
Cover Your ACKs: Pitfalls of Covert
Channel Censorship Circumvention

John Geddes
University of Minnesota
Minneapolis, MN 55404

geddes@cs.umn.edu

Max Schuchard
University of Minnesota
Minneapolis, MN 55404

schuch@cs.umn.edu

Nicholas Hopper
University of Minnesota
Minneapolis, MN 55404
hopper@cs.umn.edu

ABSTRACT

In response to increasingly sophisticated methods of blocking ac-
cess to censorship circumvention schemes such as Tor, recently
proposed systems such as Skypemorph, FreeWave, and Censor-
Spoofer have used voice and video conferencing protocols as “cover
channels” to hide proxy connections. We demonstrate that even
with perfect emulation of the cover channel, these systems can be
vulnerable to attacks that detect or disrupt the covert communica-
tions while having no effect on legitimate cover traffic. Our attacks
stem from differences in the channel requirements for the cover
protocols, which are peer-to-peer and loss tolerant, and the covert
traffic, which is client-proxy and loss intolerant. These differences
represent significant limitations and suggest that such protocols are
a poor choice of cover channel for general censorship circumven-
tion schemes.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Security and Pro-
tection

General Terms

Security

Keywords

Censorship;Anonymity;CensorSpoofer;FreeWave;SkypeMorph

1. INTRODUCTION
Internet censorship has become a widespread issue as ISPs, often

under control of repressive governments, filter their users’ access
to the Internet. In response, users have employed proxy-based cir-
cumvention schemes, where clients connect to proxies (or chains
of proxies) that relay requests to the rest of the Internet, hiding
the clients’ true destinations. Censors have responded by employ-
ing increasingly sophisticated techniques, including protocol fin-
gerprinting, deep packet inspection, and active probing, to identify
and block access to circumvention systems as well.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4–8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516742.

Recently, several circumvention systems have emerged that at-
tempt to use popular communication systems already in place as a
cover-protocol for anonymous communication. This allows for en-
crypted communication under the guise of legitimate traffic, mak-
ing detection, enumeration, and blocking difficult for potential cen-
sors. In this paper we examine three such systems with different
approaches. SkypeMorph [18] mimics Skype communication in an
effort to hide connections to Tor bridges, FreeWave [11] uses a mo-
dem to tunnel IP traffic through a voice over IP (VoIP) session, and
CensorSpoofer [22] uses IP spoofing and asynchronous communi-
cation while mimicking VoIP.

Recently, Houmansadr, Brubaker and Shmatikov [9] have shown
that accurately mimicking a modern cover protocol can be chal-
lenging, listing several methods a censor could use to distinguish
CensorSpoofer and SkypeMorph traffic from legitimate traffic. It
is not hard to imagine improved versions of these systems that in-
teract directly with the cover-protocol system, replacing only en-
crypted contents with covert data, or using an approach similar to
FreeWave.

In this paper we demonstrate that even in this case, inherent prob-
lems can arise when using covert channels for censorship circum-
vention. These issues arise due to mismatches between the cover
protocol and the proxy protocol, and can violate both the unobserv-

ability and unblockability principles of anonymity systems, crucial
for censorship-resistant communication. We highlight three types
of mismatches:

• Architectural mismatches occur when the cover protocol and
the circumvention scheme have different communication ar-
chitectures, as when a peer-to-peer VoIP protocol is used as a
cover for a client-proxy architecture. These mismatches can
allow easy identification of proxies and connections, leading
to dynamic blocking rules. An example is the FreeWave sys-
tem, which uses Skype supernodes as relays in an attempt to
hide the location of proxies; however, Skype clients use su-
pernodes only as a last resort, after attempting direct contact
with the destination of a call; thus attempting to contact a
FreeWave proxy node will reveal the IP address. We docu-
ment similar problems with SkypeMorph and CensorSpoofer
in section 5.

• Channel mismatches occur when the cover protocol and the
circumvention scheme have different requirements on the re-
liability of transmissions. For example, many VoIP and stream-
ing video protocols use UDP and are designed to tolerate
packet losses and duplication, whereas proxied TCP con-
nections require reliable transmission. This can lead to at-
tacks that allow a censor to drop or duplicate traffic at a
level that is tolerable to the legitimate cover protocol but ren-
ders the covert channel useless. As an example, we show

how an adversary can indefinitely stall a Skypemorph trans-
fer while having no effect on the quality of voice calls by
dropping a handful of packets and delivering duplicate pack-
ets at a 5% rate, through targeted dropping of SkypeMorph
acknowledgement (ACK) packets. Similar problems in Cen-
sorSpoofer and FreeWave are documented in section 4.

• Content Mismatches occur when significant differences be-
tween the content embedded in a covert channel and the ex-
pected contents cause noticeable differences in traffic pat-
terns, even though the cover protocol is perfectly emulated.
For example, in section 6 we show that the audio signal of
a modem is sufficiently divergent from the audio signals of
human speech that a VoIP protocol (such as Skype) using
variable bit rate (VBR) encoding will generate easily distin-
guishable distributions on packet lengths for the two cases:
FreeWave over Skype generates length sequences with a dra-
matically lower variance than spoken language.

The rest of the paper is organized as follows. In Section 2 we re-
view previous anonymity systems and the issues surrounding them,
followed by a more complete discussion of SkypeMorph, Free-
Wave, and CensorSpoofer. Section 3 covers our experimental setup
for evaluating these schemes. In Section 4 we cover issues that all
three systems have in dealing with using an error tolerant channel
for reliable transmission. Following that Section 5 discusses the
pitfalls of using a peer to peer cover-protocol system for anony-
mous communication that is inherently built around a client-proxy
model. Section 6 focuses on FreeWave and problems that the sys-
tem has with cross-content delivery of IP traffic over VoIP. Finally
we wrap up with discussion and conclusions in Section 7.

2. BACKGROUND AND RELATED WORK
Censorship circumvention systems attempt to provide users un-

restricted access to the Internet while staying hidden from a cen-
soring ISP. The main goals of these censorship-resilient systems
is to provide unobservability, whereby a censor is unable to tell
whether or not a client is participating in the system, and unblock-

ability meaning a censor cannot block access to the system without
also blocking access to the entire Internet or a popular service. One
common approach is to use encrypted tunnels through one or more
proxies in an attempt to hide the actual destination from censors, as
exemplified by Tor [8], Anonymizer [3], and JAP [1]. These sys-
tems are vulnerable to attacks that enumerate and block the proxy
nodes, preventing users from accessing the system. To combat this
Tor introduced private bridge relays [7] whose information is un-
listed, and tightly access-controlled. Even under this restricted ac-
cess, it has been shown that bridges are vulnerable to enumera-
tion [17], and while methods were developed to prevent these tech-
niques [21], there is documented evidence of nations such as China
and Iran performing deep packet inspection on outgoing TLS con-
nections and successfully identifying Tor bridges [2].

Another class of censorship circumvention systems is decoy rout-
ing [12] schemes, such as Telex [27] and Cirripede [10]. Instead of
using proxies in an end-to-end manner, these systems use an end-
to-middle approach using decoy routers along the path of routers
forwarding packets to an unblocked end host. By using stegano-
graphic cryptography, a client can notify one of the intermediate
decoy routers to deflect a TLS connection to a covert destination,
providing an encrypted connection to the covert host unbeknownst
to the censor. In principle, these schemes make enumeration more
difficult, since censors that identify a proxied connection can only
identify paths that contain decoy routers, and censors do not di-
rectly control the path a connection travels once it exits the cen-

sored ISP. However, as shown in [20], without extensive deploy-
ment, even small nations have enough resources to enumerate par-
ticipating routers via path intersection, and are able to successfully
route around and avoid decoy routers while cutting off a negligi-
ble amount of the overall Internet. Furthermore there exist several
mechanisms that allow a censor to detect clients using these sys-
tems, and even in some circumstances identify the actual covert
destination.

