, the “augmentation” term converges in probability to zero, so that
(5) is consistent for β for any h(k), k = 0, 1 (see the Appendix). The h(k) thus reflect the nature
of the adjustment, and distinctions among estimators and insight into their relative precision
may be deduced from these functions, as we now describe.

As noted above, a popular adjusted estimator for β is the least squares estimator for βZ

in the ANCOVA model (3), which we denote as β̂ANCOV A1, and it is widely accepted that

β̂ANCOV A1 is consistent for β. It is straightforward to demonstrate (see the Appendix) that
this estimator is asymptotically equivalent to an expression of the form (5) with

h(0)(Xi) = h(1)(Xi) = ΣT
XY Σ−1

XXXi, (6)

ΣXY = E[ {X − E(X)}{Y − E(Y )} ], ΣXX = E[ {X − E(X)}{X − E(X)}T ], (7)

the covariance between X and Y and the covariance matrix of X in the overall population,
respectively. Because β̂ANCOV A1 is asymptotically equivalent to an estimator of form (5), we
may conclude immediately that it is consistent for β and asymptotically normal under entirely
unrestrictive conditions; normality of the outcome conditional on (Z,X) , continuous outcome,
or constancy of var(Y |Z,X) are not required. Indeed, the model (3) from which it is derived
need not even be a correct representation of E(Y |Z,X) for these results to hold.

One could in fact use formulation (5) to estimate β directly by replacing ΣXY and ΣXX in
(7) by estimators in (6); e.g., by the corresponding sample covariance matrices. Semiparametric
theory [13, 14, 15] ensures that the asymptotic normal distribution of the resulting estimator
will have variance identical to that achieved if ΣXX and ΣXY were known, reflecting a general
result for estimators of form (5): substitution of consistent estimators for quantities appearing
in the functions h(k) does not alter the large sample properties, a feature we discuss further
below. Thus, this strategy would yield an estimator asymptotically equivalent to β̂ANCOV A1.

From (6), the h(k)(Xi), k = 0, 1, associated with β̂ANCOV A1 are the same for each treatment
and are linear functions of Xi, which, defining

Σ
(k)
XY = E[ {X − E(X)}{Y − E(Y )} |Z = k], k = 0, 1, (8)

and noting that ΣXY = (1 − δ)Σ
(0)
XY + δΣ

(1)
XY , may be written equivalently as

h(0)(Xi) = h(1)(Xi) = {(1 − δ)Σ
(0)
XY + δΣ

(1)
XY }T Σ−1

XXXi. (9)

Other familiar estimators may be shown to be asymptotically equivalent to estimators of
form (5), with corresponding h(0) = h(1) that, while still linear in Xi, is possibly different
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6 A.A. TSIATIS ET AL.

from (6) and (9). Consider an ANCOVA model like (3) but also including an interaction term
between Z and X, which may be written in terms of centered versions of Y , Z, and X as

E{Y −E(Y ) |Z,X} = γT
X{X −E(X)}+γT

XZ{X −E(X)}{Z −E(Z)}+βZ{Z −E(Z)}, (10)

and fitted by least squares regression of Yi − Y on Xi − X, Zi − Z, and (Xi − X)(Zi − Z),
where Y = n−1

∑n
i=1 Yi, and X = n−1

∑n
i=1 Xi [21]. Model (10) may seem an inappropriate

framework for estimating the unconditional treatment effect β, as the interaction term implies
that the conditional treatment effect depends on the covariate and hence cannot equal the
unconditional effect. However, Yang and Tsiatis [21] show for scalar X that the least squares
estimator for βZ under (10) is a consistent and asymptotically normal estimator for β in (1); see
also Reference [22]. This generalizes to vector X; we show in the Appendix that this estimator,

denoted β̂ANCOV A2, is asymptotically equivalent to an expression of the form (5) with

h(0)(Xi) = h(1)(Xi) = {δΣ
(0)
XY + (1 − δ)Σ

(1)
XY }T Σ−1

XXXi. (11)

Thus, that β̂ANCOV A2 is consistent for β and asymptotically normal under very general
conditions is immediate and holds even if (10) is an incorrect representation of E(Y |Z,X).

Expressions (9) and (11) are identical if either δ = 0.5 or Σ
(0)
XY = Σ

(1)
XY . Accordingly,

under these conditions, β̂ANCOV A1 and β̂ANCOV A2 are asymptotically equivalent and hence
equally precise (asymptotically). Otherwise, β̂ANCOV A2 has smaller asymptotic variance than

β̂ANCOV A1; in fact, this variance is the smallest among all estimators for which h(k)(Xi),
k = 0, 1, are linear in Xi [14, 21, 22] (see the Appendix). Thus, any other linear h(k), k = 0, 1,
including those where h(0) 6= h(1), correspond to estimators that can be no more precise than
those involving the common h(k) given in (11).

Koch et al. [2] propose an estimator for β given by

β̂KOCH = Y
(1)

− Y
(0)

− V T
XY V −1

XX(X
(1)

− X
(0)

), (12)

where X
(0)

= n−1
0

∑n
i=1(1 − Zi)Xi; X

(1)
= n−1

1

∑n
i=1 ZiXi,

VXY = n−1
0 Σ̂

(0)
XY + n−1

1 Σ̂
(1)
XY , VXX = n−1

0 Σ̂
(0)
XX + n−1

1 Σ̂
(1)
XX , (13)

Σ̂
(k)
XY = (nk − 1)−1

n∑

i=1

I(Zi = k)(Yi − Y
(k)

)(Xi − X
(k)

),

Σ̂
(k)
XX = (nk − 1)−1

n∑

i=1

I(Zi = k)(Xi − X
(k)

)(Xi − X
(k)

)T , k = 0, 1,

(14)

and I( · ) is the indicator function. Noting that

X
(1)

− X
(0)

=
n

n0n1

n∑

i=1

(Zi − Z)Xi,
n

n0n1
= n−1

0 + n−1
1 , (15)

it is easy to appreciate that β̂KOCH is asymptotically equivalent to an expression of form (5),

where V T
XY V −1

XX is replaced by its limit in probability, so that β̂KOCH is immediately seen to
be consistent and asymptotically normal under our unrestrictive conditions. It is shown in the
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Appendix that this in fact leads to the h(k), k = 0, 1, in (11). Thus, via semiparametric theory,

we are led directly to the result that β̂KOCH and β̂ANCOV A2 are asymptotically equivalent;
moreover, as observed by Lesaffre and Senn [4], when n0 = n1 (approximately δ = 0.5), β̂KOCH

is approximately equivalent to the usual ANCOVA estimator β̂ANCOV A1. Otherwise, in a large
sample sense, Koch’s estimator is more precise.

