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Abstract—Cellular networks are becoming increasingly het-
erogeneous due to the co-deployment of many disparate infras-
tructure elements, including micro, pico and femtocells, and
distributed antennas. This introduces new challenges in the
modeling, analysis, and design of these networks. While grid-
based models have been quite popular in modeling classical
macrocell networks, they are both analytically intractable and
have limited applicability to heterogeneous cellular networks
(HCNs). We propose a flexible, accurate and tractable model
for a general downlink HCN consisting of K tiers of randomly
located BSs, where each tier may differ in terms of average
transmit power, supported data rate, and BS density. Assuming
1) a mobile connects to the strongest BS, and 2) received power
is subject to Rayleigh fading and path loss, we derive expressions
for the coverage probability, ergodic rate and the average rate
conditioned on the mobile being in coverage as the functions of
target Signal-to-Interference-Ratio (SIR).

I. INTRODUCTION

Cellular networks are becoming increasingly complex due

to the co-deployment of various classes of BSs both in space

and frequency [1]. High power macro-cell BSs are already

being joined by operator managed pico-cells [2], [3], compact

form-factor distributed antennas [4]–[6], and low-power user-

installed femtocells [7], [8]. As a result, the traditional macro-

cell based networks have evolved into HCNs, where BSs

may differ by a few orders of magnitude in terms of their

transmit power and the density in which they are deployed.

For example, it is easy to imagine a LTE network consisting

of macro, pico and femtocells, with transmit powers of 50W,

2W and 200mW, respectively, where perhaps 10 pico-cells and

100 femtocells exist in a high power macro-cell, sharing the

same licensed spectrum. Naturally, the experience of mobile

users in terms of coverage, rate and reliability would be quite

different in these networks as compared to the familiar macro-

cell based networks. This increasing heterogeneity complicates

the problem of modeling and analysis of cellular networks,

which is known to be fairly hard even in the case of classical

homogeneous cellular networks.

The research into modeling and analysis of cellular net-

works has predominantly been influenced by two main ap-

proaches. For academic research, very simple models are typ-

ically used to maintain tractability. The most popular analytical

model even to the present day is the Wyner model, which

assumes channel gain from all (typically 1 or 2) interfering
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BSs are equal and thus interference power is constant over the

entire cell [9]. This model suffers from two main drawbacks:

1) it does not distinguish between the cell-edge and the cell-

interior, and 2) in most cases, it does not have a notion of

outage since the signal-to-interference-ratio (SIR) is fixed and

deterministic [10]. On the other hand, for design and devel-

opment (e.g., in industry) complex system-level simulations

with large number of system parameters are generally used.

The most popular and widely accepted simulation model is the

two-dimensional hexagonal grid model. While it is flexible and

allows to study the effect of various system parameters, it is

generally not tractable [11], [12]. Moreover, in the context of

network heterogeneity and randomness in the BS locations, its

accuracy is questionable.

A third and relatively new method of studying cellular

networks is to allow locations of the BSs to be drawn from a

stochastic process [13]–[16] and then use stochastic geometry

techniques to obtain tractable framework [17]. It was devel-

oped for macro-cell based cellular networks in [17] where

the BS locations were modeled by a homogeneous Poisson

Point Process (PPP). Perhaps surprisingly, it was shown that

the resulting model is about as accurate as the grid model

even though the actual macro-cell BSs are centrally placed

and have no apparent randomness in their locations. In this

paper, we extend this model to a HCN where it is likely

even more sensible due to the presence of heterogeneous

infrastructure elements such as femtocells. More precisely, the

model consists of K independent tiers of PPP distributed BSs,

where each tier may differ in terms of the average transmit

power, the supported data rate, and the BS density. Assuming

1) a typical mobile user connects to the strongest BS, and 2)

Rayleigh fading, we derive exact expressions for the coverage

probability, ergodic rate and the average rate conditioned on

the mobile being in coverage.

This paper extends the results of [18], where the coverage

probability and the average rate conditioned on the mobile

being in coverage were obtained by assuming a target SIR

greater than 0 dB for each tier. In this paper, we relax this

condition and derive these results for the general target SIR.

