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The increasing interest in using sensor networks in applications for underwater surveil-

lance and oceanic studies underscores the importance of solving the coverage and connec-

tivity issues in 3D wireless sensor networks (WSN). In particular, the problem of

supporting full coverage, while ensuring full network connectivity is a fundamental one

for such applications. Unfortunately, designing a 3D network is significantly more difficult,

as compared to designing a 2D network. Previously, it has been shown that dividing a 3D

space into identical truncated octahedral cells of radius equal to the sensing range and

placing a sensor at the center of each cell, provides full coverage with minimum number

of nodes [2]. But this requires the ability to deploy and maintain sensor nodes at such

particular locations. In many environments, this is very difficult, if not impossible, to do.

In this paper, we investigate the coverage and connectivity issues for such 3D networks,

especially underwater networks, while assuming random and uncontrollable node loca-

tions. Since node location can be random, redundant nodes have to be deployed to achieve

100% sensing coverage. However, at any particular time, not all nodes are needed to

achieve full sensing coverage. As a result, a subset of the nodes can be dynamically chosen

to remain active at a time to achieve sensing coverage based on their location at that time.

One approach to achieve this goal in a distributed and scalable way is to partition the 3D

network volume into virtual regions or cells, and to keep one node active in each cell. Our

results indicate that using cells created by truncated octahedral tessellation of 3D volume

minimizes the number of active nodes. This scheme is fully distributed, and so it is highly

scalable. By adjusting the radius of each cell, this scheme can be used to achieve k-cover-

age, where every point inside a network has to be within the sensing range of k different

sensor nodes. We analyze and compare the performance of these schemes for both 2D

and 3D networks. While for 1-coverage, the 3D scheme is less efficient than the 2D scheme,

the performance of 3D scheme improves significantly as compared to 2D scheme for

k-coverage, for values of k is larger than 1. As a result, such a distributed and scalable

scheme can be more useful in 3D networks than in 2D networks. Although this paper tar-

gets in particular 3D underwater networks, much of our results are applicable to other 3D

networks, such as for airborne applications, space exploration, and storm tracking.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Applications of sensor networks for underwater

applications such as exploitation, surveillance, oceanic

http://dx.doi.org/10.1016/j.adhoc.2014.09.008

1570-8705/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

E-mail addresses: smnalam@google.com (S.M. Nazrul Alam), haas@

ece.cornell.edu (Z.J. Haas).

Ad Hoc Networks xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc

Please cite this article in press as: S.M. Nazrul Alam, Z.J. Haas, Coverage and connectivity in three-dimensional networks with random node

deployment, Ad Hoc Netw. (2014), http://dx.doi.org/10.1016/j.adhoc.2014.09.008

http://dx.doi.org/10.1016/j.adhoc.2014.09.008
mailto:smnalam@google.com
mailto:haas@ece.cornell.edu
mailto:haas@ece.cornell.edu
http://dx.doi.org/10.1016/j.adhoc.2014.09.008
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc
http://dx.doi.org/10.1016/j.adhoc.2014.09.008


study, (as well as in other applications such as space exploi-

tation, airborne surveillance and greenhouse gas monitoring)

require deployment of 3D wireless sensor networks.

Although practical wide-scale deployment of 3D networks

is still relatively limited, there has much work in progress

that promises to make 3D networks significantly more

ubiquitous in the not-so-far future. For example, underwater

acoustic sensor networks have generated a lot of interest

among researchers [1,11,15,19,38–41,43]. Ocean column

monitoring requires the nodes to be placed at different depths

of ocean, which creates a three-dimensional network [1]. In

an article of Business 2.0 magazine, eight technologies have

been identified that can save the world from global warming

and its catastrophic consequences [13]. That article identifies

environmental sensor networks as one of those eight technol-

ogies Since sensor nodes in such environmental wireless

sensor networks will be distributed over a 3D space, they

must be modeled as a 3D network as well.

Many detection and tracking applications require full

coverage such that any point inside the network volume

(also referred to here as network space) is monitored at

any time by at least one sensor [5,9,12,23,25,33]. It is also

important to maintain connectivity, so that detection

information can be transmitted to the sink or a command

center. While coverage and connectivity issues have been

thoroughly investigated in the technical literature, the

scope of most of those works relates to terrestrial 2D sen-

sor networks. Unfortunately, many of those results cannot

be directly applied to 3D networks. In fact, many widely

used coverage analysis and placement strategies devel-

oped for 2D networks become NP-Hard in 3D [36]. It is

not surprising, given the historical fact that many prob-

lems in 3D required many centuries of effort to be solved,

while their 2D counterparts can be solved trivially. For

example, Kepler’s sphere packing problem has been

around since 1611, but a proof of Kepler’s conjecture has

only been found in 1998 [17]. It is still an open problem

if Kelvin’s conjecture holds when the cells have identical

shape. Similarity with Kelvin’s conjecture has been used

before to solve coverage and connectivity problem in 3D

networks [2,3]. But these works are applicable only under

the assumption that sensor nodes can be deployed and

maintained at specified arbitrary locations. Although this

assumption may be realistic in some communication envi-

ronments, it could be consider less practical in large

deployment of underwater sensor networks. In this paper,

we investigate the coverage and connectivity issues in 3D

networks where this latter assumption does not hold.

Instead, we assume that we have no control over the

movement of a node. As a result, the position of a node

can be random and a large number of redundant nodes

have to be deployed in order to ensure that every point

of the network is within the sensing range of at least one

sensor node. However, at any time instant usually not all

nodes are needed for full sensing coverage. The challenge

is to find a distributed and scalable scheme that dynami-

cally selects a suitable subset of nodes to remain active

based on their location, while putting other nodes into

sleep mode. Since energy consumption during sleep mode

is insignificant, this approach prolongs network lifetime

significantly. Although it is possible to solve this problem

in many different ways, however, finding a distributed

and scalable scheme that adjusts in real-time with changes

in the network topology (e.g., movement of nodes) is diffi-

cult [28]. Any solution that depends on a lot of message

passing is unlikely to achieve this objective, especially

because of the particular characteristics of the underwater

communication environment.

In this paper, we propose a very fast, distributed, and

scalable scheme to dynamically select a subset of active

nodes, such that full sensing coverage and connectivity is

always maintained. We assume that sensing and

communication range of each sensor node is deterministic,

homogeneous, and spherical. It is also assumed that each

sensor node has a localization component that allows it

to determine its position. (Such schemes have been studied

extensively in the technical literature; see e.g., [44–46].)