A third class of censorship-resilient systems attempt to use cover-
protocols to hide anonymous communication. Using popular cover-
protocols that censors would be hesitant to block gives these sys-
tems an avenue for embedding anonymous communication in ap-
parently legitimate cover traffic. The remainder of this section will
cover the details of the three systems, SkypeMorph, FreeWave, and
CensorSpoofer, that are the focus of the remainder of this paper.

2.1 SkypeMorph
SkypeMorph [18] attempts to address the unobservability prob-

lem with Tor bridges, where large censors are able to utilize deep
packet inspection to fingerprint TLS connections made to bridges
[2]. In order to connect to a bridge running SkypeMorph, a client
obtains the Skype ID of the bridge through some out of band chan-
nel. Once the identity is known, the SkypeMorph client uses the
Skype infrastructure to locate proxies and conduct the session setup,
utilizing chat functionality inside Skype to conduct key exchange
and negotiate a unique port at which to contact the SkypeMorph
bridge. Once this step has concluded, the client initiates a video
call directly to the SkypeMorph node, which reveals the bridge’s
IP address to the user. The SkypeMorph node detects the incom-
ing call, ignores it, and begins listening on the negotiated port for
data traffic from the user. At this point the user ceases to use the
actual Skype client, and simply attempts to mimic one by sending
encrypted data through a traffic shaper to make packet sizes and
sending times similar to traffic from a Skype video call.

2.2 FreeWave
FreeWave [11] is a standalone censorship circumvention system

addressing both unobservability and unblockability. While similar
in concept to SkypeMoprh, FreeWave takes the mimicry of VoIP
calls a step further by actually sending IP traffic over voice using
a virtual modem. In FreeWave, the user places a VoIP call to the
proxy server using Skype, a popular VoIP client. FreeWave users
call a publicly known Skype ID, relying on Skype’s native encryp-
tion to hide which ID they are calling. Proxy nodes are configured
to ignore direct incoming calls, forcing Skype to bridge the connec-
tion with the help of a super-node. From the censor’s perspective,
the user is either making a call to a random Skype node, or using the
random Skype node to bridge a call. Blocking the proxies will not
prevent the user from connecting to them, since they always con-
nect via a random intermediary. Data sent to and from the proxy is
modulated into sounds via a software modem, which in turn pipes
those sounds to a virtual sound card, which transmits them to the
proxy server via the Skype call.

2.3 CensorSpoofer
CensorSpoofer [22], proposed by Wang et al., attempts to avoid

detection by mimicking VoIP calls placed over the Session Initi-
ation Protocol (SIP) [19]. The key observation of CensorSpoofer
is that traffic generated by web browsing is highly asymmetrical.
A small amount of traffic, the HTTP request, is sent by the user
and a large volume of traffic, the actual content, in turn flows from
the server to the client. Thus in the CensorSpoofer architecture, the
client uses a possibly low bandwidth channel, an email message for

example, to send a request to the proxy; the proxy then fetches the
content on behalf of the user. Meanwhile the user initiates a VoIP
call to a unique SIP ID which has been registered by the proxy for
that user only.

SIP IDs include both a user and a domain. In order to locate the
IP address which maps to a given SIP ID the user contacts the SIP
server in charge of the given domain. The server in turn contacts the
host running the given ID, which can respond with an IP address
it would like to be contacted at. In CensorSpoofer the proxy does
not respond with its own IP address, rather it selects a random host,
referred to as the dummy host, on the Internet which nmap [16]
does not show to be either off-line or have a closed SIP port. Since
VoIP data and SIP messages are commonly sent via UDP, the proxy
can spoof the IP address of the dummy host when sending subse-
quent SIP messages along with “call data” which will be delivered
to the client. Since the user never discovers the IP address of the
proxy, the censor cannot enumerate and block proxies by posing as
a user. The proxy then sends the the content it fetched on behalf of
the user by making it appear like encrypted VoIP data coming from
the dummy user by spoofing IP and UDP headers accordingly. The
client also sends junk data to the dummy host to complete the il-
lusion of a VoIP call between the user and the dummy host. The
dummy host ignores this junk data as it does not actually have a
VoIP call between itself and the user.

2.4 Mimicry Issues
As described in [18, 22], SkypeMorph and CensorSpoofer only

use the cover-protocol system for initialization, after which the
client and proxy communicate directly, outside the cover-protocol.
Houmansadr et al. [9] examined these schemes, along with Stego-
Torus [23], and found numerous inconsistencies and issues where
they did not properly mimic some part of the cover-protocol cor-
rectly, leading to easy detection by a censor, violating the goal of
unobservability. Common problems include failure to mimic side
protocols such as control channels, not correctly reacting to errors
like malformed or missing packets, and producing predictable pat-
terns not reflective of actual cover-protocol traffic. Houmansadr et

al. thus argue that mimicry of this form is fundamentally flawed,
since there are too many interdependent protocols and subsystems
to accurately mimic outside the cover-protocol system.

We argue that even if these flaws are overcome by re-engineering
the systems to actively participate and embed data directly in the
cover protocol, as FreeWave does, the resulting schemes would still
be significantly flawed due to their use of cover protocols that do
not support the requirements of generic client-proxy interaction.
These flaws lead directly to attacks violating both unobservability

and unblockability, as we describe in the remainder of this paper.

3. EXPERIMENTAL SETUP
This section briefly covers the experimental setup for Skype-

Morph, FreeWave, and CensorSpoofer along with some of the met-
rics we’re interested in.

3.1 SkypeMorph
For the SkypeMoprh experiments, we extracted the code for the

packetizer module from SkypeMorph 1 and created a stand alone
client and server that utilized this module. Included in the client and
server were modules allowing fine grained control over network
conditions that the censor might want to control, such as latency,

1http://crysp.uwaterloo.ca/software/
CodeTalkerTunnel.html

jitter, packet loss, and packet replay. The client and server ran on
separate machines running Ubuntu 12.10 over a 100 Mbps LAN.

3.2 FreeWave
Due to patent issues there is limited access to the modem speci-

fied in [11], so we rebuilt the modulator based on the specifications
using a square root raised cosine filter pulse function to map sym-
bols to the waveform which was then passed through a passband
filter with center frequency fC . The demodulator only consisted of
shifting the received audio signal by the center frequency fC and
then running it through another square root raised cosine filter in
order to extract the symbols. Since our experiments were only con-
cerned with the transmission of symbols, the remaining parts of the
modem, including the channel encoder, bit interleaver and QAM
mapper, were omitted. These were implemented in Matlab using
the Communications System Toolbox.

We focused on two main aspects of the functionality of the mo-
dem. First is traffic generation related to packet lengths produced
by sending modem traffic over Skype. To collect this data two
Ubuntu 12.10 virtual machines were started running Skype ver-
sion 4.1.0.20, one machine we’ll designate the client and the other
the server. Once a Skype call was initiated between the client and
server, the client was configured with pavucontrol 2 to redirect au-
dio from the soundcard to the microphone. Then an audio file was
played while running tcpdump to collect packet lengths sent from
the client to server during transmission. Along with the audio gen-
erated by the modem, we used samples of speech data from the
Oregon Graduate Institute Center for Speech Learning and Under-
standing’s “22 Language” telephone speech corpus [15]. Samples
longer than 10 seconds were played over Skype while recording the
packet lengths, resulting in a total of 44 samples across 5 languages.