Yang and Tsiatis [21] discuss an estimator that involves considering “response” vectors
Yi = (Yi,X

T
i )T , i = 1, . . . , n, and fitting the model E(Y |Z) = (µ0 + βZ, µT

X)T via solution of
corresponding generalized estimating equations (GEEs), with separate unstructured working
covariance matrices for each treatment group. Generalizing their results, it is possible to show
that the resulting estimator for β is also asymptotically equivalent to β̂ANCOV A2.

We have verified that several common estimators are members of the class of all consistent
estimators for β and correspond to h(k) in (5) that are linear in Xi. It is natural to
wonder whether there are estimators with different h(k), k = 0, 1, that outperform the linear
candidates. Semiparametric theory provides guidance: as shown in Section 3.3 of Reference [14]
and Section A.2 of Reference [15], among all estimators exactly equal to or asymptotically
equivalent to an expression of form (5), that with the smallest variance asymptotically has

h(k)(Xi) = E(Yi |Zi = k,Xi), k = 0, 1; (16)

an alternative, direct argument is given in the Appendix. That is, the “optimal” h(k), k = 0, 1,
are the true regression relationships of Y on X for each treatment separately, which may
neither be linear in X nor the same function of X for each treatment. Given (16), then, one
way to view the estimators discussed above is that they are equivalent to postulating for these
true regressions the same linear function for each k and will achieve the smallest possible
variance in the event that the true regressions are both exactly equal to this linear function.

Result (16) suggests that better estimators for β may be constructed by positing separate
models for the E(Y |Z = k,X), k = 0, 1, that come as close as possible to the true relationships
and substituting resulting treatment-specific predicted values for each i into (5). Here, any
parametric functional forms may be considered. As noted above, substitution of estimators
for parameters in these models will lead to an estimator for β having the same asymptotic
variance as if the functions of X represented by them were fully specified; see the Appendix.
Thus, if the models do correspond to the true mean relationships for each treatment, then the
resulting estimator for β will achieve the smallest asymptotic variance, and, as shown explicitly

in the Appendix, improve over that of the unadjusted estimator Y
(1)

−Y
(0)

. However, failure to
specify these models correctly will not affect consistency; the estimator will have larger variance
than the “optimal,” but will still be consistent and asymptotically normal by virtue of being
in class (5). Indeed, estimators in class (5) are “semiparametric” because they are consistent
and asymptotically normal under no assumptions about any aspect of the distribution of Y
given (Z,X), including the form of E(Y |Z = k,X), k = 0, 1. Elegantly, if h(k), k = 0, 1, in (5)
coincide with the true treatment-specific relationships, then the estimator will be “optimal.”
In fact, if one restricts the h(k), k = 0, 1, to be linear models in X with an intercept, even if the
true E(Y |Z = k,X) are not linear, it may be shown (see the Appendix) that the asymptotic
variance of the resulting estimator for β will improve over that of the unadjusted.

There is a further, key feature of this approach that makes it especially compelling in
light of the concerns reviewed in Section 1. Covariate adjustment in practice is typically
based on a model for the regression of Y on both Z and X, e.g., (3), where the effect
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8 A.A. TSIATIS ET AL.

of treatment is inextricably linked to that of the covariates, fueling suspicions regarding
subjectivity due to ability to inspect the effect estimator during the modeling exercise. In
contrast, the proposed estimator decouples evaluation of the treatment effect from regression
modeling, as E(Y |Z = k,X), k = 0, 1, are postulated and fitted separately by treatment.
This suggests an objective approach to covariate adjustment, as modeling may be carried out
independently of reference to treatment effect, circumventing such bias. Simultaneously, the
flexibility afforded by the opportunity to exploit freely modeling methods and expertise allows
the covariate information to be best used to obtain as efficient an estimator for β as possible.
On these grounds, we propose this approach for routine use in trial analysis, and in Section 4,
we suggest a practical strategy for implementation.

An approximate sampling variance for the proposed semiparametric estimator β̂ obtained
via separate model-building exercises as above may be specified by noting that β̂ may be re-cast
as an M-estimator [13, Section 3.2], [23], from whence the standard “sandwich” technique may
be used to derive a variance estimator. We present a practical expression for an approximate
sampling variance in Section 4, and in Section 6 we show that, for sample sizes under which
we envision use of the proposed approach, it leads to reliable assessments of precision.

Like the method of Koch et al. [2], the proposed estimators provide a straightforward basis
for covariate adjustment when the outcome is binary and interest focuses on the unconditional
difference in proportions experiencing the event (e.g., [3]) rather than the log-odds ratio.

We close this section by touching on the “missing data” analogy. As we have indicated,
one way to motivate the class of estimators (5) is to conceptualize inference on β as a
“missing data problem;” see Reference [14] for fuller discussion. Ideally, if we could observe
Y on each subject under both treatments, we would have complete sample information on
treatment effect. Of course, this is usually impossible, but randomization still facilitates
a valid treatment comparison, albeit using less information than the “ideal:” for subjects
randomized to experimental treatment, we observe only their outcome under that treatment;
the outcome they would have experienced under control is hence “missing,” and vice versa.
Covariate adjustment may be viewed as an attempt to use covariates that are correlated
with outcome to recover some of the “lost” information (relative to the “ideal”) due to this
“missingness.” Notably, the form of estimators in the class (5) is exactly that encountered
when semiparametric theory is used in “actual” missing data problems [13, 16].

