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COVARIATE MEASUREMENT ERROR IN LOGISTIC
REGRESSION*

By LEONARD A. STEFANSKI AND RAYMOND J. CARROLL
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In a logistic regression model when covariates are subject to measure-
ment error the naive estimator, obtained by regressing on the observed
covariates, is asymptotically biased. We introduce a bias-adjusted estimator
and two estimators appropriate for normally distributed measurement errors
—a functional maximum likelihood estimator and an estimator which exploits
the consequences of sufficiency. The four proposals are studied asymptotically
under conditions which are appropriate when the measurement error is small.
A small Monte Carlo study illustrates the superiority of the measurement-er-
ror estimators in certain situations.

1. Introduction and motivation. Logistic regression is the most used form
of binary regression [see Berkson (1951), Cox (1970), Efron (1975), and Pregibon
(1981)]. Independent observations (y;, x;) are observed where (x,) are fixed
p-vector predictors and (y;) are Bernoulli variates with

(1.1) Pr{y =1lx;} = F(z78,) 2 (1 + exp(—xiTBO))_l, i=1,...,n.

Subject to regularity conditions, the large-sample distribution of the maximum
likelihood estimator of B, is approximately normal with mean zero and covari-
ance matrix (1/n)S, (B,), where S (-) is defined for y € R? as

(1.2) Sv) =n "L F(xly)xua]
1

Motivation for our paper comes from the Framingham Heart Study (Gordon
and Kannel, 1968), a prospective study of the development of cardiovascular
disease. This ongoing investigation has had an important impact on the epide-
miology of heart disease. Much of the analysis is based on the logistic regression
model with y an indicator of heart disease and x a vector of baseline risk factors
such as systolic blood pressure, serum cholesterol, smoking, etc. It is well known
that many of these baseline predictors are measured with substantial error, e.g.,
systolic blood pressure. When a person’s “true” blood pressure is defined as a
long-term average, then individual readings are subject to temporal as well as
reader-machine variability. In one group of 45-54 year old Framingham males it
was estimated that one fourth of the observed variability in blood pressure
readings was due to within-subject variability. The second author was asked by
some Framingham investigators to assess the impact of such substantial measure-
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1336 STEFANSKI AND CARROLL

ment error and to suggest alternatives to usual logistic regression which account
for this error. The present study is an outgrowth of these questions.

When covariates are measured with error the usual logistic regression estima-
tor of B, is asymptotically biased, [see Clark (1982) and Michalik and Tripathi
(1980)]. As a consequence of bias there is generally a tendency to underestimate
the disease probability for high-risk cases and overestimate for low-risk cases; it
will be said that measurement error attenuates predicted probabilities. Also, bias
creates a problem with hypothesis testing; in Section 2 it is shown that the usual
asymptotic tests for individual regression components can have levels different
than expected. An example of this occurs in an unbalanced two-group analysis of
covariance where interest lies in testing for treatment effect but the covariable is
measured with error.

The severity of these problems depends, of course, on the magnitude of the
measurement error. In some situations ordinary logistic regression might perform
satisfactorily. However, when measurement error is substantial, alternative pro-
cedures are necessary. In addition, the availability of techniques which correct for
measurement error can make clear the need for better measurement, e.g., more
blood-pressure readings over a period of days.

In Section 2 our measurement-error model is defined and the asymptotic bias
in the usual logistic-regression estimator is studied. Section 3 presents some
alternative estimators; results of a Monte Carlo study are outlined in Section 4;
proofs of the asymptotic results are given in Section 5.

Until recently the study of measurement-error models has focused primarily
on linear models; see the review article by Madansky (1959) and the papers by
Fuller (1980) and Gleser (1981). Interest in nonlinear models is increasing with
recent contributions by Prentice (1982), Wolter and Fuller (1982a, 1982b), Carroll,
Spiegelman, Lan, Bailey, and Abbott (1984), Armstrong (1984), Amemiya (1982),
and Clark (1982). Of these articles Clark (1982) and Carroll et al. (1984) focus
specifically on logistic regression. The asymptotic methods employed in this
paper are similar to those used by Wolter and Fuller (1982a) and Amemiya (1982)
in their studies of nonlinear functional relationships.

2. A measurement error model for logistic regression.

2.1. The model. Our measurement-error model starts with (1.1), but rather
than observing the p-vector x; we observe

(2.1) X, =x,+ ov, wherev, = ZV%,.