The other metric we are interested in is distortion of the raw sym-
bols being sent by the modem (not to be confused with the actual IP
traffic sent) along with the quality of the underlying audio commu-
niciation. For this we used the SILK SDK 3 which includes tools to
encode and decode audio files while varying parameters and sim-
ulating certain network conditions, such as packet loss. Using the
codec tools instead of sending the data over Skype gives FreeWave
the best case scenario, removing other noise added by network con-
ditions. In addition this allowed us to collect a much larger sample
size while varying different parameters, producing more accurate
results. Then, to measure the quality of actual audio instead of the
modem, we used a matlab script 4 to measure the MOS of audio
compared to the output from the SILK encoder.

3.3 CensorSpoofer
The main focus of CensorSpoofer were the asynchronous trans-

mission mechanisms. For these experiments a simple client and
server were built where the server would transmit directly to the
client with various forward error correction possibilities. Censor-
Spoofer mimics VoIP clients that use constant bitrate (CBR) codecs
which dictates the traffic patterns. We chose to mimic G.711 which
sends packets of size 190 bytes every 20 milliseconds. In addition
it would simulate various types of packet loss, including burst or
random, along with modules allowing more specific and targeted
packet loss strategies.

2http://freedesktop.org/software/pulseaudio/
pavucontrol/
3http://cdn.dev.skype.com/upload/SILK_SDK_
SRC_v1.0.9.zip
4http://www.mathworks.com/matlabcentral/
fileexchange/33820-pesq-matlab-wrapper/

http://crysp.uwaterloo.ca/software/CodeTalkerTunnel.html
http://crysp.uwaterloo.ca/software/CodeTalkerTunnel.html
http://freedesktop.org/software/pulseaudio/pavucontrol/
http://freedesktop.org/software/pulseaudio/pavucontrol/
http://cdn.dev.skype.com/upload/SILK_SDK_SRC_v1.0.9.zip
http://cdn.dev.skype.com/upload/SILK_SDK_SRC_v1.0.9.zip
http://www.mathworks.com/matlabcentral/fileexchange/33820-pesq-matlab-wrapper/
http://www.mathworks.com/matlabcentral/fileexchange/33820-pesq-matlab-wrapper/

4. DIFFERENTIAL ERROR TOLERANCE
Anonymous communication must guarantee reliable transmis-

sion across its censorship-resilient system. While previous systems
rely on the underlying mechanisms of TCP to guarantee reliable
transmission, SkypeMorph, FreeWave and CensorSpoofer all trans-
mit data over UDP using cover-protocols that have some amount of
error tolerance. This forces those systems to implement their own
mechanisms for reliable transmission, which a censor can interfere
with and effectively block the underlying anonymous communica-
tion while still leaving a usable medium for legitimate traffic.

4.1 Packet Loss Thresholds
The main way a censor can attempt to interfere with anonymous

communication traffic being sent over error tolerant channels is by
inducing some amount of packet loss in an effort to disrupt the
anonymous communication while still allowing legitimate usage of
the cover-protocol. The majority of voice and video communica-
tion systems have various ways of dealing with packet loss, such as
forward error correction and lowering the bitrate of the information
being sent. While what amount of reduced quality due to packet
loss is “acceptable” is an inherently subjective question, here we’ll
cover some work looking at the trade-offs.

To score the quality of a VoIP call the mean opinion score (MOS),
which is the average of a set of subjective rankings on a scale from
1 to 5, where 5 represents the best quality possible. Ding and
Goubran [6] looked at the impact of packet loss rates on the quality
of VoIP communication and how it affected MOS.

Codec 0% 5% 10% 15% 20%

G.729 4.31 3.76 3.45 3.11 2.79
G.723.1 r63 4.25 3.74 3.41 3.10 2.76
G.723.1 r53 4.22 3.71 3.37 2.99 2.74

Table 1: Mean opinion scores of different VoIP codecs with varying
levels of packet loss rates.

Table 1 shows the results based on their model with MOS rang-
ing between 2.74 - 3.11 when packet loss rates get in the range of
15-20%. In terms of impairment 2 represents “annoying” and 3 is
“slightly annoying”. We posit this represents an upper bound of
packet loss a censor could impose on VoIP connections while still
maintaining usability, particular with some of the newer codecs.

Zhang et al. conducted similar research on Skype video calls [28],
looking at how various network conditions effected video rates and
quality. They found that past 10% packet loss rates Skype switches
from normal to conservative state. Both the sending rate and video
rate plummet after this threshold, where their model shows a drop
in MOS from 3.5 to effectively 0. Based on this research we can
assume a hard upper bound of 10% packet loss available to a cen-
sor, anything higher would effectively block access to Skype video
communication.

4.2 FreeWave Modem
In order to directly use the VoIP network, FreeWave modulates

raw data through a modem which transmits data frames through
the VoIP client and over the network to the FreeWave proxy. Each
data frame sent by the modem begins with a known preamble block
used for synchronization, ensuring the demodulator is able to find
the starting place of the actual data symbols sent. After the demod-
ulator filters and samples the audio waveform it receives, it scans
through and finds the point of maximum correlation and declares
that to be the starting point of the data frame. If the wrong start-
ing point is identified the demodulator will be unable to correctly

decode the rest of the data, giving a censor a potential avenue to
interrupt data transfer over FreeWave.

There are several different parameters and modes of operation
that, while not explicitly mentioned in [11], are inherent in the de-
sign of the modem and will effect a censor attempting to cause the
modem to desynchronize. First there is the length of the preamble,
where the longer preambles give the modem a higher probability
of correctly finding the starting point. Next there is the data frame
length and how many data blocks are transfered. The preamble and
signal parameter blocks could only be sent at the very beginning
when the FreeWave client initiates the connection with the Free-
Wave server and remains in constant communication with null data
being transfered during inactivity. Similarly the modem could be
in constant communication with null data, however each data frame
would be a fixed size of N data blocks. Another option is that the
modem directly handles the data being transfered and sends batches
of data at a time in the frames.

We first examined the effects of varying packet loss rates on cor-
rectly synchronizing with different preamble lengths. Using the
modem we recorded 10 seconds of transmission of random sym-
bols and encoded the output with FEC enabled. Then for each
packet loss rate, the output from the encoder was decoded 100
times with the randomized packet loss rate so we could determine
the percent of transfers that would succeed. We next fixed a start-
ing point for the preamble, and varying the preamble length would
scan through the decoded symbols, calculating 16000 points of cor-
relation, and marking the preamble as the point with the highest
correlation score. If this point was the actual start of the preamble
the transfer was marked as a success, otherwise it was labeled as
failed, even if the actual preamble had the 2nd highest score.

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Packet Loss Rate (%)

P
e

rc
e

n
t

S
u

c
c
e

s
s
fu

l
T
ra

n
s
fe

rs

128

256

512

1024

2048

Figure 1: Percent of successfull transfers in FreeWave with differ-
ent preamble lengths, while varying the packet loss rate.

Figure 1 shows the results of varying packet loss rates with re-
spect to different preamble lengths. We see that even using fairly
small lengths still results in a large percent of successful transfers
with standard packet loss rates one would expect in a normal net-
work. This is a combination of the fact that error correction in VoIP
is able to compensate for small amounts of packet loss, and that
correlation with random data produces very low scores, resulting
in a fairly low threshold the preamble’s score must be above. How-
ever we see that no matter how long the preamble, extremely high
packet loss rates above 90% are able to prevent the modem from
properly synchronizing, since with that high of packet loss the FEC
codes are unable to recoup the loss data. While these packet loss
rates would effectively kill all VoIP communication, the modem
only embeds the preamble at the beginning of the connection. A
preamble of length 2048 would take roughly 0.25 seconds to trans-
mit, so a censor only needs to apply high packet loss rates for less

0 2 4 6 8 10

0
1

2
3

4
5

Time (s)

M
O

S

Figure 2: Targeted packet dropping to cause desynchronization in
the shaded region with resulting effects on the Mean Opinion Score
of the communication.

than a second to cause modem desynchronization while leaving the
remainder of the connection untouched. Figure 2 shows a scenario
where a censor applies 95% packet loss for a two second interval it
believes contains the preamble, while leaving the remainder of the
transmission in tact resulting in only a few seconds of incompre-
hensible communication.

