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Abstract. Inhibitor arcs pose a problem for the standard CoverabilityTree Con-
struction for Place/Transition Nets. A straightforward modification of the con-
struction circumventing this problem works for PT-nets with one inhibitor place.
Here it is shown that this modified construction may not terminate in case of two
or more inhibitor places.

1 Introduction

Coverability trees are a powerful tool in the behavioural analysis of Petri Nets. Origi-
nally introduced in [5] for Vector Addition Systems, they proved to be useful also for
Place/Transition Nets (PT-nets) [3]. A coverability tree provides a finite representation
of the reachable markings of a PT-net from which important behavioural properties of
the net can be derived [8, 7], such as coverability of markings, boundedness, and mu-
tual exclusion properties. Inhibitor arcs are a powerful extension of PT-nets, as they
allow to check for emptiness of a place (so-called zero-testing), a feature not possible
in the standard PT-net model. Actually, Place/Transition Nets with inhibitor arcs (PTI-
nets) can simulate Turing machines [1] and so, many problemsthat are decidable for
PT-nets, like reachability and boundedness, are undecidable for PTI-nets [4].

In [6], it is investigated how the standard coverability tree construction for PT-nets
might be generalised to PT-nets and PTI-nets working under the a priori step semantics.
This has led to a generic algorithm for the construction of so-calledstep coverability
trees. Even without the step semantics, inhibitor arcs introducethe problem of non-
monotonicity and to deal with this, [6] first proposes a straightforward modification of
the standard coverability tree construction.

As part of his BSc project, the first author investigated thismodification, aimed at
dealing with PT-nets with inhibitor arcs. The algorithm correctly identifies unbounded
places, and always terminates in case of one inhibitor place. As shown in [6], there
exists however a PT-net with three inhibitor places for which the algorithm does not
terminate. It was not known whether the algorithm would always terminate in case of
two inhibitor places. This paper solves this problem by giving an example of a PT-net
with two inhibitor places for which the algorithm does not terminate.
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2 Preliminaries

A P/T-net with inhibitor arcs(PTI-net) is a tupleN = (P, T,W, I,M0), whereP andT
are disjoint finite sets ofplacesandtransitions, respectively;W : (T ×P )∪(P ×T ) →
N is theweight function; I ⊆ P × T is the set ofinhibitor arcs; andM0 : P → N is
the initial marking (in general, any mappingM : P → N is a marking). In diagrams
places are drawn as circles, transitions as rectangles, theweight function is represented
by (weighted) arcs, and inhibitor arcs are drawn with a smallcircle as arrowhead. A
markingM is represented by placingM(p) tokens(small black dots) inside the circle
representing placep.

A transitiont ∈ T is enabledat a markingM if M(t) ≥ W (p, t), for everyp ∈ P ,
andM(p) = 0, for everyp ∈ I(t) = {q | (q, t) ∈ I} (i.e., all inhibitor places oft
are empty). In such a caset canfire leading to the markingM ′ satisfyingM ′(p) =
M(p)−W (p, t)+W (t, p), for everyp ∈ P . We denote this byM [t〉M ′. The enabling
condition and firing of a transition can be generalised in theobvious way toextended
markings defined as mappingsM : P → N ∪ {ω}, whereω is the smallest infinite
ordinal.

A markingM is reachableif it can be obtained from the initial marking through
successively firing a finite sequence of transitions, and it iscoverableif there is a reach-
able markingM ′ such thatM ′(p) ≥ M(p), for all p ∈ P .

A PT-netnet is nothing but a PTI-net without any inhibitor arcs.

3 Constructing Coverability Trees for PTI-nets

The algorithm shown in Table 1, but without the line indicated by (∗), is basically the
standard coverability tree construction introduced in [5]. If the input netN is a PT-net,
i.e. I = ∅, then the line indicated by (∗) is void. It generates a treeCT = (V,A, µ, v0),
whereV is a set of nodes (v0 ∈ V is the root),A is a set of arcs labelled with the
transitions ofN , andµ is a mapping associating a (possibly extended) marking with

each node inV . An arc labelledt from nodev to nodew is denoted byv
t

−→ w, and
v ;

σ

A
w means that nodew can be reached from nodev with σ being the sequence of

transitions labelling the arcs along the path.
The algorithm starts with a single (root) node, corresponding to the initial marking.