In (2.1) 272 is the square root of a symmetric positive semidefinite matrix =
scaled so that ||Z|| =1 and (¢;) are independent and identically distributed
random vectors with zero mean and identity covariance; also ¢, is independent of
¥, i =1,..., n. The scale factor o dictates the magnitude of the measurement
error, e.g., if X, is a mean of m independent replicate measurements of x; then
o o m~ /2, The asymptotic theory presented in this paper requires that ¢ — 0 as
n — oo, i.e., large sample, small measurement-error asymptotics. The asymptotics
are relevant for two situations: (i) when X, is an average of m-independent
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measurements of x;, in which case the Central Limit Theorem suggests that (e,)
should be viewed as normal random variates, and (ii) when measurement error is
small but nonnegligible. In the latter case the moments of order greater than two
of (¢;) generally differ from those of a normal variate.

Our methods of correcting for bias require knowledge of the error covariance
matrix V £ ¢23. Since this information is seldom available all asymptotic results
are derived for the case in which V is replaced by an estimator V satisfying

(2.2) RV - V) = 0,(a?).

Condition (2.2) is satisfied, for example, when V is estimated by replication. It is
convenient to write V = 022 where 62 =||V| and $ = V/||V|| Note that (2.2)
then implies n'/*(1 — 62/62) = O,(1).

2.2. The effects of measurement error. Our investigation starts with a study
of the estimator obtained by regressing y, on the observed X,. This estimator, to
be called B8, maximizes

n

(2.3) L(y)2 n”; {log F(cly) +(1 — y,)log F(—cTy))

and satisfies

(24) 2 (3~ F(cfB))e, =

when ¢; = X;, i = 1,..., n. Our interest lies in the behavior of 8 as max(o, n~ ')

- 0. In addition to assumptions on the errors ¢;, some design conditions are
necessary to insure weak consistency of B We shall work with the following
assumptions where || - || denotes the Euclidean norm:

(C1) G,(v) converges pointwise to a function G(y) possessing a unique maxi-
mum at B, where G,(-) is defined as

Gol) & 1Y (F(xTB, log F(xTy) + F(~ xR, log F(-xly)};

(€2) L (llx ) = o(n®);

1

(C3) E([ley) < oo.
The condition (C1) is an assumption of convenience since for each n, G,()1is
concave with a maximum at f,. Weaker conditions could thus be employed by
studying subsequences of G,(-) [see Theorem 10.9, Rockafellar (1970)].

Consistency of 8 is proved in Theorem 5.1. This result is necessary to establish
the following asymptotic expansion which is crucial to our investigation. Theo-
rem 1 gives conditions such that

B = BO + n*1/2Sn‘1(IBO)Zn

25) £ (Bo) (s + I, )y + oy(max(o?, n177)),
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where

Z,= nkl/Qi(yi — F(x!B,))x;
1

J, = —(2n) 'L F(x7B,)x, 873
1

I

J, o= —n 'L FO(xB,)=.

1

THEOREM 1. (Asymptotic expansion of ﬁ’). Assume that B is a consistent
estimator of B, satisfying (2.4). Also assume:

(A1) There exists a positive definite matrix M, 6 > 0 and N, < oo, such that
S.(v) = M whenever n = N, and ||y — By|l < §;

(A2) n 'Effjx® - x2 < oo, max, _, _|lxl = o(a~2);

(A3) E(e,) = 0, E(e,el) = I, E(lle,]|>™*) < o0 for some a > 0.
Then ﬁ has the expansion given in (2.5).

Note that the first part of (A2) implies max, _, _ ,||x;/| = o(n'/?). This fact is
used repeatedly in the proofs in Section 5. Assumptions (Al) and (A2) are
sufficient to prove asymptotic normality for S,'%(B,)Z, by using the
Cramér—Wold device (Billingsley, 1979, Theorem 29.4) and appealing to Proposi-
tion 5.3.2 of Laha and Rohatgi (1979). Thus Theorem 1 indicates that with
A = n'/%52, we can expect n'/*(8 — B,) to be approximately normally distributed
with mean AS; '(8,)(J, ; + J, 5)B, and covariance S, '(B,), when 7 is large and
o is small. When X, is a mean of m replicates, 02 « m~! and A describes the
relationship between the sample size and the rate of replication. The asymptotic
bias obviously decreases with increasing replication.

We can use expansion (2.5) to construct a corrected estimator, [?C, which has
smaller asymptotic bias. Before doing so we comment on the problems with E
alluded to in the introduction.

Bias AND ATTENUATION. Consider simple logistic regression through the
origin with 8, > 0. One expects to see attenuation, i.e., a negative first-order bias
term. For most designs this is true. Somewhat surprisingly and completely at
odds with the linear regression case, S, '( 8,)( J, 1+ dJ, ,)B, can be positive. One
design in which this occurs arises when most cases have very high or very low
risk, i.e., |x7B,| is large for most i.