In order to perform targeted packet dropping to prevent synchro-
nization, a censor would need to know an approximation on when
the preamble was sent in order to drop a large percentage of those
packets. This is directly related to the different configurations of
how data frames are composed and when they are sent. The first
method mentioned where synchronization only occurs during the
initial connection is easy to interrupt based on the evidence that
high packet loss prevents synchronization with almost any pream-
ble length. Even using a wide window for possible preamble pack-
ets, if a censor merely drops enough packets at the very beginning
of the communication, it will prevent all the FreeWave modem
from synchronizing while only being a minor inconvenience on ac-
tual VoIP communication. The logical extension from this protocol
is to have fixed data frame sizes, allowing repeated chances at syn-
chronization. Given predictable pattern of fixed data frame lengths
and preamble positions, a censor can effectively target packets only
containing preamble data. This allows a censor to completely desyn-
chronize the modem with low packet rate loss, meaning any actual
VoIP communication would be relatively unaffected allowing hon-
est clients to still communicate. Another potential mode of opera-
tion is to have the modem send a data frame whenever it receives
data either directly from the browser or off the network. In this
case, the modem is only sending data frames when it actually has
data to send and is quiet the rest of the time, only needing to syn-
chronize over each frame. Since the preamble is always at the be-
ginning of the data frame, a censor can just target the first burst of
packets sent to drop in order to distort the preamble block.

4.3 SkypeMorph
In SkypeMorph the client and proxy directly communicate out-

side the cover-protocol system, so in order to handle data corruption
and packet loss SkypeMorph implements its own retransmission
mechanisms adapted from TCP to fit their traffic shaping model.
The packetizer module in SkypeMorph has one thread for sending
packets and one for receiving packets, both of which handle packet
loss and retransmission. The sending thread ensures that packets
get flagged as an ACK every 100 ms or so with the last sequence
number seen. The receiving thread keeps track of the last ACK

seen, and on seeing the same ACK 4 times in a row it resets the
sending thread’s head sequence number, causing the data starting
from the new sequence number to all be retransmitted.

4.3.1 Tracking ACKs

A censor might want to target and interfere with packets con-
taining acknowledgements in order to slow down or even halt the
data transfer, so they need some way of accurately tracking ACK
packets. Here we take advantage of the fairly deterministic way in
which packets are flagged as ACK. The sending thread in the pack-
etizer keeps track of the last time tACK an ACK packet was sent,
and the first packet sent at time t ≥ tACK + 100ms gets marked
as an ACK packet. Therefore, the censor can keep track of the last
time it knows an ACK packet was sent, and the first packet seen
past the 100 ms window it knows is the next ACK packet. How-
ever, due to network jitter we cannot always assume the first packet
seen after 100 ms is the ACK packet. In some cases either the ac-
tual ACK packet is received before the 100 ms interval and would
be missed, or a non-ACK packet is delayed and appears to be the
first packet after the 100 ms window, getting misclassified.

To accommodate this, the censor can keep track of different paths
of probable ACK packets. First, we’ll consider a train of packets as
a group of packets in which the difference in the successive receive
times for each packet is less than some ǫ 5, i.e. for any two con-
secutive packets received at times ti, ti+1, we have ti+1 − ti < ǫ.
Then, when examining a window of probable ACK packets, con-
sider the first packet in each packet train as possible ACK packets
and branch a path off from there. We only consider the first packet
because there is a higher probability of it being the ACK packet,
and it also decreases any potential from skewing too far from the
actual path (in that it is better to underestimate than overestimate).

Figure 3: Example of a censor tracking paths of ACK packets
in SkypeMorph, where the boxes correspond to potential ACKs
flagged by the algorithm with the time they were recieved.

An example of this process can be seen in Figure 3, where mul-
tiple paths branch off from possible ACK packets. Note that it is
entirely possible, and even likely, that paths will merge back to sin-
gle possible ACK packets when there is only one possible packet
train available in both windows. The problem with this technique
is many times multiple packets could be potential ACK packets
where a censor wants to select just one. To accomidate this, the cen-
sor computes a probability for each packet based on the probabil-
ity distribution p(x) of time differences between successive ACK
packets. Since a packet may have multiple paths from some start-
ing point, we first compute the probability of individual paths with
times {ti1, t

i
2, . . . , t

i
n} as such:

P (pathi) =
1

n− 1

n−1∏

j=1

p(tij+1 − t
i
j)

5We used ǫ =1 ms in our experiments

●

●

●●●

0.05 0.1 0.15 0.2

0
.2

0
.4

0
.6

0
.8

1
.0

Packet Loss Rate

A
C

K
 L

o
s
s
 R

a
te

(a) Packet vs ACK Loss Rate

●
●

●
●

●
● ●

● ●

●
●

●
●

●
●

●

●
●

●

●

0.5 0.6 0.7 0.8 0.9

0
5

1
0

1
5

2
0

2
5

3
0

3
5

ACK Loss Rate

B
a
n
d
w

id
th

 (
K

B
/s

)
(b) ACK Loss Rate vs Bandwidth

0 5 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bandwidth (KB/s)

C
D

F

5%

10%

15%

20%

(c) Packet Loss vs Bandwidth

Figure 4: While the censor is attempting to drop ACK packets in SkypeMorph, (a) shows percent of ACKs dropped with different caps on
packet loss rate (b) looks at how varying ACK loss rates effect overall bandwidth and (c) shows CDF of available bandwidth based on packet
loss rates.

Then the probability assigned to the actual packet is just the aver-
age of the probabilities computed over all paths belonging to that
packet.

4.3.2 Dropping ACKs

One avenue for distrupting the data transfer is for the censor to
drop as many ACK packets as possible, increasing the delay in re-
sponding to packet loss causing throughput to drop. First we ex-
plored the range of ACK loss rates that can be achieved for varying
packet loss rates. The packet dropping algorithm described was
implemented on the client side with overall packet loss capped at a
set rate. For each packet loss rate 100 downloads were performed
to get the distribution of ACK loss rates achieved. Figure 4a shows
these distributions for packet loss rates of 5, 10, 15 and 20%. Note
that out of all packet sent, a full 10% of them are marked as ACK
packets. This places a hard upper bound on packet loss rate of 5%,
where at most 50% of all ACK packets will be able to be dropped
with perfect accuracy, which did have a maximum ACK loss rate
of 47%. Interestingly, packet loss rates of 10% and 15% had a very
large span of possible ACK loss rates. These wide discrepancies
are caused by the fact that occasionally in the ACK packet tracking
algorithm you will see two distinct paths emerge. Dropping packets
in both paths would result in packet loss rates exceeding the cap,
forcing the algorithm to choose the probabilistically higher paths,
which it will ultimately stick with the remainder of the transfer un-
less they happen to merge later. When it happens to choose the
wrong path to follow, you see the very low ACK drop rates in Fig-
ure 4a. The distribution narrows considerably for packet loss rate
of 20%, due to the fact that it’s able to drop packets in both paths
and still stay under the packet loss cap, something which could not
be done with packet loss rates of 10 and 15%.