The main idea is to divide the 3D network space into iden-

tical regions based on the sensing range and communica-

tion range of the sensor nodes. Among the sensor nodes

located in each region, one sensor node is dynamically

and locally selected to perform the sensing operation for

that region and to maintain connectivity with active nodes

of the neighboring regions.

Although this general idea has been used before [34],

the challenging part is to determine the best possible

division that minimizes the number of regions (and thus

minimizes the number of active nodes at any time). There

are two constraints here. First, the diameter of the circum-

sphere of each region cannot be greater than the sensing

range of each sensor node. This is because, unlike in

[2,3], we do not have any control of the position of the

node. In the extreme case, it is possible that the selected

active node is located in one corner of the region. Still this

sensor node must be able to sense all the points of its

region. Second, maximum distance between two furthest

points of the neighboring regions cannot be greater than

the communication range of each sensor node. This

constraint guarantees that active nodes of two neighboring

region are able to communicate between them, irrespec-

tive of their positions inside each region. These two

constrains ensure that full coverage and connectivity are

maintained even though active nodes are selected locally

by the nodes inside each region.

Our contributions, results, and conclusions of this work

can be summarized as follows:

� We investigate the problem of coverage and connectiv-

ity for 3D networks where deployment of a node at any

predetermined position and maintaining that node

position cannot be ensured. As a result, a large number

of nodes have to be randomly deployed. Since at any

particular time, all nodes are not needed for maintain-

ing full sensing coverage and connectivity, it is

important to put the redundant nodes into sleep mode,

thus limiting the energy use and prolongs the network

lifetime. This must be done in a dynamic fashion based

on the position of the nodes at that instant. The scheme

must be highly distributed and scalable, because node

movement is unpredictable. We introduce such a

scheme that dynamically determines the active node

locally.

2 S.M. Nazrul Alam, Z.J. Haas / Ad Hoc Networks xxx (2014) xxx–xxx

Please cite this article in press as: S.M. Nazrul Alam, Z.J. Haas, Coverage and connectivity in three-dimensional networks with random node

deployment, Ad Hoc Netw. (2014), http://dx.doi.org/10.1016/j.adhoc.2014.09.008

http://dx.doi.org/10.1016/j.adhoc.2014.09.008


� Our scheme partitions the 3D network space into

regions (or, cells) and keeps one node active in each cell.

Partitioning must be done in such a way that the num-

ber of cells is minimal (again, to prolong the network

lifetime), while ensuring that the active node, which

can be located anywhere inside the cell, can monitor

the entire cell and that the active node is able to com-

municate with active nodes of all the neighboring cells.

Using Kelvin’s conjecture, we speculate that this can be

achieved if the shape of the cell is truncated octahedral.

We define a metric called volumetric quotient (V.Q.)

which is the ratio of the volume of a polyhedron to

the volume of its circumsphere. The larger the V.Q. of

the shape of cell is, the smaller is the number of the

required active nodes. We show that the V.Q. of trun-

cated octahedron is 0.68329, much larger than other

possible space-filling polyhedrons. For example, the

V.Q. of rhombic dodecahedron is 0.477, hexagonal prism

has volumetric quotient of 0.477, and cube has just

0.36755. These results imply that if the shape of the cell

is rhombic dodecahedron or hexagonal prism, then we

need 43.25% more nodes than in the case when the

shape of the cell is truncated octahedron. We also com-

pare different partitioning scheme based on their

energy efficiency. We find that cell lifetime is maxi-

mized if we use truncated octahedron based cell.

� We provide a very simple mechanism that allows each

sensor node to identify their cell id instantly if they

know their own position. This scheme requires only a

constant number of arithmetic operations to compute

the cell id of each node and hence is computationally

very efficient. Once they identify their cell id, the sensor

nodes can easily choose the active node locally.

� While our scheme is highly distributed and scalable,

and active nodes are dynamically selected locally in

each cell without any message passing between nodes

in different cells, sometime the scheme keeps more

nodes active than a centralized scheme that has global

knowledge about the position of all nodes. We compare

the efficiency of our scheme with that of a centralized

scheme that can deploy nodes at any arbitrary location.

Since such a centralized scheme can control the posi-

tion of the nodes, it requires even fewer active nodes

than the optimal scheme that cannot control the posi-

tion of the nodes. In order to highlight this distinction,

we call this centralized scheme SuperOpt. We compare

our scheme with SuperOpt for k-coverage, where a point

is monitored by k sensor nodes rather than just one sen-

sor node. We found that the gap between our scheme

and SuperOpt decreases significantly when k is greater

than 1. While the ratio of the number of active nodes

between the distributed scheme and SuperOpt goes

down both in 2D and 3D, only in 3D k-coverage can

be maintained with high probability.

The rest of the paper is organized as follows. Section 2

presents some necessary background information on

space-filling polyhedron, Voronoi tessellation, famous

conjectures of Kelvin and Kepler, and describes related

works in network literature. Section 3 formally describes

the problem and the assumptions. Section 4 analyzes the

problem and describes the results. Section 5 discusses

how our scheme can be adjusted when the ideal assump-

tions are not valid. Finally, Section 6 concludes the paper.

2. Preliminaries

In this section, we define some relevant terms and

provide some background information necessary for the

presentation of our research. The last subsection describes

selected related works in the technical literature.

2.1. Space-filling polyhedron

A polyhedron is a three-dimensional shape consisting of

finite number of polygonal faces. The faces meet in straight

line segments called edges and the edges meet at points

called vertices of the polyhedron. A polyhedron surrounds

a bounded volume in three-dimension. Example of polyhe-

drons includes cubes, prisms, and pyramids. Polygon is a

two-dimensional analog of polyhedrons. The general term

for a shape of any dimension is polytope.

A space-filling polyhedron is a polyhedron that can be

used to perfectly fill a volume of space, without overlaps

or gaps (a.k.a. tessellation or tiling). At first, we provide a

short overview on space-filling polyhedron. It is not easy

to show that a polyhedron has space-filling property. For

example, although Aristotle claimed that the tetrahedron

fills space [4], his claim was incorrect [18], and the mistake

remained unnoticed until the 16th century [22].

Some of the important results on space-filling polyhe-

dron are as follows: There are exactly five regular polyhe-

drons (a.k.a. platonic solids or regular solids) [26]: cube,

dodecahedron, icosahedron, octahedron, and tetrahedron, as

was proved by Euclid in the last proposition of the Elements

([42]). Among them, only cube has the space-filling prop-

erty [16]. There are only five convex polyhedrons with reg-

ular faces having space-filling property: triangular prism,

hexagonal prism, cube, truncated octahedron [26,31], and

gyrobifastigium [20]. The rhombic dodecahedron, elongated

dodecahedron, and squashed dodecahedron are also space-

fillers. A combination of tetrahedrons and octahedrons fills

space. In addition, octahedrons, truncated octahedrons,

and cubes, combined in the ratio 1:1:3, can also fill space.