HYPOTHESIS TESTING. Consider a two-group analysis of covariance, x7 =
(1,(=1), d,), By = (By» B1» By)- The covariance d; is measured with error having
variance o2, Often interest lies in testing hypotheses about the treatment effect
B,. A standard method to test 8, = 0 is to compute its logistic regression
estimate compared to the usual estimate of its asymptotic standard error. When
the asymptotics of Theorem 1 are relevant and n!/%20 — A > 0, this test ap-
proaches its nominal level only if the second component of S, '(8,)(J, ; + J, 2)B,
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approaches zero. Letting s, denote the second row of S, '(B,) this is achieved
only if

n
n'lZsz»TxiF‘z’(xiTB<))UZB§ - 0.
1

This will not hold in the common epidemiologic situation in which the true
covariables are not balanced across the two treatments. Thus, when substantial
measurement error occurs in a nonrandomized study, there will be bias in the
asymptotic levels of the usual tests.

3. Accounting for measurement error. In this section three alternative
approaches to estimatation are studied. The first is based on expansion (2.5) and
is distribution free in the sense that only moment assumptions are made about
the measurement errors. The second two methods are based on an assumption of
normally distributed errors; their asymptotic properties are then studied under
more general conditions.

3L Adjustmg for bias in B. Write b, = S;Y(B,)(J, w1+, 2)B, and b, =
1(B)(J +dJ, 2)B where

Sn(Y) = n_IZF(D( XiTY)XiXiT
1

(31) jn,l _(Zn)_IZF(Z)(XiTﬁ)XiBTﬁ:7
1

n
Jpo= —n ' LFO(XB)Z;

1
b depends only on the observed data and, under the conditions of Theorem 1
and (2.2), approximates b, in the sense that b b, = [ (1) asmin(n,o" 1) - co.
This result suggests that the bias-corrected estimator B B - 62b, should have
smaller asymptotic bias for large n and small 6. We state these results as a
theorem.

THEOREM 2. Assume the conditions of Theorem 1 and (2.2). Then Bc is
consistent and

B.= B, +n V28 (B,)Z, + op(max(oz, n-1/2)).

REMARKS. Theorem 2 follows from Theorems 5.1 and 5.2 which are proved
using the followmg characterization of B Note that B =(I- 52B )B where
B =S YB)J, +d, 2) Slnce X'B=XNI-6°B) 8. it follows that B,
maximizes (2.3) when ¢, =%, ,, defined as

(3.2) %, .=X,+6%I-¢8BT) 'BX,.

In this sense BC is a type of two-stage estimator obtained by doing logistic
regression with £, _ replacing X,.
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The estimator [?C is not unbiased just less biased. The Monte Carlo study of
Section 4 shows that in realistic sampling situations the reduction in bias can be
substantial.

3.2. Normal measurement error. 'When measurement error is present there is
an added source of variability which is not accounted for by model (1.1). We now
expand this model by assuming that (¢;) are normally distributed, an assumption
which is not unreasonable in some situations. The log-likelihood for estimating S,
and x,,..., x, is then

i{y,log( F(x7B)) + (1 — y)log(F(—x7B))
(3.3) 1

—(20%) (X, — %) 2 N(X, - x)}.

The vectors ﬁ,, ¢; maximizing (3.3) satisfy
Z(J’i - F(ELTB/))C‘ =0
1

& =X, +(y— F(e))o*sh, i=1,...,n.

There are two problems with this estimator—it depends on the unknown matrix
022 and solving for B; and (¢;) is difficult. For these reasons we suggest an
approximate version of ;. Noting the form of ¢; we let

(3.4) .= X +(y— F(XB))é*2B

and define ﬁ, as the estimator obtained by maximizing (2.3) with ¢, = &, ; ,l;’, is
consistent and has an asymptotic expansion given in the next theorem. The
assumption of normal errors is not necessary for Theorem 3.

THEOREM 3. Assume the conditions of Theorem 1 and (2.2). Then Ef is
consistent and

(3.5) ,éf =By + n—l/QS,fl(,Bo)Zn + UQSnil(BO)Jn,IB() + op(max(oz, nfl/Z)).

REMARKS. A comparison of (2.5) and (3 5) indicates that our approxunate
functional maximum likelihood estimator, B,, and the uncorrected estimator, B,
have first-order biases of the same magnitude. It can be shown (Stefanski, 1983)
that the bias term in ,8, is not due to our one-step modification nor to use of Vin
place of V, i.e, when V is known the full functional maximum likelihood
estimator, B'f, also has the expansion given in (3.5) even in the case of simple
logistic regression. This is in contrast to linear regression where, if the ratio of
error variances is known or if there is finite replication of the predictors, the
functional maximum likelihood estimator is consistent.

