
Coverage and Adequacy in Software Product Line Testing

Myra B. Cohen, Matthew B. Dwyer, Jiangfan Shi
Department of Computer Science and Engineering

University of Nebraska
Lincoln, Nebraska, USA

{myra,dwyer,jfshi}@cse.unl.edu

ABSTRACT
Software product line modeling has received a great deal
of attention for its potential in fostering reuse of software
artifacts across development phases. Research on the testing
phase, has focused on identifying the potential for reuse of
test cases across product line instances. While this offers
potential reductions in test development effort for a given
product line instance, it does not focus on and leverage the
fundamental abstraction that is inherent in software product
lines - variability.

In this paper, we illustrate how rich software product line
modeling notations can be mapped onto an underlying rela-
tional model that captures variability in the feasible product
line instances. This relational model serves as the semantic
basis for defining a family of coverage criteria for testing of
a product line. These criteria make it possible to accumu-
late test coverage information for the product line itself over
the course of multiple product line instance development ef-
forts. Cumulative coverage, in turn, enables targeted test-
ing efforts for new product line instances. We describe how
combinatorial interaction testing methods can be applied
to define test configurations that achieve a desired level of
coverage and identify challenges to scaling such methods to
large, complex software product lines.

1. INTRODUCTION
A software product line (SPL) is a set of programs that

share significant common functionality and structure. A
product line is distinguished by the fact that the differences
among the constituent programs is well-understood and is
organized in some form. By explicitly capturing the vari-

ability among a set of programs, a software product line
supports the systematic reuse of artifacts across the devel-
opment activities for those programs. A number of authors
have described the potential benefits that may accrue from
using SPL techniques in the requirements, architecture, de-
sign, coding and testing phases [9, 15, 28].

Software product line modeling languages have been de-
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veloped that focus on defining the variability in systems
and rely on other modeling languages to capture other sys-
tem abstractions, e.g., requirements, architectural, or design
models or even code [28]. A significant body of work exists
on exploiting the unique features of software architecture
abstractions for software validation, for example, detecting
component mismatch [1], planning integration testing [3],
and using notions of software architecture model coverage
for test adequacy [29]. In contrast, there has been rela-
tively little work on exploiting the unique features of soft-
ware product line abstractions, namely the identification of
commonality and variability, for validation.

We contend that the key challenge for validation revealed
at the product line layer of abstraction is the interaction be-
tween differing combinations of variability bindings. When
using a product line, application developers make choices
about how to bind capabilities to points of variability in their
target system - also referred to as an instance of the product
line. In this process, they must consider whether the combi-
nation of bindings they have chosen has ever appeared in an
instance of the product line. If so, then they may have some
confidence that interactions among the bound capabilities
have been exercised, but if not, they may be wary of faults
arising due to such interactions. Ideally, developers of soft-
ware product lines would validate all possible combinations
of capabilities and points of variability that can be realized
in a product line instance. This would allow users to confi-
dently instantiate the product line to produce new systems.
Unfortunately, the space of possible combinations in a re-
alistic product line is likely to be enormous and exhaustive
consideration of those combinations intractable.

In this paper, we address the problem of validating a soft-
ware product line by defining families of coverage criteria
for product line models. These criteria allow for tradeoffs to
be made between the extent to which binding combinations
are covered and the cost of testing. Furthermore, the crite-
ria are related in such a way that developers of SPLs can
exploit them to incrementally invest in improved validation
across the lifetime of an SPL.

It is important to emphasize that our work is focused on
validation of the product line itself and not on specific in-
stances of the product line, although we argue that the latter
will be made more cost-effective by the former.

Figure 1 illustrates the orthogonal dimensions of soft-
ware product line coverage, and coverage of an instance of
the product line, i.e., a program. Current approaches to
testing SPLs in practice use well understood code cover-
age measures, for example, statement and branch coverage,
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Figure 1: SPL versus Instance Coverage

and focus on validation of the individual products gener-
ated from the SPL. While valuable, this approach provides
for relatively low coverage of the space of possible SPL in-
stances. Research in software testing focuses on developing
techniques that more thoroughly sample a program’s behav-

ior space based on consideration of implementation, design
or architectural details. In this way, testing research is mov-
ing towards stronger notions of SPL instance coverage, for
example, by using symbolic execution to generate tests that
achieve partial path coverage. Our work seeks to define no-
tions of SPL coverage and to develop techniques to sample
the space of SPL instances to achieve different levels of cov-
erage. The goal is to move practice towards a more thorough
consideration of the variability space of an SPL. We note
that ultimately one wants to achieve the highest degree of
behavior and variability coverage of the product line, i.e.,
the upper right portion of Figure 1, for a given allocation of
resources.

To illustrate our approach to SPL coverage, we set our
work in the context of an existing software product line mod-
eling notation that has received significant recent attention -
Pohl et al.’s Orthogonal Variability Model (OVM) [28]. We
map the OVM to a low-level relational model that makes ex-
plicit the semantics of OVM’s higher-level, and sometimes
subtle, primitives. Coverage criteria are defined in terms of
this relational model and subsumption relationships among
the criteria are defined. We then describe how these cri-
teria can form the basis for SPL lifecycle validation activ-
ities. Specifically, we introduce the concept of cumulative

variability coverage which accumulates coverage information
for an SPL across a series of product line instance develop-
ment activities and which can be exploited to target testing
activities for future product line instances. Our relational
model allows application of interaction testing techniques,
e.g., [10], to generate coverage adequate test sets for some
of our criteria. We have identified limitations on the ap-
plicability of existing interaction testing techniques to SPL
models that arise from the richness of SPL modeling nota-
tions, specifically the significant use of constraints.