2.2. Kelvin’s conjecture

In 1887, Lord Kelvin asked the following question [27]:

‘‘What is the optimal way to fill a three dimensional space

with cells of equal volume so that the surface area (interface

area) is minimized?’’ This is essentially a problem of finding

a space-filling structure having the highest isoperimetric

quotient. If the volume and surface area of a structure are

V and S, respectively, then in three-dimensions its isoperi-

metric quotient can be defined as 36pV2

S3
. Sphere has the

highest isoperimetric quotient and it is 1. Kelvin’s answer

for his question was 14-sided truncated octahedron having

a very slight curvature of the hexagonal faces and its

isoperimetric quotient is 0.757, but he could not prove

that it is optimal. Uncurved truncated octahedron has iso-

perimetric quotient of 0.753367. For more than a century,
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Kelvin’s solution was generally accepted as correct [32]

and is widely known as Kelvin’s conjecture. But in 1994,

two physicists Denis Weaire and Robert Phelan came up

with another space-filling structure consisting of six

14-sided polyhedrons and two 12-sided polyhedrons with

irregular faces of equal volume that has 0.3% less surface

area than truncated octahedron [29,30]. The isoperimetric

quotient of this structure is 0.764. But any proof that the

structure of Weiare and Phelan is optimal, or that Kelvin’s

solution is optimal for identical cells, is yet to be found.

2.3. Voronoi tessellation

In three-dimension, for any (topologically) discrete set S

of points in Euclidean space, the set of all points closer to a

point c of S than to any other point of S is the interior of a

convex polyhedron called the Voronoi cell for the point c

(see e.g., [6]). The set of such polyhedrons tessellate the

whole space, and is called the Voronoi tessellation corre-

sponding to the set S. If we find the solution of our problem,

i.e., the optimal location of the nodes, then their Voronoi

tessellation provides the optimal shape of each cell.

2.4. Kepler’s conjecture

Another closely related problem is Kepler’s sphere

packing problem. The problem is to find the most efficient

way to pack a volume using equal-sized spheres. In 1611,

Kepler made a guess that the face-centered cubic (FCC) lat-

tice was the most efficient of all arrangements, but was

unable to prove this. After four hundred years of failed

efforts, Kepler’s conjecture was finally proved to be correct

by Thomas Hales in 1998 [10]. The proof extensively uses

methods from the theory of global optimization, linear

programming, and interval arithmetic. The computer code

and data files used for the proof required more than 3 GB of

space for storage. The Voronoi tessellation of face-centered

cubic (FCC) lattice is rhombic dodecahedron and although

FCC lattice is the optimal solution for sphere packing, in

this paper we will show that truncated octahedron, which

is the Voronoi tessellation of body-centered cubic (BCC)

lattice, actually require 43.25% fewer nodes for our prob-

lem. This significant difference is not very intuitive. Note

that, FCC lattice has packing density of 74.048% (optimal

solution for sphere packing) while BCC lattice has packing

density of about 68%.

2.5. Related works in networks

Conserving energy, and thus prolonging the network

lifetime, by keeping a subset of the nodes active in a dense

network while putting the rest of the nodes into sleep

mode has been proposed for terrestrial 2D sensor networks

[7,10,34,35,37]. Some of these works can be applied to 3D

networks as well. Our work in this paper is most closely

related to geographic adaptive fidelity (GAF) [34], while

extending its scope. However [34] is only applicable to

2D networks and extending that work to 3D network is

very difficult, because it is hard to find best partitioning

scheme in 3D. We investigate this problem in our paper.

Another limitation of GAF is that sometime it requires

more nodes than a centralized scheme with global

information about node locations. We address that issue

by providing an innovative scheme for k-coverage. Our

scheme achieves k-coverage with high probability, while

significantly decreasing the gap in the number of active

nodes needed relative to the centralized scheme.

As selected examples only, we mention here a few other

references on three-dimensional networks in the litera-

ture. Modeling 3D cellular networks has been investigated

in [8,14]. Shape of the cell is modeled as rhombic dodeca-

hedron in [8] and in [14] each cell is represented as hexag-

onal prism. However, our work shows that both rhombic

dodecahedron and hexagonal prism shaped cell requires

43.25% more active nodes than the case when the shape

of the cell is truncated octahedron. Coverage and connec-

tivity issues of 3D networks have been investigated in

[2,3]. However, those works assume that nodes can be

deployed at any desired location and that the positions of

those nodes can be maintained during the entire lifetime

of the network. In this paper, we investigate the case

where this assumption does not hold, which would be

the practical case of underwater sensor nodes without

being equipped with self-propelling means.

3. Problem statement

The main assumptions and the problem goals are

defined as follows.

3.1. Assumptions

� Sphere-based sensing: We assume a sphere based sens-

ing model such that each active sensor has a sensing

range of rs; an active sensor can reliably detect any

object that is located within a distance of rs from the

sensor.

� Sphere-based communication: We assume a spherical

communication model where each active sensor has a

transmission range (or, communication range) of rt;

i.e., if the distance between two active sensors is less

than or equal to rt, then they can communicate reliably

with each other.

� Homogeneous sensing and communication range: We

assume that all sensors have the same sensing range

and that the communication range of all sensors is also

identical.

� No boundary effect: We assume that the network is

very large and there is no boundary effect, so that the

number of nodes required for a placement strategy is

inversely proportional to the volume of a Voronoi cell

of the nodes.

� Random node position: We make no assumption about

the location where any particular node is deployed.

However, sensor node density must be high enough,

so that full coverage can be maintained.

3.2. Goal

The main goal is to find a distributed scalable scheme to

dynamically determine the subset of nodes that remains
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active. As shown in the next section, we accomplish this

goal by achieving the following sub-goals.

� Given any fixed sensing range rs, find the best partition-

ing scheme that keeps minimum number of required

active nodes at any time. Also find out the best parti-

tioning scheme such that lifetime of a cell (i.e., time

until the last node in a cell dies out) is maximum.

� Find a distributed and efficient algorithm for the deter-

mination of which cell a sensor node belongs to.

� Find a solution for k-coverage problem, such that any

point is within the sensing range of at least k nodes.

Determine the efficiency of the scheme compared to

an optimal scheme where an ‘‘oracle’’ determines which

nodes to keep active and nodes position can be adjusted

as needed.