4. PRACTICAL IMPLEMENTATION

We now outline a practical strategy for exploiting the foregoing developments in the analysis
of randomized clinical trials. We envision the following series of steps:

(i) Partition the data into the two sets determined by the randomized treatment groups; denote
the data for treatment k by D(k) = {(Yi,Xi), i such that Zi = k}, k = 0, 1.

(ii) Based on each of D(k) separately, develop parametric models for E(Y |Z = k,X), k = 0, 1.
Because for each k this only uses D(k), advantage may be taken of available any techniques to
achieve a model as close to the true E(Y |Z = k,X) as possible yielding as good predictions as
possible without concerns over bias. One may inspect graphical evidence and entertain different
functional forms and covariate transformations; in general, any sensible modeling strategies
[27] may be used. One may also consider “automated” methods. E.g., for continuous outcome,
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PRINCIPLED YET FLEXIBLE COVARIATE ADJUSTMENT 9

one may focus on linear models involving an intercept; all elements Xℓ, ℓ = 1, . . . , p, of X; all
squared terms X2

ℓ , ℓ = 1, . . . , p, and all two-way interactions XℓXm, ℓ 6= m. Model selection
procedures may also be used. Forward, backward, or stepwise selection methods are a natural
choice owing to their availability in standard software. Penalized methods, such as LASSO [24]
or SCAD [25], which seek to minimize prediction error through selection of the penalty via
some form of cross-validation, are also possibilities, as are other techniques [26].

The separate model development may be implemented several ways in a cooperative group
or pharmaceutical company setting. Modeling for each k may be carried out sequentially by the
same analysts, who may or may not be members of the study team. Alternatively, two teams
of analysts may be designated, with each provided only the data for its assigned treatment.
For total transparency, the two analysis teams may be completely independent of the analysts
who will prepare the final analysis; e.g., contracted from outside the group or sponsor solely
for this purpose. The teams may be given flexibility to exploit resident expertise in their
model development efforts. A more conservative approach would dictate the specific modeling
techniques to be employed and guidelines on their use in the trial protocol.

(iii) Denote the models so developed by fk(X,αk), k = 0, 1, and let α̂k, k = 0, 1, be the
estimators for the parameters αk (pk × 1) in these models, obtained, for example, by least

squares for linear models (including an intercept to ensure efficiency gain over Y
(1)

− Y
(0)

)

or by logistic regression. For each i = 1, . . . , n, form predicted values f̂0,i = f0(Xi, α̂0) and

f̂1,i = f1(Xi, α̂1) for i under each treatment. The analysis team(s) responsible for developing
each model may provide the form of the fitted model to the analysts responsible for inference
on the treatment effect, who may then calculate the predicted values directly.

(iv) The estimator may then be calculated by the analysts responsible for the final analysis as

β̂ = Y
(1)

− Y
(0)

−

n∑

i=1

(Zi − Z)
(
n−1

0 f̂0,i + n−1
1 f̂1,i

)
. (17)

Using the “sandwich” technique, an estimator for the sampling variance of (17) may be
obtained. Although semiparametric theory dictates that, asymptotically, there should be no
effect of estimating the parameters in the postulated models fk, k = 0, 1, the sandwich
estimator can understate the true sampling variation for small n, likely due in part to second-
order effects of this estimation. This phenomenon was noted for the variance estimator for
β̂KOCH given by Koch et al. [2] by Lesaffre and Senn [4], who proposed a small-sample
correction when n0 = n1. Accordingly, we propose the variance estimator

v̂ar(β̂) = C
n∑

i=1

[
{n−1

1 Zi − n−1
0 (1 − Zi)}Yi − n−1β̂ − (Zi − Z)

(
n−1

0 f̂0,i + n−1
1 f̂1,i

)
(18)

− (Zi − Z)
{

n−1
0

(
Y

(0)
− f0

)
+ n−1

1

(
Y

(1)
− f1

)}]2
(19)

where fk = n−1
k

∑n
i=1 I(Zi = k)f̂k,i, k = 0, 1, and C is a small-sample “correction factor” (see

the Appendix). When the models fk are linear with intercept and fitted by treatment-specific
least squares, the final term in braces in (19) is equal to zero.

Appealing to the asymptotic normality of β̂, one may construct Wald 100(1−α)% confidence

intervals for the true treatment effect in the usual way as β̂±zα/2{v̂ar(β̂)}1/2, where zα/2 is the
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Figure 1. Histograms of CD4 counts at 20 ± 5 weeks: (a) ZDV monotherapy
group. (b) Combined treatment group.

obvious normal critical value. Tests of the null hypothesis H0 : β = 0 versus one- or two-sided
alternatives may likewise be based on the Wald test statistic β̂/{v̂ar(β̂)}1/2.

5. APPLICATION TO AIDS CLINICAL TRIALS GROUP 175

We demonstrate the proposed methods and contrast them to competing techniques by
application to data from 2139 HIV-infected subjects enrolled in AIDS Clinical Trials
Group Protocol 175 (ACTG 175), which randomized subjects to four different antiretroviral
regimens in equal proportions: zidovudine (ZDV) monotherapy, ZDV+didanosine (ddI),
ZDV+zalcitabine, and ddI monotherapy [28]. We follow References [14, 15] and consider two
groups: ZDV monotherapy, with n0 = 532 subjects, and the other three groups combined, with
n1 = 1607 subjects, so that δ = 0.75. We focus on analysis of the differences in mean CD4
count (cells/mm3, Y ) at 20 ± 5 weeks post-baseline between these two treatment groups. For
potential use in covariate adjustment, we consider the following baseline variables: CD4 count
(cells/mm3), CD8 count (cells/mm3), age (years), weight (kg), Karnofsky score (scale of 0-
100), all of which are continuous measures; and indicator variables for hemophilia, homosexual
activity, history of intravenous drug use, race (0=white, 1=non-white), gender (0=female),
antiretroviral history (0=naive, 1=experienced), and symptomatic status (0=asymptomatic).