The next Section provides background on the OVM and
on combinatorial interaction testing, which has significantly
influenced our approach to defining coverage criteria. Sec-
tion 2 details how OVM models are mapped onto a low-level

relational model. In Section 4 we leverage the relational
model to define several coverage criteria and explain the
concepts of cumulative coverage and targeted testing. Work
in multiple areas of software modeling and validation has in-
fluenced our work; Section 5 describes those influences. Fi-
nally, in Section 6 we identify challenges to scaling existing
testing techniques to treat large, complex software product
lines cost-effectively.

2. BACKGROUND
A number of different modeling formalisms have been de-

veloped to capture different aspects of families of software
products, e.g., [8, 13, 15, 28]. In this section, we provide an
overview of one such formalism that we will use as a vehi-
cle for formalizing and presenting SPL-specific test coverage
and adequacy notions in Sections 3 and 4. We note, how-
ever, that our approach is applicable to a broad range of
SPL modeling formalisms.

2.1 The Orthogonal Variability Model
Pohl et al. introduce [7, 28] the Orthogonal Variability

Model (OVM) to capture the commonality and variability
within a product line. The OVM is intended to capture vari-
ability that cross-cuts a broad spectrum of software models
defined in the UML. In this Section, we explain the elements
of OVM as they relate to class diagram elements. Figure 2
illustrates an OVM model taken from [28] that captures a
simple security system product line.

There are two primary building blocks in OVM models.
Variation points (VP) define the features of a system whose
realization, or presence, may vary across product line in-
stances; variation points are depicted as triangles. Variation
points might correspond, for example, to an abstract class in
a UML class diagram. Variants (V) correspond to a specific
realization of a feature that may be bound to a variation
point; variants are depicted as rectangles. A variant might,
for example, correspond to a concrete class that implements
the abstract class associated with a VP.

A set of variants is related to a variation point through a
variability dependency ; a variability dependency is depicted
as an edge connecting a triangle to a rectangle. Concep-
tually, a dependency captures the set of realizations of a
feature that are possible in some instance of the product
line. Variability dependence implies that variants may be
bound to a variation point. The example in Figure 2 has 3
variation points and a total of 7 variants.

OVM provides flexibility in defining dependencies. Manda-

tory dependencies, depicted as solid edges, require that a
dependent variant be bound to a variation point in each PL
instance that includes the VP; this can be thought of as
a commonality at the level of abstraction captured by the
OVM. Optional dependencies, depicted as dashed edges, al-
low for a variation point to be bound to the associated vari-
ant in a product line instance or not. If a variation point has
multiple optional dependent variants, then it may be bound
to a subset of those values. Finally, alternative choice depen-
dencies allow for modelers to define the number of optional
variants that may be bound with a variation point; these are
depicted with a solid arc spanning a set of optional variabil-
ity dependence edges. An alternative choice has upper and
lower bounds defined on the size of the variant set. This is
denoted [i, j] and means that the variation point has at least
i and at most j variants bound to it in a product line in-
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Figure 2: Example OVM Model [28]

stance. All of the dependencies in Figure 2 are optional and
there are three alternative choice groupings shown each with
the, unwritten, default bounds of [1, 1]. The intrusion detec-

tion variation point has the most subtle dependencies. The
alternative choice dependency covering the camera surveil-

lance and motion sensors variants means that exactly one
of those must be present in a product line instance. The
optional dependence on the cullet detection variant means
that it may also be present, but need not be.

In complex product lines, it is often the case that multiple
decisions about the binding of variants to variation points
must be correlated. To support this, OVM allows the defini-
tion of multiple types of constraints, but in this presentation
we focus on variant constraints which relate choices made
about variants bound to different variation points. A re-

quires variant constraint states that when a variation point
is bound to a specified variant then a related variation point
must be bound to a specified variant. The example in Fig-
ure 2 shows two such ternary constraints depicted as dotted
edges. For example, whenever the basic security package
variant appears in a product line instance, then the motion

sensors and keypad variants must be bound to the intrusion

detection and door locks variation points, respectively, in the
instance. A complementary constraint, the excludes variant
constraint states that when a variation point is bound to a
specified variant then a related variation point must not be
bound to a specified variant. Note that as defined, OVM
constraints are binary, but it is trivial to define constraints
between a variant and a set of variants by using multiple
constraints.

OVM allows constraints to be defined between bound vari-
ants and variation points and between pairs of variation
points. For example, binding of a specific variant for a vari-
ation point may constrain an instance of the product line
to require (exclude) another variation point. In this way,
one can construct hierarchical relationships among variation
points, where specific variant bindings trigger the inclusion
of child variation points.