4. Analysis

One simple distributed and scalable scheme to dynam-

ically determine the subset of nodes that needs to remain

in active mode is as follows. Partition the 3D network

space into identical regions (i.e., cells) in such a way that

if any node inside that region is active, it can monitor the

entire region. Thus full sensing coverage can be achieved

by locally selecting an active node in each such a cell. No

coordination or message passing with nodes outside the

cell is needed. Local selection of the active node can be

done based on any standard leader selection algorithm1

(e.g., [24]) and the leader can be selected to serve as the

active node. All other nodes go into sleep mode until the lea-

der dies or moves to another cell. In order to maintain con-

nectivity among nodes, partitioning must be done in such a

way that the distance between two active nodes from neigh-

boring region must be less than or equal to the transmission

range, rt. This simple but powerful scheme does not require

any coordination with nodes outside the cell and so is highly

distributed and scalable. Furthermore, this scheme can also

quickly adapt to rapid node movement. (The assumption

here is that the topological changes resulting from nodes’

movement is slower than the rate at which the active node

selection is performed.) However, there are two main con-

siderations that need to be addressed:

1. Node density must be large enough, so that there is at

least one node in each cell to provide full sensing

coverage.

2. In some cases, this scheme is less than optimal in terms

of the number of active nodes. (Later in this paper, we

investigate the requirement of the number of active

nodes for k-coverage, where the goal is to provide mon-

itoring by k sensor nodes of each location (instead of

just one sensor node). We found that in 3D networks,

relative requirement of the number of active nodes goes

down for larger values of k, while the probability of

k-coverage remains very large.)

While the scheme mentioned above is interesting and

analog to a scheme that had been investigated in the

context of 2D networks [34], one major and challenging

problem is to find the right partitioning procedure in the

context of 3D networks.

4.1. Determining the right partitioning scheme

In order to find the right partitioning scheme, it is

important to identify the criteria of what constitute the

best partitioning scheme. One criterion could be minimiz-

ing the number of active nodes at any instant. Since there

is one active node per cell, minimizing the number of cells

achieves this goal. In order to obtain a general solution, we

assume that the 3D network volume to be monitored is

infinite, so there are no boundary effects. Although, it

may be the case that the best partitioning scheme does

not create identical cells, we assume that all cells are iden-

tical for the following reasons:

1. This makes the problem tractable and allows us to focus

on the shape of the cell.

2. Identical cells provide a regular pattern and allow us to

deterministically establish the location of any cell using

a simple set of equations. This is important to make the

algorithm efficiently fully distributed and scalable.

3. Due to symmetry and infiniteness of the 3D network

space, it is unlikely that the shape of cells will be differ-

ent in the best partitioning scheme.

4. Practical deployment of the scheme in an underwater

environment would be significantly simplified with

the use of identical cells.

If the shape of all cells is identical, then maximizing the

volume of a cell minimizes the number of cells. There are

three following constraints:

1. Shape of a cell must be a space-filling polyhedron.

2. Diameter of the circumsphere of the cell cannot be

greater than the sensing range, rs.

3. Distance between two furthest points of two neighbor-

ing cells cannot be greater than the transmission

range, rt.

The first constraint limits the number of possible poly-

hedrons. Since maximizing the volume is the goal, for any

shape of the cell, the diameter of the circumsphere must

always be rs. Thus the volume of the circumsphere must

be: 4
3
p rs

2

� �3 ¼ pr3s
6
, which is the upper bound of the volume

of the cell. This allows us to create an instinctively useful

metric, defined as the ratio of the volume of a cell to the

volume of its circumsphere, useful for comparing different

shapes of a cell. We refer to this metric as volumetric

quotient (V.Q.). If the volume of a cell is V, then, its V.Q.

is: 6V
pr3s

. The value of V.Q. is always between 0 and 1. Our

goal is to find the space-filling polyhedron with the largest

(i.e., closest to 1) V.Q.

Finding the optimal polyhedron and proving its opti-

mality seems to be a very hard problem, given that many

of the 3D optimality problems them took centuries to

1 Leader selection can be as simple as choosing the node that is closest to

the center of the cell. In the case of a tie, node energy level or node id can be

used as a tie breaker.
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prove (Kelvin’s problem is still open after more than one

century, while Kepler’s conjecture was proven only

recently after almost five centuries of efforts). Since pro-

viding any rigorous proof is likely to be an intractable

problem, we proceed in the following way. At first we pro-

vide some intuition why truncated octahedron is the most

likely solution by drawing similarity of our problem with

the Kelvin’s conjecture. Then we choose three other differ-

ent space-filling polyhedrons that have been used by other

researchers in similar problems and are reasonable con-

tenders to truncated octahedron as a possible solution.

We then show that truncated octahedron has much higher

V.Q. than other contenders and, thus, requires much fewer

active nodes.

Kelvin’s problem is essentially finding a space-filling

polyhedron that has minimum ratio of surface-area to vol-

ume. We claim that the space-filling polyhedron that has

the minimum ratio of surface-area to volume should best

approximate the sphere. It is well known that among all

structures:

1. For a given volume, sphere has the smallest surface

area.

2. For a given surface area, sphere has the largest

volume.

From above two statements, we claim the following.

Suppose that any two space-filling polyhedrons P1 and P2
have equal volume. If surface-area of P1 is smaller than

the surface area of P2, then P1 is a better approximation

of sphere than P2. Again if P1 is a better approximation of

sphere than P2, then P1 has higher volumetric quotient

than P2. Recall that among all shapes, sphere has the high-

est volumetric quotient, which equals to 1.

Thus the solution of the Kelvin’s problem is essentially

the solution of our problem. Since until now, truncated

octahedron is the best known solution for Kelvin’s prob-

lem for a single cell shape, we conjecture that truncated

octahedron is also the most likely solution for our prob-

lem. Note that, we will consider the uncurved version of

truncated octahedron, because it is mathematically more

tractable than the curved version and the difference

between the curved version and the uncurved version is

practically negligibly small. Since the argument given

above is not strictly rigorous, so next we choose other

likely contenders of truncated octahedron and provide

comparison of truncated octahedron with those space-

filling polyhedrons.

One can attempt to solve our problem using Kepler’s

problem in the following way. Find the maximal packing

of spheres and then select the Voronoi tessellation corre-

sponding to the centers of the spheres. Define the radius

of the spheres such that the maximum distance from a

center to any vertex of the corresponding Voronoi cell is

the sensing range, rs. Kepler’s conjecture for sphere packing

problem has been proven recently after five centuries of

efforts, with the Face-Centered Cubic (FCC) lattice being

the solution for that problem. The Voronoi tessellation of

FCC lattice is rhombic dodecahedron. So we choose rhom-

bic dodecahedron as one of the contender of truncated

octahedron.