Our final estimator starts with an assumption of normal errors and exploits
the consequences of sufficiency. Given 023 and fB,, a sufficient statistic for
estimating x, is ¢,(B,) = X, + 0%y, — 1)=B,. It follows that the distribution of
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¥, given ¢,(B,) does not depend on x, The reason for using this particular
sufficient statistic is that

(3.6) P{yi= 1|Ei(Bo)} = F(E;F(B())Bo)
and hence the score equation
() > (3~ F(T(8)B))a(B) = 0

1

is unbiased for B,. The conditional probability (3.6) also suggests another ap-
proach—replace ¢; by ¢,(y) in (2.3) and maximize the resulting expression as a
function of y. However, a simple calculation indicates that the resulting score
equation is not unbiased for B,, thus we will confine our attention to (3.7).

Equation (3.7) can have multiple solutions not all which produce a consistent
sequence of estimators. Since ¢,(8) also depends on the unknown matrix 622, we
propose the following modification: Let

(3.8) ' £,.=X,+6%y—1)ShB

and define ,és, the sufficiency estimator, as the maximizer of (2.3) when ¢, is
replaced by %, .. This estimator is consistent and has the expansion given in the
next theorem.

THEOREM 4. Assume the conditions of Theorem 1 and (2.2). Then B, is
consistent and

(3.9) By = Bo+ n"V/35, (B))Z, + o,(max(o, n~ /%),

REMARKS 1. Theorem 4 does not require the assumption of normal measure-
ment error. Also, B can be replaced by any consistent estimator in the definition
of £; .. The effects of nonnormal measurement error and our particular choice of
%, , become apparent only when ﬁs is expanded through terms of order
max?(o2, n™1/2). This analysis is lengthy and is not presented here [see Stefanski
(1983)].

2. It is possible to define a sufficiency estimator for a large class of measure-
ment-error models. In particular, we have in mind the generalized linear models
with canonical link functions (McCullagh and Nelder, 1983). A complete exposi-
tion of this theory will appear elsewhere. '

In the discussion following Theorem 1, it was noted that n'/%(8 — B,) is
asymptotically normal with nonzero mean provided n'/%% — A. It follows from
Theorems 2 and 4 that both n'/%(8. — B,) and n'/%(B, — B,) are asymptotically
normal with zero means under the same conditions. Furthermore, it can be shown
that for ,éc and B, asymptotic normality is obtained under the weaker condition
n'/?6* = X [see Stefanski (1983) for details].

In the next section results from a small Monte Carlo study are presented.

4, Monte\ Carlo. We conducted a smallA sirAnuliztion exgeriment to determine
the relative merits of the four estimators §, B, B;, and B,. The model for the
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study was
(4.1) Pr{y, = 1d,} = F(a + Bd,), i=1,...,n,

where F(-) is defined in (1.1).

As our estimators are derived for the functional case, one possible Monte Carlo
study would have consisted of generating for fixed (d,,..., d,) a sequence of
response vectors (y,,..., ¥,) according to (4.1), and a sequence of measurement-
error vectors. This would allow evaluation of the estimators’ performance for the
particular design (d,,..., d,). However, several different designs would have to
be studied in order to obtain a useful overall measure of performance. We opted
instead for a study in which at each step the design (d,,..., d,,) is generated at
random and, in turn, a single response vector and measurement-error vector are
generated. After a number of such steps are completed, the overall performance
of the estimators is investigated [c.f. Olkin, Petkau, and Zidek (1981) and
Dempster, Schatzoff, and Wermuth (1977)]. We believe this approach better
indicates the estimators’ performance in a wide variety of settings.

We considered these sampling situations where x? denotes a chi-squared
random variable with one degree of freedom:

(1) (a,B)=(-14,14), (d,) ~ Normal(0, 03 );
(II) (a,,B)= (_1'4’1‘4)’ (di)~0d(X%_ 1)/‘/5;
where,

o7 =0.10, n = 300, 600.

For each case, we considered two sampling distributions for the measurement
errors: (a) Normal(0, 7?) and (b) a contaminated normal distribution, which is
Normal(0, 7?) with probability 0.90 and Normal(0,2572) with probability 0.10.
For both cases, 7% was one third the variance of the true predictors (72 = 02/3).