2.2 Testing A Product Line
Suppose we are planning to test the set of products de-

fined by the example product line shown in Figure 2. For
simplicity we will ignore the set of constraints. One might
develop individual unit tests for the variants and then de-

velop system tests that bind variation points to variants in
combinations that correspond to what developers think will
be common product line instances. Taking a broader view,
we would need to test for all possible interactions between
combinations of variants. For instance, it might turn out
that when building the motion sensors module, the devel-
oper forgot to specify what happens when an exceptional
value occurs that can only arise from the keypad, since the
motion sensor was originally developed with the fingerprint

scanner in mind.
Figure 3 shows a view of the possible variants that can oc-

cur in combination with each other for this product line. The
intrusion detection variation point must have either camera

surveillance or motion sensors and may or may not have
cullet detection. The security package must be either basic

or advanced, while the door locks can use either a keypad or
fingerprint scanner. In this model we have four columns, or
factors, one for each variation point plus an additional factor
to model the optional dependency for intrusion detection.
Each of these factors has 2 possible values. The Cartesian
product, CP , of this system has 24 = 16 elements represent-
ing the possible variant to variation point bindings. When
planning a set of integration tests for this product line we
should test each of the 16 combinations to find interaction
faults. In this example the system is relatively small and
it might be possible to test all 16 combinations, however
this does not hold for long; a system with 20 factors, each
with only three values, will result in 320 = 3, 486, 784, 401
combinations.

2.3 Covering Arrays
The combinatorial nature of testing is well-understood

and researchers have developed multiple techniques for treat-
ing the space of inputs to a program or configurations of a
software system [5, 10, 17, 31]. Empirical evidence sug-
gests that it is possible to systematically sample this space
and test a subset of the tuples from CP [5, 10, 14, 21, 31].
Combinatorial interaction testing defines a subset size, t, of
vectors from CP and guarantees that all possible t-tuples
appear in a test at least once.

A covering array, CA(N ; t, k, s) is an N × k array defined
on s symbols, where S = (0, 1, . . . , s− 1), such that for any
t-set of columns all ordered t− tuples from S occur at least
once.
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This mathematical structure is used in statistical design
of experiments [27] and has been applied to functional soft-
ware testing [5, 10, 14, 21]. Typically the columns of the
array are called “factors”, each of the factors has s “levels”
or “values”, and t is the interaction strength, or simply the
strength of the array; for consistency, we adopt this termi-
nology in our work. A common strength of testing is t = 2,
often called pair wise testing. In our product line example,
we can select a set of product instances that represents a
covering array. Figure 4 shows a set of product instances
that make up a CA(5; 2, 4, 2). Careful inspection of the Fig-
ure reveals that this set of instances consists of all possible
pairs of factor-value pairs from CP . For example, the pair
of pairs (security package,advanced) and (door locks,keypad)
appears in the third row.

In [11, 12, 31], another type of a covering array called
a variable strength array is described and used that allows
finer control over the interaction space. It allows for different
sizes of t for different subsets of factors. A product line
developer may decide that certain variation points are more
closely related or are more likely to interact. These can be
tested with a higher strength of interaction coverage. More
formally, a V CA(N ; t, k, s, C) is an N × k covering array, of
strength t containing C, a vector of covering arrays each of
strength > t, where each CA in C is defined on a subset of
the k columns.

In our example system, we could set t to be 2 for the
whole system, and define t� = 3 for the three factors, in-

trusion detection A, intrusion detection B, and door locks.
This means that all possible 3-tuples of these three factors
must be included, while all possible pairs for the whole sys-
tem will be included. Figure 5 shows a VCA for this system.
Notice that the three way property does not necessarily hold
for all of the factors (intrusion detection B, security pack-

age and door locks are missing some 3-tuples). A variable
strength covering array can define multiple regions of higher
interaction coverage even though we have shown only one.

We have assumed in this example model that this is an
unconstrained system. Covering arrays do not include a
“natural” mechanism for describing constraints. In Ta-
ble 4, there are some infeasible combinations given the set
of constraints modeled in Figure 2. For example, the last
tuple is invalid, because there is a constraint that requires:
basic to occur with motion sensors and keypad. We discuss
the implications of such constraints on interaction testing in
Section 3.5.
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3. A RELATIONALMODEL OF SPL VARI-
ABILITY

Product-line models are fundamentally relational and in-
teraction testing exploits a relational encoding of possible
system configurations. In this section, we describe how
the OVM can be mapped onto a simple relational model
that satisfies the requirements of interaction testing. Subse-
quently, in Section 4 we describe how this relational model
can be exploited to support SPL testing.

3.1 A Simple Relational Model
A domain is a finite set of values. A relation is a subset of

a Cartesian product of some number of domains. We write
domains as Di and a relation over k domains as Πk

i=1Di

where the Di need not be distinct. We say that such a
relation has k factors.

Elements of a relation are tuples. For a relation with k
factors we will refer to elements as a k-tuple and write it as
(v1, . . . , vk) where vi ∈ Di. We extract the value for a factor,
i, from a tuple, t = (v1, . . . , vk), using a projection function,
π(t, i) = vi where 1 ≤ i ≤ k. We lift this function to sets of
factors, {i, . . .}, to produce a tuple of values, π(t, {i, . . .}) =
(vi, . . .), one for each factor.