As another attempt, consider the fact that the solution

of our problem in 2D is hexagon [21]. The polyhedron that

has hexagon as its cross section in all three directions (x, y,

and z) does not have space-filling property. The polyhe-

drons that have space-filling property and hexagonal cross

section are rhombic dodecahedron and hexagonal prism.

So, we include both in our comparison. Finally, most sim-

plistic choice is cube and it is the only regular polyhedron

that tessellates in 3D space. So we compare truncated octa-

hedron with rhombic dodecahedron, hexagonal prism, and

cube, and show that truncated octahedron has better volu-

metric quotient that the rest of the choices and hence

required fewer nodes to cover a given volume.

Given the diameter of the circumsphere to be rs, we

determine that V.Q.-s of cube, rhombic dodecahedron and

truncated octahedron as: 2
ffiffi

3
p

p
¼ 0:36755, 3

2p ¼ 0:477,
24

5
ffiffi

5
p

p
¼ 0:68329, respectively. In the case of hexagonal

prism, diameter of the circumsphere does not ensure a

unique hexagonal prism. This is because, there can be

many hexagonal prisms with different heights and differ-

ent sizes for the hexagonal faces and still have the same

diameter for their circumsphere. We chose the hexagonal

prism that has the highest V.Q. and found it to be
3
2p ¼ 0:477. Clearly, if the truncated octahedron is the shape

of the cell, then the number of active nodes is the fewest.

Next, we consider the arrangement of four types of cell.

We call their regular 3D tessellation as CB (for cube), HP

(for hexagonal prism), RD (for rhombic dodecahedron),

and TO (for truncated octahedron) models. For cube and

hexagonal prism, several alternate arrangements of cells

are possible by shifting one layer with respect to another

neighboring layer. We consider the furthest possible move-

ment, where one corner of a cell is at the center of a cell in

the neighboring layer, and call these models Alt-CB and

Alt-HP (see Fig. 1). Considering only these two alternative

arrangements (for both cube and hexagonal prism) is

sufficient, as in each cases they are two extreme

possibilities and at least one of them is better than the

other possible models.

Relative number of active nodes for each model can be

determined directly from the V.Q. of the shape of the unit

cell in each model. The number of active nodes in various

models with respect to that of TO model is depicted in

Fig. 2.

Next, our goal is to determine the minimum transmis-

sion range needed for each model. Given a fixed sensing

radius, rs, the minimum required transmission ranges for

the CB, Alt-CB, HP, Alt-HP, RD, and TO models are calculated

below.

4.1.1. CB model

A cell has 26 neighboring cells: 6 Type 1CB neighboring

cells each shares whole one side of a cube, 12 Type 2CB

neighboring cells each shares a common line, and 8 Type

3CB neighboring cells each shares just a common point with

the cell (see Fig. 3).

The largest distance between any point in the cell and

any point in a Type 1CB neighboring cells is rs
ffiffiffi

2
p

; for Type

2CB and Type 3CB neighbors, it is rs
ffiffiffi

3
p

and 2rs, respectively.

The active node of a cell can communicate with active
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nodes of all first-tier neighboring cells if the minimum

transmission range is: rt ¼ max rs
ffiffiffi

2
p

; rs
ffiffiffi

3
p

; 2rs
� �

¼ 2rs.

4.1.2. Alt-CB model

A cell has 16 first tier neighboring cells: 4 Type 1Alt�CB

neighboring cells each shares whole one side of a cube, 4

Type 2Alt�CB neighboring cells each shares a common line,

and 8 Type 3Alt�CB neighboring cells each shares one

quarter of one side of the cell (see Fig. 4).

The largest distance for Type 1Alt�CB, Type 2Alt�CB and

Type 3Alt�CB cells is rs
ffiffiffi

2
p

, rs
ffiffiffi

3
p

, and rs

ffiffiffiffi

17
6

q

, respectively.

The minimum required transmission range in Alt-CBmodel

is: rt ¼ max rs
ffiffiffi

2
p

; rs
ffiffiffi

3
p

; rs

ffiffiffiffi

17
6

q
� �

¼ rs
ffiffiffi

3
p

.

4.1.3. HP model

A cell has 20 first tier neighboring cells: 6 Type 1HP

neighboring cells each shares a common square plane, 2

Type 2HP neighboring cells each shares a common hexago-

nal plane, and 12 Type 3HP neighboring cells each shares a

common line with the cell (see Fig. 5).

Suppose that each side of a hexagonal face of an HP cell

is of length a, and its height is h. In an HP cell with optimal

height, h ¼ a
ffiffiffi

2
p

. So the radius of the HP cell is
rs
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ða2=2Þ
p

¼ a
ffiffiffi

3
p

=
ffiffiffi

2
p

. Maximum distance from

any point of the cell to any point of a Type 1HP, Type 2HP,

and Type 3HP neighbor is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
ffiffiffiffiffiffi

13
p� �2

þ h
2

r

¼ rs

ffiffi

5
2

q

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2aÞ2 þ ð2hÞ2
q

¼ rs
ffiffiffi

2
p

, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
ffiffiffiffiffiffi

13
p� �2

þ ð2hÞ2
r

¼ rs

ffiffi

7
2

q

,

respectively. The active node of a cell can communicate

with active nodes of all neighboring cells if the minimum

transmission range is rt ¼ max rs

ffiffi

5
2

q

; rs
ffiffiffi

2
p

; rs

ffiffi

7
2

q
� �

¼ rs

ffiffi

7
2

q

.

4.1.4. Alt-HP model

A cell has 12 first-tier neighboring cells: 6 Type 1Alt�HP

neighboring cells each shares a square plane and 6 Type

2Alt�HP neighboring cells each shares one third of a

hexagonal plane with the cell (see Fig. 6).

(a) CB (b) HP (c) RD

(e) Alt-CB (f) Alt-HP(d) TO

CB = cube

HP = hexagonal prism

RD = rhombic dodecahedron

TO =  truncated octahedron

Fig. 1. Possible 3D space-partitioning shapes.
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Fig. 2. The number of active nodes in various models.

(a) Type 1CB

Neighbors
(b) Type 2CB

Neighbors

(c) Type 3CB

Neighbors

Fig. 3. Different types of neighbors in CB model.

(a) Type 1Alt-CB

Neighbors

(d) Type 3Alt-CB

Neighbors

(b) Type 2Alt-CB

Neighbors

Fig. 4. Different types of neighbors in Alt-CB model.