This also enables us to obtain the ergodic rate which was not

possible under the assumptions of [18].

II. SYSTEM MODEL

A. Heterogeneous Cellular Network Model

We model a HCN as a K-tier cellular network where each

tier models the BSs of a particular type, such as those of

femtocells or pico-cells. The BSs across tiers may differ in
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Fig. 1. Coverage regions in a two-tier network as per the model used in
this paper. Both macro (large circles) and femto (small dark squares) BSs are
distributed as independent PPPs with P1 = 1000P2 and λ2 = 5λ1.

terms of the transmit power, the supported data rate and their

spatial density. We assume that the BSs in the i-th tier are

spatially distributed as a PPP Φi of density λi, transmit at

power Pi, and have a SIR target of βi. More precisely a mobile

can reliably communicate with a BS x in the i-th tier only if

its downlink SIR with respect to that BS is greater than βi.

The mobiles are also modeled by an independent PPP Φm

of density λm. Without loss of generality, we assume that

the typical mobile user is located at the origin. The fading

(power) between a BS located at point x and the typical

mobile is denoted by hx and is assumed to be i.i.d exponential

(Rayleigh fading). The standard path loss function is given

by l(x) = ‖x‖−α, where α > 2 is the path loss exponent.

Hence, the received power at a typical mobile user from a

BS located at point xi (belonging to ith tier) is Pihxi
‖xi‖

−α,

where hxi
∼ exp(1). The resulting SIR expression assuming

the user connects to this BS is:

SIR(xi) =
Pihxi

‖xi‖
−α

∑K
j=1

∑

x∈Φj\xi
Pjhx‖x‖−α

, (1)

Since interference typically dominates noise in all cellular

networks of even modest density, we neglect thermal noise

in this work, which further improves tractability. We will

comment more on this assumption in the Numerical Results

Section. We assume that each mobile user connects to its

strongest BS instantaneously, i.e., the BS that offers the highest

received SIR. Mathematically the typical node at the origin is

in coverage if:

max
x∈Φi

SIR(x) > βi,

for some 1 ≤ i ≤ K. The model considers a single frequency

band and assumes that all BSs are transmitting continuously

in all time slots at constant power, although if some fraction

f of time slots were not used (at random), then the resulting

density of interfering BSs would simply be (1− f)λ and the

analysis could be extended.

Fig. 2. Coverage regions in a two-tier network where Macro (tier-1) BS
locations (large circles) correspond to actual 4G deployment in an urban area.
Femto BSs (small dark squares) are distributed as a PPP (P1 = 1000P2 and
λ2 = 5λ1).

B. Coverage Regions

The illustrative HCN coverage regions under no-fading

assumption can be visually plotted in two steps, resulting in

Figs. 1-3. First, we randomly place K different types of BSs

on a 2-D plane according to the aforementioned independent

PPPs. Second, the space is fully tessellated following the

maximum SIR (equivalently maximum power) connectivity

model in the absence of fading. Due to the differences in

the transmit powers over the tiers, the coverage plots do not

correspond to a standard Voronoi tessellation [19]. Instead,

they closely resemble a circular Dirichlet tessellation, also

called a multiplicatively weighted Voronoi diagram [20]. The

coverage regions for a two-tier network – for example com-

prising macro and femtocells – are depicted in Figs. 1 and 2

for two cases: 1) the macro-cell BSs are distributed according

to PPP (our model), and 2) the macro-cell BSs correspond to

an actual 4G deployment over a relatively flat urban region.

The femtocells are distributed according to an independent

PPP in both cases. Qualitatively, the coverage regions are quite

similar in the two cases. The close-up view of coverage regions

with an additional pico-tier is shown in Fig. 3. Apart from the

apparent heterogeneity, this coverage footprint highlights the

particularly important role of smaller cells where macrocell

coverage is poor.

III. COVERAGE PROBABILITY

We first provide the coverage probability of a typical user

which is required to obtain the average rate in the next section.