Because they often exhibit skewed distributions, CD4 count outcomes are routinely analyzed
on a transformed scale (e.g., cube-root, fourth-root, or logarithmic). However, as long as the
skewness is not severe, comparison of mean responses on their original scale is reasonable,
more readily interpretable, and consistent with the way in which clinicians think about these
measures in practice. Figure 1 shows histograms of CD4 at 20 ± 5 weeks for each treatment
and suggests that this view is appropriate. Of course, because all of the usual estimators
are semiparametric as members of class (5), they are consistent and asymptotically normal
regardless of the true distributions of the data. We thus consider inference on β in (1).
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PRINCIPLED YET FLEXIBLE COVARIATE ADJUSTMENT 11

Table I. Estimates of β for the ACTG 175 data. Unadjusted is Y
(1)

−Y
(0)

; Change scores is Y
(1)

−Y
(0)

− the difference in sample mean baseline CD4; Forward-1 is bβ in (17) with treatment-specific
regression models developed using forward selection allowing linear terms only in elements of X;
Forward-2 is the same but allowing linear, quadratic, and two-way interaction terms; ANCOVA is
bβANCOV A1 using all elements of X; and Koch is bβKOCH using all elements of X. SE is estimated
standard error calculated as described in the text. Test Stat. is the Wald test statistic; and Rel. Eff.

is (SE for the Unadjusted estimator)2 divided by (SE for the indicated estimator)2.

Estimator Estimate SE Test Stat. Rel. Eff.

Unadjusted 46.811 6.760 6.924 1.00
Change scores 50.409 5.509 9.150 1.51
Forward-1 49.896 5.135 9.716 1.73
Forward-2 51.139 5.103 10.021 1.75
ANCOVA 49.694 5.154 9.643 1.72

– 5.647 8.799 1.43∗

Koch 49.758 5.139 9.682 1.73
∗Row calculated using usual least squares SE

Table I shows results for estimation of β using several methods, including the unadjusted

estimator Y
(1)

− Y
(0)

and; because one of the baseline covariates is CD4 count, the usual

estimator based on “change scores,” Y
(1)

− Y
(0)

− (X
(1)

CD4 − X
(0)

CD4), where X
(k)

CD4 is mean
baseline CD4 count in group k = 0, 1, which, using (15), may be written in the form (5).

Also presented are β̂ANCOV A, β̂KOCH , and two versions of the proposed estimator β̂. For the
latter, to develop the models for E(Y |Z = k,X), k = 0, 1, we used forward selection as a
representative model selection approach available in standard software. For “Forward-1,” the
models were developed separately by forward selection with entry criterion 0.05 allowing linear
additive terms in elements of X. For “Forward-2”, the models were developed separately by
forward selection allowing linear, quadratic, and two-way interaction terms in elements of X.
We also used backward selection or different selection methods for each group, with similar
results (not reported). Standard errors for the unadjusted and change score estimators were

calculated via the usual formulæ; for β̂ANCOV A1 using both (18) and the least squares formula
based on the fit of (3), as would ordinarily be the case in practice (indicated by ∗); and for

β̂KOCH and Forward-1 and -2 using (18).

All methods indicate strong evidence of a treatment difference. All estimates are very similar
with the exception of the unadjusted estimate, which is slightly lower due to a mild imbalance
for baseline CD4 between groups. Baseline CD4 exhibits moderate association with CD4 at 20
± 5 weeks, with correlation coefficients of roughly 0.6 in each treatment and a hint of curvature
in the relationships; see Figure 1 of Reference [14]. Failure of the unadjusted estimator to take
this relationship into account results in a much larger standard error than those of the other
estimators; moreover, although the change score estimator offers substantial improvement,
inclusion of additional covariate information yields further gains in precision. The proposed
estimator with forward selection on linear terms and β̂KOCH are virtually identical; allowing
second-order effects to enter in the forward selection for the treatment-specific regression
models for β̂ leads to very little additional reduction in estimated sampling variation; the
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12 A.A. TSIATIS ET AL.

resulting models include the square of baseline CD4, but because this effect is so mild, little
gain is realized. Interestingly, the usual least squares standard error for β̂ANCOV A1 is noticeably
larger than that based on (18); we discuss this in the next section.

The fitted treatment-specific models selected by “Forward-2” are, in obvious notation,

E(Y |Z = 0,X) ≈ −79.705 + 1.599(CD4) − 0.0007(CD4)2 − 0.107(CD4×HEMO) (20)

−0.005(CD4×WT) + 0.013(WT×KARN) − 0.040(CD8×HIST) − 23.199(HOMO×RACE)

E(Y |Z = 1,X) ≈ 95.445 + 1.100(CD4) − 0.0005(CD4)2 − 142.288(HOMO) (21)

−0.178(CD4×DRUG) − 0.087(CD4×RACE) + 0.033(CD8×HEMO) − 0.014(CD8×HOMO)

−0.021(CD8×HIST) − 0.720(AGE×HIST) − 0.554(AGE×SYMP) − 0.706(WT×HEMO)

+1.282(WT×DRUG) + 1.688(KARN×HOMO) − 28.321(DRUG×RACE)

−45.337(DRUG×SEX) + 35.981(DRUG×HIST) + 24.032(RACE×HIST) − 3.602(SEX×HIST),

with treatment-specific variance estimates var(Y |Z = 0,X) ≈ (95.82)2 and var(Y |Z =
1,X) ≈ (115.63)2, and coefficients of determination R2 = 0.50 and 0.38.

It is important to recognize that we are uninterested in the interpretation of models (20)
and (21). What is important is that they represent functions of X yielding predictions that
come as close as possible to the values of the true treatment-specific regressions at the Xi.
Thus, that these models do not, for example, include all main effect terms involving variables
in the interaction terms is of no consequence for the purpose of estimating β.

6. SIMULATION STUDIES

We report on several simulation studies to demonstrate the performance of the proposed
methods, each involving 5000 Monte Carlo data sets.