We believe these two sampling situations are realistic, but their representative-
ness is limited by the size of our study. The sample sizes n = 300,600 may seem
large, but our primary interest is in larger epidemiologic studies where such
sample sizes are common. For example, Clark (1982) was motivated by a study
with n = 2580, Hauck (1983) quotes a partially completed study with n > 340,
and we have analyzed Framingham data for males aged 45-54 with n = 589. In
addition, for the particular designs in our study, the unconditional probability of
response (y = 1) is only about 0.10. As in the case of Bernoulli trials, an
estimator’s variance decreases more like 1/np(1 — p) than 1/n and for this
reason np(l — p) is sometimes called the effective sample size. In our study the
effective sample sizes are only about 30 and 60 respectively. Furthermore, the
results of the study suggest that correcting for measurement error when
the effective sample size is small is unwarranted, except possibly when measure-
ment error is larger than what we have studied.

The values of the predictor variance 2 and the normal measurement error
variance 72 are similar to those found in the Framingham cohort mentioned in
the previous paragraph when the predictor was log {(systolic blood pressure —
75)/3}, a standard transformation. The choice of (a, 8) comes from Framingham
data as well. All experiments were repeated 100 times.
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In each experiment, we sampled two independent measurements (D, ,, D, ,) of
each d,; the observed covariate was X, = (1, D,)?, where D, = (D;, + D, )/2.
Thus o?, the variance of D was equal to (1/6)07 for the case of normal
measurement error while for the contaminated normal error distribution 0% =
(3.4/6)c2. The matrix ¢%Z has only one nonzero entry which was estimated by
the sample variance of (D, , — D, 5)/2.

In addition to the four estimators presented in this paper, we included in the
study a proposal due to Clark (1982). She suggests the estimator 3 ~ Obtained by
maximizing (2.3) when c; is replaced by %, y = X, — §28% (X, — f) where §
and 2, are the sample mean and covariance of the observed data. Motivation for
this estimator derives from an assumption of normal errors and normal covariates
x;. In this case E(x;X;)= X; — ¢®°2ZZ3'(X,; — p) and hence %, , is a natural
estlmator of x,. Theorems 5.1 and 5.2 can be used to prove con81stency and derive
an asymptotlc expansion for this estimator. Like ,B and ,B,, ,B » has a nonzero
first-order bias although it is too lengthy to present here.

Sweeping conclusions cannot be made from such a small study. However we
can make the following qualitative suggestions. First ,B is less variable but more
biased than the others. Sample sizes such as n = 600 as in the study or Clark’s
n = 2580 are such that bias dominates and hence are candidates for using
corrected estimators. An opposite conclusion holds for small sample sizes where
variance dominates. A second suggestion from Table 1 is that when Var(B) is
small relative to its bias [Case I(b), II(b), and when n = 600], the corrected
estimators perform quite well.

Both [?s and B, were defined via an assumption of normal errors yet they also
performed well when the errors were contaminated normal [Cases I(b), II(b)].
Clark’s estimator proved to be sensitive to the assumption of normal covariates;
B ~ performed very well in our study when the predictors were normally distrib-
uted, but it did have a noticeable drop in efficiency when the predictors were
highly skewed (Case II). Finally, the corrected estimator ,@c, which was derived
with no distributional assumptions for either the predictors or errors, performed
well throughout the study.

In summary, the Monte Carlo results suggest that the estimators ,Bc, ,8,, ,BS,
and Clark’s 8 y are useful alternatives to B when covariates are measured with
error. The pressing practical problem now appears to be how to delineate those
situations in which ordinary logistic regression should be corrected for its bias.
Studies of inference and more detailed comparisons of alternative estimators will
be enhanced by the identification of those problems where measurement error
severely affects the usual estimation and inference.

5. Proofs of theorems. Consider the estimator B obtained by maximizing
(2.3) when ¢; is replaced with ¥, where

(5.1) 7 X, =x;,+0v,+ 0%,

In Theorem 5.1 we prove weak consistency of 8 under conditions (C1), (C2), (C3),
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TABLE 1
Results from our Monte Carlo study of the simple logistic regression model Pr{y, = 1|d;} = F(a +
Bd;). Observed covariates are X, = (1,D,)T where E,- is the mean of two independent measurements
of d;. The normal measurement errors have variance o2 / 3; the contaminated normal errors have
distribution function G(x) = 0.99(x /1) + 0.1®(x / 57) and variance (3.4 / 3)o2. “Efficiency” refers to
mean-squared error efficiency with respect to ordinary logistic regression.