Theorem 1. The coverage probability of a typical mobile user

is

Pc({λi}, {βi}, {Pi}) =
2πΓ(1 + 2

α )

α

K
∑

m=1

λm(Pmδm)1+
2

α

·

∞
∫

−∞

∞
∫

0

Ly
I (j2πω)

y1+2/α

ej2πωy(1−δ−1

m ) − ej2πωy(κ−1−δ−1

m )

j2πω
dydω.
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Fig. 3. Close-up view of coverage regions in a three-tier network. All the
tiers, i.e., tier-1 macro (large circles), tier-2 pico (light triangles) and tier-3
femto (small dark squares), are modeled as independent PPPs. P1 = 100P2 =

1000P3, λ3 = 4λ2 = 8λ1.

In the above expression δi =
1+βi

βi
, κ = max δi and

Lu
I (s) = e−π

∑K
m=1

λm(sPm)
2

α Γ(1+ 2

α )[Γ(1− 2

α )+2/αΓ(− 2

α , su
δm

)].
(2)

Proof: Since the BSs are distributed as a stationary

process, we can consider a typical mobile at the origin. The

coverage probability of a typical mobile user at the origin is

1− E

[

K
∏

i=1

1− 1

(

Mi

I −Mi
> βi

)

]

,

where

Mi = Pi max
x∈Φi

{hx‖x‖
−α},

and I is the total aggregate interference at the origin given by

I =

K
∑

i=1

∑

x∈Φi

Pihx‖x‖
−α.

By basic algebra, the coverage probability equals

Pc({λi}, {βi}, {Pi}) = P(max
i

(δiMi) > I). (3)

Let

Lu
I (s) = E[e−sI

1(max
i

(δiMi) < u)].

It can be reduced to (2) using [21, Theorem 1]. Differentiating

Lu
I (s), we obtain

∂Ly
I (s)

∂y

∣

∣

∣

u
=
Lu
I (s)2πΓ(1 +

2
α )

αu1+2/α

K
∑

m=1

λm(Pmδm)1+
2

α e−
su
δm .

Let f(x, y) denote the joint probability density of I and

max(δiMi). The coverage probability equals

Pc =

∫ ∞

0

∫ ∞

0

f(x, y)1

(

y > x >
y

max(δi)

)

dxdy.

Let κ = max(δi). Using Parsevals theorem1, we obtain

Pc =

∫ ∞

0

∫ ∞

−∞

f̂(ω, y)
ej2πωy − ej2πωy/κ

j2πω
dωdy, (4)

where f̂(ω, y) denotes the Fourier transform of f(x, y) with

respect to the x variable. We also have

∂Lu
I (s)

∂u
=

∫ ∞

x=0

f(x, y)e−j2πωxdx = f̂(ω, y).

Interchanging the integrals in (4) and using the above equation,

we obtain the result.

The above theorem provides coverage probability for all

values of βi > 0; however the coverage probability requires

evaluation of complex integrals. An assumption that greatly

simplifies the analysis is that βi > 1, i.e., the SIR threshold

for connectivity to any tier is greater than 0 dB. The following

Lemma shows that under this assumption, a mobile can con-

nect to at most one BS in the entire network. Although some

users in commercial cellular networks indeed have operating

SIR below 0 dB, they are in a distinct minority (cell edge

users) and in the Numerical Results section we show that the

results obtained with βi > 1 assumption hold very accurately

to about −4 dB, which covers cell edge users as well.

Lemma 1. Given positive real numbers {a1, a2 . . . an}, which

correspond to the received power from each BS at the typical

mobile user and defining bi =
ai∑

j 6=i aj
, which corresponds to

the SIR of the ith BS, at most m bi’s can be greater than 1/m
for any positive integer m.

Proof: See [18].

The model is applicable both to CDMA2 and OFDMA-

based cellular networks. The next theorem specializes The-

orem 1, to βi > 1.

Theorem 2. When βi > 1, the coverage probability for a

typical mobile user in open access is

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑K
i=1 λiP

2/α
i β

−2/α
i

∑K
i=1 λiP

2/α
i

, βi > 1,

where C(α) = 2π2α−1 csc(2π/α).