We consider first estimation of β under two scenarios. The initial scenario is based on
the fit of the ACTG 175 data in Section 5. For each simulated data set, we generated for
each of n subjects the continuous baseline covariates CD4 count, CD8 count, age, weight,
and Karnofsky score from a multivariate normal distribution with the empirical mean and
covariance matrix of these variables in the data. Independently, baseline binary indicators for
hemophilia, homosexual activity, history of drug use, race, gender, antiretroviral history, and
symptomatic status were generated for each subject from independent Bernoulli distributions
using the observed data proportions for each. Treatment indicator Z was generated from
Bernoulli(δ) for each subject, independently of all other variables. Finally, CD4 count at 20±5
weeks for each subject was generated from a normal distribution with conditional mean (20) or
(21) and conditional variance given after (21) depending on his/her treatment assignment and
covariates. The true value of β = 54.203, with R2 = 0.50 and 0.39 for the treatment-specific
regressions for k = 0, 1, consistent with the data. For each data set, β and standard errors
were estimated using all methods in Table I. We also estimated β using (17), but with f̂k,i for
each i equal to the predicted values obtained from fitting the true forms of E(Y |Z = k,X),
k = 0, 1, to the data, with standard errors obtained from (18). This serves as a “benchmark”
achieving the smallest possible asymptotic variance in class (5).

Table II shows results for two instances of this scenario: n = 2139 and δ = 0.75, as in ACTG
175; and n = 400 and δ = 0.5, representing a moderate-sized trial with the 1:1 randomization

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 25:1–10
Prepared using simauth.cls



PRINCIPLED YET FLEXIBLE COVARIATE ADJUSTMENT 13

Table II. Results for the simulation scenario based on the ACTG 175 data using 5000 Monte Carlo
data sets. Estimators are as in Table I; Benchmark is the proposed estimator found by fitting the true
treatment-specific regressions to obtain predicted values. MC SD is Monte Carlo standard deviation,
Ave SE is the average of standard error estimates, Cov. Prob. is coverage probability of a 95% Wald
confidence interval, and Rel. Eff. is the Monte Carlo mean square error for the Unadjusted estimator

divided by that for the indicated estimator.

Estimator MC SE Ave SE Cov. Prob. Rel. Eff.

n = 2139, δ = 0.75

Unadjusted 6.949 6.905 0.950 1.00
Change scores 5.570 5.529 0.947 1.55
Forward-1 5.229 5.156 0.943 1.77
Forward-2 5.177 5.075 0.943 1.80
ANCOVA 5.227 5.183 0.946 1.77

– 5.657 0.965∗ –
Koch 5.220 5.154 0.946 1.77
Benchmark 5.122 5.089 0.949 1.84

n = 400, δ = 0.5

Unadjusted 14.027 14.138 0.952 1.00
Change scores 11.485 11.560 0.952 1.49
Forward-1 10.927 10.850 0.951 1.65
Forward-2 10.975 10.680 0.945 1.64
ANCOVA 10.942 10.984 0.954 1.64
Koch 10.948 10.818 0.950 1.64
Benchmark 10.886 10.855 0.951 1.66

∗Row calculated using usual least squares SE

common in practice. As all estimators showed negligible bias, bias is not reported. For both
cases, any form of adjustment yields considerable efficiency gain over the unadjusted estimator.
Improvement over simple adjustment based on change scores is achieved by incorporating
additional covariates. The proposed method, β̂ANCOV A1, and β̂KOCH show similar precision,
likely because baseline CD4 has a strong linear but only mild quadratic relationship with
outcome, and other, weaker covariate relationships are captured adequately by main effect
terms in all estimators, a view supported by the results for the “Benchmark” estimator, which
shows little additional gain in efficiency. All methods except ANCOVA using least squares
standard errors, shown for n = 2139, δ = 0.75, yield confidence intervals attaining the nominal
coverage; see below. A key message is that the proposed method, represented here by “Forward-
1” and “Forward-2,” allows analysts latitude to explore and exploit relationships in the data
to come as close as possible to the “benchmark” gain in efficiency independently of reference
to the treatment effect while attaining nominal operating characteristics.

To emphasize this, we considered a second scenario identical to the first except that a
stronger quadratic effect in baseline CD4 was introduced in the true E(Y |Z = k,X), k = 0, 1,
while maintaining R2 for these relationships at 0.50 and 0.39, and β = 54.203. This was
accomplished by replacing the first three terms in (20) by −247.074+2.850(CD4)−0.0026(CD4)2

and those in (21) by −82.931+2.400(CD4)−0.0025(CD4)2. Table III shows results for n = 400,

δ = 0.5. “Forward-1,” which considers only linear terms in elements of X; β̂ANCOV A1; and
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14 A.A. TSIATIS ET AL.

Table III. Results for the second simulation scenario data using 5000
Monte Carlo data sets. All entries are as in Table II.

Estimator MC SE Ave SE Cov. Prob. Rel. Eff.

n = 400, δ = 0.5

Unadjusted 14.084 14.148 0.951 1.00
Change scores 12.993 13.043 0.952 1.17
Forward-1 12.064 11.921 0.950 1.36
Forward-2 11.005 10.685 0.943 1.64
ANCOVA 12.076 12.068 0.952 1.36
Koch 12.081 11.892 0.949 1.36
Benchmark 10.885 10.853 0.951 1.67

β̂KOCH all lead to similar gains over the unadjusted and change score estimators and, except
for ANCOVA, admit confidence intervals achieving nominal coverage. “Forward-2,” which can
incorporate the quadratic effect of baseline CD4, yields a noteworthy efficiency further gain.

As noted above, confidence intervals based on β̂ANCOV A1 and the usual standard errors
obtained from the output of the least squares fit of (3) achieve Monte Carlo coverage exceeding
the nominal level in Table II. Comparison of the average of these estimated least squares
standard errors to the Monte Carlo standard deviation shows that this is because the former
tends to overstate the true sampling variation. If the ANCOVA model (3) is a correct
representation of E(Y |Z,X), and if in truth var(Y |Z,X) is constant, then the least squares

standard errors will be consistent for the true sampling standard deviation of β̂ANCOV A1.
However, if these assumptions are violated, then this need not be the case; indeed, these
assumptions do not hold in our simulation scenarios. Valid standard errors and nominal
coverage may be obtained using the “sandwich” formula (18), as shown in Tables II and
III, because (18) is not predicated on these assumptions. Thus, if ANCOVA is the basis for
adjustment, as is widely proposed, least squares standard errors should not be used in general.