Dropping ACK packets from the client to server causes the server
to take longer in responding to packet loss and start resending lost
data. The end result from this is that it will decrease the through-
put and increase the time it takes the server to transmit data, which
is what the censor is ultimately interested in. To determine the
effects of various ACK loss rates, the client was configured to di-
rectly drop ACK packets at a capped rate. The experiment would
vary the ACK loss rate, performing 100 downloads for each chosen

rate, while the server had a static packet loss rate of 10%. This was
kept static because varying it had little effect on the overall band-
width. Since the server rewinds the entire buffer back to the first
packet lost and then retransmits everything beyond that, it doesn’t
matter how many packets past that initial lost packet were dropped.
The experiments showed an initial drop from 34 KB/s to 27 KB/s
even with the smallest amounts of ACK packet droping, and then
the bandwidth held stable until ACK loss rates went past 50%. The
results for rates past this threshold are in Figure 4b, showing the
regression of the median bandwidth value along with the 95th con-
fidence interval. While there is a slow decrease in observed band-
width, after 80% it accelerates downward reaching as low as 5-10
KB/s for ACK loss rates past 90%.

Given the large variation in both ACK loss rates and observed
bandwidth, we want to see what the end result is when looking
at packet loss rate from targeted packet dropping compared to the
observed bandwidth, as these are the two parameters a censor is
concerned about. Figure 4c shows a CDF of observed bandwidth
for packet loss rates ranging from 5 to 20%. Since packet loss rate
of 5% has an upper bound of a 50% ACK drop rate, it’s not sur-
prising that we don’t see the bandwidth drop much below 25 KB/s
as this was the constant rate seen for ACK loss rates ranging from
5 to 50%. For packet loss rates from 15-20%, considered to be a
rough upper bound on the censor packet dropping capability, we
see roughly about a quarter of transfers dropping below 15 KB/s
bandwidth. While these rates may not seem like a large reduction
compared to the initial 34 KB/s seen with SkypeMorph, the initial
paper [18] noted that the normal bridge operated at 200 KB/s, im-
plying that the combination means 90-95% reduction in available
bandwidth.

4.3.3 Replaying ACKs

While the packet dropping techniques served more as a throttling
mechanism than outright blocking, an active censor can also at-
tempt to replay packets over the cover-protocol, while having little
impact on legitimate traffic. SkypeMorph uses sequence numbers
to keep track of what parts of the buffered data are being trans-
fered, so upon receiving any overlapping or duplicate data, it’s able
to detect this and either drop the packet or discard the data.

●●
●●
●●
●
●●
●●
●

●●
●
●●
●
●

●●
●
●●
●●
●●
●
●●
●

●●

●●
●
●●
●●●●

●●
●
●
●

●●
●
●●
●

●●
●

●●
●●
●●
●●
●●●●
●

●●
●●
●●
●●

●●●●

●
●
●●
●●
●●

●●

●●●
●●●
●
●●
●●
●●
●●
●●

●●●

0 10 20 30

0
1

0
0

0
0

0
2

5
0

0
0

0

Time (s)

S
e

q
u

e
n

c
e

 N
u

m
b

e
r

● Default

300 ms

200 ms

100 ms

(a) Time to transfer data with varying ACK replay inter-
vals

●
●

●●
●

● ●●●

●

●●
●

●
●

●
●

●●
●

●
●●●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

0 1 2 3 4

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

Time (s)

A
C

K
 N

u
m

b
e

r

● Default

Replay

(b) ACK number sent by client with and without single
ACK injection

Figure 5: SkypeMorph ACK replay attacks with (a) showing the progression of the sent sequence number when replaying 4 ACK packets at
a time at different intervals and (b) shows the effects on the received ACK number when injecting a single ACK packet every 100ms.

Before the check for duplicate data happens, SkypeMorph first
checks the packet flag to determine whether the packet is an ACK
or not, and if so processes the ACK number before the data dupli-
cation check is performed. This is done because dummy packets
not transferring any real data can be flagged as ACK, so the ACK
check needs to be done before the data processing. This opens up a
potential packet replay attack to the censor, where they have the ca-
pability of replay old ACK packets seen and have them legitimately
processed by the SkypeMorph client, even if the data is discarded.
The censor runs the same ACK tracking algorithm as discussed pre-
viously and waits until all paths merge into a single possible ACK,
increasing the probability of correctly selecting an ACK packet.
This ACK packet can be replayed to the server in bursts of 4 at a
time, so they will be received simultaneously causing the server to
reset its current sequence number and roll back the buffer.

For the experiment we configured the client to record the first
packet that appeared alone in the possible ACK window, and re-
play it 4 times in a row at a fixed interval, while the server was
configured with a static 10% packet loss rate. We ran an exper-
iment in default mode with no ACK replays, and then replaying
ACKs in intervals of 300 ms, 200 ms, and 100 ms. The results for
this experiment are shown in Figure 5a. Replaying ACKs at in-
tervals of 200 and 300 ms does significantly increase the amount
of time it takes to transfer data, but it doesn’t completely kill the
transfer. This is because after the train of replays are sent, the next
valid ACK that the server receives will reset the current ACK value
and will roll forward the buffer to this position, as it assumes it has
received everything before the ACK counter. For the interval of
100 ms, we see a very dramatic reduction in how much data is able
to be sent, having it take around 40 seconds to send as much data
normally sent in the first 5 seconds.

This result leads to a lower resource and more efficient replay
attack. The server needs to receive 4 packets with the same ACK
number before it rolls back and starts retransmitting data. There-
fore, while inducing a small amount of packet loss from the server
to the client, a censor can simply inject a recorded ACK packets
once every 100 ms, continually causing the server to reset the cur-
rent ACK value and preventing the ACK counter from ever reach-
ing high enough to rewind the buffer. Figure 5b shows the ACK
number received by the server under default operation and while
performing the single ACK injection. We can see the received ACK
number jumping between the legitimate ACK value and the replay

ACK being injected. Once a packet is dropped from the server to
the client, the client keeps sending the server the same ACK num-
ber in an attempt to notify of data loss, but since the injected packet
keeps reseting the current ACK counter the server never resends the
data, stalling out the transfer and completely killing the connection.

4.4 CensorSpoofer
CensorSpoofer uses asynchronous communication in order to

hide the identify of the proxy, having data flow only from the proxy
to the client. This means the client cannot notify the proxy of lost
packets or missing data like SkypeMorph was able to do. So in
order to reliably transmit data they suggest two methods of error
correction, one using an XOR encoder/decoder to send redundant
packets and the other to use forward error correction codes such as
Reed-Solomon. We explore these methods and how they hold up
to a censor attempting to disrupt communication between a Cen-
sorSpoofer client and server.

4.4.1 XOR Encoding

The XOR encoder/decoder has a redundant packet sent for ev-
ery n packets transmitted, so given packets (p1, p2, · · · , pn), the
packet r = p1 ⊕ p2 ⊕ · · · ⊕ pn is constructed and sent after packet
pn. By including a simple packet counter at the beginning of each
packet, the client will be able to detect if a packet was lost, and as
long as n−1 of the remaining packets in the n packet window were
received, the client will be able to reconstruct the missing packet
simply by XORing the packets together. Assuming uniform packet
loss, this type of system will be able to handle a rate of 1

n+1
packet

loss. There are, however, problems with making this assumption.
The first problem is that one of the common causes of packet

loss is due to buffers filling up and having to drop packets, which
in turn causes bursts of packets to be dropped [4]. This means that
there will be a very high chance that packet loss will cause more
than one packet to be dropped from the n packet window, meaning
that the lost data will not be able to be recovered. The more trouble-
some problem is that an active censor could prevent any client from
attempting to use CensorSpoofer by dropping a few consecutive
packets, ensuring that data being transfered over CensorSpoofer is
lost while barely effecting the usage of legitimate VoIP communi-
cation. As we can see in Figure 7, even using the smallest possible
value of n = 2 a censor can still cause a large amount of data loss,
ensuring all data transfers would fail when using XOR encoding.