Proof: We now provide the intuition behind the proof. For

a detailed proof, please refer to [18]. The coverage probability

is

Pc = 1− E

K
∏

m=1

(

∏

x∈Φm

(1− 1(SIR(x) > βk))

)

.

When βi > 1, from Theorem 1, atmost one BS can connect to

the mobile at the origin. Hence for any a ≥ 2, and x1, ...., xa,

we have
a
∏

b=1

1(SIR(xb) > βk) = 0.

1This requires verifying that the integrand is integrable, which we do not
provide in this paper. The technique for verifying the integrability is common
and can be found in [22].

2For CDMA networks, although the received SIR is generally much smaller
than 1, the post-despreading SIR, which is what determines coverage/outage,
is often greater than or at least close to 1, so our model and Lemma 1 are
still reasonable if the interference term is divided by a spreading factor M .
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So we have,

Pc = E

K
∑

m=1

∑

x∈Φm

1(SIR(x) > βk).

Moving the expectation inside the summation, and using

Cambell-Mecke theorem [23], and the fact that interference

is α-stable, we obtain the result.

IV. AVERAGE RATE

In this section, we focus on the study of the average com-

munication rate achievable by a typical mobile user in the K-

tier HCN. Throughout this study, we assume that the capacity

achieving codes are used and hence the Shannon’s capacity

formula, R = log

(

1 + max
x∈∪iΦi

SIR(x)

)

bps/Hz, is applicable.

It is worth noting here that the Pc expression derived in Theo-

rem 1 completely characterizes the complementary cumulative

distribution function (ccdf) of max
x∈∪iΦi

SIR(x) and hence holds

a key to the derivation of the ergodic rate. We now derive the

Ergodic rate E[R] using the coverage probability result derived

in Theorem 1.

A. Ergodic Rate

Theorem 3. The ergodic rate achievable by a typical mobile

in a K-tier HCN is given by:

E[R] =

∞
∫

0

Pc{{λi}, 2
y − 1, {Pi}}dy. (5)

Pc{{λi}, 2
y − 1, {Pi}} is the complex integral expression for

coverage probability derived in Theorem 1 by fixing βi =
2y − 1 ∀ i.

Proof: Let X be the random variable denoting

max
x∈∪iΦi

SIR(x) and R be the random variable denoting in-

stantaneous rate log(1 +X) in bps/Hz. Since R is a positive

random variable, its expected value can be evaluated as:

E[R] =

∫ ∞

0

P[R ≥ y]dy =

∫ ∞

0

P[X ≥ 2y − 1]dy

=

∫ ∞

0

Pc{{λi}, 2
y − 1, {Pi}}dy, (6)

which completes the proof.

B. Average Rate in Coverage

Often, the service providers are interested in knowing the

average rate they can provide to the users that are under

coverage. Motivated by this reason, we now obtain the average

rate R̄ achievable by a typical mobile user conditioned on it

being in coverage. For tractability, we assume βi > 1 for all

tiers in the rest of this section. The main result for the average

rate in coverage is given in Theorem 4.

Theorem 4. For βi > 1, the average rate achievable by a

typical mobile when it is in coverage is

R̄ = log (1 + βmin) +

∑K
i=1 λiP

2/α
i A(α, βi, βmin)

∑K
i=1 λiP

2/α
i β

−2/α
i

, (7)

where

A(α, βi, βmin) =

∫ ∞

βmin

max(βi, x)
−2/α

1 + x
dx,

and βmin = min{β1, β2, . . . , βK}.