Then, repeatedly, for each transition that is enabled at a marking corresponding to an
already generated but not yet processed node, an arc and a newnode representing the
resulting marking are added. If the latter already appears in the tree, the new node is
ignored and otherwise it becomes an unprocessed node. For a PT-net, place unbounded-
ness is detected whenever a marking corresponding to a new nodeM strictly coversthe
markingM ′ corresponding to an ancestor node (i.e.,M ′ < M meaning thatM ′ 6= M

andM ′(p) ≤ M(p) for all placesp). In such a case, the marking corresponding to the
new node is obtained by replacingM(p) with ω wheneverM ′(p) < M(p). Note that
eachω generated in this way correctly identifies place unboundedness, as the sequence
of transitions between the two nodes can be repeated indefinitely starting fromM .

For PT-nets, the algorithm always terminates and the resulting finite coverability
treeCT can be used to decide various relevant properties. In particular, one can show
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Table 1. Algorithm generating a coverability tree of a PTI-netN = (P, T,W, I,M0)

CT = (V,A,µ, v0) whereV = {v0}, A = ∅ andµ(v0) = M0

unprocessed = {v0}

while unprocessed 6= ∅

let v ∈ unprocessed

if µ(v) /∈ µ(V \unprocessed ) then

for every µ(v)[t〉M

V = V ⊎ {w} andA = A ∪ {v
t

−→ w}

andunprocessed = unprocessed ∪ {w}

if there isu such thatu ;
σ

A v andµ(u) < M
andµ(u)(p) < M(p) impliesI(t′) = ∅, for all transitionst′ in σt (∗)

then µ(w)(p) = (if µ(u)(p) < M(p) then ω else M(p))

else µ(w) = M

unprocessed = unprocessed \ {v}

that all reachable markings ofN are covered by the extended markings associated with
the nodes ofCT . Moreover, for each extended markingM associated with a node of
CT there are reachable markingsM1,M2, . . . of N approximatingM , i.e. for each
n and everyp ∈ P , Mn(p) = M(p) if M(p) ∈ N andMn(p) ≥ n otherwise. As
an immediate consequence,CT can be used to decide unboundedness of places in
reachable markings.

This standard coverability tree algorithm does not work forPTI-nets; it may in fact
falsely identify places as unbounded. The problem is the non-monotonicity of PTI-nets:
given two markingsM < M ′ and a firing sequenceσ leading fromM to M ′, it is not
guaranteed thatσ can also be fired fromM ′. As a consequence, the condition for gen-
eratingω-components may be too weak. It can be strengthened by ensuring that no in-
hibitor features were used along the path fromu to v for those places where the number
of tokens has grown. This has led to the modification proposedin [6], i.e. the addition
of the line marked with (∗) in the algorithm in Table 1 which is the only difference with
the standard coverability tree algorithm for PT-nets: the marking corresponding to the
new node is obtained by replacing eachM(p) with ω provided thatM ′(p) < M(p)
and the transitions fired between the two nodes have no inhibitorplaces

In [6] it has been shown that the algorithm in Table 1 will always terminate for a
PTI-net with one inhibitor place. Moreover, an example was given that this no longer
holds if the net contains three such places. The terminationproblem in the case of
exactly two inhibitor places was left open.

4 A Counterexample

In this section we will show an example of a PTI-net with two inhibitor places for which
the algorithm in Table 1 does not terminate. An important insight in the design of this
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Fig. 1. PTI-netN0 with two inhibitor places for which the algorithm in Table 1 does not terminate.

counterexample was that its two inhibitor places need to be simultaneously unbounded.
This follows from the proof in [6] for PTI-nets with one inhibitor place. In short, if
they would not grow simultaneously, one of the inhibitor places would generate anω-
component. The remainder of the construction would then regard the net as a PTI-net
with a single inhibitor place, and terminate.