3.2 Basic OVMMapping
Our goal is to construct the definition of a relation that

encodes exactly the set of product line instances captured
by an OVM model. In this way, our relational model makes
explicit the semantics of OVM. We achieve this by defining
a base relation that over approximates the set of product
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line instances and then successively restrict that relation.
A variation point is modeled by a set of factors and vari-

ants are modeled as values. Variability dependencies relate
a set of variants to a variation point, consequently, in our
model the domain for a variation point’s factors are defined
in terms of the set of values for the associated variants. For
the example in Figure 2, we define a door locks factor over
a domain that includes the values keypad and fingerprint

scanner.
Mandatory dependencies require that a variant be bound

to the variation point in each product line instance, hence,
this relation is invariant across the product line and we do
not include it in the relational model.

Optional dependencies, on the other hand, allow a varia-
tion point to be related to a set of associated variants. This
is modeled by introducing a factor for each optional vari-
ant of the variation point that is defined over the domain
comprised of the variant value and an additional value cor-
responding to no variant, denoted �; we denote the set of
factors for a variation point vp as f(vp). To illustrate in
terms of the example in Figure 2, consider the situation of
the door locks variation point if the associated dependences
were not covered by an alternative choice, i.e., if there were
simply two optional dependences. We would define factor
door-locks1 over Ddoor-locks1 = {vkeypad,�} and factor

door locks2 over Ddoor-locks2 = {vfingerprintscanner,�}.
Alternative choice dependencies introduce additional com-

plexity since they define bounds on the number of variants
that can be related to a variation point. An alternative
choice with bounds [i, j] is modeled with: (1) i factors for
the variation point with a domain defined by the exact set of
variant values covered by the alternative choice, and (2) j−i
factors for the variation point with a domain defined by the
set of variant values covered by the alternative choice and �.
Furthermore, we introduce inequality constraints between
all such pairs of factors to enforce the fact that a variation
point can be bound to a variant only once; technically we
only require inequality for non-� values.

Since the semantics of alternative choice can be some-
what subtle we present a series of three examples to illus-
trate our mapping. The alternative choice for door locks in
Figure 2 has the default bounds of [1, 1], thus only a single
factor is used to model the fact that exactly 1 variant is
chosen: Ddoor-locks = {vkeypad, vfingerprintscanner}. With
a single factor in this case, no inequality constraints are
needed. For the OneOrTwo variation point in Figure 3.2
an explicit bound of [1, 2] is defined. Consequently, two fac-
tors would be used to model the possibility that two out

of the three variants could be selected. DOneOrTwo1
=

{vA, vB , vC} models the fact that at least one variant must
be bound, whereas DOneOrTwo2

= {vA, vB , vC ,�} models
the fact that a second variant may be bound. The constraint
OneOrTwo1 �= OneOrTwo2 is required. For the AtMostOne

variation point in Figure 3.2 an explicit bound of [0, 1] is
defined. Consequently, one factor would be used to model
the possibility that one of the two variants could be selected.
DAtMostOne1

= {vA, vB ,�} models the fact that at least
one variant may be bound, and, as in the above example no
constraint is needed for the single factor.

In the worst case, where all dependencies are optional,
an OVM model with k variants will give rise to a relational
model with k factors. We note, however, that alternative
choices with default [1, 1] bounds seem to be very common
in OVM models [28]. Given this, we have optimized our
mapping of the default alternative choice so that it uses a
single factor and no constraints. Consequently, in practice,
we expect the number of factors in our relational models
to be closer to the number of variation points than to the
number of variants.

3.3 Mapping OVM Constraints
Thus far, we have not considered explicit OVM constraints.

If we ignore the inequality constraints introduced above, we
have a relation, for a given OVM model,

U = Πvp∈OV MΠf∈f(vp)Df

that we refer to as the unconstrained model. Tuples of the
unconstrained model over approximate potential product
line instances - the model includes all possible product line
instances, but it may include instances that are inconsistent
with inequality and OVM constraints.

Our strategy for incorporating constraints is to define sub-
relations of U that are consistent with each constraint and
then intersect the resulting constraints. An inequality con-
straint between factors i and j is defined as:

I(i, j) = {t | t ∈ U ∧ (π(t, i) �= � ⇒ π(t, i) �= π(t, j))}

The cumulative constraint for a variation point, vp, is

I(vp) =
\

i∈f(vp),j∈f(vp)−{i}

I(i, j)

and for an OVM model:

I =
\

vp∈OV M

I(vp)

Explicit constraints in OVM are used to restrict instances
of the product line from including certain combinations of
variants and variation points. We first consider variant to
variant constraints, depicted graphically with ..._v_v an-
notations. A requires variant to variant constraint states
that when a designated variation point is bound to a spe-
cific variant then another variation point must be bound to
a specific variant. As above, we model the constraint by
defining a sub-relation of U whose tuples are all consistent
with the constraint. Let i and j be the two variation points
and v and w be the values associated with the variants, then
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the requires variant constraint is defined as:

R(i, v, j, w) = {t | t ∈ U ∧ (∃f∈f(i) : π(t, f) = v) ∧
(∃f∈f(j) : π(t, f) = w)} ∪