For each of the two scenarios with n = 400, δ = 0.5, we modified the intercept term in the
true relationships E(Y |Z = k,X), k = 0, 1, so that the true value of β = 0, 15, and 30, and for
each value of β we report in Table IV the proportion of 5000 Monte Carlo data sets for which
a Wald test based on each estimator in Tables II and III rejected the null hypothesis β = 0 in
favor of the one-sided alternative β > 0, where all tests were carried out at significance level
0.025. All tests exhibit the nominal level under the null hypothesis; under alternatives, the
proposed methods achieve the highest power in both scenarios, notably in scenario 2.

As in any regression modeling context, there may be uncertainty associated with model
development tasks for the fk, including use of variable selection techniques such as forward
selection, that is not taken into account by usual standard error formulæ [29]. We advocate
the proposed methods when n is moderate-to-large, where our simulations, including those
here, show that, for inference on β̂, these effects are negligible. For smaller n, a “correction”
to (18) for model selection may be warranted [29]. It is natural to consider a nonparametric
bootstrap [30] to obtain standard errors; however, whether this is theoretically justified is not
established to our knowledge. With this caveat, we describe in the Appendix how use of the
bootstrap would be possible in the principled framework in Section 4. We are studying methods
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Table IV. Proportion of 5000 Monte Carlo data sets for which the null hypothesis β = 0 is rejected in
favor of the alternative β > 0 using the test statistic based on each estimator and level of significance
0.025. Each of the two simulation scenarios in the text is considered with n = 400, δ = 0.50, and the
intercept of the true E(Y |Z = k, X), k = 0, 1, adjusted so that the true value of β is that indicated.

Scenario 1 Scenario 2
Estimator β = 0 β = 15 β = 30 β = 0 β = 15 β = 30

Unadjusted 0.027 0.183 0.567 0.027 0.183 0.569
Change scores 0.024 0.261 0.741 0.022 0.216 0.637
Forward-1 0.024 0.287 0.788 0.026 0.253 0.710
Forward-2 0.027 0.302 0.796 0.027 0.305 0.794
ANCOVA 0.023 0.281 0.782 0.024 0.240 0.699
Koch 0.025 0.293 0.791 0.026 0.249 0.707
Benchmark 0.025 0.290 0.790 0.025 0.290 0.790

for “correcting” standard errors for model selection and will report on this elsewhere.

7. DISCUSSION

We have demonstrated that systematic consideration of the covariate adjustment problem
from the perspective of semiparametric theory leads to characterization of all consistent and
asymptotically normal estimators for the treatment mean difference. Properties of familiar
estimators and correspondences among them may be established and the most precise estimator
identified. The results suggest methods for principled analysis, where adjustment for covariate
effects is carried out separately from estimation of the treatment effect.

The decision on whether to propose a covariate-adjusted analysis during trial planning
must weigh possible benefits relative to the increased effort involved [3]. Our proposed
strategy involves logistical and cost considerations, and whether these are worthwhile must be
determined in the particular context. Associations among covariates must be sufficiently strong
for adjustment to pay off, and such covariates may not always be available. When adjustment
is deemed potentially fruitful, our proposed approach may offer practical resolution to the
conflict over whether and how to exploit covariate information to enhance efficiency.

We have focused on parametric modeling of the treatment-specific regressions. One may
wonder if it is possible to use nonparametric approaches such as generalized additive models
[31] or other multivariate smoothing methods to estimate these regressions; these may be
prohibitive with more than a few covariates. As discussed by Leon et al. [14, sec. 4],
because nonparametric estimators typically have large sample properties different from those
of parametric estimators, such smoothing methods may be viable only in very large studies.

The methods presented in this article may be modified to accommodate outcome missing at
random as shown in Davidian et al. [15]. As in the full data case considered here, models
associated with both covariate adjustment and accounting for missing outcomes may be
postulated and fitted independently of reference to the treatment effect, again supporting a
principled analysis. Via application of semiparametric theory, the techniques for comparing two
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treatment means presented in this article may be extended to general measures of treatment
effect, such as an odds ratio associated with a binary outcome, a hazards ratio associated with
a censored time-to-event outcome, and so on, including accommodation of missing outcome
and covariate information. We report on these developments elsewhere.

APPENDIX

In this appendix, we sketch arguments supporting assertions made in the main text.

Consistency of estimators in (5). Y
(1)

−Y
(0)

is consistent for β; by Slutsky’s theorem, (5) itself

is consistent for β if its second term
p
→ 0. Because n1/n

p
→ δ, the second term is approximately

equal to n−1
∑n

i=1(Zi−δ)
{
(1 − δ)−1h(0)(Xi) + δ−1h(1)(Xi)

} p
→ E[(Z−δ){(1−δ)−1h(0)(X)+

δ−1h(1)(X) }] = 0 because Z⊥⊥X.

Asymptotic equivalence of β̂ANCOV A1 to (5) with h(k), k = 0, 1, as in (6). Straightforward
algebra shows that the least squares estimator for βZ in (3) is

{
1 −

n2

n0n1
(n−1d1)

T Σ̂−1
XX(n−1d1)

}
−1
{

Y
(1)

− Y
(0)

−
n

n0n1

n∑

i=1

(Zi − Z)Σ̂T
XY Σ̂−1

XXXi

}
,

(A.1)

where d1 =
∑n

i=1(Zi −Z)Xi, Σ̂XY = n−1
∑n

i=1(Xi −X)(Yi −Y ), and Σ̂XX = n−1
∑n

i=1(Xi −

X)(Xi − X)T . Because Σ̂XY and Σ̂XX
p
→ to their counterparts in (7), n2/(n0n1)

p
→ {δ(1 −

δ)}−1, and n−1d1
p
→ 0, the first term in (A.1) is asymptotically equivalent to 1, while the

second term is equivalent to (5) with h(k), k = 0, 1 as in (6), yielding the result.