ﬁ Bc ef éN Bs
CASE I{a).(a,B) = (—1.4,1.4),(d;) ~ N(0, 62 = 0.1), normal measurement error.

n = 300 Bias -0.21 —-0.04 —0.05 -0.02 —0.06
Std. Dev. 0.52 0.61 0.61 0.61 0.60
Efficiency 100%* 85% 85% 84% 88%

n = 600 Bias -0.22 —-0.05 -0.05 -0.02 —0.06
Std. Dev. 0.33 0.38 0.38 0.38 0.38
Efficiency 100%* 108% 106% 107% 108%

CASE I(b). Same as Case I( a) but measurement errors have the contaminated normal distribution.

n = 300 Bias —-0.49 -0.16 -0.19 0.02 -0.20
Std. Dev. 0.34 0.48 0.48 0.54 0.46
Efficiency 100%* 143% 139% 121% 143%

n = 600 Bias -0.53 -0.20 -0.21 -0.03 —0.22
Std. Dev. 0.24 0.33 0.34 - 0.38 0.33
Efficiency 100%* 223% 215% 234% 216%

CASE Ilfa). (a, B) = (—1.4,1.4), (d;) ~ a,(x% - 1)/\/5, o2 = 0.1, normal measurement error.

n = 300 Bias -0.28 —-0.05 -0.07 0.10 —-0.08
Std. Dev. 047 0.58 0.57 0.66 0.56
Efficiency 100%* 90% 91% 69% 93%

n = 600 Bias —-0.27 -0.03 —0.04 0.11 -0.05
Std. Dev. 0.33 0.41 0.41 0.45 0.40
Efficiency 100%* 111% 110% 85% 112%

CASE II(b). Same as Case II(a) but measurement errors have the contaminated normal distribution.

n = 300 Bias -0.43 -0.13 -0.15 0.12 -0.17
Std. Dev. 0.33 0.44 0.45 0.53 0.43
Efficiency 100%* 141% 134% 103% 141%

n = 600 Bias —0.46 -0.15 -0.16 0.10 -0.18
Std. Dev. 0.25 0.33 0.34 0.40 0.33

Efficiency 100%* 201% 190% 159% 194%

*By definition.

and
(Pl) Z”gm“2 = Op(n)
1

In Theorem 5.2 an asymptotic expansion for B is given. The consistency and
asymptotic expans1ons of B, ,Bc, ,B,, and ,B follow from these general results by
noting that X, £, , %, ;, and X, , all have the representation given in (5.1). We
remind the reader that all the asymptotic expressions hold as max(o, n™!) — 0.
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THEOREM 5.1 (Consistency). Assume (C1), (C2), (C3), and (P1), then 8- B,
= 0,(1).

ProoF. Define L A(Y) to be the function obtained by taking c; = X, 1n (2.3).
The identity log(F(¢)/(1 — F(t))) = t is used to show L(v)- G (V) =R, +
R, ,, where

R,,= n‘IZ(yi - F(xfﬁo))xZ‘Y
1

R, ,=n"'Y{y(&ly - «[y) + log F(-%Ty) — log F(-xTv)}.
1

Under (C2), R, has mean zero and asymptotically negligible variance, and by
(C3) and (P1),

IR, Il < 20llylin™" Xllo; + 08:,ll = 0,(1).
1

Consequently (C1) implies that L (-) converges pointwise in probability to G(-).
An appeal to Corollary I1.2 of Andersen and Gill (1982) concludes the proof.

The consistency results follow by applying Theorem 5.1 first to ,@, (£,=0
and then to B,, f;, and B,. Next we derive the asymptotic expansions for these
estimators.

THEOREM 5.2 (Asymptotic expansion). Assume (Pl) and the conditions of
Theorem 1, then

B = BO + n_1/2Sr:1(BO)Zn + 02Sr:1(180){(‘]n,1 + Jn,2)180 + bn,3 + bn,4}
+op(max(02, n~-1/2)),

where
n

= n‘IZ(y - (xiTIBO))gm,

1
b, 4= —n‘le(l)(xfBO)xigg;lﬁo,
1
where S,(+) is given in (1.2), and Z,,, dJ, |, and J, , are defined in (2.5).

Theorem 5.2 is proved with a series of lemmas. First we show how Theorems
1-4 follow as corollaries. Theorem 1 is immediate since g;, = 0 for B. For ,Bc,
g, = (62/a®)(I — 6°BT)'BTX, where B, = S, (B)(J, , + J, ;). Assumptions
(A2), (A3), Lemma 5.1, and (2 2) imply b, ; = 0,(1), and

2 -1

_bn,4 = nvle(l)(x;I:BO)xiXiTBn(I - éBn) :BO
1

= Sn(IBO)BnIBO + Op(l)
= (Jn,l + Jn,2)BO + Op(l)’

thus proving Theorem 2.
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For B, &, = (62/0%)(y; — F(X[B)3B and (A2), (A3), Lemma 5.1, and (2.2)
imply b, , = 0,(1), and

bn,3 n‘IZ(yi - F(xiqpo))zzﬁo + Op(l)
1

= —d, B, + 0,(1).