● ●

●

●
● ● ● ● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5

0
2
0

4
0

6
0

8
0

Packet Loss

D
a
ta

 L
o
s
s
 (

%
)

(a) Percent Data Loss

●

●

● ● ● ● ● ● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.4

0
.8

Packet Loss

P
e
rc

e
n
t
T
ra

n
s
fe

re
d
 F

a
il
e
d

● 10%

15%

25%

30%

50%

100%

(b) Percent Transfered Failed

Figure 6: Effects of packet loss in CensorSpoofer while producing varying overhead values based on Reed-Solomon parameters, looking at
both (a) percent of data loss and (b) percent of failed transfers while using Reed-Solomon with different overhead.

●

●

●

●
●

●

●

●

●

●

0.02 0.04 0.06 0.08 0.10

0
.0

0
0
.0

4
0
.0

8

XOR Encoding

Packet Loss

D
a
ta

 L
o
s
s

● n=10

n=5

n=2

Figure 7: Percent of data loss in CensorSpoofer compared to packet
loss rates when using XOR encoding with different n packet win-
dows for redundant data.

4.4.2 Reed-Solomon

The other method mentioned that could be used by CensorSpoofer
was a forward error correcting code such as Reed-Solomon, a pop-
ular code used in many error-prone mediums. Reed-Solomon codes
are parameterized by encoding messages of k symbols, where each
symbol is m-bits and the resulting encoded block is n = 2m − 1
symbols. Such a code can correct up to n− k errors if the location
of the erroneous symbols are known, otherwise it can only correct
up to n−k

2
errors. While this offers more reliable error correction in

the presence of packet loss, we can still run into some of the same
problems that we previously did. The naive way to perform the en-
coding is to split the data into blocks bi of size k symbols, encode
each block b′i = Reed-Solomon(bi, n, k) resulting in n symbols,
then transmit the encoded blocks b′1, b

′

2, b
′

3, . . . to the client. Since
reliable transmission means that all data encoded in the blocks must
be recovered, a censor that can cause enough packet loss to corrupt
a single block would cause the entire transmission to fail. For ex-
ample, a common Reed-Solomon code has m = 8 bit symbols
with (n, k) = (255, 223) message and block lengths. So in order
to send a 320 KB file, a server would need to transmit 1470 en-
coded blocks, only one of which needs to be corrupted in order to
stop the transmission.

From examining both these schemes, we can identify the real
problem is that for a server sending an averaged sized web file,
a censor only has to drop a small amount of continuous packets

to cause a portion of the data to be corrupted, thus disrupting the
entire transmission. In order to fix this problem, we need to intro-
duce a bit interleaver which causes a single block to be dispersed
throughput multiple packets instead of being concentrated in a sin-
gle packet. Using a random bit interleaver, we experimented with
different Reed-Solomon parameters, fixing n = 255 and varying k

while expressing the combination in terms of overhead of extra data
transfered, equivalent to n−k

k
. For each set of parameters we per-

formed 100 downloads of a 320 KB file and recorded the average
percent of data loss during the downloads and the percent of failed
transfers. Figure 6 shows the packet loss thresholds for overhead
values ranging from 10 to 50%. With the combination of a random
bit interleaver and forward error correction, the server would still
need to encode with 50% overhead to to avoid losing data below
the 20% packet loss rate threshold.

5. PROXY MODEL IN P2P SYSTEMS
Many of these censorship circumvention systems attempt to ap-

ply a client-proxy system of anonymous communication to a dy-
namic peer-to-peer system outside their control. For example, Skype-
Morph and FreeWave both use Skype or other peer-to-peer VoIP
systems as their cover-protocol. This section explores some of the
difficulties that arises when forcing a proxy model into a peer-to-
peer system.

5.1 Tor Over Skype
The main problem SkypeMorph attempts to solve is the ability

of censors to enumerate Tor bridges and blacklist them. By us-
ing Skype as the protocol to mimic, it makes it hard for censors
to detect and enumerate these bridges, and outright blocking pop-
ular services like Skype is something many censors would like to
avoid. However, attempting to use the Skype network to tunnel
Tor connections through is problematic due to fundamental differ-
ent use cases for Tor verses VoIP. The Skype system is peer to peer
with sporadic short lived connections made between unique clients,
while the client-proxy model in Tor sees long lived connections be-
tween many clients and a single proxy. These differing use cases
open up potential avenues for a censor to fingerprint SkypeMorph.

Figure 8 shows the ratio of daily bridge users from Syria, Iran,
and China compared to the total number of bridge relays in the Tor
network. Syria and Iran peaked at around 8-12 times as many users
as available bridges, and while China currently fluctuates below
that, they at one point saw ratio as high as 120 users to bridges be-

0 5 10 15 20

2
0

6
0

1
0
0

1
4
0

Time (s)

P
a
c
k
e
t
L
e
n
g
th

 (
b
y
te

s
)

(a) English Packet Lengths

0 5 10 15 20

2
0

6
0

1
0
0

1
4
0

Time (s)

P
a
c
k
e
t
L
e
n
g
th

 (
b
y
te

s
)

(b) Portuguese Packet Lengths

0 5 10 15 20

2
0

6
0

1
0
0

1
4
0

Time (s)

P
a
c
k
e
t
L
e
n
g
th

 (
b
y
te

s
)

(c) Modem Packet Lengths

Figure 9: Skype packet lengths of English and Portuguese speech samples from the OPI corpus compared to modem audio sent over Skype.

2011 2012 2013

0
2

4
6

8
1

0

U
s
e

r
to

 b
ri

d
g

e
 r

a
ti
o Syria

Iran

China

Figure 8: Ratio of daily Tor bridge users from Syria, Iran, and
China compared to the overall number of available Tor bridges.

fore China started blocking access. Having so many unique clients
connecting through each bridge daily is going to create traffic pat-
terns quite different than one would expect from a normal Skype
user. For example, long lived connections spanning many hours
will be much longer than the most video calls where only 5% last
longer than and hour [5], having multiple simultaneous connec-
tions overlapping at different time windows, and clients that seem-
ingly communicate non-stop with a large number of unique clients
around the clock. These characteristics do not even need to be able
to definitively identify SkypeMorph connections, they can tolerate
some small amount of false positives and only need to be able to
exclude a large number of actual Skype connections. Once a con-
nection is flagged a censor can attempt to create a SkypeMorph
connection to the client under suspicion in order to verify that it’s a
SkypeMorph bridge.

This also points to a problem that would be faced when deploy-
ing SkypeMoprh bridges into the Tor network. A large number
of Tor bridges are already blacklisted by censoring countries, only
new bridges unknown by these countries deploying SkypeMorph
would be able to be reached by the clients. This implies an even
smaller base of reachable SkypeMoprh bridges available to these
countries, which could be potentially swarmed as clients attempt to
use them amplifying the statistics mentioned previously, making it
even easier for the SkypeMorph bridges to be flagged.

5.2 FreeWave Proxies
FreeWave prevents this type of fingerprinting by using supern-

odes in the Skype network as proxies, which then forward the con-

nection to the actual FreeWave server and off to the end destination.
However, there are other issues for relying on an external system
for proxying connections. At the end of the day, software develop-
ers building a product that runs on top of an existing system have to
make assumptions about how that base system will behave. One of
the largest problems with directly utilizing an existing VoIP client
for censorship circumvention is that these assumptions, which se-
curity guarantees can depend on, do not always hold up over time.
Changes made without announcement can result in failures of the
system to uphold its security goals. An excellent example of this
is FreeWave’s assumptions about how and when Skype clients at-
tempt to use supernodes as a proxy for VoIP connections. Free-
Wave assumes that by placing a Skype node behind a NAT box it
will cause Skype to automatically use a supernode to bridge VoIP
connections. This was shown by prior research [13] to be the case.
However Skype is a constantly changing system and its behavior
evolves over time, in many cases without announcement.