Asymptotic equivalence of β̂ANCOV A2 to (5) with h(k), k = 0, 1, as in (11), and to β̂KOCH .
The least squares estimator for βZ in (10), obtained as described after (10), is

{
1 −

n2

n0n1
(n−1d2)

T D−1(n−1d2)

}
−1
{

Y
(1)

− Y
(0)

−
n

n0n1
dT
2 D−1

(
Σ̂XY

Σ̂XY Z

)}
, (A.2)

where d2 = {dT
1 ,
∑n

i=1(Zi − Z)2(Xi − X)T }T , Σ̂XY Z = n−1
∑n

i=1(Xi − X)(Yi − Y )(Zi − Z),
and

D =

(
Σ̂

(0)
XX Σ̂

(1)
XX

Σ̂
(1)
XX Σ̂

(2)
XX

)
, Σ̂

(ℓ)
XX = n−1

n∑

i=1

(Zi − Z)ℓ(Xi − X)(Xi − X)T ,

so Σ̂
(0)
XX = Σ̂XX . Clearly, D

p
→ block diag{ΣXX , δ(1 − δ)ΣXX}, and n−1d2

p
→ 0 (using

randomization), so that, with n2/(n0n1)
p
→ {δ(1 − δ)}−1, the first term in (A.2) is

asymptotically equivalent to 1. Because
∑n

i=1(Zi −Z)2(Xi −X) =
∑n

i=1(Zi −Z)Xi(1− 2Z),

Z
p
→ δ, Σ̂XY

p
→ ΣXY = (1 − δ)Σ

(0)
XY + δΣ

(1)
XY , and Σ̂XY Z

p
→ δ(1 − δ)(Σ

(1)
XY − Σ

(0)
XY ), we have

after algebra for large n that

dT
2 D−1

(
Σ̂XY

Σ̂XY Z

)
≈

n∑

i=1

(Zi − Z)[ Σ̂XY + (1 − 2δ)Σ̂XY Z/{δ(1 − δ)}]T Σ−1
XXXi

≈

n∑

i=1

(Zi − Z){δΣ
(0)
XY + (1 − δ)Σ

(1)
XY }T Σ−1

XXXi, (A.3)
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as required. To show the equivalence of β̂KOCH to β̂ANCOV A2, we show that the second term

in (12), V T
XY V −1

XX(X
(1)

− X
(0)

), can be written as n/(n0n1)×(A.3), where VXY and VXX are
defined in (13). Because of (15), it suffices to find the limit in probability of nV T

XY (nVXX)−1. It

is straightforward to show that, for large n, nVXX ≈ δ−2n−1
∑n

i=1 Zi(Xi−X
(1)

)(Xi−X
(1)

)T +

(1−δ)−2n−1
∑n

i=1(1−Zi)(Xi−X
(0)

)(Xi−X
(0)

)T , and nVXY ≈ δ−2n−1
∑n

i=1 Zi(Xi−X
(1)

)Yi+

(1−δ)−2n−1
∑n

i=1(1−Zi)(Xi−X
(0)

)Yi. Because by randomization X−X
(k) p

→ 0, k = 0, 1, we

may replace X
(k)

, k = 0, 1, by X in these expressions, from whence nVXX
p
→ {δ(1−δ)}−1ΣXX

and nVXY
p
→ {δ(1 − δ)}−1{(1 − δ)Σ

(1)
XY + δΣ

(0)
XY }, and the result follows.

Variance of β̂ANCOV A2. We show that β̂ANCOV A2 has smallest asymptotic variance among all
estimators of form (5) with h(k), k = 0, 1, linear in Xi; i.e., h(k)(Xi) = α0k + αT

k Xi, say. It is
straightforward to show that all such estimators satisfy

n1/2(β̂ − β) = n1/2(Y
(1)
− Y

(0)
−β) − n−1/2

n∑

i=1

(Zi − Z)

(
nαT

0

n0
+

nαT
1

n1

)
Xi

≈ n−1/2
n∑

i=1

({
Zi

δ
−

1 − Zi

1 − δ

}
Yi − β −

(Zi − δ)

δ(1 − δ)

[
η0 + ηT {Xi − E(X)}

])
, (A.4)

where η0 = δE(Y |Z = 0) + (1 − δ)E(Y |Z = 1), and η = δα0 + (1 − δ)α1. That with smallest
variance takes η to minimize the variance of the summand in (A.4). The summand is A−ηT B,
say. This is least squares problem [14, p. 1050], which yields ηT = cov(A,B){var(B)T }−1 =

{δΣ
(0)
XY + (1 − δ)Σ

(1)
XY }T Σ−1

XX . Comparing to (11), the result follows.

Demonstration of (16). Similar to (A.4), for arbitrary h(k), k = 0, 1, it is straightforward to

show that n1/2(β̂ − β) ≈ n−1/2
∑n

i=1 φ(Yi, Zi,Xi;h
0, h(1)), where

φ(Y,Z,X; h0, h(1)) =

(
Z

δ
−

1 − Z

1 − δ

)
Y − β −

(Z − δ)

δ(1 − δ)
{η0 + δh(0)

c (X) + (1 − δ)h(1)
c (X)},

where h
(k)
c (X) = h(k)(X)−E{h(k)(X)|Z = k}, k = 0, 1. As φ(Y,Z,X; h0, h(1)) has mean zero

because Z⊥⊥X, the choices of h(k), k = 0, 1, leading to the smallest variance asymptotically

are those minimizing E{φ2(Y,Z,X; h(0), h(1))}. Letting h
(k)
opt(X) = E(Y |Z = k,X), k = 0, 1,

for brevity and writing gopt(X; h(0), h(1)) = [η0 + δ{h
(0)
c (X) − h

(0)
opt(X)} + (1 − δ){h

(1)
c (X) −

h
(1)
opt(X)}]/{δ(1 − δ)}, for any h(k), k = 0, 1, we have

E{φ2(Y,Z,X; h(0), h(1))} = E[{φ(Y,Z,X; h
(0)
opt, h

(1)
opt)} − (Z − δ)gopt(X; h(0), h(1))}2]