Theorem 3 follows. Finally for 8,, g;, = (62/a%)(y, — 1)38. (A2), (A3), Lemma
5.1, and (2.2) imply

b,y =n""Y (5~ F(x7B,)) (5 — 3)ZBy + 0,(1)
1
Jn,2:80 + Op(l)
_n‘IZF(l)(xiT:BO)(yi - %)xiBoTE:Bo + Op(l)
1

bn,4

—n VY FO(xB, ) (F(x1By) — 1)x.BT 2B, + 0,(1)
1

= —dJ, 1By + op(l).

In the last step we use the identity F@(#) = F(¢)(1 — 2F(t)). This proves
Theorem 4. Notice that in deriving these results we used only the fact that
,@’ B, = 0,(1). Thus the conclusions of theorems 3 and 4 remain unchanged if B
is replaced by any other consistent estimator in the definitions of £; f and %,

In particular, this can be shown to imply that the fully iterated versions of the
functional and sufficiency estimators (provided consistent versions are chosen)
also satisfy Theorems 3 and 4, respectively (Stefanski, 1983).

The proof of Theorem 5.2 starts with the following weak law.

LEMMA 5.1. Letu,, u,,... be independent random vectors such that E(u;) =
0 for all i, and E(]uij[”"‘) < B for all i and j, and some a > 0 and B < oo,
where u, ; is the jth element of u,;. If X}|a,| = O(n) and max, _;_(|a;|/n) = o(1)
then n™'Ela;u; = o,(1).

ProoF. The proof of the lemma entails a routine verification of the assump-
tions of Theorem 5.2.3 (Chung, 1974) and is not given here.

LEMMA 5.2. Under the conditions of Theorem 1,

nAIZ(y,‘ - F(XiTBO))Xi =n"2Z + 02(Jn,1 + Jn,2)180 + op(max(oz, n41/2)).
1

PrOOF. n 'L}y, — F(XiT,BO))X T, + T, ,, where

T,.= n‘lZ(yi — F(X[B,))x;,
1

T, o= on 'Y (3 — F(X[B,))v;.
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A Taylor series expansion of F(-) shows that
T,,=n""?Z,+¢%J, By+n '’Q

n,

+ oz(Dn,1 +R, 1),

n,l,0

where

n
Qn,l,o = “"n‘l/zzF“)(xiTBo)U?Boxi
1

D, —(2’1)‘12’1‘.{F(2)(x?BO)((D?BO)2 - Bgzﬁo)xi}

It

R,.=—(2n) Z( D(X7By) ~ F (7B, ))(olBy )

and X is on the line segment joining x; to X;. @, ,, has mean zero and
asymptotlcally negligible variance thus n '/ 2Qn, 1o = 0(n""/?). Assumptions
(A2) and (A3) and Lemma 5.1 are used to show D, , = o (1) Also note that

IR, Il < (2r) " T llx i 078,) min(1, oo7B|) < 4,47,
1

where

, 1/2
—( “ann ( E’Bo)) ;
1/2
- (n—lz<ufﬁo)2min2<1,olvfﬁol)) ~
1

Assumptions (A2) and (A3) and Lemma 5.1 imply A, = O,(1) while (A3), the
fact that max(n~1,0) » 0, and the Dominated Convergence Theorem imply
A% = o,(1). It follows that ¢%(D, , + R, ;) = 0,(a?). Combining these results we
get

(5.2) T, ,=n"'?Z, + o%J, B, + o,(max(o?, n="/%)).
Another Taylor series expansion of F{(-) shows that

Tn,2 = 02e]n,2180 + n‘1/2Qn,2,o + 02(Dn,2 + Rn,2)?
where

Q.= 0’1‘1/22(% - F(xiTBo))Ui

1

Dn,2 = _n_IZF(I)(x?Bo)(UiUiT - 2):B()

Rn,z——n“Z( D(X7B,) — FO(x7By,))v,07By,

and X'i lies on the line segment joining x; to X;. @
0,(1), and the proofs are analogous to those for @
tively. Consequently,

(5.3) T, ,=0%, .8, + op(max(az, n %)),
Combining (5.2) and (5.3) completes the proof of the lemma.

D,, and R, , are all

» and R, ,, respec-

n,2, 0

D

n,l, o n,
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_ LEmMmaA 53. Assume the conditions of Theorem 1 and (Pl) and define
H(v) = n7 'Ly, — F(Z[v)&;. Then

I:In(BO) = n_l/2Zn + 02((Jn,1 + Jn,2)BO + bn,3 + bn,4) + Op(maX(OQ’ n71/2))'

Proor. H(B,) = W+ W, .+ W, 3+ W, ,, where

W,i1= n_lz(yi - F(XiTBo))Xi’
1.

n

W, o= °n712(F(XiTBO) - F(iiTBO))(Ui + 08:,),

1

n
W, 3=0’n"'Y (5 — F(XB,))&in>
1

n

W, ,=n"'Y (F(X[B,) — F(z7B,))x;.