{t | t ∈ U ∧ (∀f∈f(i) : π(t, f) �= v)}

An excludes variant to variant constraint serves a similar,
but complementary, function in OVM models and is defined
as:

E(i, v, j, w) = {t | t ∈ U ∧ (∃f∈f(i) : π(t, f) = v) ∧
(∀f∈f(j) : π(t, f) �= w)} ∪

{t | t ∈ U ∧ (∀f∈f(i) : π(t, f) �= v)}

OVM also supports variant to variation point and vari-
ation point to variation point constraints, depicted graphi-
cally with ..._v_vp and ..._vp_vp annotations. A requires
variation point to variation point constraint states that when
a designated variation point is bound to some variant then
another variation point must be bound to some variant, i.e.,
it cannot be unbound, in a product line instance. It’s def-
inition is similar the variant to variant requires constraint.
Let i and j be the two variation points, then the requires
variant constraint is defined as:

R(i, j) = {t | t ∈ U ∧ (∃f∈f(i) : π(t, f) �= �) ∧
(∃f∈f(j) : π(t, f) �= �)} ∪

{t | t ∈ U ∧ (∀f∈f(i) : π(t, f) = �)}

Excludes variation point to variation point constraints are
defined similarly. Variant to variation point constraints are
defined as a hybrid of variant to variant and variation point
to variation point definitions.

The constraints defined above are all 1-1, but OVM’s
graphical notation permits the definition of 1-many con-
straints, for example, in Figure 2, the dotted hyper-edge
from basic to motion sensors and keypad. 1-many con-
straints are syntactic sugar for the intersection of a collec-
tion of 1-1 constraints; consequently our mapping to the
relational model simply desugars them.

3.4 Combining Relational Models
We have defined all of our constraints as sub-relations of

U , thus constraints can be enforced by simply intersecting
them with U . We refer to a model that intersects U with
some set of constraint relations a constrained model. The
conjunction of all constraints for an OVM model:

U ∩ I ∩
\

R(. . .) ∩
\

E(. . .)

is called the feasible model and it contains the exact set of
product line instances derivable from the OVM model.

3.5 Relational Model as a Covering Array
Some selections of N product instances where N ⊆ U can

be mapped to a covering array. We map our relational model
to a (potential) covering array as follows. Each product
instance is a full-tuple of the relational model, i.e., a tuple
that includes all factors, which becomes a single row of the
covering array. A factor in the relational model is a factor
(or column) in the covering array. The cardinality of Di in
the relational model equals s in the covering array model 1.
1A more general case of the covering array exists that we
have not discussed here, that will handle differing numbers
of values for each domain.

The covering array property, that all t-tuples must occur in
any arbitrary t columns can be expressed as follows in the
relational model. Let F =

S
vp∈OV M

f(vp) be the set of all
factors in a relational model. For all S ⊆ F ∧ |S| = t let
RTS = Πf∈SDf be the indexed set of all pairs of values over
the t-size subset of factors, S. For N to be a t-way covering
array it must be the case that

∀S⊆F∧|S|=t : ∀ts∈RTS : ∃t∈Nπ(t, S) = ts

Informally, this means that all possible t-sized tuples must
be embedded in some full-tuple in N .

In Section 2.3 we presented a model of software product
line t-way interactions using covering arrays. We avoided a
discussion of constraints, however. Suppose we use the con-
straint from Figure 2 that basic requires motion sensors and
keypad and tighten it by stating that basic excludes cullet

detection. This invalidates the last line of Figure 4 as part of
the SPL. It turns out that this is a relatively easy constraint
to handle in the system; we simply remove the last product
instance of the covering array. All of the other pairs in that
instance, such as camera surveillance and fingerprint scan-

ner are already covered in other product instances; Figure
7 shows an example of this scenario. Suppose,instead, we
impose a different constraint, namely that camera surveil-

lance requires fingerprint scanner (see Figure 8). The third
product instance is now invalid. However, unlike the previ-
ous scenario, we cannot simply remove this instance. Other
pairs in this product instance, such as advanced and keypad

are not covered elsewhere. If we alter other instances to ac-
count for these, then we lose other required tuples. There
is no way to satisfy this constraint without adding another
product instance back into this set. We have increased re-
dundancy among other product variants, but this is nec-
essary to include all possible pairs of feasible interactions.
Adding multiple constraints, can complicate building a legal
subset of product instances that satisfy the covering array
properties. Some work has addressed these types of issues
[6, 10, 18] however, no cost-effective techniques for handling
multiple and complex constraints in interaction test gener-
ation are known at present.

Fingerprint ScannerAdvancedCullet DetectionMotion Sensors

KeypadAdvancedCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedNoneCamera Surveillance

Camera Surveillance

Motion Sensors

Intrusion Detection A

Fingerprint ScannerBasicCullet Detection

KeypadBasicNone

Door LocksSecurity PackageIntrusion Detection B

Constrained Set of Product Instances

“Basic requires Motion Sensors and Keypad”

“Basic Excludes Cullet Detection”

Figure 7: Constraint Reduces the Set of Product

Instances

4. SPLTESTCOVERAGEANDADEQUACY
In practice, the space of feasible product line instances

may be enormous and it will be intractable to test all of
them. Consequently, we adopt, for SPL testing, the same
strategy taken with other coverage notions - we relax the
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coverage criteria to consider only a portion of the feasible
system behavior. The relational model of SPL variability de-
veloped in the previous section reveals multiple dimensions
in which such relaxations can proceed. In the remainder of
this section, we outline two families of test adequacy crite-
ria based on partial coverage of SPL variability, and then
describe how to exploit coverage notions for SPL testing.