(a) Type 1HP

Neighbors
(b) Type 2HP

Neighbors

(c) Type 3HP

Neighbors

Fig. 5. Different types of neighbors in HP model.
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Maximum distance for Type 1Alt�HP and Type 2Alt�HP

neighbors is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
ffiffiffiffiffiffi

13
p� �2

þ h
2

r

¼ rs

ffiffi

5
2

q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3aÞ2 þ ð2hÞ2
q

¼ rs

ffiffiffiffi

17
6

q

, respectively. Thus the minimum

transmission range needed is: rt ¼ max rs

ffiffi

5
2

q

; rs

ffiffiffiffi

17
6

q
� �

¼ rs

ffiffiffiffi

17
6

q

.

4.1.5. RD model

A cell has 18 first tier neighboring cells: 6 Type 1RD

neighboring cells each shares just a point and 12 Type

2RD neighboring cells each shares a plane with the cell

(see Fig. 7).

The maximum distance for Type 1RD and Type 2RD neigh-

bor is 2rs and rs

ffiffi

5
2

q

, respectively. Thus minimum transmis-

sion range required in RD model is: rt ¼
max 2rs; rs

ffiffi

5
2

q
� �

¼ 2rs.

4.1.6. TO model

A cell has 14 first tier neighboring cells: 6 Type 1TO

neighboring cells each shares a common square plane

and 8 Type 2TO neighboring cells each shares a common

hexagonal plane with the cell (see Fig. 8).

Maximum distance for Type 1TO and Type 2TO neighbor is

rs
ffiffiffiffiffiffi

17
p

=
ffiffiffi

5
p

and rs
ffiffiffiffiffiffi

14
p

=
ffiffiffi

5
p

, respectively. The active node of a

cell can communicate with active nodes of all neighboring

cells if the transmission range is at least: rt ¼
max rs

ffiffiffiffi

17
5

q

; rs

ffiffiffiffi

14
5

q
� �

¼ rs

ffiffiffiffi

17
5

q

.

The minimum transmission range required for main-

taining connectivity in each model is shown in Fig. 9.

Next, we provide a comparison of the models based on

energy consumption. We use a simplified model to calcu-

late the network lifetime of the different partitioning

schemes. We assume that the number of packets transmit-

ted and relayed by a cell is the same in each model. Then,

the lifetime of a cell depends on the transmission range

used by a model and the number of nodes that resides

inside a cell in that model. If we assume that the sensor

nodes are uniformly distributed, the number of nodes in

a cell is proportional to the volume of the cell. Finally, we

assume that in our radio network, power consumption to

transmit a packet is proportional to the square of the

transmission range. Suppose that two models A and B has

transmission range rA and rB, respectively. Volumes of a cell

in models A and B are VA and VB, respectively. If cell

lifetimes of models A and B are denoted by LA and LB,

respectively, then we have:

LA

LB
¼ r2B

r2A
� VA

VB
:

Using this equation, cell lifetime of each model, as com-

pare to the cell lifetime of TO model, is calculated below:

LCB

LTO
¼

rs

ffiffiffiffi

17
5

q
� �2

ð2rsÞ2
�

r3s
3
ffiffi

3
p

4r3s
5
ffiffi

5
p

¼17
ffiffiffi

5
p

48
ffiffiffi

3
p LAlt�CB

LTO
¼

rs

ffiffiffiffi

17
5

q
� �2

rs
ffiffiffi

3
p� �2

�
r3s

3
ffiffi

3
p

4r3s
5
ffiffi

5
p

¼17
ffiffiffi

5
p

36
ffiffiffi

3
p LHP

LTO
¼

rs

ffiffiffiffi

17
5

q
� �2

rs

ffiffi

7
2

q
� �2

�
r3s
4

4r3s
5
ffiffi

5
p

¼17
ffiffiffi

5
p

56

LAlt�HP

LTO

¼
rs

ffiffiffiffi

17
5

q
� �2

rs

ffiffiffiffi

17
6

q
� �2

�
r3s
4

4r3s
5
ffiffi

5
p

¼3
ffiffiffi

5
p

8

LRD

LTO
¼

rs

ffiffiffiffi

17
5

q
� �2

2rsð Þ2
�

r3s
4

4r3s
5
ffiffi

5
p

¼17
ffiffiffi

5
p

64
:

The cell lifetimes of various models as compared to the

cell lifetime of the TO model are shown in Fig. 10.

4.2. A distributed and scalable way for partitioning the volume

In order to select the subset of active nodes, first we

need to find a scheme that allows each node to determine

its cell in a distributed and scalable way. If every node

knows which cell it belongs to, then choosing the active

(a) Type 1Alt-HP Neighbors (d) Type 2Atl-HP Neighbors

Fig. 6. Different types of neighbors in Alt-HP model.

(a) Type 1RD Neighbors (b) Type 2RD Neighbors

Fig. 7. Different types of neighbors in RD model.

(a) Type 1TO Neighbors (b) Type 2TO Neighbors

Fig. 8. Different types of neighbors in TO model.
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Fig. 9. Minimum transmission range required in different models.
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node is easy, because all nodes that belong to a cell are

within the transmission range of each other. A technique

that allows every node to determine which cell it belongs

to in a distributed and scalable way is described below.

Since the technique is similar for all models, without loss

of generality, we assume that the model is the TO model.

We use the triple (u,v,w) as a unique cell id, and the cell

which contains the information sink (IS) as having the cell

id of (0,0,0). If the coordinates of the IS are (x,y,z), then the

coordinates of the center of a virtual cell (u,v,w) can be

expressed by the general equation as: f ðu;v ;wÞ ¼
xþ ð2uþwÞrs

ffiffi

5
p ; yþ ð2vþwÞrs

ffiffi

5
p ; zþ wrs

ffiffi

5
p

� �

. For example, a cell with

id (-1, �1, 2) has its center at coordinates x; y; zþ 2rs
ffiffi

5
p

� �

.