Proof: Let C({βi}) denote the event that the typi-

cal mobile user is in coverage, i.e., the typical user at

the origin is able to connect to some BS. Hence, this

event equals
⋃K

i=1

⋃

x∈Φi
(SIR(x) > βi). Since C({βi}) is

the event that the typical mobile use is in coverage, it fol-

lows that the coverage probability provided in Theorem 2 is

Pc({λi}, {βi}, {Pi}) = P(C({βi})). We are interested in the

average rate when the typical user is in coverage, which can be

mathematically expressed in terms of conditional expectation

as:

R̄ = E

[

log

(

1 + max
x∈

⋃
Φi

(SIR(x))

)

∣

∣

∣C({βi})

]

. (8)

Denote the random variable maxx∈
⋃

Φi
(SIR(x)) by X . We

first derive the conditional complementary cumulative density

function (CCDF) of X . Using Bayes’ Theorem,

P(X > T
∣

∣

∣ C({βi})) =
P(X > T,C({βi}))

P(C({βi}))
, (9)

Since, X > T denotes the event that the maximum SIR

that the typical user sees is larger than T , it is also equal

to
⋃K

i=1

⋃

x∈Φi
(SIR(x) > T ). Hence,

P(X > T,C({βi}))=P (C({T}),C({βi})) (10)

Using the basic properties of sets, it follows that C({T}) ∩
C({βi}) = C({max(T, βi)}). Hence,

P(X > T
∣

∣

∣ C({βi})) =
P (C({max(T, βi)}))

P(C({βi}))
. (11)

Using Theorem 2, and denoting min{β1, β2, . . . , βK} by

βmin, we obtain

P(X > T |C({βi})) =















K∑

i=1

λiP
2/α
i max(βi,T )−2/α

K∑

i=1

λiP
2/α
i β

−2/α
i

;T > βmin

1; otherwise.
(12)

Using the conditional CCDF, R̄ can be evaluated as follows:

R̄ =

∫ ∞

0

log(1 + x)fX(x | C({βi}))dx,

=

∫ ∞

x=0

∫ x

y=0

1

1 + y
fX(x | C({βi})) dy dx,

(a)
=

∫ ∞

y=0

(∫ ∞

x=y

fX(x | C({βi})) dx

)

1

1 + y
dy,

=

∫ ∞

0

P (X > y | C({βi}))

1 + y
dy, (13)
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where (a) follows from changing the order of integration. Now

we substitute (12) in (13) to obtain

R̄ =

∫ βmin

0

1

1 + y
dy +

K
∑

i=1

λiP
2/α
i

∞
∫

βmin

max(βi,x)
−2/α

1+x dx

∑K
i=1 λiP

2/α
i β

−2/α
i

,

= log(1 + βmin) +

K
∑

i=1

λiP
2/α
i

∞
∫

βmin

max(βi,x)
−2/α

1+x dx

∑K
i=1 λiP

2/α
i β

−2/α
i

.

(14)

This completes the proof.

Thus we observe that the average rate expression involves

only a single integral which can be easily evaluated numeri-

cally.

Corollary 1. When all the tiers have the same SIR threshold

β > 1, the average rate achievable by a randomly chosen

mobile that is in coverage in open access networks is

R̄ = log(1 + β) + β2/αA(α, β, β). (15)

The above result shows that the average rate is independent

of the density of BSs of each tier when the SIR thresholds are

same for all the tiers. This is expected because the distribution

of max SIR does not depend upon the density of BSs in this

case (this follows from Theorem 2 by setting βi = β ∀ i).

C. Closed Access

So far, all the results pertain to an open access network,

where a mobile is allowed to connect to any BS in the network.

We now focus on the closed access case, also known as a

closed subscriber group, where a mobile user is allowed to

connect to only a subset of tiers and the rest of the tiers

act purely as interferers. The motivation for closed access

particularly applies to privately owned infrastructure, such

as femtocells or perhaps custom picocells mounted on a

company’s roof to improve service to their staff. As in the

previous case, we first state the result for coverage probability

of a randomly located mobile in closed access in Lemma 2

(assuming βi > 1 for all tiers). Please refer to [18] for the

proof.

Lemma 2. When a typical mobile user is allowed to connect

to only a subset B ⊂ {1, 2, , . . . ,K}, the coverage probability

for the closed access scheme with βi > 1 is

Pc({λi}, {βi}, {Pi}) =
π

C(α)

∑

i∈B λiP
2/α
i /β

2/α
i

∑K
i=1 λiP

2/α
i

. (16)

Now the average rate achievable by a randomly chosen

mobile under closed access (assuming it is under coverage)

can be expressed as

R̄c = E






log



1 + max
x∈

⋃

i∈B

Φi

(SIR(x))





∣

∣

∣

⋃

x∈Φi
i∈B

(SIR(x) > βi)






.