4.1 Test Adequacy Criteria
The relational model of SPL variability is constructed

by intersecting sets of constraints with the unconstrained
model. This gives rise to a family of constraint-sensitive

criteria that vary in terms of the set of constraints they
include. Let C be the set of all constraints. Then the the
lattice formed by P(C) and ⊆ defines a set of coverage crite-
ria varying in their precision. An element S ∈ P(C) is a set
of constraints that define a criteria U ∩

T
s∈S

s. For the bot-
tom element of the lattice, the empty set of constraints, we
define the criteria as U , and for the top element the criteria
is the feasible model. While the lattice is ordered by ⊆, we
note that the criteria defined by lattice points are ordered by
⊇, since adding additional constraints makes the resulting
relation no larger. A criteria higher in this order subsumes
one lower in the order, since achieving tuple-coverage of the
former guarantees it of the latter. Figure 9 illustrates a
chain in the lattice and it’s subsumption relationships. This
family of criteria may give rise to significant differences in
the cost of generating adequate test sets using combinatorial
interaction methods, since they do not cope well with highly
constrained relations.

Constraint-sensitive criteria as defined above, still con-
sider the full-tuple of all variation point related factors. By
considering tuples of smaller size we can define a family of
interaction strength criteria that are ordered by the number
of factors that are included in the tuples, i.e., the strength of
factor interaction. A related set of coverage criteria was pre-
sented in [16], we extend and refine several of those criteria
to better adapt them to SPL models. For example, cover-
age at strength 2, requires all pairs of factors to take on all
possible values. Let k be the total number of factors in the
relational model, then (i + 1)-way coverage subsumes i-way
coverage for 0 ≤ i < k since each tuple of size i is embedded
in some tuple of size i + 1. Since these criteria are exhaus-
tive, they are sensitive only to the number of factors not the
identity of the factors. As with constraint-sensitive crite-
ria, interaction strength criteria can vary widely in the cost

{C1,C2,…,Ck}

{C2,…,Ck}

{Ck}

{} U

U ! !i=1..k Ci

U ! !i=2..k Ci

U ! Ck

Figure 9: Subsumption of Constraint-sensitive Cov-

erage Criteria

to generate an adequate test set using combinatorial inter-
action methods. Since constraint-sensitive and interaction
strength criteria are orthogonal, it is possible to combine
them and, in fact, the traditional approach to interaction
testing described in Section 2 achieves a combination of un-
constrained 2-way coverage.

Closely related to the interaction strength criteria are the
variable strength criteria which allow the factors in a model
to be partitioned into sets of potentially different sizes and
require all combinations of values to be covered within each
set. As defined in [11], variable strength coverage may in-
volve a large number of different strengths focusing on differ-
ent sets of factors. We identify the minimal, i, and maximal,
j, strengths in a variable strength cover and refer to it as
[i, j]-way; note that multiple distinct variable strength cover-
ing arrays may be mapped to the same [i, j]-way designation.
Given the large number of sub-groupings and sizes possible
in a variable strength cover, we do not attempt to define a
subsumption hierarchy for these criteria, except for the triv-
ial situation where [i, j]-way subsumes [i�, j�]-way coverage
if i ≥ j�. We can however, define their relationship to inter-
action strength criteria: [i, j]-way coverage subsumes i-way
coverage and j-way coverage subsumes [i, j]-way coverage.

4.2 Cumulative Test Coverage
For a large SPL, it may be very expensive to perform ad-

equate testing relative to the criteria outlined above. We
expect that the lifespan of a software product line, i.e., the
time span over which new instances of the SPL are produced,
will be significantly longer than the development time of a
single instance of the product line. We believe that the long
lifespan of an SPL provides an opportunity to perform vali-
dation activities whose cost would be prohibitive for a single
program, but when amortized over a set of SPL instances
would be considered cost-effective.

Intuitively, one is interested in assuring a desired level of
coverage of the portion of an SPL that is related to a specific
instance at the time when that instance is to be produced.
Achieving coverage of an instance before it is to be produced
may be desirable, but only if time and resource constraints
permit. Delaying coverage until after an instance is released
risks inadequate testing.

Given the lifespan of an SPL and the fact that the de-
velopment of SPL instances will be ordered in time, we be-
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lieve that one should stage the process of achieving a desired
level of SPL coverage. Figure 10 illustrates an SPL deploy-
ment scenario. Four instances of the SPL have been pro-
duced, two of which are still deployed at the current time.
The instance-specific testing for each of these yields cover-
age information about the combinations of variants in the
instance. In particular, this coverage information, denoted
vc(i) for instancei, includes sets of pairs, triples, etc., all
the way up to a single k-way tuple defining the full set of
variability bindings in the instance. We refer to the vari-
ability coverage achieved at a specific time, t, in the lifespan
of an SPL, s, as its cumulative variability coverage (CVC),
cvct(s) =

S
0≤i≤n

vc(i) where n is number of instances pro-
duced from s prior to t.