We assume that the sensing range rs is embedded in the

sensors before deployment. The IS broadcasts its coordi-

nate (x,y,z) to all nodes, and a sensor node determines its

own coordinate (xs,ys,zs) using a localization scheme. In

order to determine its cell id (us,vs,ws), a brute force

method is to check all possible values of (us,vs,ws) and

choose the cell whose center has minimum Euclidean dis-

tance from the node, i.e.,

ðus;v s;wsÞ¼ arg min
u;v ;w2Z

; xs�x�ð2uþwÞ rs
ffiffiffi

5
p

� �2
"

þ ys�y�ð2vþwÞ rs
ffiffiffi

5
p

� �2

þ zs�z�w
rs
ffiffiffi

5
p

� �2
#

;

where Z is set of all integers. However, such an exhaustive

search can easily be avoided. Since the value of a square

term is never negative, we can set the value of the square

terms to zero to get the values of us, vs, and ws. Since these

values must be integer, we can get two possible integral

values for each variable by taking ceiling (denoted by sub-

script h) and floor (subscript l):

ul ¼ xs�x�zsþzð Þ
ffiffiffi

5
p

=2rs
j k

; uh ¼ xs�x�zsþzð Þ
ffiffiffi

5
p

=2rs
l m

;

v l ¼ ys�y�zsþzð Þ
ffiffiffi

5
p

=2rs
j k

;vh ¼ ys�y�zsþzð Þ
ffiffiffi

5
p

=2rs
l m

;

wl ¼ zs�zð Þ
ffiffiffi

5
p

=rs

j k

;wh ¼ zs�zð Þ
ffiffiffi

5
p

=rs

l m

:

Thus we have eight possible values of (us,vs,ws). Each

node has to calculate its distance from each of the eight

centers and choose the minimum one as its cell id; i.e.,

ðus;v s;wsÞ¼arg min
u2ful;uhg
v 2fv l;vhg

w2fwl ;whg

xs�x�ð2uþwÞ rs
ffiffiffi

5
p

� �2
"

þ ys�y�ð2vþwÞ rs
ffiffiffi

5
p

� �2

þ zs�z�w
rs
ffiffiffi

5
p

� �2
#

ð1Þ

As cell id is a straightforward function of the location of

a sensor, if a sensor knows its location, it can readily calcu-

late its cell id. Once sensors have their cell id, then sensors

with the same cell id can use any standard leader selection

algorithms [24] to choose a leader among them, which can

act as the active node of that cell. All nodes that have the

same cell id are within the communication range of each

other and the mechanism of keeping one node active

among all the sensors with the same cell id is essentially

same for both 2D and 3D networks. Thus results from 2D

networks can be used here to achieve this goal.

4.3. k-coverage and performance analysis

While our approach of dividing a network into cells and

keeping one node active in each cell allows us to achieve

our goal in a highly distributed and scalable way, it does

not always use minimum number of active nodes. The rea-

son is obvious; since the active node is selected locally by

the nodes inside a cell, it cannot compete with a central-

ized approach that has global information. However, it is

important to evaluate how much efficiency is lost in our

distributed scheme, comparing to such a centralized

approach. To achieve this, we compare our scheme with

the scheme where nodes can be placed at any desired loca-

tion (as opposed to our random deployment), with an ‘‘ora-

cle’’ deciding where to deploy those nodes. We call this

comparison scheme SuperOpt.

A similar scheme in 2D that uses hexagonal shaped cells

requires 4 times more nodes than SuperOpt. In the worst

case, our scheme requires 8 times more nodes than Super-

Opt. While this is not surprising, we find that it is possible

to devise a similar highly distributed and scalable scheme

in 3D that requires significantly fewer nodes for k-coverage

with high probability. In what follows, we examine such a

scheme.

4.3.1. k-coverage in 2D

Let us first explore howwe can ensure k-coverage in 2D.

For 1-coverage, we have to keep one node active in a hex-

agonal cell with radius r = rs/2, where rs is the sensing

range of each sensor. A naïve approach, can simply keep

k such node active in each cell. In that case, node require-

ment is still 4 times of the SuperOpt scheme. An alternative

scheme would be to use smaller cells, while still keeping

one node active in each cell. We determine that the radius

of each cell has to be r ¼ rs 2
ffiffiffiffiffiffiffiffiffiffiffiffi

k=4d e
p

� �.

in that case. This

scheme provides k-coverage with high probability, but

not with certainty when k > 1. We want to answer the

following two questions:
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Fig. 10. Cell lifetime in various models.
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1. What is the probability that this scheme has k-

coverage?

2. How many nodes this scheme needs compare

toSuperOpt?

To answer the two questions, first we need the help of

the following theorem.

Theorem 4.1. Suppose that we have two areas and in each

area nodes are randomly distributed based on a 2D Poisson

distribution. Then the sum of the number of nodes in two

(independently) selected sub-areas is Poisson with parameter

equal to the sum of the expected number of nodes in each

individual area.

Proof. Omitted due to space limitations.

Now, for our proposed scheme for 2D k-coverage, the

area of each cell is 3
ffiffiffi

3
p

r2=2 ¼ 3
ffiffiffi

3
p

r2s =8dk=4e. Since we

keep one node active in each such cell, active node density

is q ¼ 1 3
ffiffi

3
p

2
r2s

4dk=4e

.

node per unit area. Within rs distance of

any point, the number of active nodes is aPoisson random

variable K with parameter: kk ¼ pr2s
3
ffiffi

3
p

2

r2
s

4dk=4e

¼ 8pdk=4e
3
ffiffi

3
p . The prob-

ability that any point is within the sensing radius of at least

k nodes is:

PðK P kÞ ¼ 1� PðK < kÞ ¼ 1�
X

k�1

i¼0

PðK ¼ iÞ

¼ 1�
X

k�1

i¼0

e�kk
kik
i!
¼ 1� e

� 8pk=4

3
ffiffi

3
p

� �

X

k�1

i¼0

8pk=4

3
ffiffiffi

3
p

� �i
,

i!

Now, it can be shown that SuperOpt solution for k-coverage

is dividing the 2D plane into hexagonal cells of radius rs
and keep k nodes active at the center of each cell. (Note

that this scheme is not applicable when nodes are ran-

domly deployed, we mention it here only to find a lower

bound on the number of nodes needed for k-coverage).

Thus the number of nodes needed by our proposed scheme

is at most 3
ffiffi

3
p

r2s =2k

3
ffiffi

3
p

r2s =8dk=4e
¼ 4dk=4e

k
times the number of nodes

needed by SuperOpt.

From Table 1, we see that our proposed scheme

provides 1-coverage with probability 1, but the active

node requirement is 4 times than the lower bound. On the

other hand, 4-coverage requires the same number of node

as that of the lower bound, but the probability of at least

k-coverage falls to 0.72. Note that SuperOpt assumes nodes

can be deployed at any desired place, so the actual lower

bound is likely larger, which in turn means that our

scheme performs better that the above comparison. h

4.3.2. k-coverage in 3D

For 1-coverage, we have to keep one node active in a

truncated octahedron cell with r = rs/2, where rs is sensing

range of each sensor. For k-coverage, we propose the fol-

lowing scheme: set the radius of each truncated octahe-

dron cell to r ¼ rs 2
ffiffiffiffiffiffiffiffiffiffiffiffi

dk=8e3
p

.

and keep one node active in

each cell. Then the volume of each cell is

32r3 5
ffiffiffi

5
p.

¼ 4r3s 5
ffiffiffi

5
p

dk=8e
� �.