= E{φ2(Y,Z,X; h
(0)
opt, h

(1)
opt)} + δ(1 − δ)E{g2

opt(X; h(0), h(1))} (A.5)

≥ E{φ2(Y,Z,X; h
(0)
opt, h

(1)
opt)}

where (A.5) follows because Z⊥⊥X implies that the crossproduct E{φ2(Y,Z,X; h0
opt, h

(1)
opt)(Z−

δ)gopt(X; h(0), h(1))} = 0, demonstrating (16). In fact, it is immediate from (A.5) that, by

taking h(k) ≡ 0, k = 0, 1, Avar(β̂) = Avar(Y
(1)

−Y
(0)

)−δ(1−δ)E{g2
opt(X; 0, 0)}, where “Avar”

denotes “asymptotic variance,” showing that using the optimal choices in (16) is guaranteed
to lead to a reduction in variance over the unadjusted estimator.
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By a similar argument, one may in fact show that, if one restricts attention to representations
for h(k)(X) that are linear in X; i.e., h(k)(X) = α0k + αT

k X, k = 0, 1, and fits this model by
treatment-specific least squares, then the resulting estimator for β has asymptotic variance

Avar(Y
(1)

−Y
(0)

)−{δ(1−δ)}−1{δΣ
(0)
XY +(1−δ)Σ

(1)
XY }T Σ−1

XX{δΣ
(0)
XY +(1−δ)Σ

(1)
XY }. This holds

regardless of whether the true E(Y |Z = k,X) are linear. Thus, representing h(k), k = 0, 1 by

linear functions leads to a reduction in variance over Y
(1)

− Y
(0)

.

Effect of parameter estimation in postulated models for E(Y |Z = k,X), k = 0, 1. As in
Section 4, suppose we specify regression models fk(Xi, αk) for E(Y |Z = k,X), k = 0, 1,
and we fit the models by solving appropriate regression estimating equations to obtain
estimators α̂k. As an example, for continuous Y we may solve the least squares equations∑n

i=1{Yi − fk(Xi, αk)}fk,α(Xi, αk) = 0, fk,α(Xi, αk) = ∂/∂αkfk(Xi, αk). Under regularity
conditions, α̂k −α∗

k = Op(n
−1/2), where α∗

k satisfies
∑n

i=1 E{Yi − fk(Xi, α
∗

k)}fk,α(Xi, α
∗

k) = 0
[32, sec. A.6.5], and similarly for other estimating equations. If fk(Xi, αk) is a correct model
for E(Y |Z = k,X), then α∗

k is the value satisfying E(Y |Z = k,X) = fk(X,α∗

k); if not, α∗

k is

still some constant value. Either way, β̂ satisfies

n1/2(β̂ − β) = n1/2(Y
(1)
− Y

(0)
−β) − n−1/2

n∑

i=1

(Zi − Z)

{
n

n0
f0(Xi, α̂0) +

n

n1
f1(Xi, α̂1)

}

≈ n−1/2
n∑

i=1

[{
Zi

δ
−

1 − Zi

1 − δ

}
Yi − β −

(Zi − δ)

δ(1 − δ)
{η0 + δf c

0(Xi, α
∗

0) + (1 − δ)f c
1(Xi, α

∗

1)}

]
(A.6)

+

1∑

k=0

δ−k(1 − δ)k−1

{
n−1

n∑

i=1

(Zi − δ)fk,α(Xi, α
∗

k)

}
n1/2(α̂k − α∗

k), (A.7)

where fc
k(Xi, α

∗

k) = fk(Xi, α
∗

k) − E{fk(Xi, α
∗

k)}, k = 0, 1. The term in (A.7) converges in

probability to zero because Z⊥⊥X. Thus, n1/2(β̂ − β) has the same limit in distribution as
(A.6), which depends on the fk(X,α∗

k), which are fully specified as functions of X given α∗

k.
The smallest achievable large sample variance is that of the limit in distribution of (A.6) when
fk(X,α∗

k) = E(Y |Z = k,X), k = 0, 1; i.e., fk coincide with the true regression relationships.

Estimator for sampling variance of β̂. The summand in (A.6) is the form of the influence

function [13] for the proposed estimator β̂. Applying the sandwich technique and replacing
this summand by an empirical version yields the sum in (18). We take C = (n− 1)/(n− p− 1)

for β̂ANCOV A1; C = {(n0 − pn1/n − 1)−1 + (n1 − pn0/n − 1)−1}/{(n0 − 1)−1 + (n1 − 1)−1}

for β̂KOCH , which generalizes the correction proposed by Lesaffre and Koch when n0 = n1 [3];

and C = {(n0−p0−1)−1 +(n1−p1−1)−1}/{(n0−1)−1 +(n1−1)−1} for β̂, where pk, k = 0, 1,
are the number of parameters fitted in each model fk, k = 0, 1, exclusive of intercepts.

To obtain an alternative estimator for the sampling variance using the bootstrap, at step
(i) of Section 4, B bootstrap data sets could be obtained, each by resampling n subjects with

replacement from the original data. Each could be partitioned into two sets, i.e., D
(k)∗
b , k = 0, 1

for b = 1, . . . , B. In step (ii) of Section 4, the modeling strategy used on the actual data D(k)

for each k would also be replicated by the analysts responsible for each D
(k)∗
b , b = 1, . . . , B.

The fitted model so obtained for each b = 1, . . . , B, fk,b(X, α̂k,b), say, could be reported along
with the model developed for the actual data. In step (iii), predicted values for each k and

bootstrap data set could then be constructed and used with D
(k)∗
b , k = 0, 1, b = 1, . . . , B, to
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construct B bootstrap estimates β̂b, b = 1, . . . , B, using (17). The estimated standard error

for β̂ would then be obtained as the square root of the sample variance of the β̂b, b = 1, . . . , B.
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