While at the time FreeWave was designed Skype might have
been more willing to use supernodes, currently Skype clients at-
tempt, no matter the details of the network they reside in, to di-
rectly connect to each other. A Skype client sitting behind a NAT
box will send multiple packets to the client it is calling, even if that
client also resides behind a NAT box. Only if those packets fail
to reach their destination will the caller fall back to a supernode.
Additionally, the callee will attempt to send packets in response di-
rectly to the caller, even if the caller is actively using a supernode to
reach the callee. The issue for FreeWave users is that this allows the
censor to flag connections that are using Skype to connect to Free-
Wave servers. The censor can easily enumerate the IP addresses of
the FreeWave servers by placing calls to the FreeWave VoIP IDs
and examining which IP addresses Skype attempts to directly con-
nect to. The censor can then flag hosts that send UDP packets to,
or receive UDP packets from, those IP addresses. This issue can,
to some extent, be fixed by adding the FreeWave server to a fire-
wall on the user’s machine, and user’s IP address to a firewall on
the server side. However, it still serves as an excellent illustration
of the issues with using an active system that is in constant flux. In
order to not rely on the underlying architecture of Skype, FreeWave
would have to resort to a framework similar to SkypeMorph, where
proxy IDs are secret and distributed out of band. This would allow
FreeWave clients to directly connect to proxies using the Skype ID.
But then we are operating in the same environment presented in
Section 5.1 with all the same problems of using a proxy model in a
peer to peer system.

The peer to peer system used by many VoIP based systems present
alternative methods for the censor to detect FreeWave users. Con-
tinuing to focus on Skype, using supernodes as proxies exposes the

0 5 10 15 20

5
1
0

1
5

2
0

2
5

Time (s)

P
a
c
k
e
t
L
e
n
g
th

 S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

MoDem

Voice

(a) Packet length standard deviation over time

0 5 10 15 20

4
6

8
1
2

Time (s)

M
e
d
ia

n
 P

a
c
k
e
t
L
e
n
g
th

 D
if
fe

re
n
c
e

MoDem

Voice

(b) Average Packet Differences Over Time

Figure 10: While tracking connections over Skype, these show how the modem in FreeWave compares to actual voice data when comparing
the (a) standard deviation of observed packet lengths and (b) the average difference between difference between packet lengths

user to identification should the censor observe the supernode. As
shown previously, the censor can use Skype to enumerate the IP
addresses of FreeWave servers. Since the supernode is a simple
one hop proxy, the censor can then defeat the unobservability of
FreeWave simply by observing traffic through supernodes. While
many censors might find this out of their scope of capabilities, oth-
ers would find the task trivial. For example, China currently forces
users to run its own version of Skype called TomSkype [14]. This is
currently done so Chinese censors can view instant messaging chat
between users. It would be a simple change to force TomSkype
to only select supernodes that reside inside China, making linkage
between the two IP addresses carrying out a call possible.

6. CROSS-CONTENT DELIVERY
Extensive research has been done on information leakage in en-

crypted VoIP calls [26, 25, 24], showing how a censor can iden-
tify languages spoken, recognize key phrases, and even reconstruct
parts of the conversation. This is possible due to the fact that when
using variable bitrate (VBR) codecs, common in applications like
Skype and Google Talk, there is a strong correlation between how
much voice data there is to send and the packet length (in contrast to
constant bitrate codecs which have fixed lengths). Previous meth-
ods that take advantage of this information leakage are generally
fairly complex, relying on Hidden Markov Models or classifiers
such as k−Nearest Neighbor or χ2. While these techniques might
work for analyzing a targeted VoIP call, implementing these meth-
ods on a large scale would be very computationally intensive and
impractical or even impossible to perform across all calls. To this
end, Houmansadr et al. demonstrate that FreeWave over Skype has
similar traffic statistics to actual Skype communication, comparing
minimum, maximum, and average packet sizes.

While the very basic traffic statistics are similar, there still might
exist an intermediate test geared specifically towards FreeWave traf-
fic that can still be performed with ease. The simplest model used
for exploiting the information leakage was the χ2 in [26] for lan-
guage classification. In this case the model had to differentiate be-
tween 22 different possible languages, our task is considerably eas-
ier only needing a binary classification. Using the packet lengths
generated by the samples from Oregon Graduate Institute corpus
[15] mentioned in Section 3, we compared the distribution of packet
lengths to those generated by the modem. Figure 11 shows the
probability density functions of the minimum, maximum, and av-

erage packet lengths seen over the OGI sample set, with the corre-
sponding value for the modem marked on each density.

0 50 100 150

0
.0

0
0
.0

4
0
.0

8

Packet Length

P
D

F

minimum

average

maximum

Figure 11: Distribution of minimum/average/maximum packet
lengths of actual voice data, with x marking values computed for
the FreeWave modem packet lengths

The minimum and average packet length for modem overlaps al-
most perfectly with the densities for actual speech, and while the
maximum value is close to the left tail, it still overlaps implying that
you cannot distinguish modem from potential legitimate VoIP traf-
fic using only these metrics, confirming the original claim. How-
ever, as seen in Figure 10, there is still a very noticeable difference
in stream of packet lengths seen with the modem compared to ac-
tual speech. Modem packet lengths seen in Figure 9c have a much
tighter distribution then either the English or Portuguese samples.

Using this intuition, we can build computationally simplistic bi-
nary classifiers that can detect modem traffic from actual speech.
Figure 10 shows the divergence of modem verses speech while
tracking either standard deviation of the observed packet lengths
over time, or simply keeping track of the average inter packet length
difference. The average inter packet length difference starts to di-
verge for the modem connection after around 10 seconds, but while
the average is lower than all but one of the samples, it’s still fairly
close to the other averages potentially making it harder to differ-
entiate and lead to false positives. Tracking the standard deviation
produces much better results, starting to significantly diverge af-
ter only 5 seconds. Furthermore, the standard deviation on packet
length for the modem ends up being 2.0 - 2.5 times lower than all
of the speech standard deviation, making it much easier to classify

without the risk of false positives. Being able to use such a low
resource classifier lets a censor conduct widespread monitoring of
encrypted VoIP calls instead of being limited to targeting specific
connections.

7. CONCLUSION
With the increase in technologies available to censoring regimes,

achieving unobservability in censorship-resilient systems is becom-
ing increasingly difficult. In response there have been a new wave
of systems that attempt to use popular services such as VoIP as a
cover-protocol for anonymous communication. While the use of
mimicry has been shown to be a flawed approach, these systems
can be improved to actively participate in the cover-protocol, re-
moving their reliance on mimicry techniques. We show that even
removing the dependence on mimicry is not enough to achieve un-
observability alone, as there are significant problems in delivering
anonymous communication over these cover protocols.