The counterexample is shown in Figure 1. We first observe thatthe two inhibitor
placesp1 and p2 of N0 are simultaneously unbounded. It is easy to see thatN0 is
deterministic and can fire exactly one infinite sequence of transitionsσ = σ0σ1σ2 . . . ,
whereσi = a2

i

cb2
i

d for everyi ≥ 0. For anyσi, the firing of transitionsa, c andd
does not change the total amount of tokens. However, each firing of transitionb adds
one token to the total count. HenceN0 is unbounded and the inhibitor places,p1 andp2,
are simultaneously unbounded (one only needs to consider the markings reached after
firing transition sequencesσ0σ1 . . . σia

2
i

for i ≥ 0).

Theorem 1. The algorithm in Table 1 does not terminate for PTI-netN0 in Figure 1.

Proof. Figure 2 shows part of the reachability graphN0 (which has the shape of an
infinite line). It starts with a markingM1 havingx > 0 tokens in placep1, and one
token in placep3. There are three situations in which markings cover ancestor markings
in this fragment.
Case 1:M1 = (x, 0, 1, 0) is covered byM7 = (2x, 0, 1, 0) andM8 = (2x− k, k, 1, 0)
when0 < k ≤ x. BetweenM1 andM7,M8 transitionsc andd fire. As I(c), I(d) 6=
∅, the line marked with an∗ in the algorithm in Table 1 returnsfalse, and so noω
components will be produced.
Case 2:M2 = (x− i, i, 1, 0) is covered byM8 = (2x− k, k, 1, 0) with 0 < k− i ≤ x.
BetweenM2 andM8 transitionsc andd fire, and so noω components will be produced.
Case 3:M3 = (0, x, 1, 0) is covered byM8 = (2x − k, k, 1, 0) with x < k < 2x, and
by M9 = (0, 2x, 1, 0). BetweenM3 andM8,M9 transitionsc andd fire, and so noω
components will be produced.

We now observe that the initial markingM = (1, 0, 1, 0) is M1 with x = 1, and
thatM6 isM1 with x replaced by2x. Consequently, the above argument can be applied
to the entire infinite sequence of firings ofN0, with all possible coverings identified as
in the above case analysis. As no covering leads to the generation ofω components, the
algorithm will never terminate. ⊓⊔
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M1 = (x, 0, 1, 0)
M2 = (x− i, i, 1, 0)

M3 = (0, x, 1, 0)

M4 = (0, x, 0, 1)
M5 = (2j, x− j, 0, 1)

M6 = (2x, 0, 0, 1)

M7 = (2x, 0, 1, 0)
M8 = (2x− k, k, 1, 0)

M9 = (0, 2x, 1, 0)

a a a a

a a a a

bbbb

c

d

Fig. 2. Execution of the PTI-net in Figure 1 with0 < i, j < x and0 < k < 2x.

5 Discussion

This article focused on the number of inhibitor places in a PTI-net. However, since an
inhibitor place may inhibit multiple transitions, one can also focus on the number of
inhibitor arcs in the PTI-net. Still, as our counterexamplehas onlytwo unweighted in-
hibitor arcs, it also closes the gap between one inhibitor place and two inhibitor arcs. In
this context it is worthwhile to notice that in [6] a construction is given which simulates
the inhibitor arcs connected to a single inhibitor place by just one unweighted inhibitor
arc.

We have seen that the Modified Coverability Tree Construction does not in general
terminate for PTI-nets with two or more inhibitor places. This was to be expected, as the
modelling power of such PTI-nets reaches Turing completeness. To have more decision
power on such Petri net models, one needs to consider restricted subclasses. An example
of such a subclass are the Primitive PTI-nets, introduced in[2].
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