. Since we keep one node

active in each such cell, active node density is

q ¼ 5
ffiffiffi

5
p

dk=8e 4r3s
� �	

node per unit volume. Within rs dis-

tance of any point, the number of active nodes is aPoisson

random variable K with parameter: kk ¼
4
3
pr3s

4
5
ffiffi

5
p

r3
s

k=8

¼ 5
ffiffi

5
p

pk=8
3

.

The probability that any point is within the sensing

radius of at least k nodes is then given by:

PðK P kÞ ¼ 1� PðK < kÞ ¼ 1�
X

k�1

i¼0

PðK ¼ iÞ

¼ 1�
X

k�1

i¼0

e�kk
kik
i!
¼ 1� e�

5
ffiffi

5
p

pk=8
3

� �

X

k�1

i¼0

5
ffiffiffi

5
p

pk=8
3

 !i,

i!

Now, it can be shown that one optimal solution for

k-coverage is dividing the 3D space into hexagonal cells

of radius rs and keeping k nodes active at the center of each

cell. (Note that this scheme is not applicable when nodes

are randomly deployed, we mention it here only to find a

lower bound on the number of nodes needed for k-cover-

age.) So the number of nodes needed by our proposed

scheme is at most
32
5
ffiffi

5
p

r3s
k

32
5
ffiffi

5
p

r3
s

8dk=8e

¼ 8dk=8e
k

times the number of nodes

needed by SuperOpt in 3D.

From Table 2, we see that our scheme achieves 4-cover-

age with probability 0.9971 with twice the number of

nodes needed in SuperOpt. Unlike in 2D, we can achieve

k-coverage with very high probability for higher values of

k in 3D. Thus, the proposed scheme performs better in

3D than in 2D for larger values of k.

5. Discussions

Based on a number of assumptions, this paper provides

the node placement strategy that achieves full coverage

and connectivity for random node placement. The assump-

tions underlying our work, the sphere-based sensing, the

sphere-based communication (disk based in 2D), and the

homogenous sensing and communication range of each

sensor, are standard assumptions in most network

modeling works, and are applicable to the underwater

Table 1

Probability of k-coverage and node requirement in 2D.

K kk P(KP k) Number of nodes vs. SuperOpt (%)

1 4.8367983 1 400

2 4.8367983 0.9616325 200

3 4.8367983 0.8688446 133

4 4.8367983 0.7192460 100

5 9.6735966 0.9639949 160

Table 2

Probability of k-coverage and node requirement in 3D.

K kk P(KP k) Number of nodes

vs. SuperOpt (%)

1 11.70802455 1 800

2 11.70802455 0.9999 400

3 11.70802455 0.9994 233

4 11.70802455 0.9971 200
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networks as well. To adjust to real world situation, the net-

work designer should conservatively estimate the sensing

range and communication range (i.e., set sensing range

and communication range at some fractional level of the

actual sensing and communication range).

Our assumption of no boundary effect cannot be valid in

practice, as of course all real networks will be finite in size.

However, if the height, width and length of the network

are sufficiently large as compared with the sensing range

of each node, then a 3D volume of any shape can be cov-

ered with small overhead near the boundary. The smaller

the sensing range, the smaller the boundary effect, with

the boundary effect vanishes when the sensing range

become infinitesimally small. Fig. 11 shows how a cube-

shaped space is covered by a network consisting of

20 � 20 � 20 nodes placed with the TO model.

Finally, our work does not require absolute positioning

mechanism; rather any relative positioning mechanism

where a node knows its position relative to the informa-

tion sink or seed node is sufficient. Since in many sensor

network applications (e.g., detection, monitoring) it is

important to know from where information originates,

sensor networks that are deployed for such application

must already include some positioning mechanism. Thus,

our node placement strategy can get the position informa-

tion from such a mechanism without adding any extra

expense.

Our focus in this paper was on the relationship between

connectivity and coverage in 3D networks. Of course, this

is just ‘‘one piece of the puzzle’’ which relates to many

other aspects of design, implementation, and operation of

a 3D underwater networks. As an example, we did not dis-

cuss here routing in such a 3D network; neither the route

establishment process, nor the relationship between con-

nectivity and the route determination. We also did not dis-

cuss the management of the sleep-wake patterns and the

related required coordination. Furthermore, there are other

technologies that are of fundamental importance to enable

the schemes presented here, such as underwater localiza-

tion (e.g., [44–46]), for instance.

6. Conclusions

In this paper, we investigate the coverage and connec-

tivity issues in three-dimensional networks in situations

where it is difficult to deploy and maintain nodes in pre-

determined positions. As a result, a large number of

nodes has to be randomly and uniformly deployed, such

that full sensing coverage can still be achieved. However,

at any time instant not all nodes are required for full

sensing coverage. It is important to dynamically put

those redundant nodes into sleep mode to increase net-

work lifetime. We provide a highly distributed and scal-

able scheme to achieve this goal in 3D networks. While

an analogous solution exists for 2D networks, transition

from 2D to 3D is typically a difficult task, given that

many problems in 3D are harder than their 2D counter-

parts by orders of magnitude. In order to make the solu-

tion highly distributed and scalable, we partition the 3D

network space into identical regions (or, cells) and keep

one node active in each such cell. Finding the right par-

titioning scheme for 3D networks – one of the most

challenging problems of this work – is also the main

contribution of this paper. Using a century-old Kelvin’s

conjecture, we show that truncated octahedral tessella-

tion of 3D space is the most plausible solution for this

problem. We define a metric called volumetric quotient

(V.Q.) that is a measure of the quality of the competing

space-filling polyhedrons for our problem. The higher

the V.Q. of the shape of a cell, the lower the number of

active nodes required for full coverage. Truncated octa-

hedron turns out to be the best choice with V.Q. of

0.68329, which is much better than the V.Q. of the other

possible choices (both optimized hexagonal prism and

rhombic dodecahedron have V.Q. of 0.477, while cube

has just 0.36755). We also compared different partition-

ing schemes based on their energy consumption, and we

found that the truncated octahedron based partitioning

scheme has longer cell lifetime than the other schemes.

We describe a mechanism for each sensor node to deter-

mine which cell it belongs to based on the cell’s own

position, by using a simple set of arithmetic operations.

No message passing between nodes in different cells is

needed to choose the active nodes. We extend our work

for k-coverage, where sensing coverage by k sensor

nodes is needed. Our scheme can provide k-coverage in

3D with high probability, while significantly decreasing

the gap with the centralized scheme with respect to

the number of active nodes required. While the relative

number of active nodes can be decreased in both 2D

and 3D, the k-coverage in 3D can be ensured with high

probability.
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