One can consult the CVC to calculate the percentage of all
feasible variability combinations of a given arity that have
been covered. Developers will view the sequence of interac-

tion strength coverage percentages to develop an overall pic-
ture of the current state of SPL validation. Given the sub-
sumption relationship between different interaction strength
criteria the coverage percentages for increasing strengths will
be non-increasing, e.g., the percentage of pair-wise coverage
will be greater or equal to the percentage for three-way cov-
erage.

4.3 Targeted Testing
During SPL development and deployment we envision an

alternation between phases that emphasize overall SPL val-
idation and SPL instance development. The CVC provides
a means for driving and assessing the former and for fo-
cusing the latter to achieve greater coverage than would be
cost-effective in a single program development effort. Specif-
ically, we envision that the cumulative variability coverage
will enable three advantages for product line developers: (1)
coverage percentages for different interaction strengths will
provide an overall metric of SPL quality, (2) the extent to
which the variability combinations in a specific product line
instance are contained in the CVC indicates how thoroughly
the SPL has been validated with respect to that instance,
and (3) variability binding combinations in an SPL instance
that are not covered in the CVC can be used to drive testing
of that instance.

These advantages are increased if the SPL development

process seeks to incrementally increase the CVC. One way
to achieve this is to generate instances of the SPL for the ex-
press purpose of validation - as opposed to deploying those
instances. Consider a situation where there are 100 2-way
binding combinations possible, and 78 of those have been
covered already by previous product line instance testing.
We could generate a set of product line instances that cover
the 22 remaining binding combinations to produce a CVC
that is 2-way adequate for the product line as a whole; Fig-
ure 10 illustrates the generation of n test instances, test-

instance1 . . . test-instancen, for this purpose. We empha-
size that the problem of testing the individual instances and
the degree of coverage demanded in instance testing is an
important, but orthogonal, dimension of testing SPLs.

In product line instance development efforts, for exam-
ple, instance5 in Figure 10, developers may determine, for
instance, that the CVC is 2-way adequate and then shift
their focus to higher-strength criteria. They might, for ex-
ample, assess the 3-way coverage in the CVC relative to the
instance being developed. Imagine that one triple of vari-
ability bindings in the instance is uncovered in the CVC.
The developer may use that combination to drive the devel-
opment of tests that are targeted to exposing interactions
among the portions of the implementation that realize those
three variability bindings. In this way, the instance testing
effort would be focused based on the results of the overall
SPL validation effort.

5. RELATEDWORK
An enormous body of work on coverage criteria and no-

tions of test adequacy has been reported in the literature.
We will not survey it here. Instead we remark that a number
of researchers have considered exploiting software architec-
ture models to drive the planning, generation, and assess-
ment of software testing. Many of the ideas in this space
can be traced back to Richardson and Wolf [29], but the
most mature development of architecture-based testing is
the work of Muccini et al. [24]. These methods exploit both
structural and behavioral information captured in architec-
ture descriptions. SPL models add the dimension of vari-
ability which these approaches do not address, but which
we treat explicitly in our work. We note that a complete
approach to testing will likely take into account notions of
coverage derived from product line variability, and archi-
tectural descriptions as well as other sources of information
about the software system being validated.

The work of Grindal et al. [16] presents a subsumption hi-
erarchy of coverage for a wide range of “combination testing”
methods which includes interaction testing as represented
by covering arrays. In our subsumption we differ by only
including subsumption rules for the covering array interac-
tion model. We modify and collapse some of their layers,
re-define where variable strength arrays fit into the model
and address the issue of constraints. Williams and Probert
[30] also present a model for interaction test coverage but
this is a simple model that does not include subsumption or
constraints.

Several researchers have considered the unique challenges
of testing SPLs. Muccini and van der Hoek [25] provide
an overview of many of the issues. They mention the large
space of variability combinations as a key challenge, but do
not propose test coverage approaches that allow for cost-
effectiveness tradeoffs as we do. They describe how testing
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might be targeted at portions of new product line instances
that have yet to be considered, but they do not propose
a framework for cumulative test coverage that will enable
targeted testing.

PLUTO [4] is a methodology that has the same goal as
our work - identifying the bindings of variability points in an
SPL that should be tested. Their method is largely manual,
based on category partition techniques [26], whereas ours ex-
ploits automated combinatorial interaction techniques. While
they do not propose coverage or test adequacy criteria, they
do expose the fundamental role that constraints play in gen-
erating SPL tests.

The RITA project is focused on providing tool support
for product family development. Much of their focus is on
artifact reuse, but they have also considered the develop-
ment of customized notions of coverage and adequacy that
are appropriate for restricted classes of SPLs [20].

The work of McGregor is the most closely related to ours
in that it considers the connection between combinatorial
interaction methods, in his case orthogonal arrays, to cov-
ering the space of SPL variability points [23]. He does not,
however, provide details on how SPL models such as OVM,
can be mapped onto appropriate representations to allow
interaction methods to be applied, nor does he address the
significant challenges arising from the use of constraints in
those models, and finally he does not develop the connection
between interaction methods and test coverage criteria.