First, we show there are issues in differential error tolerance be-
tween the anonymous communication and legitimate cover-protocol
traffic. By using an unreliable channel to tunnel data, these sys-
tems must implement their own mechanisms for ensuring reliable
data transmission. Due to the fact that the cover-protocols are er-
ror tolerant and can still operate while incurring packet loss rates
from 10-15%, a censor is able to interfere with the mechanisms at-
tempting to ensure reliable transmission, limiting the use of anony-
mous communication while retaining usability of legitimate use of
the cover-protocol. Next, we demonstrate the inherent problems in
forcing a client-proxy model on to a peer-to-peer system. Diverging
use cases for the different systems allow for noticeable traffic pat-
terns that can be flagged by censors, easily breaking unobservabil-
ity. Additionally, we explore the pitfalls of relying on a dynamic
external network for proxies, as changes can quickly break cen-
sorship circumvention. Finally we look at issues in cross-content
delivery, showing that even when fully participating in the cover-
protocol system, issues arise in attempting to deliver content out-
side the normal scope of operation, leading to low cost methods of
detection.
Acknowledgments We thank the anonymous reviewers for their
valuable feedback and suggestions. This research was supported
by NSF grants CNS-0917154, CNS-1223421, and CNS-1314637.

8. REFERENCES
[1] JAP: The JAP anonymity & privacy homepage.

http://anon.inf.tu-dresden.de/.
[2] Knock Knock Knockin’ on Bridges’ Doors.

https://blog.torproject.org/blog/
knock-knock-knockin-bridges-doors.

[3] The Anonymizer. https://www.anonymizer.com/.
[4] BOLOT, J.-C. End-to-end packet delay and loss behavior in

the internet. In Conference proceedings on Communications
architectures, protocols and applications (New York, NY,
USA, 1993), SIGCOMM ’93, ACM, pp. 289–298.

[5] BONFIGLIO, D., MELLIA, M., MEO, M., AND ROSSI, D.
Detailed analysis of skype traffic. Multimedia, IEEE
Transactions on 11, 1 (2009).

[6] DING, L., AND GOUBRAN, R. A. Speech quality prediction
in voip using the extended e-model. In Global
Telecommunications Conference, 2003. GLOBECOM’03.
IEEE (2003), vol. 7, IEEE, pp. 3974–3978.

[7] DINGLEDINE, R., AND MATHEWSON, N. Design of a
blocking-resistant anonymity system. Tech. rep., Tor Project,
November 2006.

[8] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P.
Tor: the second-generation onion router. In Proceedings of
the 13th conference on USENIX Security Symposium (2004),
USENIX Association.

[9] HOUMANSADR, A., BRUBAKER, C., AND SHMATIKOV, V.
The parrot is dead: Observing unobservable network
communications. In Security and Privacy (SP), 2011 IEEE
Symposium on (2013), IEEE.

[10] HOUMANSADR, A., NGUYEN, G. T., CAESAR, M., AND

BORISOV, N. Cirripede: circumvention infrastructure using
router redirection with plausible deniability. In Proceedings
of the 18th ACM Conference on Computer and
Communications Security (CCS) (2011).

[11] HOUMANSADR, A., RIEDL, T., BORISOV, N., AND

SINGER, A. I want my voice to be heard: Ip over
voice-over-ip for unobservable censorship circumvention.
NDSS.

[12] KARLIN, J., ELLARD, D., JACKSON, A. W., JONES, C. E.,
LAUER, G., MANKINS, D. P., AND STRAYER, W. T. Decoy
routing: Toward unblockable internet communication. In
Proceedings of the USENIX Workshop on Free and Open
Communications on the Internet (FOCI) (2011).

[13] KHO, W., BASET, S. A., AND SCHULZRINNE, H. Skype
relay calls: Measurements and experiments. In INFOCOM
Workshops 2008, IEEE (2008), IEEE.

[14] KNOCKEL, J., CRANDALL, J. R., AND SAIA, J. Three
researchers, five conjectures: An empirical analysis of
tom-skype censorship and surveillance. In USENIX
Workshop Free and Open Communications on the Internet
(FOCI) (2011).

[15] LANDER, T., COLE, R. A., OSHIKA, B., AND NOEL, M.
The ogi 22 language telephone speech corpus. In Proc.
Eurospeech (1995), vol. 95.

[16] LYON, G. F. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning.
Insecure, 2009.

[17] MCLACHLAN, J., AND HOPPER, N. On the risks of serving
whenever you surf: vulnerabilities in tor’s blocking
resistance design. In Proceedings of the 8th ACM workshop
on Privacy in the electronic society (2009), ACM.

[18] MOHAJERI MOGHADDAM, H., LI, B., DERAKHSHANI,
M., AND GOLDBERG, I. Skypemorph: protocol obfuscation
for tor bridges. In Proceedings of the 2012 ACM conference
on Computer and communications security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 97–108.

[19] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G.,
JOHNSTON, A., PETERSON, J., SPARKS, R., HANDLEY,
M., AND SCHOOLER, E. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. Updated by
RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630,
5922, 5954, 6026, 6141.

[20] SCHUCHARD, M., GEDDES, J., THOMPSON, C., AND

HOPPER, N. Routing around decoys. In Proceedings of the
2012 ACM conference on Computer and communications
security (2012), ACM.

[21] SMITS, R., JAIN, D., PIDCOCK, S., GOLDBERG, I., AND

HENGARTNER, U. Bridgespa: improving tor bridges with
single packet authorization. In Proceedings of the 10th
annual ACM workshop on Privacy in the electronic society
(2011), ACM.

[22] WANG, Q., GONG, X., NGUYEN, G. T., HOUMANSADR,
A., AND BORISOV, N. Censorspoofer: asymmetric
communication using ip spoofing for censorship-resistant
web browsing. In Proceedings of the 2012 ACM conference
on Computer and communications security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 121–132.

[23] WEINBERG, Z., WANG, J., YEGNESWARAN, V.,
BRIESEMEISTER, L., CHEUNG, S., WANG, F., AND

BONEH, D. Stegotorus: a camouflage proxy for the tor
anonymity system. In Proceedings of the 2012 ACM
conference on Computer and communications security
(2012), ACM.

[24] WHITE, A. M., MATTHEWS, A. R., SNOW, K. Z., AND

MONROSE, F. Phonotactic reconstruction of encrypted voip
conversations: Hookt on fon-iks. In Security and Privacy
(SP), 2011 IEEE Symposium on (2011), IEEE.

http://anon.inf.tu-dresden.de/
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://www.anonymizer.com/

[25] WRIGHT, C. V., BALLARD, L., COULL, S. E., MONROSE,
F., AND MASSON, G. M. Spot me if you can: Uncovering
spoken phrases in encrypted voip conversations. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on (2008),
IEEE.

[26] WRIGHT, C. V., BALLARD, L., MONROSE, F., AND

MASSON, G. M. Language identification of encrypted voip
traffic: Alejandra y roberto or alice and bob. In Proceedings
of the 16th USENIX Security Symposium (2007).

[27] WUSTROW, E., WOLCHOK, S., GOLDBERG, I., AND

HALDERMAN, J. A. Telex: anticensorship in the network
infrastructure. In Proceedings of the 20th USENIX
Conference on Security (SEC) (2011).

[28] ZHANG, X., XU, Y., HU, H., LIU, Y., GUO, Z., AND

WANG, Y. Profiling skype video calls: Rate control and
video quality. In INFOCOM, 2012 Proceedings IEEE
(2012), IEEE.

	Introduction
	Background and Related Work
	SkypeMorph
	FreeWave
	CensorSpoofer
	Mimicry Issues

	Experimental Setup
	SkypeMorph
	FreeWave
	CensorSpoofer

	Differential Error Tolerance
	Packet Loss Thresholds
	FreeWave Modem
	SkypeMorph
	Tracking ACKs
	Dropping ACKs
	Replaying ACKs

	CensorSpoofer
	XOR Encoding
	Reed-Solomon

	Proxy Model in P2P Systems
	Tor Over Skype
	FreeWave Proxies

	Cross-Content Delivery
	Conclusion
	References