(17)

Following the same steps as in proof of Theorem 4, we arrive

at the following Proposition.
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Fig. 4. Coverage probability in a two-tier HCN with and without thermal
noise (K = 2, P1 = 25P2, λ2 = 5λ1, β2 = 1 dB, SNRedge = 0 dB).
The “with-noise” plot is generated from the coverage probability expression
derived in [18, Theorem 1].

Proposition 1. Assuming a mobile user is allowed to connect

to only a subset B of the K tiers (with βi > 1), the average

rate conditioned on the mobile being in coverage is

R̄c = log (1 + βmin) +

∑

i∈B λiP
2/α
i A(α, βi, βmin)

∑

i∈B λiP
2/α
i β

−2/α
i

, (18)

where

A(α, βi, βmin) =

∫ ∞

βmin

max(βi, x)
−2/α

1 + x
dx, (19)

and βmin = min{βi}, where i ∈ B.

Corollary 2. Assuming the threshold of each tier is the same

and equal to β, the average rate achievable by a randomly

chosen mobile in coverage under closed access is

R̄c = log(1 + β) + β2/αA(α, β, β). (20)

From Corollaries 1 and 2, we observe that the average rate

(R̄) of the mobile while it is in coverage is not affected by

access control when the thresholds are the same for all tiers.

However, please recall that since the coverage probability is

lower in case of closed access, it will lead to a lower ergodic

rate as compared to an open access network.

V. NUMERICAL RESULTS

A. Validating No-Noise Assumption

To validate the no-noise assumption, we study the effect

of thermal noise on the coverage probability in a typical two-

tier network consisting of macro-cells overlaid with pico-cells.

We again assume that the mobile user connects to the BS

with the strongest downlink signal (max(SINR) or equivalently

max(SIR) connectivity model). To set the reference noise

power, we use the following notion of cell-edge users in this

example. Defining the distance of the the nearest macro BS

to the typical mobile user to be d and the underlying random

variable to be D, the mobile user is said to be on the cell edge

if P(D ≤ d) ≥ Pedge, where Pedge is set to 0.9 for this illus-

tration. For PPP of intensity λ1, P(D ≤ d) = 1−exp(λ1πd
2),
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Fig. 5. Average rate while mobile is in coverage (K = 2, α = 3, P1 =

1000P2, λ2 = 2λ1, β1 = β2 = β, no noise, open access).

giving d ≥
√

− ln(1−Pedge)
πλ1

. For a desired edge-user SNR,

say SNRedge, the noise power σ2 can be approximated as

σ2 ≈
P1d

−α
edge

SNRedge
, where dedge =

√

− ln(1−Pedge)
πλ1

. Please note

that we have inherently assumed the first tier to be the macro

tier. Under this setup, we present the coverage probability for

various values of α in Fig. 4. By comparing these results

with the no-noise case, we note that the typical HCNs are

interference limited and hence thermal noise has a very limited

effect on coverage probability. This validates the no-noise

assumption.

B. Average Rate and β > 1 Assumption

The average rate under coverage (R̄) for a two-tier HCN is

plotted in Fig. 5. From the plot, we note that the analytical

results obtained under β > 1 assumption provide a reasonably

tight bound even until β = −4 dB. Therefore, the simplified

analytical results also cover the cell edge users having op-

erating SIR below 0 dB (typically not lower than −3 dB in

commercial cellular networks).

VI. CONCLUSIONS

We have developed a new tractable model for downlink

HCNs consisting of K tiers of randomly located BSs, where

each tier may differ in terms of the average transmit power,

target SIR and the supported data rate. Using this model, we

have obtained exact expressions for the coverage probability,

ergodic rate and the average rate conditioned on the mobile

being in coverage. This model reinforces the usefulness of

random spatial models in the analysis and research of cellular

networks. This is a baseline tractable HCN model with possi-

ble future extensions being the inclusion of frequency reuse,

power control and interference avoidance/ cancellation.
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