We considered the OVM model in this paper and the de-
velopers of OVM suggest three strategies for testing software
product lines [7, 28]: brute force which corresponds to cov-
erage of all tuples in our feasible model, pure application

which corresponds to covering individual tuples correspond-
ing to product line instances that are produced, and sam-

ple application which corresponds to sampling tuples from
our feasible model. Our approach is considered a sampling
technique. The brute force and pure application strategies
can be seen as endpoints of the spectrum of full-tuple ap-
proaches, but as discussed in Section 4, there are multiple
dimensions of coverage that may be varied to trade off the
cost of generating and running tests of SPL instances with
SPL coverage.

Finally our work can be seen as the application and cus-
tomization of ideas from interaction testing to SPLs. There
is a long history of research on interaction testing of which
we only briefly summarize some highlights. Mandl [22] was
the first to recognize the power of combinatorial designs (he
used a related structure, mutually orthogonal latin squares)
for use in software testing. He applied his technique to
test enumerated types in an Ada compiler. Brownlie, et
al. developed the orthogonal array test generator (OATS)
at AT&T [5]. Orthogonal arrays are a specialized form of
a covering array. D. Cohen et al. [10] suggest the use of
covering arrays as a model of interaction testing. They also
discuss a simple constraint handling mechanism. All three of
these studies presented empirical evidence that interaction
testing with t = 2 adds value. Additional empirical evi-
dence of use on covering arrays extends their work to higher
interaction strengths [14, 21, 31].

There has also been a large body of mathematical work
on the construction of covering arrays. A survey on this
topic is presented by Hartman in [17]. Most of this work
does not explicitly handle constraints. In [19], Hnich et
al. present constraint handling techniques for modeling and

constructing covering arrays. They do not explicitly model
constraints between factors and their values (they call these
side constraints), but rather mention them as future work.
Hartman and Raskin [18] briefly discuss the existence of cov-
ering array constraints, but require that they be expressed
by enumerating all infeasible k−tuples. They do not discuss
the implication on coverage criteria.

6. CHALLENGES AND FUTUREWORK
We have defined a relational model for software product

lines that provides a set of adequacy and coverage criteria
across a family of products. It takes into consideration the
variability and constraints in SPLs and maps directly onto
a known combinatorial testing method. Although this pro-
vides us with a viable approach to support the testing of
product lines, it remains preliminary work. We conclude
with a list of challenges that must be addressed as the next
steps in refining our work.

Scalability The OVM model presented in Figure 2 rep-
resents a small fragment of a software product line.
Scaling our approach to cost-effectively treat the size
and complexity of SPL models that arise from real
systems is a significant challenge. Clearly the use of
sampling through covering arrays for testing product
instances will help reduce the overall test space, and
will, thereby, provide collection of low-cost test ade-
quacy criteria. The extent to which less precise crite-
ria provide for effective SPL testing, however, remains
a question.

Rich Constraints As constraints grow in complexity and
number, the difficulty of modeling and generating cov-
ering test sets for product lines increases. We believe
that constraints should only be used to express the se-

mantics of variability combinations in an SPL. It may
well be the case that developers use constraints to de-
scribe the currently planned instances, rather than the
possible instances, in order to manage the size of the
test space; this is common practice when using TSL
[26]. This should be avoided since it unnecessarily in-
terferes with the ability of automated test coverage
techniques to scale to larger systems. In many situa-
tions, large numbers of complex constraints may well
be needed. We need to understand the structure and
inter-relationship of these constraints in order to de-
velop effective techniques for extending existing inter-
action testing methods to treat constraints.

Unbounded Models Recent work [2, 13] has proposed
the use of context-free grammars and unbounded car-
dinality constraints in feature modeling. These render
our relational modeling scheme unworkable, since it
is defined based on a known fixed number of factors.
One possible approach is to apply our technique to a
bounded set of SPL instances generated from such an
unbounded model.

Evolution Another aspect of product lines that make them
difficult to model with our relational approach is that
of evolution. Inherent in the product line definition
is the idea that a product line will evolve and grow.
While models like the OVM do not directly account
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for evolution other researchers have considered the is-
sue. For example, certain forms of evolution, such as
specialization [13], are easily detected and accommo-
dated in our approach, where as other forms, such as
extension with a new variant, would require some form
of feature model impact analysis and modification of
CVC information.

Empirical Evidence and Benchmarks The empirical
evidence that interaction testing may be valuable comes
from the mainstream software testing community. Em-
pirical evidence on real software product lines is clearly
needed to understand their size (i.e. numbers of vari-
ation points and variants), the extent and complexity
of constraints, and the effectiveness and feasibility of
combinatorial testing methods.

This requires, of course, access to realistic SPL mod-
els and artifacts. We believe that the academic and
industrial research communities interested in product
line development would benefit greatly from the avail-
ability of a collection of benchmark software product
lines. Academia would have non-trivial subjects to
use in empirical studies, and industry would be able
to judge the applicability of emerging research results
since those results would have been evaluated on well-
understood systems that share properties with those
in industry.
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