1
Note that in light of (A2) and (P1)

IW,.oll < o’ n ' Yllgu (ol + ollgil) = 0,(6?)-
1
Also,

W, 3 — 0B, 5l < 62013 | F(x7B,) — F(XB,) |l &:nll
1

< 1Bollo’n ™ Lllvilt g
1
1/2

n 1/2 n
< |l/}o||o3(n12|‘ui||2) (n_12|lgin”2)
1 1

=0,(0?),

using (A3) and (P1). One term in a Taylor series expansion of F(-) and Lemma
5.1, (A2), and (P1) show that

n

W4 = 026, 4ll < %1BolI*n " L (lloill + o llguall) .l 118l

1
< 02|lﬂol|2{on‘12nv,-|| I lginll + 0%~ 2 el ugmuz}
1 1
n 1/2 n 1,2
s021|Bo||2{o(n‘IZuvinznxilF) (n*anmuz)
1 1

+0%( max nxiu)n‘lZugmuZ}
<i<n 1

= op(02).
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An expansion for W, ; is given in Lemma 5.2. Combining the above results proves
the lemma.
Define

=
81

S.y) = n 'L FO(&Ty)x,2T
1

and note that
(5.4) S(v) = (3/0v)H,(v),
where H (-) is defined in Lemma 5.3.

LemMa 54. Conditions (A2), (A3), and (pl) imply S (,B) - n(,B) 0,(1)
for any B on the line segment joining B, and B.

Proor. S(B)-S.B)=H,, + H, ,, where

H,, = n*IZF(”(.%iTB_)(.%i.%iT - xixiT),
1
n

Hy = 155 (FOEE) ~ PO
1

The boundedness of FM(-) and some elementary inequalities are used to show

|H, .|| < n*12(2nx,u llov; + a2g;, |l + llov; + a2g,,.11)

n 1/2
2(n‘12nx,-u2)
1

Assumption (A2) implies n~"Z7||x;||* = O,(1) and (A3) and (P1) imply n~'Y7|jov;
+a gmH2 = 0,(1). Thus ||H, || = 0,(1) as min(¢~', n) = co. A Taylor series
expansion of F M(.) and the boundedness of F®(-) are used to show

1/2

n n
n 'Y llov, + 0%, 17|+ nT'YLllov; + o%g,,l|%
1 1

I1H, ol < nEun‘lZuovi + o2, 1|2
1
(5.5)

_ n n 1/2 n 1/2
< nﬂu{on*Zuvin lil” + o*( max ||xi||)(n‘12g?n) (n‘IZuxin?) }
1 si=n 1 1

Assumption (A2) and Lemma 5.1 imply n™'Z{|lv/|| ||x,|*> = O,(1), and (A2) and
(P1) imply that the second term in (5.5) is 0,(1). Thus |H, .|| = o,(1) as
min(c~!, n) = o and the proof is complete.

LEMMA 5.5. Assume (Pl) and the conditions of Theorem 1, then
B — B, = O,(max(s?, n=1/2)).

PrOOF. Let H,(-) be the function defined in Lemma 5.3. Consider the
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real-valued function of y defined as cz,,(y) = fInT(y)( B - By)- The Mean Value
Theorem proves the existence of some B on the line segment joining 8 to 8, such
that

HT(By)(B — Bo) = (B = Bo) "SB)B — By),
where S, (+) is defined in (5.4).

It follows that ||8 — B,)| < ||H Al BONA i (S (,E)) where A (A) = minimum
eigenvalue of A. By Lemma 5.4, § (,8) -S(B)=o (1) hence by (Al),
POVGL(S,(B) < 2A;5(M)} — 1. Thus || — Ay and 1H,(By)ll have the same
order which, from Lemma 5.3, is O,(max(s?, n~'/?)).

We are now in a position to prove Theorem 52,

PROOF OF THEOREM 5.2. By definition n™'L}(y, — F(¥/B))%; = 0; expand-
ing F(-) in a Taylor series shows that S(8 — 8,) = H(8,), where

= n"IZF“)( B.)x &7

and for each i, ||8;,— Bl < |8 — Boll- (A2), (A3), (P1), and the conclusion of
Lemma 5.5 are used to show S — S (f;) = 0,(1). The theorem follows from
Lemma 5.5.
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